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Geometric imaging of borophene polymorphs
with functionalized probes
Xiaolong Liu 1, Luqing Wang2, Shaowei Li3, Matthew S. Rahn3, Boris I. Yakobson2,4 & Mark C. Hersam 1,3,5,6

A common characteristic of borophene polymorphs is the presence of hollow hexagons

(HHs) in an otherwise triangular lattice. The vast number of possible HH arrangements

underlies the polymorphic nature of borophene, and necessitates direct HH imaging to

definitively identify its atomic structure. While borophene has been imaged with scanning

tunneling microscopy using conventional metal probes, the convolution of topographic and

electronic features hinders unambiguous identification of the atomic lattice. Here, we over-

come these limitations by employing CO-functionalized atomic force microscopy to visualize

structures corresponding to boron-boron covalent bonds. Additionally, we show that CO-

functionalized scanning tunneling microscopy is an equivalent and more accessible technique

for HH imaging, confirming the v1/5 and v1/6 borophene models as unifying structures for

all observed phases. Using this methodology, a borophene phase diagram is assembled,

including a transition from rotationally commensurate to incommensurate phases at high

growth temperatures, thus corroborating the chemically discrete nature of borophene.
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T
he recent experimental realization of 2D boron1–8 (i.e.,
borophene) has spurred broad interest in its unique
material attributes such as in-plane anisotropy9, massless

Dirac fermions10, and seamless phase intermixing7. The poly-
morphic nature of borophene2,3, which is rooted in the rich
bonding configurations among boron atoms, further distinguishes
it from other 2D materials and offers an additional means for
tailoring its material properties. However, when combined with
the large number of predicted lattice structures for borophene,
polymorphism introduces challenges for the unambiguous iden-
tification of borophene atomic structures experimentally. For
example, while conventional metal-tip scanning tunneling
microscopy (STM) has provided atomic-scale characterization of
borophene4–7, the convolution of topographic and electronic
structure in the resulting images coupled with Moiré superlattices
with the underlying substrate leads to experimental uncertainties
that do not provide sufficient differentiation among possible
borophene lattices. While comparison of available experimental
data with density functional theory calculations and simulated
images help exclude some possibilities, sufficient ambiguity
remains such that the literature lacks consensus for many
observed borophene phases5,11. Consequently, an experimental
method for definitively identifying borophene atomic structures is
needed in order to establish the fundamental structure–property
relationships that underlie emerging borophene applications.
Since the first evidence of enhanced scanning probe spatial
resolution with pentacene-functionalized tips12, deliberate tip
functionalization with CO13, H2

14,15, Xe16, and CuOx
17,18 has

been utilized to resolve spatial details down to the subatomic
regime. Although the physical mechanisms that lead to this
improved spatial resolution is still under debate19, geometric
imaging with functionalized tips reveals inter-molecular and
intra-molecular chemical bonds, particularly in carbon-based
molecular or graphitic systems20–22.

In an extension of this methodology, we show here that
cryogenic ultrahigh vacuum non-contact CO-functionalized
atomic force microscopy (CO-AFM) geometrically resolves fea-
tures that are consistent with boron-boron covalent bonds. We
further demonstrate that CO-functionalized STM (CO-STM)22

resolves borophene HHs and thus provides equivalently unam-
biguous geometric identification of borophene atomic lattice
structures in a manner that is experimentally less demanding. By
applying this approach to several borophene phases produced at
different growth temperatures, a borophene phase diagram is
constructed that includes multiple borophene polymorphs with
different rotational alignments on Ag(111). In particular, a
transition from rotationally commensurate to rotationally
incommensurate borophene phases is observed at high growth
temperatures, which suggests that borophene is a chemically
discrete two-dimensional material as opposed to a surface
reconstruction or alloy with the underlying Ag(111) growth
substrate.

Results
Non-rotated borophene phases. Borophene polymorphs are
characterized by different arrangements and concentrations of
HHs in an otherwise 2D triangular lattice. Figure 1a shows a
conventional bare-tip STM image of intermixed v1/5 (colored
blue) and v1/6 (colored red) phase borophene grown at a pre-
viously established temperature of ~450 °C7. By comparing these
borophene structures with the atomic lattice of the Ag(111)
growth substrate (Fig. 1b), the horizontal HH row directions of
both phases are found to be 30° rotated with respect to the Ag
atomic chains (directions a or b in Fig. 1c), consistent with
previously proposed structural models4 as shown in Fig. 1c. For

v1/5 and v1/6 phase borophene, the HHs are arranged in a stag-
gered and aligned manner, respectively, with the unit cells of the
HH lattices indicated by the black arrows. High-resolution STM
imaging of v1/5 phase borophene with a bare metal tip (Fig. 1d)
reveals a strong brick-wall type Moiré pattern modulating finer
features.

In an effort to gain higher spatial resolution, imaging of these
phases was repeated with CO-AFM. In particular, Figure 1e
shows the characteristic inelastic electron tunneling spectra of
CO obtained on borophene after decorating the metal tips with
a CO molecule (hindered translation and rotation modes at
3.2 meV and 17.6 meV, respectively), confirming successful tip
functionalization (Supplementary Fig. 1)23. In contrast to the
STM image in Fig. 1d, the constant height CO-AFM image in
Fig. 1f geometrically resolves the HH lattice and verifies the
proposed v1/5 phase borophene structure, where the HHs are
separated by bright ridges at positions expected for boron–boron
covalent bonds. In agreement with the experimental image,
Figure 1g shows a simulated CO-AFM image24,25 with an
overlaid v1/5 phase atomic structure. While the apparent bonding
structures of the 6-membered boron rings (i.e., HHs) are clearly
resolved, minimal contrast is observed for the triangular boron
lattice, where only 3-membered boron rings exist. This limited
spatial resolution is reasonable given the fact that 4-membered
carbon rings have also not been resolved with CO-AFM26.
Nevertheless, resolving the HH lattice is sufficient for determining
the structures of borophene polymorphs and thus CO-AFM is
a definitive tool for identifying borophene atomic lattice
structures3.

In light of the highly demanding nature of non-contact AFM in
terms of instrumentation and operation, we further demonstrate
that more experimentally accessible CO-STM imaging provides
equivalent geometric information in Fig. 1h. Compared to the
bare-tip STM image in Fig. 1d, a lattice of staggered protrusions
(red arrows) matching the HH lattice are clearly resolved in
addition to the less-obvious Moiré pattern. By performing CO-
STM imaging in dynamic mode27 (i.e., with an oscillating STM
tip), this contrast is further enhanced (Fig. 1i) at milder imaging
conditions (Supplementary Fig. 2), which helps improve the
stability of the adsorbed CO molecule on the tip apex.

30°-rotated borophene phases. At higher growth temperatures
(~500 °C), v1/5 phase borophene dominates7, although another
phase with a rectangular lattice also begins to appear (Fig. 2a).
This structure was first observed in high-temperature growth and
assigned to a buckled triangular lattice5. The 3 Å × 5 Å lattice
constants are also indicative of v1/6 phase borophene, which
normally grows at lower temperatures4. However, the absence of
a linear Moiré pattern typically seen for v1/6 phase borophene
suggests that this phase might be the v1/6 sheet on Ag(111) with a
different orientation with respect to the underlying Ag(111) lat-
tice as suggested previously28,29. Indeed, instead of being parallel
as in the low-temperature v1/6 phase (Fig. 1c), the HH rows in this
case are perpendicular to those of a neighboring v1/5 borophene
domain in Fig. 2b (yellow arrows). We thus label this phase as v1/6
−30° as schematically shown in Fig. 2c, indicating that the bor-
ophene lattice orientation is rotated by 30° on Ag(111) compared
to the low-temperature v1/6 phase.

A polycrystalline domain of the v1/6−30° phase with 60° grain
boundaries (GBs; yellow arrows) is shown in Fig. 2d. Figure 2e, f
are high-resolution STM and CO-AFM images of v1/6−30° phase
borophene, respectively, where the aligned HHs are clearly
resolved in Fig. 2f with neighboring HHs separated by bright
ridges at positions expected for boron–boron covalent bonds. In
Fig. 2g, the simulated CO-AFM image with an overlaid atomic
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structure again agrees well with experimental observations,
confirming our structural assignment as v1/6−30°. On the other
hand, simulated CO-AFM images of a buckled triangular lattice
deviate from the experimental image (Supplementary Fig. 3).
Compared to the bare tip STM image, each bright protrusion
splits into two protrusions with inequivalent brightness in the
CO-STM image in Fig. 2h. A series of bare-tip STM, CO-AFM,
and CO-STM images of a 60° GB in v1/6−30° phase borophene is
shown in Fig. 2i, j, l, respectively. Based on the apparent bonding
positions resolved in Fig. 2j, we propose an atomic structure
of the GB seamlessly connecting adjacent grains (Fig. 2k). This
proposed structure yields a simulated CO-AFM image (Fig. 2k)
that agrees well with experimental observation, further support-
ing our assignment of the v1/6−30° phase.

As established previously, intermixing of v1/5 and v1/6 phase
borophene takes place when the two phases have rotationally
aligned HH rows7. Therefore, it is reasonable to expect that
v1/5−30° phase borophene (schematically shown in Fig. 3a) would
intermix with the v1/6−30° phase at appropriate growth
conditions. Indeed, at a higher growth temperature (~550 °C),
an undulated structure appears as shown in the bare-tip STM
image in Fig. 3b, which has previously been referred to as the
striped phase5 and suggested to be induced by an undulating Ag
surface reconstruction under a v1/6−30° sheet28. However, based
on the CO-STM image in Fig. 3c, we conclude that this phase

adopts the v1/5 borophene structure as evidenced by the staggered
arrangement of protrusions (yellow circles) representing the
HH lattice. Furthermore, instead of the brick-wall type Moiré
pattern observed for the low-temperature v1/5 phase, the apparent
larger-scale undulation results from a ~4% larger inter-HH
spacing along the HH rows than the interatomic spacing of
the underlying Ag, which is reproduced qualitatively in Fig. 3d
by rotating v1/5 phase borophene by 30° on Ag(111). The
coexistence of this structure with v1/6−30° phase borophene with
parallel HH rows and a seamless phase boundary is shown in
the CO-STM image in Fig. 3e, confirming a rotation angle of 30°
and thus the identity of this phase as v1/5−30°. Since phase
intermixing results from line defects in each phase adopting
the structure of the other phase7, we identify various v1/5−30°
line defects in v1/6−30° phase borophene with different widths
as shown in the top row of Fig. 3f–i (CO-STM images). The
yellow circles denote the staggered HH pattern in the v1/5−30°
regions, while the corresponding structures are displayed in the
bottom row. Additional CO-STM and CO-AFM images of
intermixed v1/6−30° and v1/5−30° phase borophene are provided
in Supplementary Fig. 4.

Rotationally incommensurate borophene phases. All of the
borophene phases discussed thus far (i.e., v1/6, v1/5, v1/6−30°,
and v1/5−30°) are reasonably characterized as being rotationally
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Fig. 1 Imaging v1/5 phase borophene with bare and functionalized probes. a Bare-tip STM image of intermixed v1/5 (colored blue) and v1/6 (colored red)

phase borophene. b A neighboring Ag(111) surface, where the angle between the HH rows of borophene (horizontal) in a and the Ag atomic chains is 30°

as expected. c Schematic illustration of the rotational orientation of v1/5 and v1/6 phase borophene on Ag(111). The arrows mark the unit cells of the HH

lattices in each phase. d Bare-tip STM image of v1/5 phase borophene. e Inelastic electron tunneling spectroscopy on borophene with a CO-functionalized

tip. f CO-AFM image of v1/5 phase borophene. g Simulated CO-AFM image of v1/5 phase borophene with overlaid atomic structure. h CO-STM and i

dynamic CO-STM image of v1/5 phase borophene. The red arrows in f, h, and i denote the unit cells corresponding to the HH lattice. Vs=−10mV in a, 20

mV in b, 100mV in d, −7 mV in h, and 15 mV in i. Scale bars, 2 nm in a, 1 nm in b, 2 Å in d, f, h, i
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commensurate with the underlying growth substrate since
the HH rows are aligned along high symmetry directions of
the Ag(111) surface. In contrast, at similar conditions where
phase intermixing is observed for v1/6−30° and v1/5−30° bor-
ophene, another new structure is observed as shown in the
derivative image of the bare-tip STM topography in Fig. 4a. As
seen in the zoomed-in inset images, the borophene domain on
the left is v1/5 phase borophene with a characteristic brick-wall
type Moiré pattern (orange square), whereas the domain on
the right shows a distorted brick-wall type Moiré pattern
(green square). The CO-STM image of this new domain structure

is provided in Fig. 4b and reveals a HH lattice with staggered
protrusions (red arrows) that are indicative of a v1/5 borophene
sheet. However, due to the ~36° angle (instead of 30° angle
for v1/5) between the directions of the HH rows and the Ag
atomic chains (vertical direction, Fig. 4a), this borophene sheet
is denoted as v1/5−6°. Rotationally incommensurate v1/5 bor-
ophene sheets are generally depicted in Fig. 4c as v1/5-α, where
α is the rotation angle by which the sheet deviates from the v1/5
phase. In Fig. 4d, a CO-AFM image of the v1/5−6° phase
with an overlaid atomic structure confirms the assignment as a
v1/5 sheet.
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In addition to α= 6°, other rotationally incommensurate phases
such as v1/5−9° and v1/5−22° phase borophene have been observed
(Supplementary Fig. 5). As an example, the CO-STM image in
Fig. 4e resolves the HH lattice of v1/5−22° phase borophene with
periodically self-assembled v1/6−22° line defects in the middle, as
evidenced by the staggered and aligned HH patterns indicated by
the yellow circles, respectively. Equivalently, the self-assembled
periodic line defects can be categorized as v4/21−22° phase
borophene (another example is shown in Supplementary Fig. 5)
in a manner analogous to previously reported periodic intermixed
phases for non-rotated borophene growth (i.e., α= 0°)7. Combin-
ing all of the observations discussed above and established
previously, a phase diagram for borophene growth with respect
to temperature is summarized in Fig. 4f, where each phase is
represented by an oval. The overall trend is that borophene growth
transitions from rotationally commensurate phases to rotationally
incommensurate phases at high temperatures. Significantly, the
existence of rotationally incommensurate phases provides corro-
borating evidence that borophene layers are chemically discrete
from the underlying Ag surface8. It should be further noted that
the range of observed borophene phases show similar electronic
properties (Supplementary Fig. 6) with no measurable differences
in lattice constants.

In summary, we have utilized CO-functionalized scanning
probe microscopy to geometrically image and determine the
atomic lattice structures of various borophene polymorphs. In
addition to CO-AFM, we establish CO-STM as an alternative and
comparatively more accessible technique for unambiguously
determining borophene atomic structures. Using these methods,
we assigned structure models for several phases of borophene in
addition to resolving features consistent with boron–boron
covalent bonds. In all cases, the borophene phases are found to
consist of v1/5 and/or v1/6 domains, although the orientation of
these domains with respect to the underlying Ag(111) substrate
transitions from rotationally commensurate to rotationally
incommensurate at the highest growth temperatures. The
resulting phase diagram explains all observations of borophene
to date with the newest rotationally incommensurate phases
providing strong evidence that borophene is a chemically discrete
two-dimensional material as opposed to a surface reconstruction
or alloy with the underlying Ag(111) growth substrate. This
conclusion is further supported by the recent synthesis of
borophene on Cu(111)30. The ability of CO-AFM and CO-STM
to resolve the complicated phase diagram for borophene
polymorphs suggests that CO-functionalized probes can be
similarly employed for the unambiguous determination of atomic
structures for other emerging synthetic 2D materials and their
heterostructures31.

Methods
Borophene growth. Borophene growth is described in detail in an earlier report7.
Briefly, a solid boron rod (ESPI metals, 99.9999% purity) is evaporated onto Ag
(111) films (~600 nm thick) on mica (Princeton Scientific Corp.) in an ultrahigh
vacuum preparation chamber (~1 × 10−10 mbar) with an electron-beam evaporator
(FOCUS) for a duration of ~30 min to achieve submonolayer coverage. The clean
Ag(111) surface for borophene growth is prepared by repeated 30 min Ar ion
sputtering at 1 × 10−5 mbar followed by 30 min annealing at 550 °C.

Scanning probe microscopy and tip-functionalization. Low temperature STM/
STS and non-contact AFM characterization is performed on a Scienta Omicron LT
STM (~2 × 10−11 mbar) at ~4 K interfaced with Nanonis (SPECS) control elec-
tronics using qPlus AFM sensors (mounted W tips from Scienta Omicron).
Tip functionalization is achieved by leaking CO molecules into the STM chamber
(1 × 10−7 mbar for 40 s) and picking up individual CO molecules by ramping the
sample bias down to −2 mV and the tunneling current up to 1 nA. For AFM
measurements, an oscillation amplitude of 1–2 Å is used. AFM image simulation is
based on the method developed by Hapala and coworkers24,25. A lock-in amplifier
(SRS model SR850) is used for STS measurements with 2 mVRMS amplitude and
~0.8 kHz modulation frequency. Gwyddion software is used for image processing.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or
the Supplementary Information. Additional data related to this paper may be requested
from the authors.
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