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Abstract

Data often comes in the form of a point cloud sampled from an unknown compact
subset of Euclidean space. The general goal of geometric inference is then to recover
geometric and topological features (eg. Betti numbers, normals) of this subset from
the approximating point cloud data. In recent years, it appeared that the study of
distance functions allows to address many of these questions successfully. However,
one of the main limitations of this framework is that it does not cope well with outliers
nor with background noise. In this paper, we show how to extend the framework of
distance functions to overcome this problem. Replacing compact subsets by measures,
we introduce a notion of distance function to a probability distribution in Rd. These
functions share many properties with classical distance functions, which make them
suitable for inference purposes. In particular, by considering appropriate level sets of
these distance functions, we show that it is possible to reconstruct offsets of sampled
shapes with topological guarantees even in the presence of outliers. Moreover, in set-
tings where empirical measures are considered these functions can be easily evaluated,
making them of particular practical interest.

1 Introduction

Extracting geometric and topological information from geometric data, such as 3D point
clouds obtained from laser scanners, is a requirement for many geometry processing and
data analysis algorithms. The need for robust estimation of geometric invariants have
been recognized long time ago in geometry processing, and such invariants have found
applications in fields as different as shape matching, registration, symmetry detection in
3D models or more generally structure discovery, reconstruction, meshing to name just
a few. More recently, it became apparent that such geometric and topological quantities
could also be used to analyze more general data sets coming from computational structural
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biology, large image databases, etc. It turns out that many questions in data analysis can
be naturally stated as inferring the geometry of an unknown underlying geometric object.
For example, the number of clusters in which a point cloud can be split is related to
the number of connected components of this unknown object. Similarly, finding out the
number of parameters really needed to faithfully describe a point in the cloud – which is
usually much smaller than the dimension of the ambient space – is a matter of estimating
the dimension of the underlying set.

1.1 Inference using offsets and distance functions

One approach to geometric inference is to try to build a reconstruction of the unknown set
K and to estimate the geometric characteristics of K by the ones of the reconstruction.
Perhaps the most obvious way to build such a reconstruction is to consider the r-offset of
the point cloud, that is, the union of balls of a suitable radius r whose center lie in the
point cloud. It has been recently proven by [18, 11] that this simple idea leads to a correct
estimation of the topology of a smooth manifold, under assumptions on the sampling and
the choice of r. This result has been extended to a general class of non-smooth compact
sets by [3].

An important feature of offsets of point clouds is that their topology can be computed
efficiently, at least when the point cloud lies in a low-dimensional ambient space. For
instance, [10] has described an algorithm that given a point cloud C builds a simplicial
complex, called the α-complex, that has the same topology as the union of balls of radius
α centered at points in C. This algorithm requires to compute the Delaunay triangulation
of C, and is hence impractical in higher dimensions. However, even in this case, one can
resort to Vietoris-Rips complexes and the theory of topological persistence to correctly
infer the Betti numbers of offsets of C [8].

A different way to look at offsets, which is equivalent but better suited to the actual
proof of inference results, is through the notion of distance function. Given a compact
subset K of Rd, the distance function dK maps any point x in Rd to the minimum distance
between x and any point y in K. The r-offset of K is then nothing but the sublevel set
d−1
K ([0, r]). The most important property of the distance function for geometric inference

is its stability: if a compact set K ′, e.g. a point cloud, is a good Hausdorff approximation
of another compact set K, then the distance functions dK′ and dK are close to each other.
This property, and two other regularity properties that we will describe later, are the only
requirements for proving the topological inference result mentioned earlier.

Offset-based topological inference is now mature and has been used in different contexts
to estimate the topology and geometry of shapes sampled with a moderate amount of noise
[6, 4, 16]. However, these methods obviously fail completely in the presence of outliers.
Indeed, adding even a single data point that is far from the original point cloud will increase
by one the number of connected components of the offsets of this point cloud, for a large
range of parameters. Said otherwise, while the distance function is only slightly perturbed
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under Hausdorff noise, adding even a single outlier can change it dramatically.

1.2 Contributions

A possible way to solve the problem of outliers for distance-based inference is then to try
to replace the usual distance function to a set K by another notion of distance function
that is robust to the addition of a certain amount of outliers. To define what is this certain
amount one can change the way point clouds are interpreted: they are no more purely
geometric objects, but also carry a notion of mass. Formally, we replace compact subsets
of Rd by finite (probability) measures on the space; a k-manifold will be replaced by the
uniform k-dimensional measure on it, a point cloud by a finite sum of Dirac masses, etc.
The Hausdorff distance is then not meaningful any more; instead, the distance between
two probability measures will be measured through Wasserstein distance, which quantifies
the minimal cost of transporting one measure onto the other (cf §2.2).

In this article, we introduce a notion of distance function to a probability measure µ,
which we denote by dµ,m0 — where m0 is a “smoothing” parameter in (0, 1). We show
that this function retains all the required properties for extending offset-based inference
results to the case where the data can be corrupted by outliers. Namely, function dµ,m0

shares the same regularity properties as the usual distance function, and it is stable in the
Wasserstein sense, meaning that if two measures are Wasserstein-close, then their distance
functions are uniformly close. It can also be computed efficiently for point cloud data. This
opens the way to the extension of offset-based inference methods to the case where data
may be corrupted by outliers. In particular, we show that considering sublevel sets of our
distance functions allows for correct inference of the homotopy type of the unknown object
under fairly general assumptions. This improves over the main existing previous work on
the subject [17], which assumes a much more restrictive noise model, and is limited to the
smooth case.

2 Background: Measures and Wasserstein distances

As explained in the introduction, in order to account for outliers, we consider our objects
as mass distributions instead of purely geometric compact sets. Because one of the goals of
this article is to give inference results, i.e. comparison between discrete and the continuous
representations, we cannot give the definitions and theorems only in the discrete case, but
have to deal with the general case of probability measures.

2.1 Measure theory

A measure µ on the space Rd is a mass distribution. Mathematically, it is defined as a
function that maps every (Borel) subset B of Rd to a non-negative number µ(B), which is
countably additive in the sense that whenever (Bi) is a countable family of disjoint Borel
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subsets of Rd, µ (∪i∈NBi) =
∑

i µ(Bi). The total mass of a measure is µ(Rd). A measure
with finite total mass is called finite, while a measure with total mass one is a probability
measure. The support of a measure µ is the smallest closed set K on which the mass of µ
is concentrated, i.e. µ(Rd \K) = 0.

Given a set of N points C, the uniform measure on C, which we denote by µC , can
be defined by µC(B) = 1

N |B ∩ C|. More intuitively, it is the sum of N Dirac masses of
weight 1/N , centered at each point of C. When the points in C are chosen randomly and
independently according to an underlying, unknown measure, the measure µC is called an
empirical measure. Formally, we are given a family of independent identically distributed
random variables X1, . . . XN who are distributed according to a common measure µ. The
uniform probability measure carried by the point cloud CN = {X1, . . . , Xn} is known as the
empirical measure, and simply denoted by µN . The uniform law of large numbers asserts
that, as N goes to infinity, the empirical measure converges to the underlying measure with
probability one — in a sense that will be explained in the next paragraph.

The approach we will describe in this article applies to any measure on Euclidean space.
However, to fix ideas, let us describe a family of measures with geometric content that we
have in mind when thinking of the underlying measure. One starts from the probability
measure µM on a compact k-dimensional manifold M ⊆ Rd given by the rescaled volume
form on M , possibly with a non-uniform density. Such measures can be combined, yielding
a measure supported on a union of submanifolds of Rd with various intrinsic dimensions:
ν =

∑`
i=1 λiµMi . Finally, as a simple model of noise, this measure can be convolved with

a Gaussian distribution: µ = ν ∗ N (0, σ). This is the same as assuming that each sample
that is drawn according to ν is known up to an independant Gaussian error term.

The empirical measure defined by the measure µ we just described could then be ob-
tained by repeatedly (i) choosing a random integer i ∈ {0, . . . , `}, (ii) picking a random
sample Xn uniformly distributed in Mi, (iii) adding a random Gaussian vector of variance
σ2 to Xn.

2.2 Wasserstein distances

The definition of Wasserstein Wp (p > 1) distance between probability measures rely on
the notion of transport plan between measures. It is related to the theory of optimal
transportation (see e.g. [22]). The Wasserstein distance W1 is also known as the earth-
mover distance, and has been used in vision by [19] and in image retrieval by [21] and
others.

A transport plan between two probability measures µ and ν on Rd is a probability
measure π on Rd ×Rd such that for every A,B ⊆ Rd π(A×Rd) = µ(A) and π(Rd ×B) =
ν(B). Intuitively π(A × B) corresponds to the amount of mass of µ contained in A that
will be transported to B by the transport plan. Given p > 1, the p-cost of such a transport
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plan π is given by

Cp(π) =
(∫

Rd×Rd
‖x− y‖p dπ(x, y)

)1/p

This cost is finite if both measures µ and ν both have finite p-moments, i.e.
∫

Rd ‖x‖
p dµ(x) <

+∞ and
∫

Rd ‖x‖
p dν(x) < +∞. The set of probability measures on Rd with finite p-moment

includes all probability measures with compact support, such as empirical measures.

Definition 2.1. The Wasserstein distance of order p between two probability measures
µ and ν on Rd with finite p-moment is the minimum p-cost Cp(π) of a transport plan π
between µ and ν. It is denoted by Wp(µ, ν).

As a first example, consider a reference point cloud C with N points, and define a noisy
version C ′ by replacing n points in C by outliers, i.e. points o such that dC(o) > R. The
Wasserstein distance between the uniform measures µC and µ is at most n

N (R+ diam(C)).
This can be seen by considering the cost of the transport plan between C ′ and C that
moves the outliers back to their original position, and keeps the other points fixed. On the
other hand, the Hausdorff distance between C and C ′ is at least R. Hence, if the number of
outliers is small, i.e. n� N , the Wasserstein distance is much smaller than the Hausdorff
distance.

As mentioned earlier, the question of the convergence of the empirical measure µN
to the underlying measure µ is fundamendal in the measure-based inference approach we
propose. It has been a subject of study in probability and statistics for a long time. If µ is
concentrated on a compact set, then µN converges almost surely to µ in the Wp distance.
More quantitative convergence statement under different assumptions can be given, as
in [2].

If χ : Rd → R+ defines a probability distribution with finite p-moment σp :=
∫

Rd ‖x‖
p χ(x)dx,

the Wasserstein distance of order p between any probability measure µ and the convolved
measure µ ∗ χ can be bounded by: Wp(µ, µ ∗ χ) 6 σ. If one considers again the example
given in the end of §2.1 of an empirical measure µN whose samples are drawn according to
a “geometric” measure ν convolved with a Gaussian distribution N (0, σ), the combination
of the two previous facts gives:

lim
N→+∞

W2(µN , µ) 6 σ with probability one

Similar bounds are also possible with convolution kernels that are not translation invariant,
such as the ones defining the noise model used in [17]. This being said, we would like to
stress that the stability results we obtain for the distance functions introduced below do
not depend on any noise model; they just depend on the Wasserstein distance between the
two probability measures being small.
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3 Distance function to a probability measure

In this section we introduce the notion of distance function to a measure that we consider.
As explained in the introduction, there are a few constraints for such a definition to be
usable in geometric inference, which we now describe in more detail. Let K be a compact
set, and dK be the distance function toK. Then, one can prove the two following properties:

(i) dK is 1-Lipschitz. For all x, y in Rd, |dK(x)− dK(y)| 6 ‖x− y‖.

(ii) d2
K is 1-semiconcave . This property is equivalent to the concavity of the map
x ∈ Rd 7→ d2

K(x)− ‖x‖2.

A consequence of Lipschitz regularity is that the distance function is differentiable al-
most everywhere; in particular, the medial axis ofK, defined as the set of non-differentiability
points of dK has zero d-volume. Semiconcavity is a stronger regularity property, as thanks
to Alexandrov’s theorem it implies that the distance function dK is not only almost C1, but
also twice differentiable almost everywhere. The semiconcavity property plays a central
role in the proof of existence of the flow of the gradient of the distance function by [15]
(Lemma 5.1), which is the main technical tools used in the topological inference results
obtained by [3]. The semiconcavity of the squared distance function also plays a crucial
role in geometric inference results such as [6] and [16].

This motivates the definition of a distance-like function as a non-negative function
ϕ : Rd → R+ which is 1-Lipschitz, whose square is 1-semiconcave, and which is proper
in the sense that ϕ(x) tends to infinity as x does. The following proposition gives a
characterization of distance-like functions:

Proposition 3.1. Let ϕ : Rd → R be a function whose square is 1-semiconcave. There
exists a closed subset K of Rd+1 such that ϕ2(x) = d2

K(x), where a point x in Rd is identified
with the point (x, 0) in Rd+1.

Proof. Let x ∈ Rd and v be a subgradient to ϕ2 at x, and v′ = v/2. Define a function ψv
by ψv(y) = ϕ2(x) − ‖v′‖2 + ‖x− v′ − y‖2. The 1-semiconcavity of the function ϕ2 yields
ψv(y) > ϕ2(y), with equality at y = x. Hence, the function ϕ2 is the lower envelope of
all the functions ψv as defined above. Letting y = x − v′, we see that the constant part
of ψv is positive. Hence, one can define a point z of Rd+1, by (x− v′, (ϕ2(x)− ‖v′‖2)1/2),
such that ψv(x) is equal to the squared Euclidean distance between (x, 0) and z in Rd+1.
Finally, ϕ2 is the squared distance to the set K ⊆ Rd+1 made of all such points z.

This proposition proves in particular that a function ϕ : Rd → R whose square is
1-semiconcave and proper is automatically distance-like: the Lipschitz assumption comes
with 1-semiconcavity. It also follows from the proof that distance-like functions are simply
generalized power distances, with non-positive weights.
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3.1 Definition

The distance function to a compact set K at x ∈ Rd is by definition the minimum distance
between x and a point of K. Said otherwise, the distance dK(x) is the minimum radius r
such that the ball centered at x of radius r contains at least a point of K. A very natural
idea when trying to define the distance function to a probability measure µ on Rd is to try
mimick the definition above. Given a parameter 0 6 m < 1, define the pseudo-distance
δµ,m by

δµ,m : x ∈ Rd 7→ inf{r > 0 ; µ(B(x, r)) > m}.
For instance for m = 0, the definition would coincide with the (usual) distance function to
the support of the measure µ. For higher values of m, the function δµ,m is 1-Lipschitz, but
lacks other features of that a generalization of the usual distance function to a compact
should have. For instance, the application that maps a probability measure µ to δµ,m is
not continuous in any reasonable sense. Indeed, let δx denote the unit Dirac mass at x and
µε = (1

2 − ε)δ0 + (1
2 + ε)δ1. Then, for ε > 0 one has δµε,1/2(t) = |1− t| for t < 0 while if

ε = 0, one obtains δµ0,1/2(t) = |t|. Said otherwise, the map ε 7→ δµε,1/2 is discontinuous at
ε = 0.

In order to gain both Wasserstein-stability and regularity, we define the distance func-
tion to µ as a L2 average of the the pseudo-distances δµ,m for a range [0,m0] of parameters
m:

Definition 3.2. Let µ be a (positive) measure on the Euclidean space, and m0 be a positive
mass parameter m0 > 0 smaller than the total mass of µ. We call distance function to µ
with parameter m0 the function defined by :

d2
µ,m0

: Rn → R+, x 7→ 1
m0

∫ m0

0
δµ,m(x)2dm

As an example, let C be a point cloud with N points in Rd, and µC be the uniform
measure on it. The pseudo-distance function δµC ,m evaluated at a point x ∈ Rd is by
definition equal to the distance between x and its kth nearest neighbor in C, where k is
the smallest integer larger than m |C|. Hence, the function m 7→ δµC ,m is constant on all
ranges ( kN ,

k+1
N ]. Using this one obtains the following formula for the squared distance

d2
µ,m0

, where m0 = k0/ |C|:

d2
µ,m0

(x) =
1
m0

∫ m0

0
δµ,m(x)2 =

1
m0

k0∑
k=1

1
N
δµ,k/N (x)2

=
1
k0

∑
p∈NN

k0
C (x)

‖p− x‖2

where NNk0
C (x) denote the k0 nearest neighbors of x in C. In this case, the pointwise

evaluation of d2
µC ,k/n

(x) reduces to a k-nearest neighbor query in C.
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3.2 Equivalent formulation

In this paragraph, we prove that the distance function to a measure dµ,m0 is in fact a real
distance to a compact set, but in a infinite-dimensional space. From this fact, we will
deduce all of the properties needed for geometric and topological inference.

A measure ν will be called a submeasure of another measure µ if for every Borel subset
B of Rd, ν(B) 6 µ(B). This is the same as requiring that µ− ν is a measure. The set of
all submeasures of a given measure is denoted by Sub(µ), while the set of submeasures of
µ with a prescribed total mass m0 is denoted by Subm0(µ).

Proposition 3.3. For any measure µ on Rd, the distance function to µ at x is the solution
of the following optimal transportation problem:

dµ,m0(x) = min {m−1/2
0 W2 (m0δx, ν) ; ν ∈ Subm0(µ)} (1)

Then, for any measure µx,m0 that realizes the above minimum one has:

dµ,m0(x) =

(
1

m
1/2
0

∫
Rd
‖x− h‖2 dµx,m0(h)

)1/2

Said otherwise, the distance dµ,m0 evaluated at a point x ∈ Rd is the minimal Wasser-
stein distance between the Dirac mass m0δx and the set of submeasures of µ with total
mass m0:

dµ,m0(x) =
1
√
m0

distW2(m0δx,Subm0(µ)) (2)

The set of minimizers in the above expression corresponds to the “orthogonal” projec-
tions, or nearest neighbors, of the Dirac mass m0δx on the set of submeasures Subm0(µ).
As we will see in the proof of the proposition, these are submeasures µx,m0 of total mass
m0 whose support is contained in the closed ball B(x, δµ,m(x)), and whose restriction to
the open ball B(x, δµ,m(x)) coincides with µ. Denote these measures by Rµ,m0(x).

In order to prove Proposition 3.3, we need a few definitions from probability theory.
The cumulative function Fν : R+ → R of a measure ν on R+ is the non-decreasing function
defined by Fν(t) = ν([0, t)). Its generalized inverse, denoted by F−1

ν and defined by F−1
ν :

m 7→ inf{t ∈ R ; Fν(t) > m} is left-continuous. Notice that if µ, ν are two measures on
R+, then ν is a submeasure of µ if and only if Fν(t) 6 Fµ(t) for all t > 0.

Proof. Let first remark that if ν is any measure of total mass m0, there is only one transport
plan between ν and the Dirac mass m0δx, which maps any point of Rd to x. Hence, the
Wasserstein distance between ν and δx is given by

W2
2 (m0δx, ν) =

∫
Rd
‖h− x‖2 dν(h)
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Let dx : Rd → R denote the distance function to the point x, and let νx be the pushforward
of ν by the distance function to x, i.e. for any subset I of R, νx(I) = ν(d−1

x (I)). Using the
change-of-variable formula, and the definition of the cumulative function gives us:∫

Rd
‖h− x‖2 dν(h) =

∫
R+

t2dνx(t) =
∫ m0

0
F−1
νx (m)2dm

If ν is a submeasure of µ, then by the remark above, Fνx(t) 6 Fµx(t) for all t > 0. From
this, one deduces that F−1

νx (m) > F−1
µx (m). This gives

W2
2(m0δx, ν) =

∫
Rd
‖h− x‖2 dν(h) >

∫ m0

0
F−1
µx (m)2dm

=
∫ m0

0
δµ,m(x)2dm = m0d2

µ,m0
(x)

(3)

The second inequality is because Fµx(t) = µ(B(x, t)), and thus F−1
µx (m) = δµ,m(x). This

proves that dµ,m0(x) is smaller than the right-hand side of (1).
To conclude the proof, we study the cases of equality in (3). Such a case happens

when for almost every m 6 m0, F−1
νx (m) = F−1

µx (m). Since these functions are increasing
and left-continuous, equality must in fact hold for every such m. By the definition of the
pushforward, this implies that ν(B(x, δµ,m0(x))) = m0, i.e. all the mass of ν is contained
in the closed ball B(x, δµ,m0(x)) and µ̃(B(x, δµ,m0(x))) = µ(B(x, δµ,m0(x))). Because ν is a
submeasure of µ, this can be true if and only iff ν belongs in the set Rµ,m0(x) described
before the proof.

To finish the proof, we should remark that the set of minimizer Rµ,m0(x) always contain
a measure µx,m0 . The only difficulty is when the boundary of the ball carries too much
mass. In this case, we uniformly rescale the mass contained in the bounding sphere so that
the measure µx,m0 has total mass m0. More precisely, we let:

µx,m0 = µ|B(x,δµ,m0 (x)) + (m0 − µ(B(x, δµ,m0(x)))
µ|∂B(x,δµ,m0 (x))

µ(∂B(x, δµ,m0(x)))

3.3 Stability of the distance function to a measure

The goal of this section is to prove that the notion of distance function to a measure that
we defined earlier is stable under change of the measure. This follows rather easily from
the characterization of dµ,m0 given by Proposition 3.3.

Proposition 3.4. Let µ and µ′ be two probability measures on Rd. Then,

dH(Subm0(µ),Subm0(µ′)) 6 W2(µ, µ′)
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Proof. Let ε be the Wasserstein distance of order 2 between µ and µ′, and π be a cor-
responding optimal transport plan, i.e. a transport plan between µ and µ′ such that∫

Rd×Rd ‖x− y‖
2 π(x, y)dxdy = ε2. Then, given a submeasure ν of µ, one can find a sub-

measure π′ of π that transports ν to a submeasure ν ′ of µ′. Then,

W2(ν, ν ′)2 6
∫

Rd×Rd
‖x− y‖2 π′(x, y)dxdy 6 ε2

This shows that dist(ν, Subm0(µ′)) 6 ε for every submeasure ν ∈ Subm0(µ). The same hold
by exchanging the roles of µ and µ′, thus proving the bound on the Hausdorff distance.

Theorem 3.5 ((Distance function stability)). If µ and µ′ are two probability measures on
Rd and m0 > 0, then

∥∥dµ,m0 − dµ′,m0

∥∥
∞ 6 1√

m0
W2(µ, µ′).

Proof. The following sequence of equalities and inequalities, that follows from Propositions
3.3 and 3.4, proves the theorem:.

dµ,m0(x) =
1
√
m0

distW2(m0δx, Subm0(µ))

6
1
√
m0

(dH(Subm0(µ), Subm0(µ′)) + distW2(m0δx, Subm0(µ′)))

6
1
√
m0

W2(µ, µ′) + dµ′,m0(x)

3.4 The distance to a measure is distance-like.

The subdifferential of a function f : Ω ⊆ Rd → R at a point x, is the set of vectors v
of Rd, denoted by ∂xf , such that for all small enough vector h, f(x + h) > f(x) + 〈h|v〉.
This gives a characterization of convexity: a function f : Rd → R is convex if and only if
its subdifferential ∂xf is non-empty for every point x. If this is the case, then f admits a
derivative at a point x if and only if the subdifferential ∂xf is a singleton, in which case
the gradient ∇xf coincides with its unique element.

Proposition 3.6. The function vµ,m0 : x ∈ Rd 7→ ‖x‖2 − d2
µ,m0

is convex, and its subdif-
ferential at a point x ∈ Rd is given by

∂xvµ,m0 =
{

2x− 2
m0

∫
h∈Rd

(x− h) dµx,m0(h) ; µ̃x,m0 ∈ Rµ,m0(x)
}

Proof. For any two points x and y of Rd, let µx,m0 and µy,m0 be in Rµ,m0(x) and Rµ,m0(y)
respectively. Thanks to Proposition 3.3 we have the following sequence of equalities and
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inequalities:

d2
µ,m0

(y) =
1
m0

∫
h∈Rd

‖y − h‖2 dµy,m0(h)

6
1
m0

∫
h∈Rd

‖y − h‖2 dµx,m0(h)

6
1
m0

∫
h∈Rd

‖x− h‖2 + 2〈x− h|y − x〉+ ‖y − x‖2 dµx,m0(h)

6 d2
µ,m0

(x) + ‖y − x‖2 + 〈v|y − x〉

where v is the vector defined by

v =
2
m0

∫
h∈Rd

[x− h] dµx,m0(h).

The inequality can be rewritten as:

(‖y‖2 − d2
µ,m0

(y))− (‖x‖2 − d2
µ,m0

(x)) > 〈2x− v|y − x〉

which shows that the vector (2x − v) belongs to the subdifferential of v at x. By the
characterization of convex functions by that we recalled above, one deduces that vµ,m0 is
convex.

We now turn to the proof of the converse inclusion. This proof is slightly more technical,
but not really needed for the remaining of the article. First, let

Dµ,m0(x) :=
{

2x− 2
m0

∫
h∈Rd

(x− h) dµx,m0(h) ; µx,m0 ∈ Rµ,m0(x)
}
.

The sets Dµ,m0 and ∂xvµ,m0 are both convex, and we have shown that Dµ,m0 is contained
in ∂xvµ,m0 . By Theorem 2.5.1 in [9], the subdifferential ∂xvµ,m0 can be obtained as the
convex hull of the set of limits of gradients ∇xnvµ,m0 , where (xn) is any sequence of points
converging to x at which vµ,m0 is differentiable. To sum up, we only need to prove that
every such limit also belongs to the set Dµ,m0(x). Let (xn) be a sequence of points at which
vµ,m0 is differentiable, and let µn be the unique element in Rµ,m0(xn). Necessarily,

∇xnvµ,m0 = 2xn − 2/m0

∫
h
(xn − h)dµn(h)

where µn is in Rµ,m0(xn). Since every µn is a submeasure of µ, by compactness one can
extract a subsequence of n such that µn weakly converges to a measure µ∞. This measure
belongs to Rµ,m0(x), and hence the vector

D = 2x− 2/m0

∫
h
(x− h)dµ∞(h)

is in the set Dµ,m0(x). Moreover, the weak convergence of µn to µ∞ implies that the
sequence ∇xnvµ,m0 converges to D. This concludes the proof of this inclusion.
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Corollary 3.7. The function d2
µ,m0

is 1-semiconcave. Moreover,

(i) d2
µ,m0

is differentiable at a point x ∈ Rd if and only if the support of the restriction
of µ to the sphere ∂B(x, δµ,m0(x)) contains at most one point;

(ii) d2
µ,m0

is differentiable almost everywhere in Rd, with gradient defined by

∇xd2
µ,m0

=
2
m0

∫
h∈Rd

[x− h] dµx,m0(h)

where µx,m0 is the only measure in Rµ,m0(x).

(iii) the function x ∈ Rd 7→ dµ,m0(x) is 1-Lipschitz.

Proof. For (i), it is enough to remark that Rµ,m0(x) is a singleton iff the support of
µ|∂B(x,δµ,m0 (x)) is at most a single point. (ii) This follows from the fact that a convex
function is differentiable at almost every point, at which its gradient is the only element of
the subdifferential at that point. (iii) The gradient of the distance function dµ,m0 can be
written as:

∇xdµ,m0 =
∇xd2

µ,m0

2dµ,m0

=
1
√
m0

∫
h∈Rd [x− h] dµx,m0(h)

(
∫
h∈Rd ‖x− h‖

2 dµx,m0(h))1/2

Using the Cauchy-Schwartz inequality we find the bound ‖∇xdµ,m0‖ 6 1 which proves the
statement.

4 Applications to geometric inference

Reconstruction from point clouds with outliers was the main motivation for introducing
the distance function to a measure. In this section, we adapt the reconstruction theorem
introduced by [3] to our setting. The original version of the theorem states that a regular
enough compact set K can be faithfully reconstructed from another close enough compact
set C. More precisely, for a suitable choice of r, the offsets Cr and Kη have the same
homotopy type for any positive η. The regularity assumption on K is expressed as a lower
bound on its so-called µ-reach, which is a generalization of the classical notion of reach
[12]. In particular, smooth submanifolds, convex sets and polyhedra always have positive
µ-reach for suitable µ, hence the reconstruction theorem may be applied to such sets. In
these section, we show that the reconstruction results of [3] can be easily generalized to
compare the sub-level sets of two uniformly-close distance-like functions. It is also possible
to adapt most of the topological and geometric inference results of [5, 4, 6] in a similar
way.
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Figure 1: On the left, a point cloud sampled on a mechanical part to which 10% of outliers
(uniformly sampled in a box enclosing the model) have been added. On the right, the reconstruction
of an isosurface of the distance function dµC ,m0 to the uniform probability measure on this point
cloud.

4.1 Extending the sampling theory for compact sets

In this paragraph we extend the sampling theory of [3] for compact sets to distance-like
functions. We don’t include all of the results of the paper, but only those that are needed
to the reconstruction theorem (Th. 4.6). We refer the interested reader to the original
paper for more details.

Let ϕ : Rd → R be a distance-like function. The 1-semiconcavity of ϕ2 allows to define
a notion of gradient vector field ∇xϕ for ϕ, defined everywhere and satisfying ‖∇xϕ‖ 6 1.
Although not continuous, the vector field ∇ϕ is sufficiently regular to be integrated in a
continuous locally Lipschitz flow [20] Φt : Rd → Rd. The flow Φt integrates the gradient
∇ϕ in the sense that for every x ∈ Rd, the curve γ : t 7→ Φt(x) is right-differentiable,
and for every t > 0, dγ

dε

∣∣∣
t−

= ∇γ(t)ϕ . Moreover, for any integral curve γ : [a, b] → Rd

parametrized by arc-length, one has:

ϕ(γ(b)) = ϕ(γ(a)) +
∫ b

a

∥∥∇γ(t)ϕ∥∥dt.

Definition 4.1. Let ϕ be a distance like function. Following the notation for offset of
compact sets, we will denote by ϕr = ϕ−1([0, r]) the r sublevel set of ϕ.

(i) A point x ∈ Rd will be called α-critical (with α ∈ [0, 1]) if the inequality ϕ2(x+h) 6
ϕ2(x) + 2α ‖h‖ϕ(x) + ‖h‖2 is true for all h ∈ Rd. A 0-critical point is simply called
a critical point. It follows from the 1-semiconcavity of ϕ2 that ‖∇xϕ‖ is the infimum
of the α > 0 such that x is α-critical.

(ii) The weak feature size of ϕ at r is the minimum r′ > 0 such that ϕ doesn’t have any
critical value between r and r+ r′. We denote it by wfsϕ(r). For any 0 < α < 1, the
α-reach of ϕ is the maximum r such that ϕ−1((0, r]) does not contain any α-critical
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point. Obviously, the α-reach is always a lower bound for the weak-feature size, with
r = 0.

The proof of the Reconstruction Theorem in [3] relies on two important observations.
The first one is a consequence of a distance-like version of Grove’s isotopy lemma [14, Prop.
1.8], which asserts that the topology of the sublevel sets of ϕ can only change when one
passes critical values. As in [7, Theorem 3], one deduces that the offsets of two uniformly
close distance-like functions with large weak feature size have the same homotopy type:

Proposition 4.2 (Isotopy lemma). Let ϕ be a distance-like function and r1 < r2 be two
positive numbers such that ϕ has no critical points in the subset ϕ−1([r1, r2]). Then all the
sublevel sets ϕ−1([0, r]) are isotopic for r ∈ [r1, r2].

Proposition 4.3. Let ϕ and ψ be two distance-like functions, such that ‖ϕ− ψ‖∞ 6 ε.
Suppose moreover that wfsϕ(r) > 2ε and wfsψ(r) > 2ε. Then, for every 0 < η 6 2ε, ϕr+η

and ψr+η have the same homotopy type.

Proof. See Appendix.

The second key observation made in [3] is that the critical points of a distance function
are stable in certain sense under small Hausdorff perturbations. This result remains true
for uniform approximation by distance-like functions:

Proposition 4.4. Let ϕ and ψ be two distance-like functions with ‖ϕ− ψ‖∞ 6 ε. For any
α-critical point x of ϕ, there exists a α′-critical point x′ of ψ with ‖x− x′‖ 6 2

√
εϕ(x) and α′ 6

α+ 2
√
ε/ϕ(x).

Proof. The proof is almost verbatim from [3], and postponed to the Appendix.

Corollary 4.5. Let ϕ and ψ be two ε-close distance-like functions, and suppose that
reachα(ϕ) > R for some α > 0. Then, ψ has no critical value in the interval

]
4ε/α2, R− 3ε

[
.

Proof. See Appendix.

Theorem 4.6 (Reconstruction). Let ϕ,ψ be two ε-close distance-like functions, with
reachα(ϕ) > R for some positive α. Then, for any r ∈ [4ε/α2, R− 3ε], and for 0 < η < R,
the sublevel sets ψr and ϕη are homotopy equivalent, as soon as

ε 6
R

5 + 4/α2

Proof. By the isotopy lemma, all the sublevel sets ψr have the same homotopy type, for r
in the given range. Let us choose r = 4ε/α2. We have:

wfsϕ(r) > R− 4ε/α2 and wfsψ(r) > R− 3ε− 4ε/α2

By Proposition 4.3, the sublevel sets ϕr and ψr have the same homotopy type as soon as
the uniform distance ε between ϕ and ψ is smaller than 1

2 wfsϕ(r) and 1
2 wfsψ(r). This is

true, provided that 2ε 6 R− ε(3 + 4/α2). The theorem follows.
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Remark that in the above definition 4.1 the notion of α-reach could be made dependent
on a parameter r, i.e. the (r, α)-reach of ϕ could be defined as the maximum r′ such that
the set ϕ−1((r, r + r′]) does not contain any α-critical value. A reconstruction theorem
similar to Theorem 4.6 would still hold under the weaker condition that the (r, α)-reach of
ϕ is positive.

4.2 Distance to a measure vs. distance to its support

In this paragraph, we compare the distance functions dµ,m0 to a measure µ and the distance
function to its support S, and study the convergence properties as the mass parameter m0

converges to zero. A first obvious remark is that the pseudo-distance δµ,m0 (and hence the
distance dµ,m0) is always larger than the regular distance function dS . As a consequence,
to obtain a convergence result of dµ,m0 to dS as m0 goes to zero, it is necessary to upper
bound dµ,m0 by dS+o(m0). It turns out that the convergence speed of dµ,m0 to dS depends
on the way the mass of µ contained within any ball B(p, r) centered at a point p of the
support decreases with r. Let us define:

(i) We say that a non-decreasing positive function f : R+ → R+ is a uniform lower
bound on the growth of µ if for every point p in the support of µ and every ε > 0,
µ(B(p, ε)) > f(ε) ;

(ii) The measure µ has dimension at most k if there is a constant C(µ) such that f(ε) =
C(µ)εk is a uniform lower bound on the growth of µ, for ε small enough.

Lemma 4.7. Let µ be a probability measure and f be a uniform lower bound on the growth
of µ. Then ‖dµ,m0 − dS‖∞ < ε as soon as m0 < f(ε).

Proof. Let ε and m0 be such that m0 < f(ε) and let x be a point in Rd, p a projection of
x on S, i.e. a point p such that ‖x − p‖ = d(p, S). By assumption, µ(B(x,dS(x) + ε)) >
µ(B(p, ε)) > m0. Hence, δµ,m0(x) 6 dS(x) + ε. The function m 7→ δµ,m(x) being non-
decreasing, we get: m0d2

S(x) 6
∫m0

0 δ2µ,m(x)dm 6 m0(dS(x) + ε)2. Taking the square root
of this expression proves the lemma.

Corollary 4.8. (i) If the support S of µ is compact, then dS is the uniform limit of
dµ,m0 as m0 converges to 0;

(ii) If the measure µ has dimension at most k > 0, then

‖dµ,m0 − dS‖ 6 C(µ)−1/km
1/k
0

Proof. (i) If S is compact, there exists a sequence x1, x2, · · · of points in S such that for any
ε > 0, S ⊆ ∪ni=1B(xi, ε/2) for some n = n(ε). By definition of the support of a measure,
η(ε) = mini=1···n µ(B(xi, ε/2)) is positive. Now, for any point x ∈ S, there is a xi such
that ‖x− xi‖ 6 ε/2. Hence, B(xi, ε/2) ⊆ B(x, ε), which means that µ(B(x, ε)) > η(ε). (ii)
Follows straightforwardly from the Lemma.
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For example, the uniform probability measure on a k-dimensional compact submanifold S
has dimension at most k. The following proposition gives a more precise convergence speed
estimate based on curvature.

Proposition 4.9. Let S be a smooth k-dimensional submanifold of Rd whose curvature
radii are lower bounded by R, and µ the uniform probability measure on S, then

‖dS − dµ,m0‖ 6 C(S)−1/km
1/k
0

for m0 small enough and C(S) = (2/π)kβk/Hk(S) where βk is the volume of the unit ball
in Rk.

Notice in particular that the convergence speed of dµ,m0 to dS depends only on the
intrinsic dimension k of the submanifold S, and not on the ambient dimension d. In order
to prove this result, we make use of the Günther-Bishop theorem (cf [13, §3.101]).

Theorem 4.10 (Günther-Bishop). If the sectional curvatures of a Riemannian manifold
M do not exceed δ, then for every x ∈ M , Hk(BM (x, r)) > βk,δ(r) where βk,δ(r) is the
volume of a ball of radius r in the simply connected k-dimensional manifold with constant
sectional curvature δ, provided that r is smaller than the minimum of the injectivity radius
of M and π/

√
δ.

Proof of Proposition 4.9. Since the intrinsic ball BS(x, ε) is always included in the Eu-
clidean ball B(x, ε) ∩ S, the mass µ(B(x, ε)) is always larger than Hk(BS(x, ε))/Hk(S).
Remarking that the sectional curvature of M is upper-bounded by 1/R2, Günter-Bishop
theorem implies that for any ε smaller than the injectivity radius of S and πR,

µ(B(x, ε)) >
βk,1/R2(ε)
Hk(S)

Hence µ has dimension at most k. Moreover, by comparing the volume of an intrinsic ball
of the unit sphere and the volume of its orthogonal projection on the tangent space to its
center, one has:

βk,1/R2(ε) = Rkβk,1(ε/R) > Rk[sin(ε/R)]kβk

where βk is the volume of the k-dimensional unit ball. Using sin(α) > 2
πα gives the

announced value for C(S).

4.3 Shape reconstruction from noisy data

The previous results lead to shape reconstruction theorems from noisy data with outliers.
To fit in our framework we consider shapes that are defined as supports of probability
measures. Let µ be a probability measure of dimension at most k > 0 with compact
support K ⊂ Rd and let dK : Rd → R+ be the (Euclidean) distance function to K. If µ′
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is another probability measure (eg. the empirical measure given by a point cloud sampled
according to µ), one has∥∥dK − dµ′,m0

∥∥
∞ 6 ‖dK − dµ,m0‖∞ + ‖dµ,m0 − dµ′,m0‖∞ (4)

6 C(µ)−1/km
1/k
0 +

1
√
m0

W2(µ, µ′) (5)

This inequality insuring the closeness of dµ′,m0 to the distance function dK for the sup-norm
follows immediately from the stability theorem 3.5 and the corollary 4.8. As expected, the
choice of m0 is a trade-off: small m0 lead to better approximation of the distance function
to the support, while large m0 make the distance functions to measures more stable. Eq.
4 leads to the following corollary of Theorem 4.6:

Corollary 4.11. Let µ be a measure and K its support. Suppose that µ has dimension
at most k and that reachα(dK) > R for some R > 0. Let µ′ be another measure, and
ε be an upper bound on the uniform distance between dK and dµ′,m0. Then, for any r ∈
[4ε/α2, R−3ε], the r-sublevel sets of dµ,m0 and the offsets Kη, for 0 < η < R are homotopy
equivalent, as soon as:

W2(µ, µ′) 6
R
√
m0

5 + 4/α2
− C(µ)−1/km

1/k+1/2
0

Figure 1 illustrates the reconstruction Theorem 4.6 on a sampled mechanical part with
10% of outliers. In this case µ′ is the normalized sum of the Dirac measures centered on
the data points and the (unknown) measure µ is the uniform measure on the mechanical
part.

5 Discussion

We have extended the notion of distance function to a compact subset of Rd to the case
of measures, and showed that this permits to reconstruct sampled shapes with the correct
homotopy type even in the presence of outliers. It also seems very likely that a similar state-
ment showing that the sublevel sets of dµ,m0 are isotopic to the offsets of K can be proved,
using the same sketch of proof as in [4]. Moreover, in the case of point clouds/empirical
measures (finite sums of Dirac measures), the computation of the distance function to a
measure (and its gradient) at a given point boils down to a computation of nearest neigh-
bors making it easy to use in practice. However, we note that in the important case where
the unknown shape is a submanifold, our reconstructions are clearly not homeomorphic
since they do not have the correct dimension. Is there a way to combine our framework
with the classical techniques developped for homeomorphic surface reconstruction (see e.g.
[1]) to make them robust to outliers while retaining their guarantees?
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[16] Q. Mérigot, M. Ovsjanikov, and L. Guibas. Robust Voronoi-based Curvature and
Feature Estimation. In Proc. SIAM/ACM Joint Conference on Geom. and Phys.
Modeling, pages 1–12, 2009.

[17] P. Niyogi, S. Smale, and S. Weinberger. A Topological View of Unsupervised Learning
from Noisy Data. Preprint, 2008.

[18] P. Niyogi, S. Smale, and S. Weinberger. Finding the homology of submanifolds with
high confidence from random samples. Discrete Comput. Geom., 39(1):419–441, 2008.

[19] S. Peleg, M. Werman, and H. Rom. A unified approach to the change of resolution:
space and gray-level. IEEE Trans. Pattern Anal. Mach. Intell., 11(7):739–742, 1989.

[20] A. Petrunin. Semiconcave functions in Alexandrov’s geometry. In Surveys in differ-
ential geometry. Vol. XI, pages 137–201. Int. Press, Somerville, MA, 2007.

[21] Y. Rubner, C. Tomasi, and L.J. Guibas. The Earth Mover’s Distance as a Metric for
Image Retrieval. Int. J. Comput. Vision, 40(2):99–121, 2000.

[22] C. Villani. Topics in Optimal Transportation. American Mathematical Society, 2003.

Appendix

Proof of Proposition 4.3 Let δ > 0 be such that wfsϕ(r) > 2ε+δ and wfsψ(r) > 2ε+δ.
Since ‖ϕ− ψ‖∞ 6 ε, we have the following commutative diagram where each map is an
inclusion.

ϕr+δ
a0 //

d0

''PPPPPPPPPPPPP ϕr+δ+ε
d1

((QQQQQQQQQQQQQ
a1 // ϕr+δ+2ε

ψr+δ

c0

77nnnnnnnnnnnnn b0 // ψr+δ+ε

c1

66mmmmmmmmmmmmm
b1 // ψr+δ+2ε

It follows from the isotopy lemma 4.2 that the inclusions a0, a1, b0 and b1 are homotopy
equivalences. Let s0, s1, r0 and r1 be homotopic inverses of a0, a1, b0 and b1 respectively.
Now a straightforward computation shows that c1 is an homotopy equivalence with homo-
topic inverse r1 ◦ d1 ◦ s1:

c1 ◦ r1 ◦ d1 ◦ s1 ∼= c1 ◦ (r1 ◦ b1) ◦ d0 ◦ s0 ◦ s1
∼= (c1 ◦ d0) ◦ s0 ◦ s1
∼= a1 ◦ a0 ◦ s0 ◦ s1 ∼= idϕr+δ+2ε

Similarly, we get r1 ◦ d1 ◦ s1 ◦ c1 ∼= idψr+δ+ε proving the proposition 4.3.
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Proof of Proposition 4.4 Let ρ > 0 and let γ be an integral curve of the flow defined
by ∇ψ, starting at x and parametrized by arclength. If γ reaches a critical point of ψ
before length ρ, we are done. Assume this is not the case. Then, with y = γ(ρ), one has
ψ(y)− ψ(x) =

∫ ρ
0

∥∥∇γ(t)ψ∥∥dt. As a consequence, there exists a point p(ρ) on the integral
curve such that

∥∥∇p(ρ)ϕ∥∥ 6 1
ρ(ϕ(y)− ϕ(x)).

Now, by the assumption on the uniform distance between ϕ and ψ, ψ(y) 6 ϕ(y) + ε
and ψ(x) > ϕ(x)− ε. Using the fact that x is α-critical, one obtains:

ϕ(y)2 6 ϕ(x)2 + 2α ‖x− y‖ϕ(x) + ‖x− y‖2

ie. ϕ(y) 6 ϕ(x)

(
1 + 2α

‖x− y‖
ϕ(x)

+
‖x− y‖2

ϕ(x)2

)1/2

6 ϕ(x) + α ‖x− y‖+
1
2
‖x− y‖2

ϕ(x)

Putting things together, we get
∥∥∇p(ρ)ϕ∥∥ 6 α + 2ε

ρ + 1
2

ρ
ϕ(x) . The minimum of this upper

bound is α+ 2
√
ε/ϕ(x) and is attained for ρ = 2

√
εϕ(x). This concludes the proof.

Proof of Corollary 4.5 Assume that there exists a critical point x of ψ such that ψ(x)
belongs to the range [4ε/α2, R′]. Then, there would exist an α′-critical point y of ϕ at
distance at most D of x. By the previous proposition,

α′ 6 2
√
ε/ψ(x) 6 2

√
ε/(4ε/α2) = α and D 6 2

√
εR′

Hence, using the fact that x is a critical point for ψ,

ϕ(y) 6 ψ(y) + ε 6
(
ψ2(x) + ‖x− y‖2

)1/2
+ ε 6 R′

(
1 +D2/R′

2
)1/2

+ ε 6 R′ + 3ε

This last term is less than R if R′ < R − 3ε. With these values, one gets the desired
contradiction.
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