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Abstract. Geometric integration is the numerical integration of a differential

equation, while preserving one or more of its “geometric” properties exactly, i.e. to

within round-off error. Many of these geometric properties are of crucial importance

in physical applications: preservation of energy, momentum, angular momentum,

phase space volume, symmetries, time-reversal symmetry, symplectic structure and

dissipation are examples. In this paper we present a survey of geometric numerical

integration methods for ordinary differential equations. Our aim has been to make the

review of use for both the novice and the more experienced practitioner interested in

the new developments and directions of the past decade. To this end, the reader who

is interested in reading up on detailed technicalities will be provided with numerous

signposts to the relevant literature.
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1. Introduction

1.1. Geometric integration

The topic of this review is structure-preserving numerical integration methods for

ordinary differential equations (ODEs)‡ We will concentrate mainly on Hamiltonian

equations and on methods that preserve their symplectic structure, first integrals,

symmetries, or phase-space volume. We also consider Hamiltonian systems with a

dissipative perturbation. More details on these topics and extensive references can be

found in several recent books [44, 67, 103, 109] and survey articles [17, 18, 33, 45, 57, 69,

71, 83, 84]. Physical applications are ubiquitous, varying from celestial mechanics [62],

via particle accelerators [35], to molecular dynamics [65] and many areas in between

(see, e.g., applications in quantum mechanics [114] and complex systems [1]).

In recent decades the theme of structure preservation has emerged in nearly every

branch of numerical analysis, most notably in numerical differential equations and

numerical linear algebra. The motivations for preserving structure include

(i) it may yield methods that are faster, simpler, more stable, and/or more accurate,

as in methods for structured eigenvalue problems and for some types of ODEs;

(ii) it may yield methods that are more robust and yield qualitatively better results

than standard methods, even if the standard (quantitative) numerical errors are no

smaller;

(iii) it may suggest new types of calculations previously thought to be impossible, as in

the long-time integration of Hamiltonian systems;

(iv) it may be essential to obtain a useful (e.g. convergent) method, as in the discrete

differential complexes used in electromagnetism [2, 52]; and

(v) the development of general-purpose methods may be nearing completion, as in

Runge–Kutta methods for ODEs.

Most geometric properties are not preserved by traditional numerical methods. The

requirement of structure preservation necessarily restricts the choice of method and

may impose a cost. In each case the costs and benefits have to be weighed. In some

cases (as in some types of structured matrices and some classes of differential equations)

it can be impossible to preserve the given structure [38], while in others it is unknown

whether or not such a method exists ([83], §6).

These possibilities are illustrated by the two most popular geometric integrators.

The leapfrog method [45] for the simple mechanical system q̇ = p, ṗ = −∇V (q) with

potential energy V (q) is given by

qk+1/2 = qk + 1
2
τpk,

pk+1 = pk − τ∇V (qk+1/2),

qk+1 = qk+1/2 + 1
2
τpk+1.

(1)

‡ Geometric integration for partial differential equations is addressed by Bridges and Reich [15].
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Here (and below) τ is the time step. The leapfrog method (1) is explicit and second-

order§, despite using only one evaluation of the force −∇V per time step (compared

to two for a second-order Runge–Kutta method). It does not require the storage of

any intermediate values. It is symplectic, preserving the canonical symplectic form∑
i dqi ∧ dpi, and time-reversible. The total energy is not conserved, but nor does

the energy error grow with time, even for time steps of the same order of magnitude

as the frequencies of the system. Invariant sets such as periodic, quasiperiodic, and

chaotic orbits are well-preserved in phase space. Leapfrog preserves linear and angular

momentum (where applicable) up to round-off error. On the other hand, it does become

unstable if the time step is too large (larger than T/π, where T is the shortest natural

period of the system), and it does not preserve quadratic first integrals such as ‖q‖2

where applicable.

The midpoint rule for the first-order system ẋ = f(x), x ∈ R
n, is given by

xk+1 = xk + τf

(
xk + xk+1

2

)
. (2)

It is implicit, and hence more expensive (uses more CPU time) than the leapfrog method.

But it too is symplectic, this time for any Hamiltonian system with any constant

symplectic or Poisson structure. It preserves any linear symmetries of the system,

and is time-reversible with respect to any linear reversing symmetry of phase space. It

preserves not just linear and angular momentum but any quadratic first integrals of the

system. It is linearly stable for all time steps. Many more accurate or more widely

applicable variants of these two methods have been developed.

On the other hand, no method can preserve energy and symplecticity in general

[38]. No method is known that preserves volume in phase space and all linear symmetries

[83].

The traditional problem in numerical ODEs is to compute the solution to the initial

value problem ẋ = f(x), x(0) = x0, at a fixed time t = kτ , to within a given global error

‖xk −x(t)‖, as efficiently as possible. The class of method, its order and local error, and

choice of time steps are all tailored to this end [19, 20, 46, 53]. In contrast, a typical

application of a geometric integrator is to fix a (sometimes moderately large) time step

and compute very long orbits, with perhaps many different initial conditions. Although

the global error of each orbit is large, the phase portrait that emerges can still be close,

in some sense, to the phase portrait of the differential equation. Once small global

errors are abandoned, however, the convergence of each feature (e.g. energy, other first

integrals, periodic and quasiperiodic orbits, phase space averages) has to be examined

separately.

While the leapfrog and midpoint methods (Equations (1) and (2) respectively)

are sufficient for many applications, there have been many developments since their

geometric properties were discovered. Research in geometric integration has focused on

three main areas: (i) Developing new types of integrators, and integrators preserving

§ The local error is O(τ3) per time step, and the global error after integrating for a fixed time is O(τ2).
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new structures; (ii) improving the efficiency of the integrators, by finding methods of

higher order, smaller local errors, or allowing larger time steps, and by finding methods

tuned for special classes of systems; and (iii) studying the behaviour of the integrators,

especially their long-time dynamics and the extent to which the phase portrait of the

system is preserved.

1.2. An illustrative example

We illustrate these themes by applying them to a venerable example, the Hénon-Heiles

system. This is a Hamiltonian system with two degrees of freedom and Hamiltonian

H = T (p) + V1(q) + V2(q),

T (p) = 1
2
(p2

1 + p2
2),

V1(q) = 1
2
(q2

1 + q2
2),

V2(q) = q2
1q2 − 1

3
q3
2.

(3)

The standard geometric integrator for this system is the leapfrog method, Eq. (1).

Numerous articles have illustrated the preservation of the phase portrait by the leapfrog

method, the convergence of its invariant sets (e.g. quasiperiodic and chaotic) as τ → 0,

and the relative efficiency of various higher-order methods depending on the time step.

Here we take a different approach and illustrate geometric integrators as they are

often used in practice. That is, rather than investigate what happens as τ → 0, we

study long runs with a relatively large time step. We will also take advantage of the

special structure of (3) and use a new, highly tuned fourth order method.

We split H, not into kinetic and potential energies, but into linear (T (p) + V1(q))

and nonlinear (V2(q)) parts. The flow‖ of each is easily calculated, giving an explicit,

second-order generalized leapfrog algorithm, Eq. (7) below (‘LF2’ in the figures). We

compare this to a fourth-order (composition, i.e. leapfrog-like) method with 6 force

evaluations per time step due to Blanes and Moan [14] that has been tuned for this type

of splitting (see Eq. (56)) (‘LF4’), and to two non-geometric, standard algorithms:

the ‘classic’ fourth-order Runge–Kutta method with fixed step size (‘RK4’), and a

modern, adaptive fifth-order Runge–Kutta method, MATLAB’s ode45 (‘RK45’). The

step sizes and tolerances were adjusted so that each method used the same number of

force evaluations¶. Our aim will be to show that, for this application, both geometric

methods (LF2 and LF4) are better than both non-geometric ones (RK4 and RK45),

and that, between the geometric integrators, LF4 is better than LF2. While the latter

observation would be obvious if τ were very small, it is non-trivial that this also remains

the case for moderately large values of τ .

Figure 1 shows the results for a chaotic orbit integrated to time t = 200. The

global errors grow exponentially in time for all integrators, as expected. The time step

‖ the mapping in phase space defined by the exact solution of an ODE
¶ The number of force or vector field evaluations is often used as a machine-independent measure of

the amount of work an algorithm needs to do.
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for LF4 is a moderate τ = 0.1. The energy errors grow linearly for RK4 and RK45 but

are bounded for the symplectic integrators LF2 and LF4. Despite the relatively large

time step, the fourth-order method LF4 easily beats standard leapfrog LF2. (In fact,

this advantage still persists even at τ = 1.) Although we report energy and global errors,

we specifically do not want to imply that these are directly related to the preservation

of the phase portrait. Although it is necessary in a symplectic integration to check that

τ is small enough that the energy errors are bounded, this is not sufficient to ensure

that the errors in any other quantity are small.

Figure 2 shows the results for a quasiperiodic orbit integrated to time t = 2000.

The time step for LF4 is now τ = 1, which is of the same order as the period 2π of the

harmonic oscillators in T (p) + V1(q). RK4 and RK45 now show a quadratic growth of

global errors, while LF2 and LF4 show a linear growth.

Figure 3 shows the results for a small-amplitude quasiperiodic orbit integrated

to time t = 2000 with τ = 1. Now the global errors of RK4 and RK45 are growing

linearly+. Although the small amplitude helps RK4 and RK45, it helps LF2 and LF4

even more, because they capture the linear dynamics exactly and hence have global

errors that vanish as q → 0. (See also §4.2.)

The advantage of the modern method LF4 over leapfrog LF2 shown in Figs. 1,

2, and 3 would disappear if we had used instead the much cruder fourth-order method

ϕ(zτ)ϕ((1 − 2z)τ)ϕ(zτ), where z = (2 − 21/3)−1 and ϕ is standard leapfrog (Eq. (1)).

This method, the first fourth-order symplectic integrator to be discovered [28, 110, 119]

has errors 100 to 1000 times larger than LF4.

Figure 4 shows the dynamics of this small-amplitude orbit out to t = 20000. The

periods of the orbit are about 2π and 28084. Remarkably, the integrator LF4 captures

this motion with a relative frequency error of about 1.4 × 10−4 at a time step of τ = 1.

The orbit for RK4 decays to 0, while the orbit for the adaptive method RK45 is more

complex, but still bears little relation to the actual orbit; moreover, the dynamics of

RK45 depends sensitively on the chosen tolerance.

Returning to the simulation of chaotic orbits, for an orbit x(t) let v(t) be a tangent

vector (i.e. v obeys v̇ = f ′(x)v) and let λ(t) be the rate of expansion in the direction

v(t), i.e. d
dt
‖v‖ = λ‖v‖ or λ = (vTf ′(x)v)/(vTv). For generic v(0), the mean λ̄ of λ(t) is

the largest Lyapunov exponent of the orbit.

Figure 5 shows the probability density function p(λ) of λ as calculated by LF2 for

the chaotic orbit of Fig. 1 calculated for time t = 5×105. For symplectic integrators like

LF2, the finite-time estimates of the Lyapunov exponents come in exact opposite (+/−)

pairs; in systems with widely varying exponents, this can lead to greater reliability

in estimating them [85]. The exact value of the Lyapunov exponent λ̄ is 0.0812; an

integration with τ = 0.5 (close to the largest stable value of the time step) gives

λ̄ = 0.0724; an integration with τ = 0.125 gives 0.0819. The sampling errors are

about 5 × 10−4 in λ̄ and less than 0.04 in p(λ). This illustrates the convergence of

+ The second period of the orbit is very large. On the time scale shown, only the amplitudes of the

harmonic oscillators drift; but this does not change their frequencies.
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Figure 1. Advantage of newer, highly tuned geometric integrators. Global error

(left) and energy error (right) for the Hénon–Heiles system with initial condition

(q1, q2, p1, p2) = (0.25, 0.5, 0, 0), which leads to a chaotic orbit that covers most of the

energy surface. RK4: Classical 4th-order Runge–Kutta method. RK45: MATLAB’s

ode45, a modern, adaptive, 5th-order Runge–Kutta method. LF2: second-order

leapfrog, a symplectic integrator with one force evaluation per time step. LF4: a

fourth-order symplectic integrator with 6 force evaluations per time step.
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Figure 2. Advantage on quasiperiodic orbits. Global error (left) and energy

error (right) for the Hénon–Heiles system with initial condition (q1, q2, p1, p2) =

(0.1, 0.2, 0, 0), which leads to a quasiperiodic orbit.

statistical properties of chaotic orbits. However, note that the error in these observables

(up to 10% at τ = 0.5) is much larger than the energy error, which is only 0.6% at

τ = 0.5. Lyapunov exponents are almost impossible to calculate reliably with non-

geometric integrators because the results are contaminated by sampling errors if t is too

small and excessive dissipation if t is too large. We therefore do not present any results

for λ̄ calculated by non-geometric methods.

1.3. Outline of the paper

In Section 2 we introduce the main types of methods used in geometric integration of

ODEs: splitting and composition, Runge–Kutta and its variants, projection, variational,

and multistep methods. In Section 3 we survey the main types of equations to which

the methods are applied: Hamiltonian and Poisson systems, volume-preserving systems,
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Figure 3. Advantage on nearly-integrable systems. Global error (left) and energy

error (right) for the Hénon–Heiles system with initial condition (q1, q2, p1, p2) =

(0.025, 0.05, 0, 0), which leads to a small-amplitude quasiperiodic orbit.
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Figure 4. A longer run with the initial conditions of Fig. 3. Right: a projection of

the quasiperiodic orbit in phase space. Left: the slow exchange of energy between the

two oscillators is only captured by the leapfrog scheme.
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and systems with symmetries, reversing symmetries, first integrals, and foliations.

Here the properties considered are all intrinsic (i.e., coordinate-independent), geometric

properties that control and characterize the dynamics of the system. Some dissipative,

non-Hamiltonian types of systems are also covered. In Section 4 we specialize to

consider properties that, although not intrinsic, nevertheless are numerically significant

because they allow vastly more efficient methods: examples are separable or polynomial

Hamiltonian systems, nearly integrable systems, and systems with multiple time scales∗.

In Section 5 we cover the behaviour of geometric integrators, especially their stability,

the convergence of invariant sets in phase space, and the rate of error growth of the

solution or of the first integrals of the system. Section 6 surveys other computational

problems: solving boundary-value and optimization problems, non-trajectory methods

for analyzing dynamical systems, and the computation of Poincaré maps.

2. The main geometric integrators for ODEs

In this section we briefly define the main classes of numerical integrators that have been

found to have useful geometric properties.

2.1. Splitting and composition methods

With phase space M , differential equation ẋ = f(x), x ∈ M , and f a vector field on

M , splitting methods involve three steps: (i) choosing a set of vector fields fi such that

f =
∑n

i=1 fi; (ii) integrating either exactly or approximately each fi; and (iii) combining

these solutions to yield an integrator for f . For example, writing the solution of the

ODE ẋ = f(x), x(0) = x0 as x(t) = etf (x0), we might use the first-order-accurate

composition method

eτf1eτf2 . . . eτfn = eτf + O(τ 2). (4)

The pieces fi should be simpler than the original vector field f ; most commonly, they

can be integrated exactly in closed form, as in Eq. (4). If so, and if the fi lie in the same

linear space of vector fields as f (e.g. of Hamiltonian vector fields, or of vector fields

preserving a symmetry, reversing symmetry, first integral etc.), then the composition

method (4) is explicit and preserves the appropriate geometric property automatically.

For a detailed review of splitting methods, see [83].

The advantages of splitting methods are that they are usually simple to implement,

explicit, and can preserve a wide variety of structures. Their disadvantages are that,

except in particular special cases, the higher-order methods are relatively expensive,

and that the splitting may break some particular property, such as a symmetry, that

one may want to preserve.

Details specific to particular geometric properties are deferred to section 3.1; here,

we discuss general aspects of composition methods. The composition (4) is only first

∗ In the latter two examples, an intrinsic property emerges in an asymptotic limit.
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order. The order can be increased by including more exponentials in a time step. For a

splitting into two parts, f = f1 + f2, we have the general nonsymmetric composition

eamτf1ebmτf2 . . . ea1τf1eb1τf2ea0τf1 . (5)

By convention, we only count the evaluations of the flow of f2, and refer to Eq. (5)

as an m-stage method. The number of stages and the coefficients ai and bi are to be

chosen to ensure that the method has some order p, i.e. ϕ = eτ(f1+f2) + O(τ p+1). The

method ϕ(τ) is time symmetric if

ϕ(τ)ϕ(−τ) = 1 (6)

for all τ . It is easy to find time-symmetric methods, for if ϕ(τ) is any method of order p,

then ϕ(1
2
τ)ϕ−1(−1

2
τ) is time-symmetric and of order at least p+2 (if p is even) or at least

p+ 1 (if p is odd). In general, if ϕ is an explicit method, then ϕ−1 is implicit. However,

if ϕ is a composition of (explicitly given) flows, then ϕ−1 is also explicit. Applied to the

basic composition (4), this leads to the explicit “generalized leapfrog” method of order

2,

e
1

2
τf1 . . . e

1

2
τfne

1

2
τfn . . . e

1

2
τf1 , (7)

which is widely used in many applications. For many purposes it is the most

sophisticated method needed. From the flow property eτfeσf = e(τ+σ)f , the two central

stages coalesce, and the last stage coalesces with the first stage of the next time step, so

we evaluate 2n−2 flows per time step, or 2−2/n as much as the first-order method Eq.

(4). Therefore there is an advantage in searching for splittings for which the number n

of parts is small (say 2 or 3).

The simplest way to increase the order is to iteratively apply the following

construction. If ϕ(τ) is a time-symmetric method of order 2k > 0, then the method

ϕ(ατ)nϕ(βτ)ϕ(ατ)n, α =
(
2n− (2n)1/(2k+1)

)−1
, β = 1 − 2nα (8)

is time-symmetric and has order 2k + 2. This yields methods of order 4 containing 3

applications of Eq. (7) when n = 1, of order 6 containing 9 applications of Eq. (7)

when n = 2, and so on [28, 110, 119]. The truncation errors of these methods tend to

be rather large, however, although the order 4 methods with n ≥ 2 can be competitive

and have some interesting properties [77]. Interestingly, the n = k + 1 methods were

also recommended by their discoverers [28].

A good, general purpose fourth-order method is given by (8) with n = 2 and k = 1.

To get methods with fewer stages, one can use the composition

ϕ(a1τ) . . . ϕ(amτ) . . . ϕ(a1τ) (9)

where ϕ(τ) is any time-symmetric method. See [108] for the best known high-order

methods of this type. Methods of orders 4, 6, 8, and 10 require at least 3, 7, 15, and 31

stages (i.e., applications of ϕ), but in practice the methods that give the smallest error

for a given amount of work have even more stages.
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It is also possible to consider composition methods formed from an arbitrary

(usually first order and non-time-symmetric) method ϕ(τ) and its inverse,
m∏

i=1

ϕ−1(−ciτ)ϕ(diτ), (10)

which is time-symmetric if ci = dm+1−i for all i. In fact, methods of class (10) are in

1–1 correspondence with methods of class (5), so a high-order method derived for two

flows, such as the typical case of the flows of the kinetic and potential parts of the

Hamiltonian, can be directly applied to any more general situation [75]. (A method

(10) generates a method (5) by choosing ϕ(τ) = eτf2eτf1 .)

A good fourth-order method of this class, due to Blanes and Moan [14], is given by

Eq. (5) together with m = 6 and

a0 = a6 = 0.0792036964311957,

a1 = a5 = 0.353172906049774,

a2 = a4 = −0.0420650803577195,

a3 = 1 − 2(a0 + a1 + a2),

b1 = b6 = 0.209515106613362,

b2 = b5 = −0.143851773179818,

b3 = b4 = 1
2
− (b1 + b2),

(11)

or, equivalently, by Eq. (10) together with

b1 = c6 = 0.0792036964311957,

b2 = c5 = 0.2228614958676077,

b3 = c4 = 0.3246481886897062,

b4 = c3 = 0.1096884778767498,

b5 = c2 = −0.3667132690474257,

b6 = c1 = 0.1303114101821663.

(12)

The coefficients of τ , called variously ai, bi, ci, and di above, cannot all be positive

if the order of the method is greater than 2 [7, 105]. This can prevent the application

of this kind of method to dissipative systems.

Various extensions have been considered in order to find more efficient methods.

We consider the two that apply most generally here. The first is the use of a “corrector”

(also known as processing or effective order) [6, 9, 118]. Suppose the method ϕ can be

factored as

ϕ = χψχ−1. (13)

Then to evaluate n time steps, we have ϕn = χψnχ−1, so only the cost of ψ is relevant.

The maps ϕ and ψ are conjugate by the map χ, which can be regarded as a change

of coordinates. Many dynamical properties of interest (to a theoretical physicist, all

properties of interest) are invariant under changes of coordinates; in this case we can even
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omit χ entirely and simply use the method ψ. For example, calculations of Lyapunov

exponents, phase space averages, partition functions, existence and periods of periodic

orbits, etc., fall into this class. Initial conditions, of course, are not invariant under

changes of coordinates, so applying χ is important if one is interested in a particular

initial condition, such as one determined experimentally.

The simplest example of a corrector is the following:

eτf1eτf2 = e
1

2
τf1

(
e

1

2
τf1eτf2e

1

2
τf1

)
e−

1

2
τf1 , (14)

showing that the first-order method of Eq. (4) is conjugate to a second-order time-

symmetric method, when f is split into n = 2 pieces.

The error can be substantially reduced by the use of a corrector, with particularly

marked improvement for nearly integrable systems (§4.2) and for Hamiltonian systems

of kinetic plus potential type (§4.1). These improvements will typically reduce the error

by 2 or 3 orders of magnitude.

The second extension uses the flows not just of the fi, where f =
∑
fi, but also

the flows of their commutators [fi, fj], [fi, [fj, fk]], etc. The simplest such method, for

ẋ = f1 + f2, is given by

eCe
1

2
τf1eτf2−

1

24
τ3[f2,[f2,f1]]e

1

2
τf1e−C = eτ(f1+f2) + O(τ 5) (15)

where the corrector C is itself a composition approximating 1
24
τ 2[f1, f2] to within O(τ 4).

For simple mechanical systems with H = 1
2
‖p‖2 +V (q), this is the same as applying the

leapfrog method (Eq. (1)) with the modified potential energy V − τ2

24
‖∇V ‖2, effectively

giving a fourth-order method with a single force evaluation [111].

In this review, we have only specified the coefficients of four particularly useful

fourth-order methods, namely Eqs. (8), (11), (15), and (56) below. For other methods,

and especially for higher-order methods, we refer the reader to the original sources

[6, 9, 10, 11, 12, 13, 14, 22, 23, 26, 57, 70, 75, 76, 77, 95, 108].

2.2. Runge–Kutta-like methods

Runge–Kutta (RK) methods are defined for systems with linear phase space R
n [20].

For the system

ẋ = f(x), x(0) = x0, x ∈ R
n, (16)

the s-stage RK method with parameters aij, bi (i, j = 1, . . . , s) is given by

Xi = xk + τ

s∑

j=1

aijf(Xj),

xk+1 = xk + τ
s∑

j=1

bjf(Xj).

(17)

RK methods are “linear”, that is, the map from vector field f to the map xk 7→ xk+1

commutes with linear changes of variable x 7→ Ax [89]. (Alternatively, the method is

independent of the basis of R
n). This implies, for example, that all RK methods preserve
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all linear symmetries of the system. They are explicit if aij = 0 for j ≥ i, although

they cannot then be symplectic. The most useful Runge–Kutta methods in geometric

integration are the Gaussian methods ([46], §II.7). They are implicit, A-stable (stable

for all τ for all linear systems with bounded solutions), have the maximum possible

order for an s-stage RK method (namely 2s), preserve all quadratic first integrals of f ,

and are symplectic for canonical Hamiltonian systems. The 1-stage Gaussian method,

usually known as the (implicit) midpoint rule, reduces to Eq. (2), and for linear systems,

coincides with the well-known Crank-Nicolson method.

RK methods can be expanded in a Taylor series of the form

xk+1 = a0xk + a1τf + a2τ
2f ′(f) + τ 3(a3f

′′(f, f) + a4f
′(f ′(f))) + . . . (18)

where each term on the right hand side is evaluated at x = xk and the derivative f (m)

is a multilinear mapping from m vector fields to single vector fields. The terms in this

series are called elementary differentials of f and the series Eq. (18) is called a B-series.

(For a consistent method, a0 = a1 = 1.) There are other integration methods that also

have a B-series. We call any such method a B-series method. A very general form is

to generalize the right hand sides of Eq. (17) to be a sum over elementary differentials,

each term of which is evaluated at each of the Xi, i.e.

Xi = xk + τ
s∑

j=1

aijf(Xj) + τ 2

s∑

j,l=1

aijlf
′(Xj)(f(Xl)) + . . . ,

xk+1 = xk + τ

s∑

j=1

bjf(Xj) + τ 2

s∑

j,l=1

bjlf
′(Xj)(f(Xl)) + . . . .

(19)

Three special cases are (i) exponential integrators, in which an analytic function of the

Jacobian f ′(Xj) is incorporated [93]; (ii) elementary differential (EDRK) methods, in

which all terms of each elementary differential are evaluated at a single Xi [95], and

(iii) multiderivative (MDRK) methods, in which, in addition, only those combinations

of elementary differentials that appear in the derivatives of x (i.e. ẋ = f , ẍ = f ′(f),
...
x = f ′(f ′(f))+f ′′(f, f),. . . ) appear [46]. EDRK methods can be symplectic but MDRK

methods cannot (except when one restricts to RK methods). Exponential integrators

can be exact on all linear or affine systems and have been applied to stiff and highly

oscillatory systems.

If we fix a basis in R
n, writing x = (x1, . . . , xn), we can define the partitioned

Runge–Kutta (PRK) methods, in which a different set of coefficients are used for each

component of x:

X l
i = xl

k + τ

s∑

j=1

al
ijf

l(Xj),

xl
k+1 = xl

k + τ

s∑

j=1

bljf
l(Xj).

(20)

They are not linear methods and do not have a B-series (although they can be expanded

in a so-called P-series). Some PRK methods are splitting methods, but apart from
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these, the most useful PRK methods in geometric integration are the Lobatto IIIA-IIIB

methods, of order 2s − 2 ([46], p. 550). These are symplectic for natural Hamiltonian

systems and have two sets of coefficients, one for the q and one for the p variables.

They also have a natural extension that is symplectic for holonomically constrained

Hamiltonian systems.

2.3. Projection methods

Some properties can be preserved by simply taking a step of an arbitrary method and

then enforcing the property. Integrals and weak integrals (invariant manifolds) can

be preserved by projecting onto the desired manifold at the end of a step or steps,

typically using orthogonal projection with respect to a suitable metric. For example,

energy-preserving integrators have been constructed using discrete gradient methods, a

form of projection [88, 92]. Although it is still used, projection is something of a last

resort, as it typically destroys other properties of the method (such as symplecticity)

and may not give good long-time behaviour. Reversibility (§3.6) is an exception, for

R-reversibility can be imposed on the map ϕ by using ϕRϕ−1R−1, where R : M →M is

an arbitrary diffeomorphism of phase space. Since this is a composition, it can preserve

group properties of ϕ such as symplecticity [89]. Symmetries are a partial exception;

the composition ϕSϕS is not S-equivariant, but it is closer to equivariant than ϕ is,

when S2 = 1 [56].

2.4. Variational methods [73]

Many ODEs and PDEs of mathematical physics are derived from variational principles

with natural discrete analogs. For an ODE with Lagrangian L(q, q̇), one can construct

an approximate discrete Lagrangian Ld(q0, q1) such as Ld(q0, q1) = L(q0, (q1−q0)/τ) and

form an integrator by requiring that the discrete action
∑N

i=0 Ld(qi, qi+1) be stationary

with respect to all variations of the qi, i = 1, . . . , N − 1, with fixed end-points q0 and

qN . For regular Lagrangians, the integrator can be seen to be symplectic in a very

natural way, and in fact the standard symplectic integrators such as leapfrog and the

symplectic Runge–Kutta methods can be derived in this way. The advantage of the

discrete Lagrangian approach is that it acts as a guide in new situations. The Newmark

method, well known in computational engineering, is variational [73], a fact that

allowed the determination of the (nonstandard) symplectic form it preserves; singular

Lagrangians can be treated; it suggests a natural treatment of holonomic (position)

and nonholonomic (velocity) constraints and of nonsmooth problems involving collisions

[97]; and powerful “asynchronous” variational integrators can be constructed, which use

different, even incommensurate time steps on different parts of the system [68]. In

these situations variational integrators appear to be natural, and to work extremely

well in practice, even if the reason for their good performance (e.g., by preserving some

geometric feature) is not yet known [69].
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2.5. Linear multistep methods [20]

These are not at first sight good candidates for geometric integrators. Defined on a

linear space M = R
n for ẋ = f(x), a linear s-step method is

s∑

j=0

αjxk+j = τ
s∑

j=0

βjf(xk+j). (21)

Such methods define a map on the product space M s, and can sometimes preserve a

structure (e.g. a symplectic form) in this space. However, this will not usually give

good long-time behaviour of the sequence of points xk ∈M .

Instead, one considers the so-called underlying one-step method ϕ : M → M ,

which is defined so that the sequence of points xk := ϕk(x0) satisfies the multistep

formula. (It always exists, at least as a formal power series in τ .) Often the dynamics

of ϕ dominates the long-term behaviour of the multistep method. Recently it has been

proved [25, 43] that the underlying one-step methods for a class of time-symmetric

multistep methods for second-order problems ẍ = f(x) are conjugate to symplectic,

which explains their near-conservation of energy over long times and their practical

application in solar system dynamics.

3. Preservation of intrinsic properties of differential equations

3.1. Types of differential equations

In this section we survey first the types of differential equations that are considered in

this paper, then their intrinsic properties, and finally the preservation of these properties

by geometric integrators. First, Hamiltonian systems. In the most common case, a

Hamiltonian system has the following form [72]:
(
q̇

ṗ

)
= J∇H(q, p), (22)

where q and p ∈ R
m, where the symplectic structure J is given by

J :=

(
0 Id

−Id 0

)
, (23)

and where the Hamiltonian function H is the sum of kinetic and potential energy:

H(q, p) =
1

2
‖p‖2

2 + V (q), ‖p‖2
2 =

∑

i

p2
i . (24)

More general is the case

ẋ = J∇H(x) (25)

where x = (x1, . . . , xn) ∈ R
n, and J is now allowed to be any constant skew- symmetric

matrix, and H is an arbitrary (differentiable) function.

A simple example is provided by a classical particle of mass m moving in a potential

V (q1, q2, q3) and subject to a constant magnetic field b := (b1, b2, b3). This can be
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modelled by Eq. (25), with x := (q1, q2, q3, p1, p2, p3), H = 1
2m

(p2
1 +p2

2 +p2
3)+V (q1, q2, q3)

and

J =

(
0 Id3

−Id3 b̂

)
,where b̂ :=




0 −b3 b2
b3 0 −b1
−b2 b1 0


 . (26)

In this example, as in Eq. (23), the matrix J has full rank. In general, however, the

determinant of J in Eq. (25) may be zero. In this case, the system (25) is called a

Poisson system.

More general again is the case where the Poisson structure J depends on x:

ẋ = J (x)∇H(x). (27)

Here, in addition to being skew, J must satisfy the so-called Jacobi identity:

∑

ℓ

{
Jiℓ

∂

∂xℓ

Jjk + Jjℓ
∂

∂xℓ

Jki + Jkℓ
∂

∂xℓ

Jij

}
= 0, i, j, k = 1, . . . , n. (28)

Finally, the most general case we will consider is the nonautonomous version of (27):

ẋ = J (x)∇H(x, t). (29)

3.2. Symplectic structure

Considering these systems of increasing generality (22), (25), (27), (29), we note that

in all cases they preserve the symplectic two-form ♯

Ω :=
∑

i,j

J −1
ij (x)dxi ∧ dxj (30)

This is equivalent to saying that these equations can be derived from an underlying

variational problem using Hamilton’s principle. This symplectic/variational structure

has many important physical and mathematical consequences, and it is therefore usually

important to preserve if possible.

3.3. Conservation of phase-space volume

One consequence of the symplectic structure of Eqs. (22) and (25) is that these systems

preserve Euclidean volume, while Eqs. (27) and (29) preserve a non-Euclidean volume,

i.e., are measure preserving. For example, if the matrix J in (27)–(28) is nonsingular,

the system preserves the measure ††
dx1 ∧ . . . ∧ dxn√

detJ (x)
. (31)

♯ If J is singular, the form Ω on a leaf is determined by Ω(J∇F,J∇G) = {F,G} [72].

††Note that for non-singular skew J ,
√

detJ (x) can be expressed as a Pfaffian.
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3.4. Conservation of energy

The next property we consider is conservation of the Hamiltonian/energy. This property

is possessed by those equations above that are autonomous (i.e. by (22), (25), and (27),

but in general not by (29)), as is not hard to show:

dH

dt
=
∑

i

∂H(x)

∂xi

dxi

dt

=
∑

i,j

∂H(x)

∂xi

Jij(x)
∂H(x)

∂xj

= 0,

(32)

where we have used the fact that J is skew, i.e. Jij = −Jji .

3.5. Other first integrals

In addition to the above properties, shared by all (resp. all autonomous) Hamiltonian

systems, it is not unusual for Hamiltonian systems to possess additional symmetries,

foliations, or first integrals. We start by discussing first integrals, a.k.a. constants of the

motion.

By definition, I(x) is a first integral of a system with Hamiltonian H, if
dI(x)

dt
= 0

provided x(t) is a solution of Hamilton’s eqns, i.e.

dI

dt
=
∑

i

∂I(x)

∂xi

dxi

dt

=
∑

i,j

∂I(x)

∂xi

Jij(x)
∂H(x)

∂xj

= 0.

(33)

Well known physical examples of first integrals are momentum and angular momentum.

More generally, the so-called momentum map associated with certain symmetries (via

Noether’s theorem) is a first integral. In addition there exist many other examples of

first integrals, including Casimirs (i.e. I that satisfy
∑

i
∂I(x)
∂xi

Jij(x) = 0,∀j). Systems

with a sufficient number of integrals to allow a solution of the system in closed form

(in principle) are called (completely) integrable; some examples are the Kepler problem

and the Toda chain. (For a discussion of foliations see [82].)

3.6. Symmetries

Symmetries occur in many physical systems. We can distinguish linear/nonlinear,

continuous/discrete, and ordinary/reversing symmetries [39, 61, 98].

We start with a simple example of a linear, discrete, reversing symmetry. Note that

the Hamiltonian (24) is invariant under p 7→ −p. It is easy to see that the corresponding

Eqs. (22) are invariant under (p
t
) 7→ (−p

−t
). This is the most common form of time-reversal

symmetry, and it has important physical and mathematical consequences. Common
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(continuous) symmetries are invariance under translation (q 7→ q + a) and rotation

(q 7→ Rq). An example of a system with a nonlinear symmetry is generated by the

Hamiltonian H = 1
2
(p2

1 + p2
2)

2 + q2
1 + 4q2

2 + aq−2
1 . This system has an additional integral

p2p
2
1 +8q1q2p1 +2(aq−2

1 − q2
1)p2, that (via Noether’s theorem) corresponds to a nonlinear

symmetry [51].

A map S : M → M of phase space is a symmetry of f if it leaves f invariant (i.e.

TS.f ◦ S−1 = f), while a map R : M → M of phase space is a reversing symmetry of

f if it maps f to −f (i.e. TR.f ◦ R−1 = −f). In general, a system may have both

symmetries and reversing symmetries, and the group combining both of these is called

the reversing symmetry group of the system [61].

3.7. Preserving symplectic structure

Symplectic structure for natural Hamiltonian systems described by Eqs. (22)–(24) can

be preserved by splitting the Hamiltonian function into kinetic and potential energy,

i.e., applying Eq. (5) with f1 = J∇1
2
‖p‖2

2, f2 = J∇V (q).

Each can then be integrated exactly, yielding

eτf1 : qk+1/2 = qk + τpk,

pk+1/2 = pk,

eτf2 : qk+1 = qk+1/2,

pk+1 = pk+1/2 − τ∇V (qk+1/2),

(34)

Now we can use the composition (5) to obtain any desired order of accuracy (cf. §2)

[119].

In general, we must split H into a sum of simpler Hamiltonians. Many simple

Hamiltonians have been proposed and used [83]: quadratic Hamiltonians with linear

dynamics; kinetic energies pTM(q)−1p, of which many integrable cases are known, and

if nonintegrable, can be diagonalized and further split into integrable 2D systems; two

body Hamiltonians such as central force problems and point vortices; monomials; the

noninteracting (e.g. checkerboard) parts of lattice (e.g. quantum or semidiscrete PDE)

systems with only near-neighbour interactions. A very general approach [34, 87] is to

find vectors a1, . . . , an such that aT
i J aj = 0 for all i, j = 1, . . . , n. Then H(aT

1 x, . . . , a
T
nx)

is integrable for any function H, and its flow is given simply by Euler’s method

xk+1 = xk +τJ∇H(xk). Choosing suitable sets of vectors ai then gives explicit splitting

methods for any polynomial, an approach pioneered for use in accelerator physics [35].

However, for arbitrary Hamiltonians the only known symplectic methods are the

symplectic Runge–Kutta methods†, i.e. methods of the form (17) that satisfy the

symplecticity condition [44]

biaij + bjaji − bibj = 0, i, j = 1, . . . , s. (35)

† As well as their generalisations, the symplectic partitioned Runge–Kutta and symplectic B-series

methods. Note that symplectic RK and B-series methods also preserve any constant symplectic

structure for nonautonomous Hamiltonians H(x, t).
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There are no known methods that can preserve a general Poisson structure J (x).

Splitting is the most practical method when it applies, the most famous example being

the free rigid body, a Poisson, momentum-preserving integrator being just a sequence

of planar rotations [74, 101, 65]. Methods that apply to arbitrary Hamiltonians for

particular Poisson structures rely on finding either canonical coordinates or symplectic

coordinates (a Poisson map from a symplectic vector space to the Poisson manifold).

This can be done when J (x) is linear in x, the so-called Lie-Poisson case. Such J
always arise from symplectic reduction of a canonical system on T ∗G where G is a Lie

group; a symplectic integrator for this system can reduce to a Poisson integrator [91].

3.8. Preserving phase-space volume

Because the preservation of phase-space volume plays an important role in many

applications (e.g. in incompressible fluid flow), we here present volume-preserving

methods for arbitrary divergence-free vector fields (this includes, but is more general

than, Hamiltonian systems of the form (25)) [84].

We recall that, by definition, the ODE

ẋ = f(x) (36)

is divergence–free if
n∑

i=1

∂fi(x)

∂xi

= 0. (37)

Using this, we have

fn(x) = fn(x̄) +

∫ xn

x̄

∂fn(x)

∂xn

dxn

= fn(x̄) −
∫ xn

x̄

(
n−1∑

i=1

∂fi(x)

∂xi

)
dxn,

(38)

where x̄ is an arbitrary point which can be chosen conveniently (e.g. if possible such

that fn(x̄) = 0).

Substituting (38) in (36), we get

ẋ1 = f1(x),

...

ẋn−1 = fn−1(x),

ẋn = fn(x̄) −
n−1∑

i=1

∫ xn

x̄

∂fi(x)

∂xi

dxn.

(39)

We now split this as the sum of n− 1 vector fields

ẋi = 0 i 6= j, n,

ẋj = fj(x),

ẋn = fn(x̄) δj,n−1 −
∫ xn

x̄

∂fj(x)

∂xj

dxn,

(40)
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for j = 1, . . . , n− 1. Here δ is the Kronecker delta. Note that:

(i) Each of these n− 1 vector fields is divergence-free

(ii) We have split one big problem into n−1 small problems. But each small problem has

a simpler structure than (36); each corresponds to a two-dimensional Hamiltonian

system

ẋj =
∂Hj

∂xn

,

ẋn = −∂Hj

∂xj

,
(41)

with Hamiltonian Hj = −fn(x̄)δj,n−1xj +
∫ xn

x̄
fj(x) dxn, treating xi for i 6= j, n as fixed

parameters. Each of these 2D problems can either be solved exactly (if possible), or

approximated with any symplectic integrator ψj. Even though ψj is not symplectic in

the whole space R
n, it is volume-preserving. A volume-preserving integrator for f is

then given by ψ = ψ1ψ2 · · ·ψn−1.

3.9. Preserving energy and other first integrals

Linear and quadratic integrals are all automatically preserved by symplectic Runge–

Kutta methods. However, no other integrals can be preserved by such methods, so if

the integral one wishes to preserve is e.g. cubic, one has to make the choice of whether

to preserve the symplectic structure or to preserve the integral. For the latter purpose

there are two main methods: discrete-gradient methods and projection methods. Each

of these has its advantages and disadvantages. Here we will focus on projection methods,

as they are somewhat simpler [44].

Define the integral manifold

M := {x | g(x) = 0}, (42)

where

g(x) := I(x) − I(x0) (43)

and I : R
n → R

s defines s first integrals of the system. The standard projection method

is now defined as follows:

(i) Compute x̄k+1 = ϕτ (xk) by any integration method ϕτ

(ii) Project x̄k+1 onto M , to obtain xk+1 ∈M

The projection step is usually done by minimising the Lagrange function L(xk+1, λ) =
1
2
‖xk+1 − x̄k+1‖2 − g(xk+1)

Tλ, where λ := (λ1, . . . , λs) represent Lagrange multipliers.

Stationarity of the Lagrange function is then given by ∂L
∂xk+1

= 0, ∂L
∂λ

= 0, i.e.

xk+1 = x̄k+1 + g′(xk+1)
Tλ,

g(xk+1) = 0.
(44)
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To speed up the numerical process it is convenient to replace (44) by

xk+1 = x̄k+1 + g′(x̄k+1)
Tλ, (45)

g(xk+1) = 0. (46)

Since (45) is now explicit we can substitute it in (46) to obtain implicit equations for

the Lagrange multipliers λi.

When a system has a large number of integrals which it is desirable to preserve it

is better to see if they arise from some structural feature of the equation. If solutions

are confined to lie in the orbit of a group action, each orbit is a homogeneous space and

it is possible to make big progress using Lie group integrators [57].

A famous example is the Toda lattice, which can be written in the form L̇ =

[A(L), L], where L is a symmetric, tridiagonal matrix and A(L) is the antisymmetric,

tridiagonal matrix with the same upper diagonal as L. Solutions are confined to the

isospectral manifolds {UL(0)U−1 : U ∈ O(n)} and the eigenvalues of L are first integrals.

Here the orthogonal matrices act on the symmetric matrices by conjugation.

Let g · x be the action of g ∈ G on x ∈ M , where G is a Lie group and M is the

phase space of the system. Write

γ(v, x) :=
d

dt
exp(tv) · x|t=0 (47)

so that all vector fields tangent to the orbits can be written

ẋ = γ(a(x), x) (48)

for some function a : M → g, where g is the Lie algebra of G. Classes of methods that

can preserve the group orbits include Runge–Kutta–Munthe-Kaas (RKMK) integrators,

Magnus methods (especially for nonautonomous linear systems), and splitting.

Instead of solving (48) directly, in RKMK methods its solution is represented as

x(t) = exp(y(t)) · x(0) where now y(t) ∈ g. Since g is a linear space, any approximate

solution for y will yield an x lying in the correct orbit. Now y(t) obeys the so-called

“dexpinv” equation

ẏ = dexp−1
y a(exp(y) · x(0)), y(0) = 0, (49)

which can be solved by any integrator. Here dexp is the derivative of the exponential

map exp : g → G and its inverse is given by dexp−1
y a = a− 1

2
[y, a]+ 1

6
[y, [y, a]]+ . . . where

the coefficients are the Bernoulli numbers; typically this series has to be truncated to

the desired order. If an explicit third-order Runge–Kutta method is chosen as the base

method, then the Lie group integrator

k1 = a(xk),

k2 = a(exp(1
2
τk1) · xk),

k3 = a(exp(−τk1 + 2τk2) · xk),

l = τ(1
6
k1 + 2

3
k2 + 1

6
k3),

xk+1 = exp(l + 1
6
[l, k1]) · xk,

(50)
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is third order and leaves xk+1 on the same group orbit as xk. Many higher-order methods

using as few as possible function evaluations, exponentials, and commutators have been

derived [22, 23, 99]. Attention also has to be given to evaluating the exponentials exactly,

or at least approximating them within G; this can be computationally expensive.

Magnus methods can be used for linear problems ẋ = γ(a(t), x), such as the time-

dependent Schrödinger equation. Again they allow one to use evaluations, commutators,

and exponentials of a to approximate xk+1 in the correct group orbit [12, 50, 55].

Splitting methods are more ad-hoc. One approach is to choose a basis for g,

say v1, . . . , vn, and write a(x) =
∑
ai(x)vi. The vector field γ(ai(x), x) is tangent

to the one-dimensional group orbit exp(tvj)(x), hence if these are integrable, the ODE

ẋ = γ(ai(x), x) is integrable by quadratures. Splitting is preferred when it is desired

to preserve some other property as well as the integrals, such as phase space volume.

RKMK and Magnus methods, on the other hand, are “linear”, and hence preserve orbits

of subgroups of G (as well as orbits of G) automatically.

3.10. Preserving symmetries and reversing symmetries [89]

Linear and affine symmetries are automatically preserved by all Runge–Kutta methods.

Linear and affine reversing symmetries are preserved by all so-called time-symmetric

Runge–Kutta methods, i.e. methods of the form (17) that satisfy the time-symmetry

condition

as+1−i,s+1−j + aij = bj, ∀i, j. (51)

It follows that time-symmetric symplectic Runge–Kutta methods, apart from being

symplectic and preserving any linear and quadratic first integrals, also automatically

preserve any linear symmetries and reversing symmetries.

Starting from any numerical integration method xk+1 = ϕτ (xk), a single nonlinear

reversing symmetry

x 7→ R(x),

t 7→ −t,
(52)

can be preserved by

xk+1 = Rϕ−1
τ
2

R−1ϕ τ
2
(xk), (53)

provided ϕτ commutes with R2.

Preserving nonlinear symmetries is in general more complicated, and the reader is

referred to [32, 52].

3.11. Dissipative systems

We will use the term “dissipative” to refer to systems in which the time derivative of

a differential k-form is nonpositive. When k = 0 the system has a Lyapunov function

V (x) which obeys V̇ := d
dt
V (x(t)) ≤ 0. When k = 2 the system has a symplectic form ω

which obeys ω̇ := d
dt

((etf )∗)ω) ≤ 0. When k = n the system has a volume form µ which
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obeys µ̇ ≤ 0, i.e. the system is volume-contracting. (Here the forms are evaluated on k

arbitrary vectors.)

An important special case is when the k-form contracts at a constant rate, i.e.

V̇ = −cV (in which case the foliation defined by {x : V (x) = const.} is preserved),

ω̇ = −cω (in which case the system is said to be conformal Hamiltonian [78]; in fact

symplectic forms can only contract in this way), or µ̇ = −cµ (in which case the system is

said to be conformal volume-preserving). In these cases the maps contracting the given

structure actually form a group; for general contraction they only form a semigroup [85].

An example is provided by simple mechanical systems with Rayleigh dissipation.

If the Hamiltonian is H = 1
2
pTM(q)−1p+ V (q), the equations of motion are

q̇ = ∇pH,

ṗ = −∇qH −R(q)M(q)−1p,
(54)

where R(q) is positive definite. Now the energy H is a Lyapunov function, for

Ḣ = −q̇R(q)q̇ ≤ 0, and Euclidean volume µ =
∏

i dqi ∧ dpi contracts, for µ̇ =

−tr(R(q)M(q)−1)µ ≤ 0. The symplectic form
∑
dqi ∧ dpi contracts conformally if

and only if R(q) = cM(q) for some constant c, as in the important and simplest case

R(q) = cI, M(q) = I.

Methods are available that preserve these properties. Doing so is particularly

important when one wants to know the effect of very slow dissipation over long times.

However, it is in precisely these cases that we should add the requirement that the

differential form is in fact preserved when V̇ (resp. ω̇, µ̇) = 0. This will ensure both

that the dissipation proceeds at the correct rate and that it vanishes if the solution

tends towards a dissipation-free submanifold as t→ ∞.

To ensure that a Lyapunov function (or functions) decreases, one can use a form

of projection combined with Runge–Kutta [41]. First, evaluate the stages of the RK

method (17) applied to the original system ẋ = f(x). Then, apply the same RK

method to V̇ = ∇V (x)Tf(x). If the weights bi of the RK method are all positive, then

V will not increase. Finally, project the original RK solution for xk+1 to the manifold

{x : V (x) = Vk+1}.
Conformal Hamiltonian systems can be integrated [78] by splitting off the

dissipative part, which (without loss of generality) always has the form q̇ = 0, ṗ = −cp
and can be integrated explicitly. The non-dissipative part can be treated with any

symplectic integrator.

Volume-contracting systems can also be integrated by splitting them into

contracting and divergence-free parts. For example, the vector field g defined by

ẋ1 = f1 +
n∑

i=2

∫ x1

0

∂fi

∂xi

dx1,

ẋi = 0, i = 2, . . . , n,

(55)

has divergence equal to ∇·f ≤ 0. But for a scalar system, contractivity simply requires

that solutions approach each other. Runge–Kutta methods that obey this are called
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B-stable [109], which is equivalent to bi ≥ 0 and biaij + bjaji − bibj ≥ 0 for all i, j.

In particular, Gaussian Runge–Kutta methods are B-stable. The remainder f − g is

divergence free and can be treated with any volume-preserving integrator. Volume-

contractivity is only a semigroup property, however, and so the order cannot be increased

beyond 2 by composition (because this would require negative time steps [7] that increase

volume). Higher-order volume-contracting integrators require special techniques [42].

This leaves the cases when the system has several of these properties. These are

unsolved in general, although there is some evidence that applying an integrator to

(54) that would be symplectic in the absence of dissipation does provide good long-time

behaviour and good tracking of the energy decay. Such methods can be constructed by

splitting or by including dissipative forces in variational integrators by the Lagrange-

d’Alembert principle [69].

4. Special Cases

The ODEs considered in Section 3 fall into natural classes defined by intrinsic, geometric

properties. Their flows and integrators inherit these properties, which directly influence

the nature of the dynamics of the system. In this section, by contrast, we consider

properties that may not be intrinsic or influence the dynamics, but can nevertheless be

usefully taken into account in integrator design. Splitting itself is an example: while

writing f =
∑
fi with fi integrable is (in a sense) intrinsic, it does not in itself influence

the dynamics. We first look at special cases of splitting.

4.1. Simple mechanical systems

These are canonical Hamiltonian systems where the Hamiltonian has the form kinetic

plus potential energy, i.e. H = 1
2
‖p‖2 +V (q), the norm ‖p‖ being induced from a metric

on the configuration space; in coordinates, ‖p‖2 = pTM(q)−1p. Let f2 = J∇V and

f1 = J∇1
2
‖p‖2 be the Hamiltonian vector fields of the potential and kinetic energies,

so that f2 is always integrable and f1 is integrable when the geodesics of the metric are

integrable. In the simplest case, M(q) = I and the symmetrized composition (7) gives

the standard leapfrog method, Eq. (1). The Lie algebra generated by f1 and f2 is far

from being generic, however, and its special properties can be exploited in the design of

the integrator.

First, note that [f2, [f2, f1]] = J∇‖∇V (q)‖2 (the Hamiltonian vector field of the

function ‖∇V (q)‖2) and hence [f2, [f2, f1]] commutes with any other function of the

coordinates only; for example, [f2, [f2, [f2, f1]]] ≡ 0. This means that [f2, [f2, [f2, f1]]]

and numerous terms in the error expansion of a composition method are identically

zero and that their order conditions (their coefficients expressed as polynomials in

the parameters of the method, which must normally be set to zero) can be dropped.

This allows methods, usually known as “Runge–Kutta–Nyström” methods, with smaller

errors and often with fewer force evaluations as well. A full analysis of the Lie algebra
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generated by f1 and f2 for simple mechanical systems is provided in [90].

A good fourth-order method of this class, due to Blanes and Moan [14], is given by

Eq. (5) together with m = 7 and

a0 = a7 = 0,

a1 = a6 = 0.245298957184271,

a2 = a5 = 0.604872665711080,

a3 = a4 = 1
2
− (a2 + a3),

b1 = b7 = 0.0829844064174052,

b2 = b6 = 0.396309801498368,

b3 = b5 = −0.0390563049223486,

b4 = 1 − 2(b1 + b2 + b3).

(56)

This is the method ‘LF4’ used in Figs. 1–4. Note that, after the first step, the initial

force is available from the previous time step, so only 6 force evaluations per time step

are needed.

A further extension uses derivatives of the force. Because f3 := [f2, [f2, f1]] =

J∇(‖∇V (q)‖2) is itself integrable, its flow can be included in the integrator. The flow

of f2 + αf3 is given by

q(t) = q(0), p(t) = p(0) − t (f2 + α(N ′(f2, f2) + 2f ′
2(Nf2)))(q(0))) , (57)

which only involves evaluating one derivative of the force evaluated in one direction

Nf2. (Here N = M−1.) This can be very cheap for some problems, e.g. n-body systems

with 2-body interactions, for which it costs about the same as one force evaluation, or if

the latter is dominated by expensive square root calculations, much less. For example,

let W : R
3 → R be a potential such that V = 1

2

∑
i,j

j 6=i
W (qi − qj), qi ∈ R

3. Then

∑

j

∂fi

∂qj
vj =

∑

j

W ′′(qi − qj)(vi − vj), (58)

where W ′′ is the Hessian of W .

The simplest method of this type uses a corrector to achieve order 4 with only a

single force evaluation, Eq. (15) [111]. It can be extended [10, 11, 14, 26] by including

more stages (this decreases the local error); going to higher order (up to 8th order

methods have been found); considering near-integrable systems, described below; and

including higher derivatives of the force.

This class of methods can also be used when f1 = J∇1
2
‖p‖2 +V1(q), f2 = J∇V2(q)

(i.e., V = V1 + V2) if f1 is integrable, this being of particular advantage when f2 is

simpler (e.g. smaller or slower) than f1. The most famous example is the solar system,

for which f1 contains the sun-planet and f2 the planet-planet interactions. The class

can also be used on non-Hamiltonian systems of the form

ẋ = f(x) + L(x)y,

ẏ = g(x),
(59)
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where x ∈ R
m, y ∈ R

n, and L(x) ∈ R
m×n. For example, high-order systems

dkz
dtk

:= z(k) = f(z, ż, . . . , z(k−2)) have this form when written as the (divergence-free)

first-order system

ẋi = xi+1, i = 0, . . . , k − 2,

ẋk−1 = f(x0, . . . , xk−2),
(60)

where xi = z(i).

4.2. Near-integrable systems

If we are splitting f = f1 +f2 (f1 integrable) and ‖f2‖ ≪ ‖f1‖, then f is near-integrable

and this can be exploited in the construction of integrators. Specifically, introduce a

small parameter ε and (by rescaling f2) let f = f1 + εf2. The error of a composition

method is automatically O(ε) and vanishes with ε. (See Figs. 2, 3.) Splitting is superb

for such nearly-integrable systems.

But, one can do even better. The error can be expanded as a double Taylor series

in τ and ε, and if ε ≪ τ then one can preferentially eliminate error terms with small

powers of ε. The number of these terms is only polynomial in the order n, instead of

exponential. Thus, we can beat the large cost of high-order methods in this case. For

example, there is only 1 error term of each order O(ετn) and ⌊1
2
(n−1)⌋ of order O(ε2τn).

One can easily build, for example, a 2 stage method of order O(ε2τ 4 + ε3τ 3), a 3 stage

method of order O(ε2τ 6 + ε3τ 4), and so on [10, 63, 76].

This idea combines particularly well with the use of correctors. For any composition,

even standard leapfrog, for all n there is a corrector that eliminates the O(ετ p) error

terms for all 1 < p < n. Thus, any splitting method is “really” O(ε2) accurate on

near-integrable problems. This construction was used by Wisdom [118] to improve the

accuracy of a long leapfrog integration of the solar system years after it had actually

been performed! A combination of correctors and preferential elimination of error terms

was also used by Laskar [64] in a solar system simulation which contributed to the 2004

Geophysical Time Scale.

4.3. PDEs and Linear Parts

Consider the wave equation q̈ = qxx + f(q) with periodic boundary conditions in space.

A pseudo-spectral spatial discretization leads to a set of ODEs of the form q̈ = Lq+f(q).

Although the linear part q̇ = p, ṗ = Lq could be split as in the standard leapfrog, it is

also possible to split the system into linear and nonlinear parts, solving the linear part

exactly. This is the approach traditionally used for the nonlinear Schrödinger equation,

for example [116]. This has the advantage of removing any stability restriction due to

the splitting of the oscillators, and if the nonlinearity is small, we have the advantages

discussed above for near-integrable systems. Furthermore, the highly accurate Runge–

Kutta–Nyström, corrector, and multiderivative methods can also be used, and the time

step can be increased using special methods for highly-oscillatory systems (§4.7).
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4.4. Nonautonomous systems

The usual way to treat these is to split the corresponding autonomous systems in

extended phase space. In the Hamiltonian case with H = 1
2
‖p‖2 + V (q, t), for

example, the extended phase space is (q, ξ, p, pξ) and the extended Hamiltonian is

(1
2
‖p‖2 + pξ) + V (q, ξ). Applying leapfrog to the indicated splitting gives

qk+1/2 = qk +
1

2
τpk,

pk+1 = pk − τ∇V (qk+1/2, tk + 1
2
τ),

qk+1 = qk +
1

2
τpk+1.

(61)

However, Blanes and Moan [13] have proposed an interesting alternative based on the

Magnus expansion. To integrate the ODE ẋ = f(x, t) on [t0, t0 + τ ], first calculate the

autonomous vector fields

f0 :=

∫ t0+τ

t0

f(x, t) dt, f1 :=
1

τ

∫ t0+τ

t0

(t− 1

2
τ)tf(x, t) dt. (62)

Then a second-order approximation of the flow of f is given by ef0 , and a fourth-order

approximation is given by

e
1

2
f0−2f1e

1

2
f0+2f1 . (63)

Each of these vector fields is then split and an integrator constructed by composition.

This can be cost-effective because more information about the t-dependence of f is used

[8].

4.5. Systems with constraints

An ODE with a constraint forms a differential-algebraic equation (DAE), e.g. ẋ =

f(x, λ), g(x) = 0. A great deal is known about how to integrate DAEs in general ([48]

Chs. VI, VII, [4]). Here we are interested in the case when the DAE has extra structure

which must also be preserved.

Consider a Hamiltonian system with configuration manifold Q, phase space T ∗Q

and Hamiltonian H : T ∗Q → R. If the motion is subject to a holonomic (position)

constraint that q ∈ M ⊂ Q, then the constrained system is again Hamiltonian, this

time with phase space T ∗M . The structure to be preserved is that the integrator should

be a symplectic map on T ∗M , expressed, however, in coordinates on the original phase

space T ∗Q, because often we have no good global description of M . Examples are bond

length and bond angle constraints in molecular dynamics.

Suppose that we do have a second-order, time-symmetric, symplectic integrator

ϕ : T ∗Q→ T ∗Q for the unconstrained motion, and that the constraints are specified by

M = {q : g(q) = 0} where g : Q→ R
k. Then the constrained equations are

q̇ = ∇pH,

ṗ = −∇qH −G(q)Tλ,

0 = g(q),

(64)
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where Gij = ∂gi/∂q
j and λ ∈ R

k. If the initial data (qk, pk) satisfy the constraints, i.e.

g(qk) = 0 and G(qk)pk = 0, then a second-order, time-symmetric, symplectic integrator

ψ is given by first calculating the new position by solving for the Lagrange multipliers

λ in

(qk+1, p̄k+1) = ϕ(qk, pk −G(qk)
Tλ), g(qk+1) = 0, (65)

and then projecting the momentum to the constraint manifold by solving for the

Lagrange multipliers µ in

pk+1 = p̄k+1 −G(qk+1)
Tµ, G(qk+1)pk+1 = 0, (66)

although the second step (66) can be omitted without affecting the essential behaviour

of the method.

When H = 1
2
‖p‖2 + V (q) and ϕ is given by the standard leapfrog method (1), this

reduces to an integrator known as RATTLE. Although nonlinear equations have to be

solved for the Lagrange multipliers λ, typically by iteration, the force ∇V only needs

to be evaluated once.

Since the method (65), (66) is time-symmetric, its order can be increased as desired

by composition.

Another approach is to extend partitioned Runge–Kutta methods to constrained

systems. The Lobatto IIIA–IIIB method [44] has order 2s−2 with s stages and is time-

symmetric and symplectic for systems with holonomic constraints. It is fully implicit,

so a simple method like RATTLE would be preferred where possible, but if high order is

needed, or if the Hamiltonian is not separable, then partitioned Runge–Kutta methods

can be competitive. (Many complex mechanical systems have a nontrivial mass matrix

M(q) and hence are not separable.)

The dynamics of nonholonomically constrained Hamiltonian systems is far less well

understood. It is not, in general, symplectic. The Lagrange–d’Alembert principle which

generates the nonholonomic equations of motion can be discretized to yield useful

integrators which preserve the key geometric features of the equations, namely the

constraints and reversibility [27, 80]. For example, if the Lagrangian 1
2
‖q̇‖2

2 − V (q)

is subject to the nonholonomic constraint A(q)q̇ = 0, then one choice of discrete

Lagrangian yields the nonholonomic analogue of RATTLE, namely

qk+1/2 = qk +
1

2
τvk,

vk+1 = vk + τ
(
−∇V (qk+1/2) + A(qk+1/2)

Tλk+1

)
,

qk+1 = qk+1/2 +
1

2
τvk+1,

A(qk+1)vk+1 = 0,

(67)

where v = q̇ is the velocity. Like RATTLE, it is second order, time-symmetric, reversible,

and has only one force evaluation. The reversibility appears to ensure favourable long-

time energy behaviour [79].
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4.6. Variable time steps

In general purpose ODE software it is standard to adapt the time step during an

integration so as to control the local error [46]. This becomes progressively more efficient

than using a fixed time step as the diversity of regimes the orbit passes through becomes

more extreme. In geometric integration, however, simply choosing the time step as some

function of x (related to the force or its gradient, or to an estimate of the local error)

will in general destroy any geometric properties of the integrator and hence destroy its

good long-time behaviour.

Instead the idea is to adapt the system so that it can be integrated well using

a constant time step. The adaptation must preserve the geometric properties of the

system. Typically, however, the adaptation does make the system and any suitable

geometric integrators more complicated.

The Poincaré transformation of Hamiltonian H on energy level E is H̃ := g(x)(H−
E). Orbits x̃(t̃) of H̃ with energy 0 coincide with orbits x(t) of H and with energy E, but

are followed at a different speed: x̃(t̃) = x(t) where dt/dt̃ = g(x). The monitor function

g(x) is chosen to be small in regions of phase space that are difficult to integrate and

the system with Hamiltonian H̃ is integrated with a constant time step τ̃ , effectively

reducing the time step in the difficult regions. However, even if H is separable then H̃

is not, so an implicit symplectic integrator must be used for H̃. To reduce the cost,

one can choose g(x) to be a smooth function that equals 1 away from the difficult

regions, and choose an integrator such as two-stage Lobatto IIIA–IIIB Runge–Kutta

that reduces to the leapfrog method on separable Hamiltonians. Then the calculation

proceeds using standard leapfrog until the orbit enters the difficult region, when it

automatically switches to the (more expensive) implicit method.

A related method has been proposed for the N -body gravitational problem [24].

The system has Hamiltonian H = H1 + H2 where H2 is singular at collisions. The

leapfrog method is applied to the splitting H = (H1 + (1 − K)H2) + KH2 where the

monitor function K is equal to 0 near collisions, equal to 1 far away from collisions,

and varies smoothly in between. Far from collisions, this reduces to standard, explicit

leapfrog for H1 + H2. When K 6= 1, the first term H1 + (1 − K)H2 can no longer

be integrated explicitly; when this happens, its solution is evaluated numerically up to

roundoff error using a standard integrator. (One could equally well use a symplectic

integrator with a smaller time step.) Provided the near-collisions are rare enough, the

extra cost is negligible.

There is more scope for transforming reversible systems by dt
dt̃

= g(x). When the

original system is Hamiltonian and separable, there are reversible integrators for the

transformed system [67, 47] that are either explicit or semiexplicit (require solving just

a scalar nonlinear equation). Now there is essentially no cost to including adaptivity,

but symplecticity has been sacrificed, raising questions about the long-time reliability of

the integration. (For example, energy errors may be no longer bounded.) This method

is in widespread use in molecular dynamics [67].
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Asynchronous variational integrators [68] have been proposed in which each element

(for example, each pair of particles in an N -body system) has its own time step, which

can be either prescribed or determined variationally. The method looks very promising

but has not yet been fully developed for ODE applications.

4.7. Highly oscillatory problems

The leapfrog method for the oscillator q̈ = ω2q is stable only for τ < 2/ω. Step size

restrictions like this can be a major performance bottleneck for large systems and many

methods have been proposed to overcome them. Three broad classes of systems have

been tackled:

(i) the phase space coordinates can be partitioned into fast and slow variables (in

molecular dynamics, the fast variables might be the positions and momenta within

each molecule, and the slow variables the positions and momenta between them);

(ii) the forces can be separated into fast and slow forces;

(iii) a special case of (ii) in which the motion due to the fast forces can be solved exactly.

In each case the new methods allow the time step to be increased significantly, by a

factor of 5 or more, while still obtaining reliable results.

The “reversible averaging” method of Leimkuhler and Reich [66] applies to problems

of type (i). The fast subsystem is still integrated with a small time step, the slow

variables being interpolated as needed, while the slow subsystem is integrated with a

large time step, but with the force due to the fast variables being averaged along their

orbit. This relies on the fast system being much faster to solve, as in molecular dynamics

where it decouples into a sum of small systems. It is reversible and not symplectic, but

appears to have excellent stability properties for large time steps on linear and nonlinear

problems.

The “mollified impulse method” of Garćıa-Archilla, Sanz-Serna, and Skeel [37]

applies to problems of type (ii). Suppose the system is described byH = Hf (p, q)+Vs(q),

where ‖H ′′
f ‖ ≫ ‖V ′′

s ‖. The method is the composition

eNτ/2J∇V̄s(ϕτ (Hf ))
NeNτ/2J∇V̄s , (68)

where ϕτ (Hf ) is a time-symmetric, symplectic integrator for the fast system Hf , such

as leapfrog. The expensive, slow forces ∇Vs are only evaluated every N time steps. The

mollified potential V̄s is given by V̄s(q) = Vs(A(q)), where the mollifier A(q) has the

effect of averaging over the fast motion. A typical choice is A(q) = (2Nτ)−1
∫ Nτ

−Nτ
q(t) dt

where q(t) satisfies the reduced fast problem q̇ = ∇pHf , ṗ = −∇qHf , q(0) = q, p(0) = 0,

which itself has to be integrated for 2Nτ time steps using the method ϕτ . This time-

symmetric, symplectic method yields dramatic improvements in accuracy and stability

over standard leapfrog, although some instabilities remain when the step size is in

resonance with the fast frequencies.
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These can best be analyzed by passing to the simplest case (iii), for which a key

test problem is the system [44]

q̈ + Ω2q = −∇Vs(q), (69)

where Ω is symmetric and positive definite, so that the fast frequencies are the

eigenvalues of Ω. In this case the mollified impulse method reduces to

qk+1 − 2 cos(τΩ)qk + qk−1 = −τ 2ψ(τΩ)∇Vs(φ(τΩ)qk) (70)

with ψ(ξ) = sin(ξ)/ξ and φ(ξ) = 1, a method first introduced by Deuflhard [30]. In fact,

the method (70) is time-symmetric, second order, and exact when ∇Vs(q) = const. for

any even functions ψ, φ with ψ(0) = φ(0) = 1. It is symplectic if ψ(ξ) = (sin(ξ)/ξ)φ(ξ).

It suffers from resonance instabilities when τλ is a multiple of π (λ an eigenvalue

of Ω), but these can be greatly reduced by a careful choice of ψ and φ. Dramatic

improvements in accuracy and increases in the step size can be obtained compared

with leapfrog. Unfortunately it appears that the requirements of symplecticity, lack of

resonance instabilities, good long-time energy conservation, good long-time conservation

of adiabatic invariants, and accurate slow-time-scale dynamics cannot all be achieved

simultaneously [44].

Exponential integrators can be applied to highly oscillatory problems [40]. These

are methods for ẋ = f(x) that incorporate entire functions of the Jacobian f ′(x) or

an approximation of the Jacobian. Most practically, one writes ẋ = Lx + N(x) and

approximates f ′(x) by the constant matrix L. The main strand of research seeks

methods that are explicit, exact when N(x) = 0, and show good stability and high

order on stiff problems (those with ‖L‖ ≫ 1), especially including discretizations of

parabolic and hyperbolic PDEs. Enormous gains can be made compared to the common

approach of simply treating the linear terms with Crank-Nicolson. See [93] for a survey

of exponential integrators.

Lie group integrators based on the Magnus expansion can also be adapted to solve

highly oscillatory nonautonomous linear ODEs [54].

5. Dynamical behaviour of geometric integrators

The main goal of geometric integration is to preserve phase portraits as well as possible.

Therefore we first consider how well various invariant sets in phase space are preserved,

either exactly or with a perturbation, before looking at the error growth in quantities

that are not preserved.

5.1. Preservation of invariant sets

A useful reference for this subsection is Stuart and Humphries [109].

5.1.1. Preservation of equilibrium points All B-series methods and all linear multistep

methods retain all equilibrium points of ẋ = f(x) exactly. Some B-series methods,
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however, may generate additional, so-called spurious, fixed points [109]. The one-stage

theta method

xk+1 = xk + τf(θxk+1 + (1 − θ)xk) (71)

has no spurious fixed points for any τ (for θ = 1
2

it is the symplectic midpoint rule),

and neither does the (symplectic) fourth-order Gaussian Runge–Kutta method. It has

been conjectured that there are no higher-order Runge–Kutta methods without spurious

fixed points.

Composition can, in general, introduce spurious fixed points. However, if we split

f =
∑
fi such that

∑
fi(yi) = 0 ⇐⇒ fi(yi) = 0 when yi − yj = O(τ), then the first-

order composition (5) has no spurious fixed points, and nor does the leapfrog method

(1). The existence of higher-order composition methods with this property is unknown.

5.1.2. Preservation of quasiperiodic orbits One of the most important sources of

nonlinear stability is given by the existence of invariant tori in phase space, guaranteed

by the Kolmogorov–Arnold–Moser (KAM) theorems. Such theorems have been proved

for Hamiltonian systems, for reversible systems, and for volume-preserving systems.

This is one of the most important motivations for using integrators that preserve these

geometric properties (usually a necessary condition for preservation of KAM tori).

Proofs that geometric integrators actually do preserve KAM tori seem to mainly

have been given for Hamiltonian systems [44, 94, 104] and reversible systems [44]. The

step size must not be resonant with the frequencies of the torus. Of course, the torus

does undergo an O(τ p) shift in its position.

Preservation of periodic orbits for Hamiltonian, reversible, and volume-preserving

systems seems to have received much less attention.

5.1.3. Preservation of integrals This can of course be enforced if desired (see §3.5).

But how do integrals fare if their preservation is not explicitly enforced?

Energy cannot, in general, be preserved by a symplectic integrator [38]. However,

error analysis shows that energy errors can be bounded for long times (§5.2). Some

other integrals can be preserved exactly: splitting methods preserve any first integral

of f that is also a first integral of each fi, where f =
∑
fi. For simple mechanical

systems with H = 1
2
‖p‖2 + V (q), this includes any integral associated with a spatial (q)

symmetry. Thus the leapfrog method for separable systems preserves both linear and

angular momentum. Quadratic integrals are preserved by any symplectic Runge–Kutta

method, as mentioned before. Variational integrators can preserve integrals provided a

discrete Lagrangian that preserves the associated symmetry can be found.

5.1.4. Preservation of spectral properties and bifurcations Of crucial importance for

the dynamics near an equilibrium point are its linear eigenvalues. These eigenvalues are
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generally grouped as follows:

λi ∈ stable set, if Reλi < 0,

λi ∈ centre set, if Reλi = 0,

λi ∈ unstable set, if Reλi > 0.

(72)

A necessary condition for an equilibrium point to be stable is that its unstable set

be empty. To each of the above three sets is associated a linear subspace, and these

subspaces are tangent to their nonlinear generalizations, the so-called stable, centre, and

unstable manifolds.

A second reason that eigenvalues are important is that bifurcations typically occur

when the real part of one of the eigenvalues equals zero.

For both of these reasons, it is important to preserve the spectral properties of

equilibrium points. This means that, corresponding to (72), we would like an integrator

to have a fixed point with eigenvalues

µi ∈ stable set, if |µi| < 1,

µi ∈ centre set, if |µi| = 1,

µi ∈ unstable set, if |µi| > 1.

(73)

Time-symmetric Runge–Kutta methods that are also A-stable (such as Gaussian Runge–

Kutta) have the property that if λi ∈ stable, centre, resp. unstable set, then µi ∈ stable,

centre, resp. unstable set, for all τ .

Nongeometric methods will typically not have this property for any τ .

Geometric methods will have this property for sufficiently small τ provided that the

spectrum of the equilibrium point is generic to the class of systems. The linearization

of the flow will be perturbed by the integrator to a nearby matrix lying in the same

class. Hence its spectrum will retain any forced or generic properties of this class: for

Hamiltonian systems, the eigenvalues will come in λ, λ̄, λ−1, λ̄−1 quadruplets, and, if

they are elliptic and generic, will remain so. If the eigenvalues are nongeneric (e.g.

double), or if the time step is too large, then the eigenvalues may change type.

Geometric methods, therefore, will undergo generic bifurcations at parameter values

close to those at which the ODE bifurcates. (Nongeneric bifurcations are usually due

to the presence of some other structure, such as a symmetry, which should therefore

be preserved by the integrator to restore genericity.) Time-symmetric, A-stable Runge–

Kutta methods do even better, for they perturb each eigenvalue by the same function,

by λi 7→ µi := R(τλi) where R is analytic at 0. Bifurcations therefore occur at precisely

the correct parameter values, and even nongeneric bifurcations with double eigenvalues

are captured correctly. Only eigenvalue resonances such as λi/λj ∈ Z are not captured

correctly.

5.1.5. Preservation of chaotic properties ([67], pp. 124–126) By their very nature,

chaotic orbits are hard (if not impossible) to compute numerically. This is due to the

exponential divergence of nearby orbits in chaotic regions. In addition, the long-time
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behaviour of some orbits can be extraordinarily subtle. This means that in general much

care is needed and the convergence as τ → 0 of any solution features should be carefully

checked.

KAM tori can often act as a (partial) boundary between “ordered” and “chaotic”

regions in phase space, and this is another reason why it is good to preserve such tori,

e.g. by using symplectic integrators.

On the other hand, chaotic orbits in hyperbolic systems possess a shadowing

property [59]. This property is structurally stable, and hence preserved by symplectic

integrators. Reich [102] has used this property to prove that numerically computed

time-averages are close to the real averages. Geometric properties of the system

(esp. integrals, symplectic structure, and volume preservation) constrain the Lyapunov

exponents of a chaotic orbit, hence geometric integrators that obey these constraints

can give more accurate estimates of the exponents. (See Fig. 5.)

5.2. Error growth

Suppose the ODE ẋ = f(x) with solution x(t) is integrated by xk+1 = ϕτ (xk), x0 = x(0).

The traditional objects of study in numerical analysis are the local error x(τ)−x1 after

one step and the global error xk − x(t), typically with τ → 0 and the total integration

time t = kτ held fixed. For a method of order p, the local error will be O(τ p+1) and

the global error O((eLt − 1)τ p), where L is the Lipshitz constant of f in the domain of

integration (L = max ‖f ′(x)‖). However, in geometric integration, the step size is often

held fixed (and is even quite large) while the number of steps k → ∞. The global error

bound is useless in this situation, and indeed, the global errors themselves typically

would be large, especially on chaotic orbits.

If the global errors are small, then the error in any observed feature of the solution

is also small. If the global errors are large, then the error in an observed feature can be

small or large; the convergence of each feature has to be studied in its own right.

There are two situations, however, in which the global error of a geometric integrator

can in fact be dramatically smaller than that of a standard integrator. The first case is

when the system has some special structure that can be exploited to decrease the error,

as in nearly integrable systems (§4.2) and systems for which the method (15) is efficient.

The second case is when the solution is quasiperiodic. In a standard integrator applied

to an integrable Hamiltonian system, for example, the action errors for almost all initial

conditions are O(t), leading to frequency errors also being O(t); these compound to

give rise to O(t2) global errors. In a symplectic integrator the action and frequency

errors are bounded on exponentially long time intervals; the orbit moves on a torus with

slightly wrong frequencies, leading to O(t) global errors. (See Fig. 2.) In a system with

a mixture of regular and chaotic motion, one could still expect some favourable error

behaviour near the regular orbits.

The integrator ϕτ and the flow eτf are both maps of phase space in the same class:

symplectic, reversible, volume-preserving, etc. They are both O(τ)-close to the identity
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and O(τ p) close to each other. Any property of maps that is preserved by arbitrary small

perturbations within the appropriate class will be preserved by the integrator. This

includes many of the key features of the class of dynamics, such as preservation of KAM

tori, genericity of bifurcations, Poincaré recurrence, and so on. However, sometimes one

can say even more, using the theory of modified equations or backward error analysis

[102]. This states that the integrator ϕ(τ) is, up to a small error, close to the time-τ

flow of an autonomous modified vector field f̃ satisfying f − f̃ = O(τ p). If ϕ(τ) is

analytic in τ then the error ϕ(τ)− eτ f̃ is exponentially small in τ . If ϕ(τ) is symplectic

(resp. reversible, resp. volume-preserving) then f̃ is Hamiltonian (resp. reversible, resp.

divergence-free). Backward error analysis can be applied both to reduce the study of

maps to that of differential equations, which can be simpler, and to any case in which

the dynamics of maps and flows is different.

The champion example is energy preservation. Hamiltonian systems preserve

energy but symplectic maps, generically, do not. However, the modified vector field

f̃ is Hamiltonian and hence f̃ = J∇H̃; H̃ is called the modified Hamiltonian of ϕ.

Taking care of the small error terms gives the result that there exists a time step τ0 such

that

H̃(xk) = H̃(x0) + O(e−τ0/2τ ), (74)

implying

H(xk) = H̃(x0) + O(τ p), (75)

for all |τ | < τ0 and for all |t| < eτ0/2τ . The energy error oscillates within fixed bounds for

exponentially long times. Decreasing the time step until the energy errors are bounded

is a crucial part of any symplectic integration, although it does not, of course, ensure

that any other features are yet correct.

The behaviour of other first integrals that are not exactly preserved by the

integrator can be difficult to determine. Numerically, both linear O(t) increases in error

and bounded O(1) errors are observed in different cases. Bounded errors are presumably

due to the presence of a modified first integral, but these have only been constructed in

special cases, for example when the Hamiltonian and integral are both separable [120].

When reversible systems are integrated by reversible integrators, a variety of

behaviour in first integrals can be observed. For nonsymmetric orbits, reversibility

is irrelevant, and O(t) error growth is to be expected. For symmetric orbits the errors

are bounded for quasiperiodic orbits and O(
√
t) for ergodic orbits [79]. While this

random-walk-like drift can still be an obstacle to, e.g., very long molecular dynamics

simulations, it is still much better than the O(t) drift of a standard integrator.

Systems with multiple time scales can possess adiabatic invariants J that obey

|J(t) − J(0)| = O(ε) for |t| < ec/(2ε), where ε ≪ 1 is the ratio of slow to fast

frequencies. If the time step is small enough for backward error analysis to apply,

i.e. if the fast frequencies are well resolved, then one can show that the integrator obeys

|J(xk) − J(x0)| = O(τ p) + O(ε) also for exponentially long time intervals [102]. Even

if the time step is larger than the period of the fast motion, and one is applying a
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special method for such highly-oscillatory systems as in §4.7, and time step resonances

are avoided, then adiabatic invariants are observed not to drift, although the magnitude

of the oscillations may not be correct.

5.3. Stability

It might be expected that splitting methods, being nominally explicit, have only modest

stability. This is not necessarily the case.

(i) Because they are 1-step methods, they are automatically 0-stable (stable for ẋ = 0),

unlike multistep methods.

(ii) If the phase space is compact, all integrators are unconditionally stable. Examples

are integrators preserving the integral ‖x‖2, unitary and orthogonal integrators

used in quantum mechanics, and symplectic integrators for Poisson systems with

compact symplectic leaves, such as the rigid body.

(iii) In general, most geometric integrators are only conditionally stable. One chooses

a simple test problem of the relevant type with bounded solutions and computes

the stability limit of various methods. For Hamiltonian systems, the test problem

is usually the harmonic oscillator with T (p) + V (q) splitting. Leapfrog is stable

for τ < 2 and higher-order m-stage integrators are stable for τ < τ ∗ where usually

τ ∗ ≈ π. Special compositions can be found that are more stable and allow the

use of a larger time step. Typically the stability limit τ ∗ decreases with increasing

order, while τ ∗/m increases slightly with m, where m is the number of stages.

(iv) Some nonlinear stability can follow merely from the group property, such as

existence of KAM tori in Hamiltonian, volume-preserving, or reversible systems

[16, 104], preservation of invariant hypersurfaces which partition phase space, or

the nonlinear stability of fixed points of Hamiltonian systems [106].

(v) The modified Hamiltonian of symplectic integrators can confer nonlinear stability.

In particular, for some splitting methods, the critical points of H do not move or

change their value under the perturbation due to the integrator [81].

(vi) Implicit geometric integrators such as symplectic RK and PRK methods can be

unconditionally stable for linear systems. However, this does not always allow one

to increase the time step over that of an explicit method, because the implicit

equations become more expensive to solve and may not even have a solution, and

because nonlinear stability for large time steps is not guaranteed [107].

(vii) Integrators for highly oscillatory systems (§4.7) are expressly designed to allow

much greater time steps and better stability [66].

6. Other problems in numerical ODEs

In this survey we have mostly considered the solution of initial value problems for ODEs.

Other types of problems include the following.
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Boundary value problems The geometry of boundary value problems for the various

classes of systems (Hamiltonian, symmetric etc.) has received extremely little attention

in the literature. The same can be said about the development and testing of geometric

integrators for these problems. The close relationship between boundary and initial value

problems does suggest, however, that structure preservation should be useful in much

the same situations in the two cases. There are two key differences. First, boundary

value problems are usually solved on fixed and moderate time intervals (partly because

they become increasingly ill-conditioned as the time interval increases), so the utility

of having good long-time dynamics in the integrator is decreased. Second, the balance

between explicit and implicit integrators shifts markedly. For general boundary value

problems, one can choose between shooting (typically with an explicit integrator) or

a direct solution (typically with an implicit integrator). In the latter case, Gaussian

Runge–Kutta is already the preferred method for boundary value problems for first-

order ODEs [3]. Since it preserves so much structure as well, this appears to make it

the method of choice for geometric boundary value problems, despite being implicit.

Optimization and control problems In optimization and control problems, and when

continuing the solution of a boundary value problem with parameters, one has to

repeatedly solve (sometimes approximately) a sequence of nearby systems. This further

favours implicit methods, because good initial guesses, factored Jacobian matrices,

etc., are known. With an implicit Runge–Kutta method one could expect to apply

just one or two Newton-like updates per step. There can also be an advantage to

treating the discretization and the optimization in parallel, as in the ‘Discrete Mechanics

and Optimal Control’ method [58], in which both the dynamics and optimization are

specified, and discretized, variationally.

Non-trajectory methods In the Hybrid Monte Carlo method [28] for the potential V (q),

a sequence of orbit segments are computed for the Hamiltonian (e.g.) H = 1
2
‖p‖2+V (q),

each initialized with a random value of p. As fidelity to the dynamics ofH is not required

for good results, there is scope for adapting the integrator. For example, in [86], explicit

integrators that preserve volume, reversibility, and energy are constructed for some

systems, leading to correct statistics with no rejected steps.

Subdivision Techniques [29] discretize the phase space itself to a set of cells, with the

dynamics replaced by a Markov chain on the cells. The transition probabilities of the

Markov chain are computed by a Monte Carlo method from a set of orbit segments with

random initial conditions. Analysis of the Markov chain yields approximates of global

quantities like invariant measures and almost invariant sets. Although the methods can

be successfully applied to low-dimensional Hamiltonian systems [31], as far as we know

the question of what geometric structure the Markov chain can inherit from the ODE

has not yet been examined.
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Poincaré maps The computation of Poincaré maps is often done without preserving

any structure; if it is determined that the section is crossed between xk and xk+1, say,

then the value x̂ of the map can be approximated by interpolation (often inverse Hermite

interpolation is used, because the derivatives of x(t) are known from the differential

equation), while the orbit calculation proceeds from xk+1, so that the overall orbit

calculation is given by a geometric integrator. Unfortunately, this Poincaré map does

not necessarily inherit the geometric structure from the ODE, which can be important if

the map is to be used, for example, in a study of bifurcation of periodic or quasiperiodic

orbits. Other popular methods (such as solving ϕτ (xk) ∈ Σ for τ , or, when the section

Σ is defined by g(x) = 0, letting g(x) be a new dependent variable so that Σ can be

reached in one step [112]) are not geometric either. However, some geometric approaches

have been explored. First, If the section has small enough dimension, the Poincaré map

can be (nonsymplectically) approximated on a grid on the section; then a (symplectic)

Poincaré map can be constructed by interpolating a generating function for the map

on the grid [36]. The map will be extremely fast to evaluate, but will suffer from an

interpolation error. Second, in accelerator physics, the Poincaré map is known to have

an elliptic fixed point, and it can be approximated by its Taylor (or Taylor–Fourier)

series. A symplectic map is then constructed that has the same Taylor series up to

some order [35, 115]. Third, a more conventional approach is to seek a function C(x)

such that g(x) := Ċ > 0 in the domain of interest. Under the transformed Hamiltonian

g(x)−1(H −E) on energy level E, Ċ = 1. Hence, the section defined by C = const. can

be reached with a constant step size.
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