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Abstract

The merging of network theory and microarray data analysis techniques has spawned a new field: gene coexpression
network analysis. While network methods are increasingly used in biology, the network vocabulary of computational
biologists tends to be far more limited than that of, say, social network theorists. Here we review and propose several
potentially useful network concepts. We take advantage of the relationship between network theory and the field of
microarray data analysis to clarify the meaning of and the relationship among network concepts in gene coexpression
networks. Network theory offers a wealth of intuitive concepts for describing the pairwise relationships among genes, which
are depicted in cluster trees and heat maps. Conversely, microarray data analysis techniques (singular value decomposition,
tests of differential expression) can also be used to address difficult problems in network theory. We describe conditions
when a close relationship exists between network analysis and microarray data analysis techniques, and provide a rough
dictionary for translating between the two fields. Using the angular interpretation of correlations, we provide a geometric
interpretation of network theoretic concepts and derive unexpected relationships among them. We use the singular value
decomposition of module expression data to characterize approximately factorizable gene coexpression networks, i.e.,
adjacency matrices that factor into node specific contributions. High and low level views of coexpression networks allow us
to study the relationships among modules and among module genes, respectively. We characterize coexpression networks
where hub genes are significant with respect to a microarray sample trait and show that the network concept of
intramodular connectivity can be interpreted as a fuzzy measure of module membership. We illustrate our results using
human, mouse, and yeast microarray gene expression data. The unification of coexpression network methods with
traditional data mining methods can inform the application and development of systems biologic methods.
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Introduction

Many biological networks share topological properties. Com-

mon global properties include modular organization [1,2], the

presence of highly connected hub nodes, and approximate ‘scale

free topology’ [3,4]. Common local topological properties include

the presence of recurring patterns of interconnections (‘network

motifs’) in regulation networks [5–7].

One goal of this article is to describe existing and novel network

concepts (also known as network statistics or indices [8]) that can

be used to describe local and global network properties. For

example, the clustering coefficient [9] is a network concept, which

measures the cohesiveness of the neighborhood of a node. We are

particularly interested in network concepts that are defined with

regard to a ‘gene significance measure’. Gene significance

measures are of great practical importance since they allow one

to incorporate external gene information into the network analysis.

In functional enrichment analysis, a gene significance measure

could indicate pathway membership. In gene knock-out experi-

ments, gene significance could indicate knock-out essentiality. We

study gene significance measures since a microarray sample trait

(e.g., case control status) gives rise to a statistical measure of gene

significance. For example, the Student t-test of differential

expression leads to a gene significance measure. Many traditional

microarray data analysis methods focus on the relationship

between the microarray sample trait and the gene expression

data. For example, gene filtering methods aim to find a list of

(differentially expressed) genes that are significantly associated with

the microarray sample trait; another example are microarray-

based prediction methods that aim to accurately predict the

sample trait on the basis of the gene expression data.

Gene expression profiles across microarray samples can be

highly correlated and it is natural to describe their pairwise

relations using network language. Genes with similar expression

patterns may form complexes, pathways, or participate in

regulatory and signaling circuits [10–12]. Gene coexpression

networks have been used to describe the transcriptome in many

organisms, e.g., yeast, flies, worms, plants, mice, and humans [13–

23]. Gene coexpression network methods have also been used for

typical microarray data analysis tasks such as gene filtering [19,24–

26] and outcome prediction [27,28].

While the utility of network methods for analyzing microarray

data has been demonstrated in numerous publications, the utility

of microarray data analysis techniques for solving network
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theoretic problems has not yet been fully appreciated. One goal of

this article is to show that simple geometric arguments can be used

to derive network theoretic results if the networks are defined on

the basis of a correlation matrix.

Definition of Gene Coexpression Networks
Although many of our network concepts will be useful for

general networks, we are particularly interested in gene coexpres-

sion networks (also known as association-, influence-, relevance-,

or correlation networks). Gene coexpression networks are built on

the basis of a gene coexpression measure. The network nodes

correspond to genes—or more precisely to gene expression

profiles. The ith gene expression profile xi is a vector whose

components report the gene expression values across m micro-

arrays. We define the coexpression similarity sij between genes i

and j as the absolute value of the correlation coefficient between

their expression profiles:

sij~ cor xi,xj
� ��

�

�

�:

Using a thresholding procedure, this coexpression similarity is

transformed into a measure of connection strength (adjacency). An

unweighted network adjacency aij between gene expression profiles

xi and xj can be defined by hard thresholding the coexpression

similarity sij as follows

aij~
1 if sij§t

0 otherwise

�

ð1Þ

where t is the ‘‘hard’’ threshold parameter. Thus, two genes are

linked (aij=1) if the absolute correlation between their expression

profiles exceeds the (hard) threshold t. Hard thresholding of the

correlation leads to simple network concepts (e.g., the gene

connectivity equals the number of direct neighbors) but it may lead

to a loss of information: if t has been set to 0.8, there will be no

link between two genes if their correlation equals 0.799. To

preserve the continuous nature of the coexpression information,

one could simply define a weighted adjacency matrix as the

absolute value of the gene expression correlation matrix, i.e.,

[aij] = [sij]. However, since microarray data can be noisy and the

number of samples is often small, we and others have found it

useful to emphasize strong correlations and to punish weak

correlations. It is natural to define the adjacency between two

genes as a power of the absolute value of the correlation coefficient

[19,24]:

aij~s
b
ij ð2Þ

with b$1. This soft thresholding approach leads to a weighted

gene coexpression network. We present empirical results for

weighted and unweighted networks in the main text, Text S1,

Text S2, and Text S3.

Social Network Analogy: Affection Network
Since humans are organized into social networks, social network

analogies should be intuitive to many readers. Therefore, we will

refer to the following ‘affection network’ throughout this article.

Assume that n individuals filled out an interest questionnaire,

which was used to define a pairwise similarity score sij. For

convenience, we assume that the similarity measure takes on

values between 0 and 1. Our definition of the affection network is

based on the following assumption: the more similar the interests

between two individuals, the more affection they feel for each

other. More specifically, we assume that the affection (adjacency)

aij between two individuals is proportional to their similarity on a

logarithmic scale, i.e.,

log aij
� �

~b|log sij
� �

ð3Þ

This is equivalent to our soft thresholding approach aij= sij
b

(Equation 2). A soft threshold b=2 implies that the affection aij
equals 0.25 if the similarity sij equals 0.5.

Results

Gene Significance Based on a Microarray Sample Trait
Many network applications use at least one gene significance

measure. Abstractly speaking, we define a gene significance

measure as a function GS that assigns a nonnegative number to

each gene; the higher GSi the more biologically significant is gene i.
We assume that the minimum gene significance is 0. For example,

if a statistical significance level (p-value) is available for each gene,

the gene significance of the ith gene can be defined as minus log of

the p-value, i.e., GSi=2log(pi). In this article, we are particularly

interested in gene significance measures that are based on a

microarray sample trait, e.g., a clinical outcome. The microarray

sample trait T= (T1,…,Tm) may be quantitative (e.g., body weight)

or binary (e.g., case control status). Since our goal is to provide a

simple geometric interpretation of coexpression network analysis,

we define the trait-based gene significance measure by

raising the correlation between the ith gene expression profile xi
and the clinical trait T to a power b

GSi~ cor xi,Tð Þj jb ð4Þ

Although any power b could be used in Equation 4, we use the

same power as in Equation 2 to facilitate a simple geometric

interpretation.

Geometric Interpretation Using a Hypersphere
We find it convenient to express network quantities in terms of

correlation coefficients since the correlation between two vectors

Author Summary

Similar to natural languages, network language is ever
evolving. While some network terms (concepts) are widely
used in gene coexpression network analysis, others still
need to be developed to meet the ever increasing demand
for describing the system of gene transcripts. There is a
need to provide an intuitive geometric explanation of
network concepts and to study their relationships. For
example, we show that certain seemingly disparate
network concepts turn out to be synonyms in the context
of coexpression modules. We show how coexpression
network language affects our understanding of biology.
For example, there are geometric reasons why highly
connected hub genes in important coexpression modules
tend to be important, and why hub genes in one module
cannot be hubs in another distinct module. We provide a
short dictionary for translating between microarray data
analysis language and network theory language to
facilitate communication between the two fields. We
describe several examples that illustrate how the two data
analysis fields can inform each other.

Geometric Interpretation of Networks
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can be interpreted as the cosine of the angle between them

(measured in radians) if the vectors are scaled to have a mean of 0.

Since the correlation is scale-invariant, i.e., cor(axi+b, cxj+d) =
cor(xi,xj), we can assume without loss of generality that the vectors

xi have a mean 0 and are of the same length. In other words, they

correspond to points on a hypersphere.

The network adjacency aij is a monotonically decreasing

function of the angle hij between the two scaled expression profiles

if 0#hij#p/2. When the angle hij equals 0 or p/2, the adjacency

equals 1 or 0, respectively. The network adjacency is a

monotonically decreasing function of the length of the shortest

path (geodesic) between the two points on the hypersphere. Soft

thresholding methods (Equation 2) preserve the continuous nature

of these distances. The higher the soft threshold b, the more

weight is assigned to short geodesic distances compared to large

distances.

Since the trait-based gene significance measure GSi=

|cor(xi,T)|
b, (Equation 4) is scale-invariant, the sample trait T

can also be considered a point on the hypersphere. Analogous to

the network adjacency, the smaller the geodesic distance between

the ith gene expression profile and the trait T, the higher the gene

significance of the ith gene. In other words, the smaller the angle

between the sample trait and the expression profile, the more

significant is the gene.

A Motivational Example
As a motivational example, we study the pairwise correlations

among 498 genes that had previously been found to form a sub-

network related to mouse body weight. The microarray data

measure the expression levels in multiple tissue samples (liver,

adipose, brain, muscle) from male and female mice of an F2

intercross. Approximately 100 tissue samples are available for each

gender/tissue combination. The biological significance of this

subnetwork is described in [23,26]. Here we focus on the

mathematical and topological properties of the pairwise absolute

correlations aij=|cor(xi,xj)| between the genes. For each gender

and tissue type Figure 1A depicts a hierarchical cluster tree of the

genes. Figure 1B shows the corresponding heat maps, which color-

code the absolute pairwise correlations aij. As can be seen from the

color bar underneath the heat maps, red and green in the heat

map indicate high and low absolute correlation, respectively. The

genes in the rows and columns of each heat map are sorted by the

corresponding cluster tree.

It is visually obvious that the heat maps and the cluster trees of

different gender/tissue combinations can look quite different.

Network theory offers a wealth of intuitive concepts for describing

the pairwise relationships among genes that are depicted in cluster

trees and heat maps. To illustrate this point, we describe several

such concepts in the following. By visual inspection of Figure 1B,

genes appear to be more highly correlated in liver than in adipose

(a lot of red versus green color in the corresponding heat maps).

This property can be captured by the concept of network density

(defined below). The density of the female liver network is 0.39

while it is only 0.23 for the female adipose network. Another

example for the use of network concepts is to quantify the extent of

cluster (module) structure. In this example, branches of a cluster

tree (Figure 1A) correspond to modules in the corresponding

network. The cluster structure is also reflected in the correspond-

ing heat maps: modules correspond to large red squares along the

diagonal. Network theory provides a concept for quantifying the

extent of module structure in a network: the mean clustering

coefficient (defined below). The female liver, male liver and female

brain networks have high mean clustering coefficients (mean

ClusterCoef=0.42, 0.43, 0.41, respectively). In contrast, the female

adipose, male adipose, and male brain networks have lower mean

clustering coefficients (mean ClusterCoef=0.27, 0.27, 0.25, respec-

tively). Difference in module structure may reflect true biological

differences or they may reflect noise (e.g. technical artifacts or

tissue contaminations).

As another example for the use of network concepts, compare

the cluster tree of the female brain network with that of the male

brain network. The cluster tree of the female network appears to

be comprised of a single large branch, i.e., a highly connected hub

gene at the tip of the branch forms the center in this network. In

contrast, the cluster tree corresponding to the male brain network

appears to split into multiple smaller branches, i.e., no single gene

forms the center. To measure whether a highly connected hub

gene forms the center in a network, one can use the concept of

centralization (defined below). The female brain and male brain

networks have centralization 0.34 and 0.21, respectively.

These examples illustrate that graph theory contains a wealth of

network concepts that can be used to describe microarray data.

But we will argue that microarray data analysis techniques can

also be used to derive network theoretic results. For example,

network theorists have long studied the relationship between gene

significance and connectivity. Several network articles have

pointed out that highly connected hub nodes are central to the

network architecture [17,29–32] but hub genes may not always be

biologically significant [33]. To define a sample trait based gene

significance measure (Equation 4), we define the gene significance

of gene i as the absolute correlation between the gene expression

profile xi and body weight T, i.e., GSi=|cor(xi,T)|. Figure 1C

shows the relationship between this gene significance measure and

connectivity in the different gender/tissue type networks. We find

a strong positive relationship between gene significance and

connectivity in the female and the male mouse liver networks. The

positive relationship between gene significance and connectivity

suggests that both variables could be used to implicate genes

related to body weight. For example, we used connectivity as a

variable in a systems biologic gene screening method [26]. While

most network theorists would agree that connectivity is an

important variable for finding important genes in a network

[17,19], the statistical advantages of combining gene significance

and connectivity are not clear. Below, we use the geometric

interpretation of coexpression network analysis to argue that

intramodular connectivity can be interpreted as a fuzzy measure of

module membership. Thus, a systems biologic gene screening

method that combines a gene significance measure with

intramodular connectivity amounts to a pathway based gene

screening method. Empirical evidence shows that the resulting

systems biologic gene screening methods can lead to important

biological insights [23–26]. Before combining gene significance

and connectivity in a systems biologic gene screening approach, it

is important to study their relationship. Toward this end, we

propose a measure of hub gene significance HGS as slope of a

regression line (through the origin) between gene significance and

scaled connectivity. As can be seen from Figure 1C, the hub gene

significance is high in liver and adipose tissues but it is low in brain

and muscle tissues. Below, we use the geometric interpretation of

coexpression networks to characterize coexpression networks that

have high hub gene significance if the gene significance measure is

based on a microarray sample trait T.

Network Concepts
Abstract definition of network concepts. We define

network concepts for (weighted) undirected networks that can be

represented by a symmetric adjacency matrix A= [aij], where

1#i,j#n. We assume that the pairwise adjacency (connection

Geometric Interpretation of Networks
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strength) aij takes on values in the unit interval, i.e., 0#aij#1. For

notational convenience, we set the diagonal elements to 1. In the

Methods section, we define a network concept NCF(A,GS) by

evaluating a network concept function NCF(?,?) on the adjacency

matrix A and/or a corresponding gene significance measure GS.

This abstract definition will be useful in defining intramodular

network concepts (e.g., Equation 17) and eigengene-based analogs

of network concepts (e.g., Equation 30). In the following, we

describe several network concepts including the connectivity, the

maximum adjacency ratio, the density, and the centralization.

Connectivity and related concepts. The connectivity (also

known as degree) of the ith gene is defined by

ki~
X

j=i

aij : ð5Þ

In unweighted networks, the connectivity ki equals the number of

genes that are directly linked to gene i. In weighted networks, the

connectivity equals the sum of connection weights between gene i
and the other genes.

The maximum connectivity is defined as

kmax~max
j

kj
� �

ð6Þ

The scaled connectivity Ki of the i-th gene is defined by

Ki~
ki

kmax

ð7Þ

By definition, 0#Ki#1. Note that we distinguish the scaled from

the unscaled connectivity by using an upper case ‘‘K’’ and a lower

case ‘‘k’’, respectively.

Social Network Interpretation of the Connectivity: For the aforemen-

tioned affection network (Equation 3), assume that the affection

(adjacency) aij equals 1 if two individuals strongly like each other; it

equals 0.5 if they are neutral towards each other, and it equals 0 if

they strongly dislike each other. Then the scaled connectivity Ki is

a measure of relative popularity: high values of Ki indicate that the
ith person is well liked by many others.

Potential Uses of the Connectivity: The connectivity is the most

widely used concept for distinguishing the nodes of a network. As

described in the motivational example and detailed below,

intramodular connectivity can be used to define a systems biologic

gene screening strategy that keeps track of module membership

information [24].

Maximum adjacency ratio. For weighted networks, we

define the maximum adjacency ratio of gene i as follows

MARi~

P

j=i aij
� �2

P

j=i aij
ð8Þ

which is defined if ki=Sj?i aij.0. One can easily verify that

0#aij#1 implies 0#MARi#1. Note that MARi=1 if all nonzero

adjacencies take on their maximum value of 1, which justifies the

name ‘‘maximum adjacency ratio.’’ By contrast, if all nonzero

adjacencies take on a small (but constant) value aij= e, then

MARi= e will be small.

Social Network Interpretation of the Maximum Adjacency Ratio:

MARi=1 suggests that the ith individual does not form neutral

relationships; this individual either strongly likes or dislikes others.

In contrast, MARi=0.5 suggests the ith individual forms less

intense relationships with others.

Potential Uses of the Maximum Adjacency Ratio: Since MARi=1 for

all genes in an unweighted network, the maximum adjacency ratio

is only useful for weighted networks. The MAR can be used to

determine whether a hub gene forms moderate relationships with

a lot of genes or very strong relationships with relatively few genes.

To illustrate this point, we show in the following simple example

that the MAR can be used to distinguish nodes that have the same

connectivity. Assume a network (labeled by I) for which the

adjacency between node 1 and every other node equals a1,j
(I)=1/

(n21). Then k1
(I)= (n21)/(n21) = 1 and MAR1

(I)=1/(n21). For a

different network (labeled by II) where a1,2
(II)=1 and a1,j

(II)=0 for

j$3, the connectivity k1
(II) still equals 1 but MAR1

(II)=1.

In weighted coexpression networks, we find empirically that

MARi is often highly correlated with the connectivity Ki (see also

Equation 36). As we demonstrate in Figure 2, the MARi is

sometimes (but not always) superior to Ki when it comes to

identifying biologically important intramodular hub genes. As

aside, we mention that a directed network analog of MARi has

been used in the analysis of metabolic fluxes [34].

Network density. The network density (also known as line

density [35]) is defined as the mean off-diagonal adjacency and is

closely related to the mean connectivity.

Density~

P

i

P

j=i aij

n n{1ð Þ ~
S1 kð Þ
n n{1ð Þ&

S1 kð Þ
nð Þ2

ð9Þ

where k= (k1,…,kn) denotes the vector of connectivities and the

function vector v is defined by Sp(v) =Si vi
p.

Social Network Interpretation of the Density: The density measures the

overall affection among individuals. A density close to 1 indicates

that all individuals strongly like each other while a density of 0.5

suggests the presence of more ambiguous relationships.

Potential Uses of the Density: The density of genes in a subnetwork

(e.g., a pathway) can be used to measure whether this sub-network

is tight or cohesive. In our motivational mouse tissue example, we

find that a network of genes has high density in liver tissue but low

density in adipose tissue. The goal of many module detection

methods is to find clusters of genes with high density.

Network centralization. The network centralization (also

known as degree centralization [36]) is given by

Centralization~ n
n{2

kmax

n{1
{Density

� �

&
kmax

n
{Density

ð10Þ

Figure 1. This motivational example explores the pairwise absolute correlations aij= |cor(xi,xj)| among 498 genes in different mouse
tissues. The biological significance of this network is described in [23,26]. Each figure panel contains 8 subfigures for different genders and tissue
types (liver, adipose, brain, muscle). (A) An average linkage hierarchical cluster tree of the genes. (B) The corresponding heat maps, which color-code
the absolute pairwise correlations aij: red and green in the heat map indicate high and low absolute correlation, respectively. The genes in the rows
and columns of each heat map are sorted by the corresponding cluster tree. (C) The relationship between gene significance GS (y-axis) and
connectivity (x-axis). The gene significance of the ith gene was defined as the absolute correlation between the ith gene expression profile and
mouse body weight. The hub gene significance HGS (Equation 13) is defined as the slope of the red line, which results from a regression model
without an intercept term.
doi:10.1371/journal.pcbi.1000117.g001

Geometric Interpretation of Networks
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The centralization is 1 for a network with star topology; by

contrast, it is 0 for a network where each node has the same

connectivity. A regular grid network such as a square has

centralization 0.

Social Network Interpretation of the Centralization: The centralization

of the affection network is close to 1, if one individual has loving

relationships with all others who in turn strongly dislike each other.

In contrast, a centralization of 0 indicates that all individuals are

equally popular.

Potential Uses of the Centralization: While the centralization is a

widely used measure in social network studies, it has only rarely

been used to describe structural differences of metabolic

networks [37]. As described in our motivational example, the

centralization can be used to describe properties of cluster trees,

see also [8].

Network heterogeneity. The network heterogeneity measure is

based on the variance of the connectivity. Authors differ on how to

scale the variance [35]. We define it as the coefficient of variation

of the connectivity distribution, i.e.

Heterogeneity~

ffiffiffiffiffiffiffiffiffiffiffiffiffi

var kð Þ
p

mean kð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nS2 kð Þ
S1 kð Þ2

{1

s

ð11Þ

This heterogeneity measure is invariant with respect to multiplying

the connectivity by a scalar.

Social Network Interpretation of the Heterogeneity: The heterogeneity

can be used to measure the variation of popularity (connectivity)

across the individuals.

Potential Uses of the Heterogeneity: Describing the reasons for and

the meaning of the heterogeneity of complex networks has been

the focus of considerable research in recent years [29,38]. Many

complex networks have been found to exhibit an approximate

scale-free topology, which implies that these networks are very

heterogeneous [3].

Clustering coefficient. The clustering coefficient of gene i is a

density measure of local connections, or ‘‘cliquishness’’ [9].

Specifically,

Figure 2. Relationships among maximum adjacency ratio, scaled connectivity, and gene significance. (A) The relationship between
MARi (y-axis) and scaled connectivity Ki using the female mouse muscle tissue network described in the motivational example. The genes are colored
red or black depending on whether they are significantly (p-value,0.05) related to mouse body weight. (B) Boxplots and a Kruskal-Wallis test p-value
(p=0.00072) for studying whether MARi differs between significant (red) and non-significant (black) genes. (C) The analogous boxplots and p-value
for the scaled connectivity Ki. In this female muscle tissue application, MARi is more significantly (p=0.00072) related to GSi than is Ki (p= 0.051).
(D,E,F) The analogous relationships for male muscle. Here, the MARi is more significantly (p=0.00014) related to GSi than is Ki (p= 0.0034). (G,H,I) The
analogous relationships for the brown module of the brain cancer application. Here, the MARi is slightly more significantly (p=1.6E-8) related to GSi
than is Ki (p= 2.6E-7). As a caveat, we mention that in other applications (e.g., the yeast network), we have found that Ki is more significantly related to
GSi than MARi.
doi:10.1371/journal.pcbi.1000117.g002
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ClusterCoefi~

P

l=i

P

m=i,l ailalmami

P

l=i ail
� �2

{
P

l=i ailð Þ2
n o ð12Þ

In unweighted networks, ClusterCoefi equals 1 if and only if all

neighbors of i are also linked to each other. For weighted networks,

0#aij#1 implies that 0#ClusterCoefij#1 [19].

Social Network Interpretation of the Clustering Coefficient: The higher

the clustering coefficient of an individual, the higher is the

affection among his friends. The clustering coefficient is zero if all

of his friends strongly dislike each other.

Potential Uses of the Clustering Coefficient: As described in our

motivational example, the mean clustering coefficient has been

used to measure the extent of module structure present in a

network. The relationship between the clustering coefficient and

connectivity has been used to describe structural (hierarchical)

properties of networks [1].

Hub gene significance. To measure the association between

connectivity and gene significance, we propose the following

measure of hub gene significance:

HubGeneSignif~

P

i GSiKi
P

i Kið Þ2
ð13Þ

When GSi is proportional to the scaled connectivity (GSi= cKi), the

hub gene significance equals the constant of proportionality:

HubGeneSignif= c. The hub gene significance equals the slope of the

regression line between GSi and Ki if the intercept term is set to 0

(Figure 3D and 3E).

Social Network Interpretation of the Hub Gene Significance: Assume that

the node significance measures the grade point average of the ith

individual. Then the hub node significance can be used to assess

whether there is a relationship between popularity (connectivity)

and grade point average.

Potential Uses of the Hub Gene Significance: Several studies have

shown that the relationship between connectivity and gene

significance (i.e., the hub gene significance) carries important

biological information. For example, in the analysis of yeast

networks, highly connected hub genes were found to be essential

for yeast survival and there is evidence that hub genes are

preserved across species [17,25,29–32]. A detailed analysis shows

that the positive relationship between connectivity and knockout

essentiality cannot always be observed [33], i.e., the hub gene

significance can be close to 0.

Network significance measure. We define the network

significance measure as the average gene significance of the genes:

NetworkSignif~

P

i GSi

n
ð14Þ

Social Network Interpretation of the Network Significance: The network

significance simply measures the average grade point average

among the individuals.

Potential Uses of the Network Significance: We refer to the network

significance of a module network as ‘‘module significance.’’ The

module significance measure can be used to address a major goal

of gene network analysis: the identification of biologically

significant subnetworks or pathways.

Centroid significance and centroid conformity. We

define the centroid significance as the gene significance of a suitably

chosen representative node (centroid) in the network.

CentroidSignif~GSi:centroid , ð15Þ

where i.centroid denotes the index associated with the centroid. A

centroid can be defined in many different ways, e.g., based on

connectivity or other centrality measures. In our applications, we

define the centroid as the most highly connected gene in the

network. If multiple genes attain the maximum connectivity, we

define the centroid significance by their average gene significance.

We define the centroid conformity of the ith gene as the adjacency

between the centroid and the ith gene

CentroidConformityi~ai,i:centroid : ð16Þ

If multiple genes attain the maximum connectivity, we define the

centroid conformity as their average adjacency with the ith gene.

Social Network Interpretation of the Centroid Conformity: In our

affection network, we choose the most popular individual as

centroid; then his or her grade point average is the centroid

significance. The centroid conformity of the ith individual equals

his or her affection (connection strength) with the most popular

individual.

Potential Uses of the Centroid Conformity: Below, we will characterize

coexpression networks for which the adjacency aij can be

approximated by a product of the centroid conformities:

aij<CentroidConformityi CentroidConformityj. We will use this insight

to derive relationships among seemingly disparate network

concepts. For example, the mean clustering coefficient

(Equation 12), the density (Equation 9), and the heterogeneity

(Equation 11) measure different network properties but we show

that they satisfy a simple relationship (Equation 31) in coexpression

modules. Further, we will use the centroid significance to derive a

simple relationship (Equation 37) between module significance

(Equation 14) and hub gene significance (Equation 13).

Overview of Weighted Gene Coexpression Network
Analysis
One of the many biological applications of gene coexpression

networks is the identification of pathways (modules) and centrally

located genes (referred to as module centroids). In our applica-

tions, we define highly connected intramodular hub genes as

module centroids. Weighted gene coexpression network analysis

(WGCNA, [19,24]) can be considered a step-wise microarray data

reduction technique, which starts from the level of thousands of

genes, identifies clinically interesting gene modules, and finally

represents the modules by their centroids. The module centric

analysis alleviates the multiple testing problem inherent in

microarray data analysis. Instead of relating thousands of genes

to a sample trait, it focuses on the relationship between a few

(usually less than 10) modules and the sample trait.

An outline of WGCNA is presented in Figure 3A. The module

definition does not make use of a priori defined gene sets. Instead,

modules are constructed from the expression data by using a tight

clustering procedure. Although it is advisable to relate the resulting

modules to gene ontology information to assess their biological

plausibility, it is not required. Because the modules may

correspond to biological pathways, focusing the analysis on

modules (and corresponding centroids) amounts to a biologically

motivated data reduction method. Intramodular hub genes are

centrally located in the module and thus lend themselves as

candidates for biomarkers. Examples of biological studies that

show the importance of intramodular hub genes can be found

reported in [23–25,33,39]. Because the expression profiles of
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Figure 3. Overview and an example application of gene coexpression network analysis. (A) Outline of an analysis flow chart. Gene
coexpression network analysis aims to identify pathways (modules) and their key drivers (e.g., intramodular hub genes). (B) The hierarchical cluster
tree of genes in the brain cancer network. Modules correspond to branches of the tree. The branches and module genes are assigned a color as can
be seen from the color-bands underneath the tree. Grey denotes genes outside of proper modules. A functional enrichment analysis of these
modules can be found in Horvath et al. (2006). (C) The module significance (average gene significance) of the modules. The underlying gene
significance is defined with respect to the patient survival time (Equation 4). (D,E) Scatter plots of gene significance GS (y-axis) versus scaled
connectivity K (x-axis) in the brown and blue module, respectively. The hub gene significance (Equation 13) is defined as the slope of the red line,
which results from a regression model without an intercept term.
doi:10.1371/journal.pcbi.1000117.g003

Geometric Interpretation of Networks

PLoS Computational Biology | www.ploscompbiol.org 8 August 2008 | Volume 4 | Issue 8 | e1000117



intramodular hub genes are highly correlated (in our data,

r.0.90), typically dozens of candidates result. Although these

candidates are statistically equivalent, they may differ in terms of

biological plausibility or clinical utility.

Network Modules
Roughly speaking, we define network modules as groups of highly

interconnected genes. As detailed in Text S1, Text S2, Text S3, and

in our online R tutorials, we use a hierarchical clustering procedure

to identify modules (clusters) as branches of the resulting cluster tree.

A common but inflexible branch cutting method uses a constant

height cutoff value. Alternatively, dynamic branch cutting adaptively

chooses cutting values depending on the shape of the branch [40].

Each module is assigned a unique color label (Figure 3B). Our

branch cutting algorithm only assigns module colors to branches

whose size exceeds a user-specified threshold parameter. In practice,

it is advisable to vary the minimum module size and other branch

cutting parameters to determine how the results are affected by

different parameter choices. An iterative approach for choosing the

parameters could be defined by optimizing the module significance.

This module detection approach has led to biologically meaningful

modules in several applications [1,8,23–25,33,39–43] but our

theoretical results transcend this particular module detection

method. Any module detection method that results in clusters of

highly correlated gene expressions could be used.

Intramodular Network Concepts
In the following, we assume that a module detection method

(e.g., a clustering procedure) has found Q modules. We denote the

adjacency matrix of the genes inside the qth module by A(q). Thus,

A(q) represents a subnetwork comprised of the genes in the qth
module. Analogously, we define GS(q) as the gene significance

measure restricted to the module genes. Denote by n(q) the number

of genes inside the qth module. Throughout the manuscript, we

use the superscript (q) to denote quantities associated with the qth

module. But for notational convenience, we sometimes omit (q)
when the context is clear.

We define an intramodular network concept NCF(A(q),GS(q)) by
evaluating a network concept function NCF(?,?) on the adjacency

matrix A(q) and/or a corresponding gene significance measure

GS(q).

For example, the intramodular connectivity is defined by

k
qð Þ
i ~

X

j=i

a
qð Þ
ij ð17Þ

where the j indexes the genes in the qth module. Intramodular

connectivity has been found to be an important complementary

gene screening variable for finding biologically important genes

[24,25,39].

We refer to the network significance (Equation 14) of a module

network simply as the module significance measure, i.e., the

module significance is the average gene significance of the module

genes:

ModuleSignif qð Þ
~

P

i GS
qð Þ
i

n qð Þ ð18Þ

Data Reduction Methods for Microarray Data
The high dimensionality of gene expression data has inspired

two broad categories of data reduction techniques. The first

category, often used by network theorists, is to reduce the gene

coexpression networks into modules. Each module can be

represented by a centroid, e.g., an intramodular hub gene. The

second category, often used by microarray data analysts, reduces

the gene expression data to a small number of components that

capture the essential behavior of the expression profiles [27,44–

51]. One of our goals is to understand how the two categories of

data reduction methods relate to each other. Here we use the

singular value decomposition [44,45,48] since this will allow us to

define a simple measure of factorizability (Equation 24).
Singular value decomposition. For the qth module, denote

by X(q) the n(q)6m matrix of n(q) gene expression profiles across m
microarrays:

X qð Þ
~ x

qð Þ
ij

h i

~ x
qð Þ
1 x

qð Þ
2 � � � x

qð Þ
n

� �T

ð19Þ

where xi denotes the gene expression vector of the ith gene.

The singular value decomposition (SVD) of X(q) is given by

X(q)=U(q)D(q)(V(q))T, where U(q) is an n(q)6m matrix with orthonor-

mal columns, V(q) is an m6m orthogonal matrix, and D(q) is an m6m

diagonal matrix of the singular values {|dl
(q)|}. Specifically, V(q)

and D(q) are given by

V qð Þ
~ v

qð Þ
1 v

qð Þ
2 � � � v

qð Þ
m

� �

D qð Þ
~diag d

qð Þ
1

�

�

�

�

�

�, d
qð Þ
2

�

�

�

�

�

�, . . . , d
qð Þ
m

�

�

�

�

�

�

n o ð20Þ

The singular value decomposition of X(q) is closely related to the

principal component analysis of the correlation matrix COR=

[cor(xi
(q),xj

(q))] whose entries correspond to the pairwise correlations

between the rows (genes) of X(q). For example, the eigenvalues of

the correlation matrix COR are squares of corresponding singular

values |dl
(q)|.

We assume that the singular values |dl
(q)| are arranged in

decreasing order. Adapting terminology from [44], we refer to the

first column of V(q) as the Module Eigengene:

E qð Þ
~v

qð Þ
1 ð21Þ

For brevity, we sometimes drop the superscript (q) and simply

refer to E as the eigengene. The module eigengene can be used to

summarize and represent the expression profiles of the module

genes, see Figure 4B. The proportion of variance explained by the

module eigengene E(q) is defined as

VarExplained E qð Þ
� �

~

d
qð Þ
1

�

�

�

�

�

�

2

P

j d
qð Þ
j

�

�

�

�

�

�

2
: ð22Þ

High Level View of Gene Coexpression Networks and
Eigengene Networks
The module eigengenes of different modules can be highly

correlated (Figure 4A). Detecting a high correlation between

module eigengenes may either be of biological interest (suggesting

interactions between pathways) or it may be a methodological

artifact (suggesting poorly defined modules that should be merged).

The correlations between two eigengenes can be used to define
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Figure 4. Module eigengenes in the brain cancer gene coexpression network. (A) The pairwise scatter plots among the module eigengenes
E(q) of different modules and cancer survival time T. Each dot represents a microarray sample. ME.blue denotes the module eigengene E(blue) of the
blue module. Numbers below the diagonal are the absolute values of the corresponding correlations. Note that the module eigengenes of different
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eigengene coexpression networks [52], e.g., a weighted eigengene

coexpression network can be defined as follows

aqp~ cor E qð Þ,E pð Þ
� �

�

�

�

�

�

�

b

ð23Þ

where E(q) and E(p) represent the eigengenes of two distinct

modules. Apart from correlating the module eigengenes of

different modules to each other, one can relate the module

eigengenes to an external microarray sample trait T to identify

trait related modules. Thus, eigengene network analysis can be

viewed as a network reduction scheme that reduces a gene

coexpression network involving thousands of genes to an orders of

magnitude smaller metanetwork involving module representatives

(one eigengene per module).

Unlike traditional microarray data reduction methods that

impose orthogonality (e.g., principal component analysis) or

independence (e.g., independent component analysis), gene

coexpression network analysis can be considered a pathway-based

data reduction method that allows dependencies between the

modules. When focusing on the use of module eigengenes,

network analysis can be considered a variant of oblique factor

analysis.

Low Level View of a Single Module and Factorizable
Networks
While a high level view of modular gene coexpression networks

can be viewed as a data reduction technique, many network

analyses focus on the pairwise relationships of relatively few

(hundreds) of correlated genes, i.e., genes that form a single

module in a larger network. For example, the 498 genes of our

motivational example were part of a body weight related module,

which was found in a large gene coexpression network based on

the female mouse liver samples [23].

The low-level analysis of a single network module may help

identify key genes that may be used as therapeutic targets or

candidate biomarkers. An important question of low level analysis

is to efficiently describe the connection strengths between

interacting module genes. We have provided empirical evidence
that many module adjacency matrices, i.e., networks comprised of

genes of a single module, are approximately factorizable [8]. In

such networks, the adjacency between module genes i and j can

approximately be factored into gene specific contributions, i.e.,

aij
(q)
<CFi

(q)CFj
(q) with CFi

(q) defined as the conformity of gene i.

Thus, the adjacency matrix of an approximately factorizable

network can be approximated using the rank 1 matrix [CFi
(q)CFj

(q)].

The conformity vector CF(q) can be estimated in several ways [8]; it

is highly related to a single factor nonnegative matrix decompo-

sition of A(q) [51] and it is highly related to the connectivity

CF
qð Þ

i &
k

qð Þ
i
ffiffiffiffiffiffiffiffiffiffiffiffi

P

j
k

qð Þ
j

q .

Characterizing approximately factorizable coex-

pression modules. An open theoretical research question is

to characterize microarray data that lead to factorizable

coexpression networks. Here we solve this problem for the

case of modules in a gene coexpression network. Toward this

end, we propose the following measure of eigengene

factorizability:

EF X qð Þ
� �

~

d
qð Þ
1

�

�

�

�

�

�

4

P

j d
qð Þ
j

�

�

�

�

�

�

4
ð24Þ

Note that 0#EF(X(q))#1 and the close resemblance to the

proportion of variance explained by the module eigengene

(Equation 22). In the Methods section, we argue that EF(X(q))<1

implies that the correlation matrix factors as follows

cor x
qð Þ
i ,x

qð Þ
j

� �

&cor x
qð Þ
i ,E qð Þ

� �

cor x
qð Þ
j ,E qð Þ

� �

Further, we derive the following

Observation 1. If the eigengene factorizability EF(X(q)) is close to 1,

the adjacencies of the weighted coexpression module network

A(q)=|cor(X(q))|b and the trait-based gene significance measure

GSi
(q)=|cor(xi

(q),T)|b can be factored as follows

a
qð Þ
ij &a

qð Þ
e,i a

qð Þ
e,j

GS
qð Þ
i &a

qð Þ
e,i a

qð Þ
e,t

ð25Þ

where

a
qð Þ
e,i ~ cor x

qð Þ
i ,E qð Þ

� �
�

�

�

�

�

�

b

ð26Þ

is referred to as the eigengene conformity of the ith gene, and

a
qð Þ
e,t ~ cor T ,E qð Þ

� ��

�

�

�

�

�

b

ð27Þ

is referred to as the qth module eigengene significance with respect to

T, also denoted as EigengeneSignif(q).

As described in Table 1, the eigengene significance and the

eigengene conformity are the eigengene-based counterparts of the

centroid significance (Equation 15) and centroid conformity

(Equation 16), respectively.

The eigengene-based approximations on the right hand side of

Equation 25 motivate us to define the eigengene-based

adjacency matrix AE
(q) and gene significance measure GSE

(q) as

follows:

A
qð Þ
E ~a qð Þ

e a qð Þ
e

� �T

ð28Þ

modules can be highly correlated. The brown module eigengene has the highest absolute correlation (r=0.20) with survival time. Frequency plots
(histograms) of the variables are plotted along the diagonal. (B) Upper panel: heat map plot of the brown module gene expression profiles (rows)
across the microarray samples (columns). Red corresponds to high- and green to low- expression values. Since the genes of a module are highly
correlated, one observes vertical bands. (B) Lower panel: the values of the components of the module eigengene (y-axis) versus microarray sample
number (x-axis). Note that vertical bands of red (green) in the upper panel correspond to high (low) values of the eigengene in the lower panel. (C)
The expression profile of the module eigengene (y-axis) is highly correlated with that of the most highly connected hub gene (x-axis). A linear
regression line has been added.
doi:10.1371/journal.pcbi.1000117.g004
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Table 1. Dictionary for translating between general network terms and their eigengene-based counterparts.

Term General network Gene expression

Adjacency matrix A(q)= [aij] Microarray data X(q)

Decomposition Factor analysis of A Singular value decomposition of X=UDVT

Centroid Intramodular hub gene Module eigengene E

Conformity(i) CFi defined as 1st factor of A ae,i= |cor(xi,E)|
b

Approximately
factorizable means

aij<CFiCFj xi<u1(i)|d1|E

Factorizability
measure F Að Þ~1{

A{Ið Þ{ ACF{Ið Þk k2F
A{Ik k2F

EF Xð Þ~ d1j j4
P

j dj
�

�

�

�

4

CentroidSignif(i) GSi,centroid ae,t= |cor(E,T)|b

CentroidConformity(i) ai.centroid,i ae,i= |cor(E,xi)|
b

Weighted gene coexpression network and its eigengene-based approximation if EF(X(q))<1

Coexpression network Eigengene-based counterpart

Network A= |cor(X)|b AE= aeae
T

Gene significance(i) GSi= |cor(xi,T)|
b GSE,i= ae,iae,t

Connectivity(i) ki=Sj?iaij kE,i= ae,iSjae,j

Network concepts based on a network concept function NCF(?,?) if EF(X(q))<1 and maxj(ae,j)<1

Intramodular Eigengene-based

Concept NCF(A,GS) NCF(AE,GSE)

Scaled connectivity(i)
Ki~

ki

kmax

KE,i<ae,i

Density P

i

P

j=i aij

n n{1ð Þ
S1 aeð Þ

n

� 	2

Centralization n

n{2

kmax

n{1
{Density

� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DensityE
p

1{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DensityE
p

� �

Heterogeneity ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

variance kð Þ
p

mean kð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

variance aeð Þ
p

mean aeð Þ

Clustering
Coefficient(i)

P

l=i

P

m=i,l ailalmami

P

l=i ail
� �2

{
P

l=i a
2
il

S2 aeð Þ
S1 aeð Þ

� 	2

Max. adjacency
ratio(i)

P

j=i a
2
ij

P

j=i aij
ae,i

S2 aeð Þ
S1 aeð Þ

Hub gene
significance

P

i GSiKi
P

i Kið Þ2
ae,t

Module
significance

P

i[I
:ð Þ GSi

I :ð Þj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DensityE
p

|ae,t

Here we omit the reference to the qth module.
doi:10.1371/journal.pcbi.1000117.t001
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GS
qð Þ
E,i~a

qð Þ
e,i a

qð Þ
e,t ð29Þ

For our coexpression modules, we find empirically that the

eigengene factorizability is close to 1 (see Table 2, Text S1, Text

S2, and Text S3).

Abstractly speaking, Observation 1 allows us to characterize

coexpression networks for which the adjacency aij can be

approximated by a product of the centroid conformities

(Equation 16): aij<CentroidConformityi CentroidConformityj.

Geometric interpretation of factorizability. In the

Methods section, we argue that EF(X(q))<1 if the module gene

expressions xi
(q) are approximately orthogonal to the right

singular vectors vl
(q) for l$2, i.e., if on average the gene

expression profiles point in the direction of the module

eigengene v1
(q)=E(q). A rough geometric intuition of

aij
(q)
<ae,j

(q)ae,j
(q) (Equation 25) is presented in Figure 5A. The

angle between the module eigengene E(q) and the ith gene

expression profile is denoted by hi. The angle between gene

expression profiles i and j is denoted by hij. In the Methods

section, we show that hij<|hi6hj| and sin(hi) sin(hj)<0 imply

approximate factorizability of the correlation matrix.

Eigengene-Based Analogs of Network Concepts
Here we define eigengene-based network concepts as a

step towards a geometric interpretation of network concepts.

Analogous to the case of intramodular network concepts, we

define eigengene-based network concepts by evaluating the

network concept function NCF(AE
(q),GSE

(q)) on the eigengene-

based adjacency matrix AE
(q) (Equation 28) and the eigengene-

based gene significance measure GSE
(q) (Equation 29). One can

easily derive the following formulas for eigengene-based network

concepts:

k
qð Þ
E,i~a

qð Þ
e,i S1 a

qð Þ
e

� �

k
qð Þ
E,i
ffiffiffiffiffiffiffiffiffiffiffiffiffi

S1 k
qð Þ
Eð Þ

p ~a
qð Þ
e,i

Density
qð Þ
E &

S1 a
qð Þ
eð Þ

n qð Þ

� 	2

Heterogeneity
qð Þ
E ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var a
qð Þ
eð Þ

p

mean a
qð Þ
eð Þ ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n qð ÞS2 a
qð Þ
eð Þ

S1 a
qð Þ
eð Þ2

{1

s

ClusterCoef
qð Þ

E,i ~
S2 a

qð Þ
eð Þ

S1 a
qð Þ
eð Þ

� 	2

MAR
qð Þ
E,i~a

qð Þ
e,i

S2 a
qð Þ
eð Þ

S1 a
qð Þ
eð Þ

ModuleSignif
qð Þ

E ~
S1 a

qð Þ
eð Þ

n qð Þ

� 	

a
qð Þ
e,t

ð30Þ

where Sp a
qð Þ
e

� �

~
P

j a
qð Þ
e,j

� �p

. Under the assumptions of Obser-

vation 1, we find that A(q)<AE
(q) and GSi<GSE,i. For a continuous

network concept function NCF(?,?) this implies NCF(A(q),GS)<NC

F(AE
(q),GSE). We summarize this observation as follows

Observation 2. If A(q)=|cor(X(q))|b and the eigengene

factorizability EF(X(q)) is close to 1, the network concepts can be

approximated by their eigengene-based analogs.

This observation is illustrated in Figure 6.

Using the eigengene-based heterogeneity to study the

effect of soft thresholding. It can be advantageous to replace

network concepts by their eigengene-based analogs when studying

theoretical properties. To illustrate this point, we briefly describe the

effect of soft thresholding aij= sij
b (Equation 2) on the network

Table 2. Values of network concepts in weighted gene coexpression module networks (brain cancer data).

Module Blue Brown Green Grey Red Turquoise Yellow

Module size (n(q)) 606 185 136 1313 105 1112 143

Eigengene factorizability (EF(X(q))) 0.97 0.99 0.99 0.66 0.98 0.98 0.99

VarExplained(E(q)) 0.59 0.66 0.70 0.28 0.68 0.57 0.71

Max. conformity max(ae,i) 0.97 0.97 0.98 0.91 0.95 0.98 0.98

Density 0.58 0.65 0.69 0.29 0.67 0.55 0.70

DensityE 0.58 0.65 0.70 0.23 0.68 0.55 0.71

Centralization 0.16 0.13 0.12 0.15 0.11 0.17 0.12

CentralizationE 0.16 0.13 0.12 0.21 0.11 0.18 0.12

Heterogeneity 0.14 0.10 0.11 0.17 0.091 0.17 0.11

HeterogeneityE 0.14 0.10 0.11 0.44 0.091 0.17 0.11

Mean(ClusterCoef) 0.60 0.66 0.71 0.32 0.68 0.59 0.72

ClusterCoefE 0.60 0.66 0.71 0.33 0.68 0.59 0.72

ModuleSignif 0.088 0.12 0.21 0.11 0.16 0.14 0.065

ModuleSignifE 0.018 0.093 0.21 0.008 0.16 0.13 0.039

HubGeneSignif 0.11 0.14 0.25 0.15 0.18 0.19 0.074

HubGeneSignifE 0.023 0.11 0.25 0.014 0.18 0.17 0.045

EigengeneSignif = ae,i
(q) 0.024 0.12 0.25 0.016 0.19 0.18 0.046

Here we report the results for soft thresholding with b= 1 (Equation 2). The results for higher powers b and for unweighted networks can be found in Text S1. Grey
colors genes outside the 6 properly defined modules. The table shows that network concepts in the proper modules are close to their eigengene based analogs.
doi:10.1371/journal.pcbi.1000117.t002
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heterogeneity. Using extensive simulation studies reported on our

webpage, we found that for the vast majority of networks, the

heterogeneity increases with the soft threshold b. Thus, for most

coexpression networks, increasing bmakes it easier to discern highly

connected genes from less connected genes. However, one can

construct networks for which increasing b leads to a lower

heterogeneity. The situation is much simpler for the eigengene-

based heterogeneity HeterogeneityE
(q) (Equation 30). In the Methods

section, we prove that the eigengene-based heterogeneity is a

monotonically increasing function of the soft threshold b. Thus, the

heterogeneity will be an increasing function of b if it can be

approximated by its eigengene based analog (Observation 2).

Relationships among eigengene-based network con-

cepts. A major theoretical advantage of eigengene-based

network concepts is that they reveal simple relationships

amongst each other. For example, it is straightforward to derive

ClusterCoef
qð Þ

E ~ 1z Heterogeneity
qð Þ
E

� �2
� 	2

|Density
qð Þ
E ð31Þ

To arrive at particular simple relationships among network

concepts, we make use of the following terminology. We denote

the maximum eigengene conformity as ae,max
(q)=maxj(ae,j

(q)),

where ae,j
(q)=|cor(xj

(q),E(q))|b (Equation 26). In most modules, we

find genes that have very high correlations (r<0.99) with the

module eigengene. For a low power b, this implies that the

maximum eigengene conformity is approximately equal to 1:

a qð Þ
e,max :~max

j
a

qð Þ
e,j

� �

&1 ð32Þ

We refer to Equation 32 as the maximum conformity

assumption. With the results in the Methods section, one can

show that the maximum conformity assumption implies the

following

Observation 3. If A(q)=|cor(X(q))|b, EF(X(q))<1 and the

maximum conformity assumption applies, intramodular network concepts

satisfy the following relationships

K
qð Þ

i &a
qð Þ
e,i ð33Þ

HubGeneSignif qð Þ
&a

qð Þ
e,t ð34Þ

ClusterCoef qð Þ
max& MAR qð Þ

max

� �2

ð35Þ

Figure 5. Using vectors to illustrate results in gene coexpression network analysis. (A) A geometric interpretation of factorizability if the
gene expression profiles and the module eigengene lie in a Euclidean plane. Then the angle h12 between gene expressions profiles 1 and 2 can be
expressed in terms of angles with the module eigengene, i.e., h12= h12h2. Similarly, h23= h2+h3. Under the assumptions stated in the text, we find
hij<|hi6hj|. Using a trigonometric formula (Equation 51) this implies that the correlation matrix is approximately factorizable. (B) Illustrating why
intramodular hub genes cannot be ‘‘intermediate’’ genes between two distinct coexpression modules. The large angle between module eigengenes
E1 and E2 reflects that the corresponding modules are distinct. Since intermediate gene 1 does not have a small angle with either eigengene, it is not
an intramodular hub gene. By contrast, intramodular hub gene 2 has a small angle with eigengene E1 but is not close to module eigengene E2. (C,D)
Illustrating that the hub gene significance of a module depends on the relationship between the module eigengene and the underlying microarray
sample trait (Equation 34). For sample traits T2 and T1 the hub gene significance (and corresponding eigengene significance cor(E,T)) are high and
low, respectively. The geometry of (C) implies relationships between the connectivity k of a gene (determined by its angle with the eigengene E) and
gene significance measure GS1 (its angle with trait T1) and GS2 (its angle with trait T2). As shown in (D), the gene significance measure GS2 increases
with k since the small angle between E and T2 implies that genes with high k (small angle with E) also have a small angle with T2. In contrast, high
connectivity k implies a large angle with T1 and thus GS1 decreases as a function of k.
doi:10.1371/journal.pcbi.1000117.g005
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Figure 6. Illustrating Observation 2 regarding the relationship between a network concept (y-axis) and its eigengene-based analog
(x-axis) in the brain cancer data. Each point corresponds to a module. (A–F) Corresponding to a weighted network constructed with a soft
threshold (Equation 2) of b= 1. (G–L) Analogous plots for b=6. (A,G) Centralization (y-axis) versus eigengene-based CentralizationE (x-axis). The
following are analogous plots for (B,H): heterogeneity; (C,I) clustering coefficient; (D,J) module significance; and (E,K) hub gene significance. (F,L)
Illustrating Equation 13 regarding the relationship between eigengene significance and hub gene significance. The blue line is the regression line
through the points representing proper modules (i.e., the grey, nonmodule genes are left out). While the red reference line (slope 1, intercept 0) does
not always fit well, we observe high squared correlations R2 between network concepts and their analogs. Since the grey point corresponds to the
genes outside properly defined modules, we did not include it in calculations.
doi:10.1371/journal.pcbi.1000117.g006
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where mean(ClusterCoef(q)) denotes the mean clustering coefficient,

ClusterCoefmax
(q)=maxj(ClusterCoefj

(q)) and MARmax
(q)=maxj(MARj

(q)).

In practice, we find that the maximum conformity assumption

holds well for low values of b. Below, we study the robustness of

our results with respect to higher powers and alternative network

construction methods.

Geometric interpretation of network concepts. Observa-

tions 2 and 3 allow us to provide a geometric interpretation of

intramodular network concepts.

The relationship between the scaled intramodular connectivity

Ki
(q) and its eigengene based analog ae,i

(q)=|cor(xi
(q),E(q))|b

(Equation 33) facilitates a geometric interpretation of the

intramodular connectivity: the smaller the angle hi between the

ith gene expression profile and the module eigengene, the larger is

|cos(hi)|
b= ae,i

(q), i.e., the larger is the scaled intramodular

connectivity. Since the module eigengene summarizes the overall

behavior of the module, ae,i
(q) measures how well gene i conforms

to the overall module. Thus, a tongue-in-cheek social network

interpretation of Equation 33 is that group-conforming behavior

leads to high popularity.

We provide two geometric interpretations of the density. The

first makes use of the relationship aij
(q)=|cos(hij)|

b where hij
denotes the angle between gene expression profiles i and j. By

definition (Equation 9), the smaller the pairwise angles hij between

the gene expression profiles, the higher is the module density.

Equation 39 provides another interpretation: the smaller the

angles hi between the module gene expression profiles and the

module eigengene, the higher is the density. Thus, the density can

be interpreted as a measure of average closeness between the gene

expression profiles and the module eigengene. By definition,

coexpression module networks have a relatively high density (see

Table 2, Text S1, Text S2, and Text S3).

The eigengene-based heterogeneity equals the coefficient of

variation of the aE
(q), i.e., it is a measure of variability of the angles

hi between the gene expression profiles and the module eigengene.

The heterogeneity equals 0 if the angles hi are all equal.

The ith gene has high eigengene-based significance GSE,i
(q)

(Equation 29) if the eigengene has a small angle with the sample

trait and hi is small. Similarly, the geometric interpretation of the

hub gene significance (Equation 13) is straightforward: the smaller

the angle between the module eigengene and the sample trait, the

higher is the hub gene significance (Equation 34).

We provide two geometric interpretations of the module

significance (Equation 14). The first interpretation is based on

the definition of the module significance as average gene

significance; a module has high module significance if on average

the angles between the module expression profiles and the sample

trait tend to be small. The second interpretation of the module

significance is based on Equation 37: a module has high

significance if the module density is high and the angle between

the module eigengene and the sample trait is small.

What Can Microarray Data Analysts Learn from the
Geometric Interpretation?
Here we illustrate how the geometric interpretation of gene

coexpression networks can be used to derive results, which may be

interesting to microarray data analysts.

Summarizing the expression profiles of a mo-

dule. Multiple approaches are conceivable for summarizing

the expression profiles of the genes inside a single module. One

approach (popular with statisticians) applies a singular value

decomposition to the expression data and summarizes the module

with the module eigengene. Another approach (popular with

network theorists) is to construct a module network and to use the

most highly connected hub gene as centroid. Since Equation 33

implies that hub genes are highly correlated with the module

eigengene, we find that the two seemingly different approaches will

lead to very similar results in practice (Figure 4C).

Intramodular connectivity is a measure of module

membership. Since module construction is computationally

intensive, one often restricts the module detection analysis to a

subset of the original genes on the microarray, e.g., the most

varying and/or the most connected genes. To counter this loss of

information, generalizing the intramodular connectivity to

extramodular genes, i.e. genes outside the module, is an

important problem. Our solution is motivated by the

relationship between the intramodular connectivity and its

eigengene based analog (Equation 33). Specifically, the qth

module eigengene gives rise to an eigengene-based scaled

intramodular connectivity measure

K
qð Þ

cor,i~ cor xi,E
qð Þ

� �
�

�

�

�

�

� ð41Þ

Under the assumptions of Observation 3, Equation 33 implies

that Ki
(q)
<|Kcor,i

(q)|b for the subset of genes that are in the qth

module. The larger Kcor,i
(q), the more similar is gene i is to the

summary profile of the qth module. Thus, Kcor,i
(q) can be used to

measure module membership. A theoretical advantage of Kcor,i
(q)

over Ki
(q) is that its definition can be easily extended to expression

profiles xi outside the qth module. Another advantage of Kcor,i
(q) is

that a simple correlation test p-value can be used to assess the

statistical significance of the correlation between xi and E(q).

Fuzzy module annotation of genes. Module detection

usually involves certain parameter choices. For some genes, it may

be difficult to decide whether they belong to a particular module or

whether they belong to more than one module. Instead of reporting

a binary indicator of module membership, it can be advantageous to

report a fuzzy measure of module membership, which takes on

values in the unit interval [0,1]. A natural choice for a fuzzy measure

of module membership is the eigengene-based scaled intramodular

connectivity measure Kcor,i
(q) (Equation 41). The fuzzy module

membership measures Kcor,i
(q) specify how close gene i is to modules

q=1,…,Q. It is straightforward to use these measures for finding

genes that are close to two modules, i.e., intermediate genes. In

Geometric Interpretation of Networks
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Figure 7, we show the pairwise relationships among different Kcor,i
(q)

measures where the genes are colored by their original module

assignment. Note that many of the nonmodule (grey) genes lie

intermediate between the proper module genes.

What Can Network Theorists Learn from the Geometric
Interpretation?
In the following, we provide several examples that illustrate

potential uses of the geometric interpretation.

Statistical significance of network concepts. While

fundamental network concepts are defined as functions of the

network adjacency matrix, their eigengene-based analogs are often

simple monotonic functions of correlation coefficients. This insight

can be used to attach significance levels (p-values) to several

eigengene-based network concepts. For example, the eigengene-

based hub gene significance is a monotonic function of the

correlation between the eigengene and the sample trait

(Equation 34). Thus, one can use a correlation test p-value [53]

or a regression-based p-value for assessing the statistical

significance between E(q) and the sample trait T. Analogously,

one can attach a significance level to the fuzzy module

membership measures Kcor,i
(q) (Equation 41).

Since the gene coexpression network concepts are based on

correlations between quantitative variables, one can use

permutation test procedures to attach significance levels to

network concepts. By randomly permuting the gene expression

values of each gene, it is possible to noise up the correlation

structure inherent in the original data. We find that the resulting

permuted data lead to networks with low density and low mean

clustering coefficients (reflecting the lack of large modules).

Relationship between centralization and density. The

relationship between centralization and density (Equation 40) is

surprisingly simple for coexpression networks but it does not hold

in general networks. For a general network, one can only derive an

upper bound for the centralization in terms of the density [35]. As

a caveat, we mention that our empirical studies (described below)

show that Equation 40 is not very robust with regard to deviations

from our theoretical assumptions.

Intramodular hub genes cannot be intermediate genes in

coexpression networks. The geometric interpretation of gene

coexpression network analysis can be used to argue that a gene that

lies ‘‘intermediate’’ between two distinct modules cannot be a

highly connected intramodular hub gene in either module (see

Figure 5B). More precisely, we refer to gene i as hub gene in

module 1 if its scaled connectivity Ki
(1) is very high (say larger than

0.9). Further, we refer to two modules as distinct if their respective

eigengenes have a low correlation, say |cor(E(1),E(2))|,0.3. We

refer to gene i as intermediate between modules 1 and 2 if it has a

moderately high connectivity with both modules, say Ki
(1)
.0.5 and

Ki
(2)
.0.5.

Figure 7. Fuzzy module annotation of genes in the brain cancer network. A natural choice for a fuzzy measure of module membership is the
generalized scaled connectivity measure Kcor,i

(q)= |cor(xi,E
(q))| (Equation 41). (A) Scatterplot of the brown module membership measure (y-axis) versus

that of the blue module (x-axis). Note that grey dots corresponding to genes outside of properly defined modules can be intermediate between
module genes. (B) The corresponding plot for blue versus turquoise module membership. (C) Brown versus turquoise module membership. (D) The
relationship between gene significance based on survival time (y-axis) and brown module membership (x-axis).
doi:10.1371/journal.pcbi.1000117.g007
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Equation 33 allows us to translate statements about the scaled

intramodular connectivity into statements about the angles

between genes and module eigengenes. A gene is an intermediate

gene if it has a moderately small angle with both module

eigengenes. If the eigengenes are distinct (i.e., the angle between

them is large), the intermediate gene cannot have a very small

angle with either module eigengene, i.e., it cannot be an

intramodular hub gene in either module. A geometric interpre-

tation of this example can be found in Figure 5B.

As an important caveat, we mention that intermediate network

genes may well be highly connected ‘‘hub’’ genes if the

factorizability property does not hold such as in the entire network

comprised of multiple distinct modules.
Characterizing module networks where hub genes are

significant. For a trait-based gene significance measure, the

striking relationship between module significance and hub gene

significance (Equation 37) suggests a positive relationship between

connectivity and gene significance (high hub gene significance) in

modules that are enriched with significant genes (high module

significance).

Further, Equation 34 shows that the hub gene significance of a

module network is determined by the angle between the module

eigengene and the sample trait. This allows us to describe

situations when a module has high hub gene significance, i.e.,

when there is a strong positive relationship between gene

significance and intramodular connectivity. In the example

provided in Figure 5C and 5D, the angle between E and T2 is

small which implies that the hub gene significance with regard to

GS2i=|cor(xi,T2)| is high. By contrast, the angle between E and

T1 is large, which implies that the hub gene significance with

regard to GS1i=|cor(xi,T1)| is low.

Dictionary for Translating between Network Concepts
and Their Eigengene-Based Analogs
To facilitate the communication between microarray data

analysts and network theorists, we provide a short dictionary for

translating between microarray data analysis and network theory

terminology. More specifically, for a subset (module) of genes that

have high expression factorizability, Table 1 describes the

correspondence between general network terms and their

eigengene-based counterparts. While our theoretical derivations

assume a weighted gene coexpression network, our robustness

studies show empirically that many of the findings apply to

unweighted networks as well. The summary of empirical

robustness studies is described below.

In general, eigengene-based concepts are no substitute for

network concepts. It is natural to use network concepts when

describing the pairwise relationships between genes and to use

eigengene-based network concepts when relating the gene

expression profiles to a module eigengene. Since eigengene-based

network concepts tend to be relatively simple, they often simplify

theoretical derivations. Further, many of them allow one to

calculate a statistical significance level (p-value) using a correlation

or regression based test statistic.

Real Data Applications
To illustrate the theoretical results we report 4 different

microarray data applications. The underlying data sets and R

software code can be found on our webpage http://www.

genetics.ucla.edu/labs/horvath/ModuleConformity/Geometri-

cInterpretation/.
Brain cancer network application. Here we describe a

weighted gene coexpression network that was constructed on the

basis of 55 microarray samples of glioblastoma (brain cancer)

patients. A detailed description of the data, modules, and

biological implications can be found in [24]. We defined 6

modules as branches of an average linkage hierarchical cluster tree

(Figure 3B). Module membership in the 6 ‘‘proper’’ modules is

color-coded by turquoise, blue, brown, yellow, green and red.

Grey denotes the color of genes that were not grouped into any of

the 6 proper modules. To allow for a comparison, we also report

results for the ‘‘improper’’ module comprised of grey genes.

We used the patient survival time as microarray sample trait T.

We defined a gene significance measure as the absolute value of

the correlation between T and the gene expression profiles

(Equation 4). The module significance was defined as average gene

significance (Equation 14). Figure 3C shows that the brown

module had the highest module significance. This module was

previously found to be enriched with genes that are prognostic of

patient survival [24].

By relating the gene significance measure GSi to the scaled

connectivity Ki, we arrive at a hub gene significance measure

(Equation 13). As illustrated in Figure 3D and 3E, the hub gene

significance is defined as the slope of a regression model without

intercept term. The brown module had the highest hub gene

significance, see Table 2.

We defined the module eigengene significance (Equation 27) as

the absolute value of the correlation between the module

eigengene and patient survival time. The brown module eigengene

also had the highest eigengene significance: ae,t
brown=

|cor(Ebrown,T)| = 0.202. An advantage of the eigengene-based

hub gene significance (the eigengene significance) is that it allows

one to compute a corresponding p-value. Using a correlation test,

we find that the value of the eigengene significance ae,t
brown is

statistically insignificant (p=0.30) in this dataset. However, when

we combined these data with an additional data set, we found that

the brown module eigengene is significantly related to survival

time [24].

We visualize the gene expression profiles of module genes with a

heat map plot (Figure 4B) where rows correspond to the genes, the

columns to the samples, and the gene expression profiles have

been standardized to a mean of 0 and a variance of 1. The heat

map colors high and low expression values by red and green,

respectively. For a given module, the heat map exhibits

characteristic vertical bands that reflect the high correlation

among module gene expression profiles. For the 6 proper modules

of our brain cancer application, the proportion of variance

explained by the first eigengene ranges from 0.59 to 0.71 (Table 2).

For the improper grey module genes (defined as genes outside of

all proper modules) the proportion of variance explained by the

first eigengene is only 0.28. Similarly, when all network genes are

used to define an improper module, the proportion of variance

explained by the first eigengene is only 0.32. As expected by

module construction, we find that the gene expression data of

proper modules have high eigengene factorizabilities EF(X)$0.97

(Table 2). By contrast, the factorizability of the grey genes (i.e., the

genes outside of proper modules) is relatively low (EF(X) = 0.66).

For each module, Table 2 reports network properties including

network size, density, centralization, heterogeneity, mean cluster-

ing coefficient, module significance, hub gene significance, and

eigengene significance. For the proper (nongrey) modules, we find

that the numerical values of the intramodular network concepts

and their eigengene-based analogs support our theoretical

derivations.

Our empirical results illustrate Observation 2 regarding the

relationship between intramodular network concepts and their

eigengene-based analogs. Figure 6A–E depict the relationships

among centralization, heterogeneity, clustering coefficient, module

Geometric Interpretation of Networks
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significance, hub gene significance and their respective eigengene-

based analogs when a soft threshold of b=1 is used for the

weighted network construction (Equation 2). The analogous results

for b=6 are depicted in Figure 6G–K. Figure 6F and 6L depicts

the relationship between hub gene significance (Equation 13) and

module eigengene significance (Equation 27) for b=1 and b=6,

respectively. For completeness, we also report the results for the

grey, nonmodule genes in the figures. But since our theoretical

results assume proper modules, we exclude the grey genes from the

calculation of the squared correlation coefficient R2. The summary

of a robustness analysis with regard to different soft thresholds b

and hard thresholds t is reported in Table 3 and Text S1. Overall,

we find very high squared correlations (R2
.0.85), which confirm

our theoretical results. Only the R2 values for the relationship

between clustering coefficient and its eigengene-based analog is

decreased if b.3.

Figure 8 illustrate the implications of Observation 3 regarding

the relationships among network concepts in the cancer coexpres-

sion module networks. Figure 8A shows that the scaled

connectivity Ki
(q) is highly correlated (R2

.0.99) with ae,i
(q), which

illustrates Equation 33. This relationship is highly robust with

regard to high soft thresholds b as can be seen from Table 3.

Figure 8B illustrates the relationship between the clustering

coefficient (the mean corresponds to the short horizontal line) and

(1+Heterogeneity2)26Density (Equation 31). This relationship is dimin-

ished for soft thresholds b.3 as can be seen from Table 3.

Figure 8C illustrates the relation ModuleSignif qð Þ&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density qð Þ
p

|HubGeneSignif qð Þ (Equation 37), which is highly

robust with regard to different choices of b (Table 3). Figure 8D

illustrates Centralization qð Þ&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density qð Þ
p

1{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density qð Þ
p

� �

(Equation 40). This relationship is not robust with regard to b:

the R2 value is only 0.058 for b=3. Figure 8E illustrates

k
qð Þ
max

n qð Þ{1
&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density qð Þ
q

(Equation 38), which is highly robust with

regard to b (Table 3).

Although our theoretical results were derived using relatively

restrictive assumptions, we find that most results are robust in the

weighted networks, see Figure 9, Table 3, and Text S1. However,

in unweighted networks, several relationships have lower R2 values

and show a strong dependence on the hard threshold t (Table 3).

Motivational example: Mouse tissues of an F2

intercross. The mouse tissues came from an F2 intercross

between two mouse strains C3H/HeJ and C57BL/6J. The data

were already described above and in Figure 1. The 498 genes were

part of a body weight related module in liver tissue (the Blue

module described in reference [23]). Table 4 presents network

concepts and their eigengene-based analogs in the different tissue

networks. As predicted by Observation 2, we find a close

relationship between the two types of network concepts if the

eigengene factorizability of the corresponding network is close to

1. This example also illustrates that our results apply to

coexpression networks comprised of relatively few genes (here

498 genes).

Mouse gene coexpression network application. Here we

focus on the female mouse liver tissues of the above-mentioned F2

mouse cross. Specifically, 135 female mice were used to construct a

weighted network comprised of 3,400 highly connected genes. The

biological significance and gene ontology enrichment analysis of

the 12 modules in this large network is described in [23]. In Text

S2, Table 5, and Figure 9, we focus on the relationships among the

network concepts. We find that many of our theoretical results

hold approximately even if the expression factorizability is low.

Table 5 shows how the relationship (R2 values) between network

concepts and their eigengene-based analogs depend on the soft

threshold b. Overall, we find that our theoretical results are highly

robust in weighted networks. The relationship between the

clustering coefficient and its eigengene-based analog is

diminished (down to 0.44) for b.3. The relationship between

heterogeneity and its eigengene-based analog is diminished (down

to 0.54 when b,3).

The relation Centralization qð Þ&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density qð Þ
p

1{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density qð Þ
p

� �

(Equation 40) has a relatively low R2 value (down to 0.21) for low

values of b#3 but the other relationships among network concepts

are highly robust with respect to b. For unweighted networks, the

R2 values tend to be lower and several relationships show a marked

dependency on the hard threshold t (Table 5).

Yeast gene coexpression network application. In Text

S3, we illustrate our theoretical derivations using a yeast gene

coexpression network. The yeast microarray data were derived

from experiments designed to study the cell cycle [54]. A detailed

biological description of the modules and the importance of

intramodular connectivity can be found in previous work [33]. In

Text S3 and in Figure 9, we use a gene significance measure that

encodes knock-out essentiality, i.e., GSi=1 if the ith gene is known

to be essential and 0 otherwise. In contrast to the other

applications, this gene significance measure is not based on a sample trait.

Our theoretical derivations for relating module significance to hub

gene significance (Equation 37) assumed a sample-trait based gene

significance measure. Although this important assumption is

violated for knock-out essentiality, it is striking that the

relationship between hub gene significance and module

significance can still be observed empirically (Figure 9).

Table 6 shows how the relationship (squared correlation R2)

between network concepts and their eigengene-based analogs

depend on the soft threshold b. Overall, we find that our

theoretical results are highly robust in weighted networks. The

relation Centralization qð Þ&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density qð Þ
p

1{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density qð Þ
p

� �

(Equation 40) breaks down for b=3 or 4 but the other

relationships among network concepts are highly robust with

respect to b. For unweighted networks, the R2 values tend to be

lower and several relationships show a marked dependency on the

hard threshold t (Table 6).

Discussion

Network theoretic methods and concepts are increasingly used for

the systems biologic analysis of microarray data. We illustrate how

network concepts can be used for describing large correlation

matrices and for arriving at biologically plausible data reduction

techniques. Many alternative approaches for defining gene coex-

pression networks are possible, e.g., [13,55–61]. Here we define the

network adjacency and the gene significance measure in terms of

correlations since this allows us to interpret pairwise relations in

terms of angles between scaled versions of the variables. For

example, the sample trait based gene significance measure of the ith

gene is determined by the angle between the ith gene expression

profile and the sample trait T (Equation 4); the scaled intramodular

connectivity of the ith gene (Equation 33) is determined by the angle

between the ith gene expression profile and the module eigengene;

the hub gene significance (Equation 34) is determined by the angle

between module eigengene and the sample trait.

The geometric interpretation of gene coexpression network

analysis reveals a deep connection to other statistical methods.

Since it projects the gene expressions profiles onto the hypersphere

in an m-dimensional Euclidean space, network analysis can be

considered a special case of directional statistics. When focusing on

the use of module eigengenes, network analysis can be considered

a variant of oblique factor analysis.

Geometric Interpretation of Networks
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A high level view of modules and their centroids (eigengenes)

can be used to define eigengene networks [52]. High correlations

(small angles) between module eigengenes may suggest close

relationships between the corresponding pathways. A low level

view of a single module allows us to provide a geometric

interpretation of intramodular network concepts. We use

the singular value decomposition of module expression data

to characterize approximately factorizable gene coexpression

Figure 8. Using the brain cancer data to illustrate Observation 3 regarding the relationships among network concepts. (A) Illustrating
Equation 33 regarding the relationship between scaled intramodular connectivity Ki

(q) (y-axis) and eigengene conformity ae,i (x-axis). Each dot
corresponds to a gene colored by its module membership. We find a high squared correlation R2 even for the grey genes outside properly defined
modules. (B) Illustrating Equation 31 regarding the relationship between the clustering coefficient and (1+Heterogeneity2)26Density. Again each dot
represents a gene. The clustering coefficients of grey genes vary more than those of genes in proper modules. The short horizontal lines correspond
to the mean clustering coefficient of each module. (C) Illustrating ModuleSignif qð Þ&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density qð Þ
p

|HubGeneSignif qð Þ (Equation 37); here each dot
corresponds to a module. Since the grey dot corresponds to genes outside of properly defined modules, we have excluded it from the calculation of
the squared correlation R2. (D) Illustrating Centralization qð Þ&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density qð Þ
p

1{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density qð Þ
p

� �

(Equation 40); (E) Illustrating k
qð Þ
max

n qð Þ{1
&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density qð Þ
p

(Equation 38). A reference line (red) with intercept 0 and slope 1 has been added to each plot. The blue line is the regression line through the points
representing proper modules (i.e., the grey, non-module genes are left out). A robustness analysis with regard to different network construction
methods, e.g., b.1, can be found in Text S1.
doi:10.1371/journal.pcbi.1000117.g008
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networks, i.e., adjacency matrices that satisfy aij
(q)
<CFi

(q)CFj
(q). We

provide an intuitive formula of the conformity CFi
(q)
<

|cor(xi
(q),E(q))|b. Since the module eigengene E(q) summarizes the

overall behavior of the module, the eigengene conformity

|cor(xi
(q),E(q))|b measures how well gene i conforms to the overall

module. This insight led us to coin the term ‘‘conformity’’. Using the

singular values, we propose a measure of eigengene factorizability

(Equation 24) that is analogous to the proportion of variance

explained by the module eigengene (Equation 22). We provide a

geometric interpretation of network factorizability in Figure 5A.

The derivation of Observation 1 in theMethods section highlights a

theoretical advantage of the soft-thresholding approach (Equation 2);

the resulting weighted network maintains the approximate factoriz-

ability of the underlying correlation matrix: aij
(q)=|cor(xi

(q),xj
(q))|b<

|cor(xi
(q),E(q))cor(xj

(q),E(q))|b=|cor(xi
(q),E(q))|b|cor(xj

(q),E(q))|b.

Using multiple different gene coexpression networks from

mouse tissues, brain cancer, and yeast, we provide empirical

evidence that coexpression modules tend to have high eigengene

factorizability and that the maximum conformity assumption

(Equation 32) is satisfied for low powers of b.

We propose eigengene-based analogs of network concepts

(Equation 30). While network concepts are functions of the

adjacency matrix, eigengene-based network concepts are analo-

gous functions of the eigengene conformities |cor(xi
(q),E(q))|b.

Algebraically, eigengene-based network concepts are closely

related to ‘‘approximate conformity based’’ network concepts [8]

but they allow for a geometric interpretation.

We use the correspondence between intramodular network

concepts and their eigengene-based analogs to provide a geometric

interpretation of network concepts. Observation 2 states that

network concepts in weighted gene coexpression module networks

are approximately equal to their eigengene-based analogs.

A major theoretical advantage of eigengene-based network

concepts is that they reveal simple relationships. To arrive

at particularly simple relationships, we make the maximum

conformity assumption (Equation 32) for the results presented in

the main text. Table 1 provides a rough dictionary for translating

between gene coexpression network analysis and the singular value

decomposition if the underlying expression data have high

eigengene factorizability (say EF(X(q)).0.95) and if the maximum

conformity assumption (Equation 32) is satisfied. However, even if

the maximum conformity assumption does not hold, one can still

find simple relationships among the network concepts

(Equation 49).

The geometric interpretation of gene coexpression networks

facilitates the derivation of several results that should be interesting

to network theorists. For example, we argue that highly connected

intramodular hub genes cannot be intermediate between two

distinct coexpression modules (Figure 5B). The geometric

interpretation is particularly useful when studying gene signifi-

cance and module significance measures that are based on a

microarray sample trait (Equation 4). To study the relationship

between connectivity and gene significance, we propose a novel

measure of hub gene significance (Equation 13). We find that the

hub gene significance of a module network is determined by the

angle between the module eigengene and the microarray sample

trait (Equation 34). Our geometric interpretation of coexpression

networks allows us to describe situations when a module has low

hub gene significance (Figure 5C and 5D). Our theoretical

derivations for relating module significance to hub gene signifi-

cance (Equation 37) assumes a gene significance measure based on

a sample trait. Although this important assumption is violated for

the gene significance measure (knock-out essentiality) in the yeast

network, it is striking that the relationship between hub gene

significance and module significance can still be observed in this

application (Figure 9).

We provide a robustness analysis that shows that many of our

theoretical results apply even if our underlying assumptions are

not satisfied (Figures 6 and 9, Tables 3, 5, and 6, Text S1, Text

S2, and Text S3). We find that the correspondence between

Table 3. Robustness analysis of the brain cancer gene coexpression network results.

Weighted networks
Unweighted
networks

Squared correlation R 2 across modules Soft threshold b

Hard threshold
t

Relation 1 2 3 4 5 6 0.7 0.5

Centralization<CentralizationE 1.0 1.0 0.97 0.90 0.87 0.88 0.07 0.93

Heterogeneity<HeterogeneityE 1.0 1.0 0.99 0.98 0.97 0.96 0.89 0.87

ClusterCoefi<ClusterCoefE 0.99 0.96 0.88 0.74 0.58 0.45 0.04 0.32

ModuleSignif<ModuleSignifE 0.98 0.91 0.87 0.85 0.85 0.86 0.98 0.98

HubGeneSignif<HubGeneSignifE 0.96 0.91 0.89 0.90 0.92 0.94 0.93 0.87

EigengeneSignif<HubGeneSignif 0.96 0.89 0.87 0.88 0.90 0.92 0.93 0.87

ClusterCoef= (1+Heterogeneity2)26Density 0.99 0.96 0.89 0.76 0.61 0.49 0.006 0.32

ModuleSignif&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density
p

|HubGeneSignif 1.0 0.99 0.99 0.98 0.97 0.95 0.85 0.99

Centralization&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density
p

1{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density
p

� �

0.90 0.68 0.058 0.016 0.16 0.35 0.20 1.0

kmax

n{1
&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density
p 0.94 0.94 0.94 0.94 0.93 0.92 0.95 0.98

Ki<ae,i (median R2) 1.0 1.0 1.0 1.0 1.0 0.99 0.95 0.83

The table reports how the relationships among network concepts change as function of different soft threshold parameters b (Equation 2) or hard thresholds
(Equation 1) used in the network construction. For each relationship and each network construction method, the table entry reports the squared correlation R2 across
the proper modules. For within module comparisons the table reports median R2 values. Additional details can be found in Text S1.
doi:10.1371/journal.pcbi.1000117.t003
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network concepts and their eigengene-based analogs is often

better in weighted networks than in unweighted networks.

Further, we find that the results in weighted networks tend to be

more robust than those in unweighted networks with regard to

changing the network construction thresholds b and t,

respectively. Thus, weighted coexpression networks are prefer-

able over unweighted networks when a geometric interpretation

of network concepts is desirable.

The correspondence between coexpression module networks

and the singular value decomposition (Table 1) can break down

when a high soft threshold is used for constructing a weighted

network or when dealing with an unweighted network. Thus,

eigengene-based concepts do not replace network concepts when

describing interaction patterns among genes.

While this article has a theoretical bent, we illustrate the results

on three different microarray data sets (human, mouse, and yeast)

that are described in our online R software tutorials, in Text S1,

Text S2, and Text S3. Our theoretical results also apply to

networks comprised of genes that are highly correlated with a

sample trait. The key assumption underlying our results is high

eigengene factorizability EF(X(q)). To illustrate this point, Text S4

describes a brain cancer network comprised of the 500 genes with

highest absolute correlation with brain cancer survival time. Our

results illustrate that the geometric interpretation of gene

coexpression networks has important theoretical and practical

implications that may guide the development and application of

network methods.

Materials and Methods

Network Concept Functions and Fundamental Network
Concepts
Analogous to [8], we define a network concept function to be

function of a square matrix M= [Mij] (1#i,j#n) and/or a

corresponding vector G= (G1,…,Gn). For example, M could be

the adjacency matrix (with diagonal set to 0) and G could be a

corresponding gene significance measure.

Figure 9. Using three different data (brain cancer, mouse liver, and yeast cell cycle) and three different network constructionmethods
to illustrate Equation 37 regarding the relationship between module significance (y-axis) and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density qð Þ
p

|HubGeneSignif qð Þ (x-axis).
Points correspond to modules. The square of the correlation coefficient R2 was computed without the grey, improper module. (A,D,G) Corresponding
to the brain cancer gene coexpression networks. (B,E,H) Corresponding to mouse liver networks. (C,F,I) Corresponding to yeast networks. (A–C)
Corresponding to a weighted network (Equation 2) constructed with soft thresholds b= 1. (D–F) Corresponding to b= 6. (G–I) Corresponding to an
unweighted network (Equation 1) that results from thresholding the correlation matrix at t=0.5. Overall, we find that the reported relationship is
quite robust with respect to our theoretical assumptions (e.g., factorizability). The blue line is the regression line through the points representing
proper modules (i.e., the grey, nonmodule genes are left out). A reference line with slope 1 and intercept 0 is shown in red. Additional details can be
found in Text S1, Text S2, and Text S3.
doi:10.1371/journal.pcbi.1000117.g009
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We make use of the following network concept functions:

Connectivityi Mð Þ~
P

j

Mij

Ki Mð Þ~ Connectivityi Mð Þ
maxj Connectivityj Mð Þð Þ

Density Mð Þ~
P

i

P

j
Mij

n n{1ð Þ

MARi Mð Þ~
P

j
Mijð Þ2

P

j
Mij

Centralization Mð Þ~ n
n{2

maxi Connectivityi Mð Þð Þ
n{1

{Density Mð Þ
� �

Heterogeneity Mð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

i

P

j

P

k
MijMik

� �

P

i

P

j
Mij

� �2 {1

v

u

u

u

t

ClusterCoefi Mð Þ~
P

j

P

k
MijMjkMki

P

j

P

k
MijBM,jkMki

NetworkSignif Gð Þ~
P

i
Gi

n

HubGeneSignif M,Gð Þ~
P

i
GiKi Mð Þ

P

i
Ki Mð Þð Þ2

ð42Þ

where the components of matrix BM in the denominator of the

clustering coefficient function are given by bij=1 if i?j and

bii= Ind(mii.0). Here the indicator function Ind(?) takes on the

value 1 if the condition is satisfied and 0 otherwise.

According to our convention, the diagonal elements of the

adjacency matrix are set to 1. Therefore, the diagonal elements of

A–I (where I denotes the identity matrix) equal 0. Now we are

ready to define the (fundamental) network concepts that are

studied in this article.

Definition of Fundamental Network Concepts: The

fundamental network concepts of a network A are defined by evaluating the

network functions (Equation 42) on A–I and the gene significance measure GS,

i.e.,

FundamentalNetworkConcept~NCF A{I ,GSð Þ

For example, the connectivity is given by

ki~Connectivityi A{Ið Þ~
X

j=i

aij ð43Þ

We define an intramodular network concept NCF(A(q)

2I,GS(q)) by evaluating the network concept function on the

restricted adjacency matrix A(q) and the restricted gene significance

measure GS(q).

We will now define eigengene-based network concepts. Using

the eigengene-based adjacency matrix AE
(q)= ae

(q)(ae
(q))T

(Equation 28) and the eigengene-based gene significance measure

GSE,i
(q)= ae,i

(q)ae,t
(q) (Equation 29), we define an eigengene-based

network concept as NCF(AE
(q),GSE

(q)).

As example, consider the eigengene-based connectivity given by

k
qð Þ
E,i~

X

j

a
qð Þ
e,i a

qð Þ
e,i ð44Þ

Deriving Observation 1: Expression Data with High
Eigengene Factorizability Lead to Approximately
Factorizable Networks
Here we derive Observation 1, which characterizes approxi-

mately factorizable gene coexpression module networks. To

simplify the presentation, we omit the superscripts (q) in the

following, e.g., we will write EF(X) instead of EF(X(q)). We will

argue that if the eigengene factorizability EF(X) is close to 1, the

adjacencies of the weighted coexpression module network

Table 4. Values of network concepts in the different mouse gender/tissue networks reported in Figure 1.

Female liver Female adipose Female brain Female muscle

Network concept Network Eigengene Network Eigengene Network Eigengene Network Eigengene

Factorizability 0.92 0.91 0.72 0.46 0.89 0.82 0.79 0.68

Density 0.39 0.39 0.23 0.14 0.32 0.27 0.24 0.19

Centralization 0.19 0.19 0.11 0.19 0.34 0.23 0.17 0.22

Heterogeneity 0.18 0.19 0.22 0.59 0.36 0.54 0.32 0.57

Mean cluster coef 0.42 0.42 0.27 0.26 0.41 0.46 0.30 0.33

Male liver Male adipose Male brain Male muscle

Network concept Network Eigengene Network Eigengene Network Eigengene Network Eigengene

Factorizability 0.93 0.92 0.76 0.59 0.73 0.46 0.76 0.48

Density 0.37 0.36 0.23 0.16 0.21 0.13 0.25 0.16

Centralization 0.19 0.21 0.15 0.21 0.21 0.20 0.12 0.21

Heterogeneity 0.28 0.32 0.28 0.65 0.27 0.67 0.30 0.64

Mean cluster coef 0.43 0.44 0.27 0.31 0.25 0.26 0.31 0.31

For each network, the table reports the network factorizability F(A), the eigengene factorizability EF(X), network concepts, and their eigengene-based analogs. Here we
use a soft threshold b= 1 (Equation 2).
doi:10.1371/journal.pcbi.1000117.t004
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A=|cor(X)|b and the trait-based gene significance measure

GSi=|cor(xi,T)|
b can be factored as follows

aij&ae,iae,j

GSi&ae,iae,t
ð45Þ

where

ae,i~ cor xi,Eð Þj jb ð46Þ

ae,t~ cor T ,Eð Þj jb ð47Þ

Since our gene coexpression networks are defined with respect to

the correlation matrix [cor(xi,xj)], which is scale-invariant, we can

assume that the gene expression profiles have been scaled as follows:

S1 xið Þ~Pm
j~1 xij~0 and S2 xið Þ=m~

Pm
j~1 xij
� �2

.

m~1 where

m is the number of microarray samples. Then one can derive the

following relationships

cor xi,xj
� �

~
P

l

ul,i dlj j2ul,j



m

cor xi,Eð Þ~u1,i d1j j= ffiffiffiffi

m
p

:

Table 6. Robustness analysis of the yeast coexpression network.

Weighted networks Unweighted networks

Squared correlation R2 across modules Soft threshold b Hard threshold t

Relation 1 2 3 4 5 6 7 0.65 0.5

Centralization<CentralizationE 0.99 0.97 0.97 0.98 0.98 0.98 0.98 0.53 0.60

Heterogeneity<HeterogeneityE 0.86 0.92 0.94 0.94 0.93 0.92 0.91 0.13 0.006

ClusterCoefi<ClusterCoefE 0.98 0.97 0.94 0.92 0.89 0.86 0.82 0.18 0.25

ClusterCoef= (1+Heterogeneity2)26Density 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.21 0.27

ModuleSignif&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density
p

|HubGeneSignif 1.0 0.99 0.98 0.98 0.97 0.95 0.94 0.99 0.99

Centralization&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density
p

1{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density
p

� �

0.51 0.24 0.04 0.06 0.33 0.53 0.68 0.76 0.98

kmax

n{1
&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density
p 0.89 0.91 0.93 0.94 0.95 0.96 0.96 0.51 0.20

Ki<ae,i (median R2) 1.0 0.99 0.99 0.98 0.97 0.97 0.96 0.93 0.92

The table reports how the relationships among network concepts change as function of different soft threshold parameters b (Equation 2) or hard thresholds t
(Equation 1) used in the network construction. For each relationship and each network construction method, the table entry reports the squared correlation R2 across
the proper modules. For within module comparisons the table reports median R2 values. Additional details can be found in Text S3.
doi:10.1371/journal.pcbi.1000117.t006

Table 5. Robustness analysis of the mouse coexpression network.

Weighted networks
Unweighted
networks

Squared correlation R2 across modules Soft threshold b

Hard threshold
t

Relation 1 2 3 4 5 6 0.65 0.5

Centralization<CentralizationE 0.69 0.74 0.90 0.95 0.94 0.92 0.007 0.66

Heterogeneity<HeterogeneityE 0.54 0.59 0.71 0.82 0.88 0.86 0.30 0.33

ClusterCoefi<ClusterCoefE 0.94 0.84 0.70 0.59 0.50 0.44 0.09 0.33

ModuleSignif<ModuleSignifE 0.96 0.96 0.96 0.97 0.98 0.99 0.96 0.96

HubGeneSignif<HubGeneSignifE 0.98 0.98 0.98 0.99 1.0 1.0. 0.88 0.91

EigengeneSignif<HubGeneSignif 0.98 0.98 0.98 0.99 1.0 1.0 0.89 0.92

ClusterCoef= (1+Heterogeneity2)26Density 0.89 0.78 0.70 0.62 0.54 0.48 0.08 0.31

ModuleSignif&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density
p

|HubGeneSignif 0.99 0.99 0.99 0.99 0.99 0.99 0.90 0.96

Centralization&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density
p

1{
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density
p

� �

0.52 0.21 0.43 0.73 0.82 0.84 0.60 0.82

kmax

n{1
&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density
p 0.95 0.97 0.97 0.98 0.98 0.98 0.93 0.80

Ki<ae,i (median R2) 1.0 0.99 0.98 0.96 0.95 0.94 0.74 0.86

The table reports how the relationships among network concepts change as function of different soft threshold parameters b (Equation 2) or hard thresholds t
(Equation 1) used in the network construction. For each relationship and each network construction method, the table entry reports the squared correlation R2 across
the proper modules. For within module comparisons the table reports median R2 values. Additional details can be found in Text S2.
doi:10.1371/journal.pcbi.1000117.t005
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Note that u1,i|d1|
2u1,j/m=cor(xi,E)cor(xj,E). Using the fact that U is

an orthogonal matrix, it is straightforward to show that

d1j j4
P

l dlj j4
~1{

P

i

P

j cor xi,xj
� �

{cor xi,Eð Þcor xj ,E
� �� �2

P

i

P

j cor xi,xj
� �� �2

This equation motivates us to propose the following measure of

eigengene factorizability:

EF Eð Þ~ d1j j4
P

j dj
�

�

�

�

4
ð48Þ

Note that 0#EF(E)#1. By definition EF(E)<1 implies that

cor xi,xj
� �

&cor xi,Eð Þcor xj ,E
� �

By raising both sides of this equation to a power b, we find

aij~ cor xi,xj
� ��

�

�

�

b
& cor xi,Eð Þj jb cor xj ,E

� ��

�

�

�

b

The last step highlights an important theoretical advantage of the

soft thresholding method: it preserves the approximate factoriz-

ability of the underlying correlation matrix.

An alternative, possibly more direct way of motivating the

observation is based on the insight that the squared singular values

|dl|
2 correspond to the eigenvalues of the correlation matrix

COR= [cor(xi,xj)]. For high values of EF(E), the correlation matrix

can be factored as follows

COR&
d1j j2
m

u1u
T
1

where u1 denotes an eigenvector of length 1.

Relationships among Network Concepts When the
Maximum Conformity Assumption Does Not Hold
Here we describe relationships among eigengene-based network

concepts if the maximum conformity assumption does not hold

(i.e., ae,max
(q)
,,1). It is straightforward to derive the following

relationships among eigengene-based network concepts:

K
qð Þ

E,i~
a

qð Þ
e,i

a
qð Þ
e,max

P

j
K

qð Þ
E,j

n qð Þ &

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density
qð Þ
E

p

a
qð Þ
e,max

k
qð Þ
max,E

n qð Þ{1
&a

qð Þ
e,max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density
qð Þ
E

q

Centralization
qð Þ
E &

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density
qð Þ
E

q

a
qð Þ
e,max{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Density
qð Þ
E

q

� 	

ClusterCoef
qð Þ

E,i ~ 1z Heterogeneity
qð Þ
E

� �2
� 	2

|Density
qð Þ
E

MAR
qð Þ
E,i&a

qð Þ
e,i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ClusterCoef
qð Þ

E,i

q

HubGeneSignif
qð Þ

E &a
qð Þ
e,maxa

qð Þ
e,t

ModuleSignif
qð Þ

E &

P

j
K

qð Þ
E,j

n qð Þ |HubGeneSignif
qð Þ

E

ð49Þ

Observation 2 can be used to derive the following

Observation 4. If A(q)=|cor(X(q))|b and the eigengene

factorizability is close to 1 (EF(X(q))<1), the relationships among
eigengene-based concepts approximately apply to their network analogs as well.

For example, we find that

ModuleSignif qð Þ
&

P

j K
qð Þ
j

n qð Þ |HubGeneSignif qð Þ

Deriving the Geometric Interpretation of Factorizability
In the following we provide details on our geometric

interpretation of the factorizability. To simplify the notation, we

sometimes drop the superscript (q) in the following expressions. We

denote by hl,i the angle between the right singular vector vl
(Equation 20) and the ith gene expression profile xi. The smaller

the angle hl,i, the bigger the correlation cor(vl,xi) = cos(hl,i). Using
Pn

i~1 cos hl,ið Þ2~d2
l




m, one can reexpress the eigengene factoriz-

ability (Equation 24) as follows

EF Eð Þ~
Pn

i~1 cos h1,ið Þ2
� �2

Pm
l~1

P

i cos hl,ið Þ2
� �2

: ð50Þ

Thus, EF(X(q))<1 if the module gene expressions xi are

approximately orthogonal (cos(hl,i)<0) to the right singular vectors

vl for l$2, i.e., if on average the gene expression profiles point in

the direction of the module eigengene v1=E.

Under this assumption, we provide a rough geometric intuition

of aij<ae,iae,j (Equation 25) depicted in Figure 5A. We denote by

hi= h1,i the angle between the module eigengene E and the ith

gene expression profile and by hij the angle between gene

expression profiles i and j. Using the assumptions described in

Figure 5A, hij<|hi6hj| and sin(hi) sin(hj)<0, we find that

cor xi,xj
� �

~cos hij
� �

&cos hi+hj
�

�

�

�

� �

~cos hið Þcos hj
� �

+sin hið Þsin hj
� �

&cos hið Þcos hj
� �

~cor xi,Eð Þcor xj ,E
� �

ð51Þ

i.e., the correlation matrix is approximately factorizable.

Heterogeneity Increases with the Soft Threshold b
Here we prove that the eigengene-based heterogeneity increases

with the soft threshold b (Equation 2). Recall that HeterogeneityE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nS2 aeð Þ
S1 aeð Þ2 {1

q

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

S1 aeð Þ2=S2 aeð Þ{1
q

(Equation 30) which implies that it

is a decreasing function of

S bð Þ :~S1 aeð Þ2
S2 aeð Þ ~

Pn
i~1 a

b
i

� �2

Pn
i~1 a

2b
i

ð52Þ

Note that ai=|cor(xi,E)| is a nonnegative number.

To prove that the heterogeneity increases with b, it suffices to

prove the following

Proposition: Let {ai, i = 1,…,n} be a group of nonnegative number

and b.1 then the following inequality holds:
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S bð Þ~
Pn

i~1 a
b
i

� �2

Pn
i~1 a

2b
i

ƒ

Pn
i~1 ai

� �2

Pn
i~1 a

2
i

~S 1ð Þ ð53Þ

To prove the Proposition, we will make use of the following

Lemma: Let {ui, i = 1,…,n} and {vi, i = 1,…,n} be groups of
nonnegative numbers, and h be a number 0#h,1. Then the following

inequality holds:

X

n

i~1

uhi v
1{h
i ƒ

X

n

i~1

ui

 !h
X

n

i~1

vi

 !1{h

ð54Þ

The Lemma can be proved with Hölder’s inequality, which is

given by

X

n

i~1

xiyij jƒ
X

n

i~1

xij j1=h
 !h

X

n

i~1

yij j1= 1{hð Þ
 !1{h

ð55Þ

We use the Lemma with h1= b/(2b21), ui= ai, and vi= ai
2b to

derive

X

n

i~1

a
b
iƒ

X

n

i~1

ai

 !h1
X

n

i~1

a
2b
i

 !1{h1

Further, we use the Lemma with h2= (2b22)/(2b21), ui= ai, and
vi= ai

2b to derive

X

n

i~1

a2iƒ
X

n

i~1

ai

 !h2
X

n

i~1

a
2b
i

 !1{h2

By squaring the first inequality and multiplying it with the second

inequality, we arrive at

X

n

i~1

a
b
i

 !2
X

n

i~1

a2i

 !

ƒ

X

n

i~1

ai

 !2h1zh2
X

n

i~1

a
2b
i

 !3{ 2h1zh2ð Þ

~

X

n

i~1

ai

 !2
X

n

i~1

a
2b
i

 !

since 2h1+h2=2 and 32(2h1+h2) = 1. The last inequality com-

pletes the proof since it is equivalent to the inequality in

Equation 53.

Supporting Information

Text S1 Robustness Analysis of the Brain Cancer Gene

Coexpression Network. This supporting text provides a detailed

analysis of the brain cancer gene coexpression network. The

robustness analysis illustrates how the results change with regard to

different network construction methods.

Found at: doi:10.1371/journal.pcbi.1000117.s001 (3.83 MB PDF)

Text S2 Robustness Analysis of the Mouse Gene Coexpression

Network. This supporting text provides a detailed analysis of the

mouse tissue gene coexpression network. The robustness analysis

illustrates how the results change with regard to different network

construction methods.

Found at: doi:10.1371/journal.pcbi.1000117.s002 (3.76 MB PDF)

Text S3 Robustness Analysis of the Yeast Gene Coexpression

Network. This supporting text provides a detailed analysis of the

yeast cell cycle gene coexpression network. The robustness analysis

illustrates how the results change with regard to different network

construction methods.

Found at: doi:10.1371/journal.pcbi.1000117.s003 (2.62 MB PDF)

Text S4 Brain Cancer Network Comprised of 500 Prognostic

Genes. Here we analyze a brain cancer network comprised of the

500 genes with highest absolute correlation with brain cancer

survival time. The results illustrate that our theoretical results also

apply to small networks comprised of sample trait related genes.

The robustness analysis illustrates how the results change with

regard to different network construction methods.

Found at: doi:10.1371/journal.pcbi.1000117.s004 (0.38 MB PDF)
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