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GEOMETRIC INTERPRETATION OF TIGHT CLOSURE
AND TEST IDEALS

NOBUO HARA

Abstract. We study tight closure and test ideals in rings of characteristic
p � 0 using resolution of singularities. The notions of F -rational and F -
regular rings are defined via tight closure, and they are known to correspond
with rational and log terminal singularities, respectively. In this paper, we
reformulate this correspondence by means of the notion of the test ideal, and
generalize it to wider classes of singularities. The test ideal is the annihilator
of the tight closure relations and plays a crucial role in the tight closure theory.
It is proved that, in a normal Q-Gorenstein ring of characteristic p � 0, the
test ideal is equal to so-called the multiplier ideal, which is an important ideal
in algebraic geometry. This is proved in more general form, and to do this we
study the behavior of the test ideal and the tight closure of the zero submodule
in certain local cohomology modules under cyclic covering. We reinterpret the
results also for graded rings.

The notion of the tight closure of an ideal in a commutative ring of prime char-
acteristic was defined by Hochster and Huneke [HH1] in terms of the asymptotic
behavior of the ideal under iteration of the Frobenius map. Tight closure enables us
to define the notions of F -regular rings [HH1] and F -rational rings [FW]. Namely,
a ring of characteristic p > 0 is called F -regular (resp. F -rational) if all ideals (resp.
all ideals generated by a system of parameters) are tightly closed in all of its local
rings.

Although these concepts are defined quite ring-theoretically, they have been
suspected to have a mysterious correspondence with some classes of singularities
in characteristic zero defined via resolution of singularities. Surprisingly, recent
results by Smith [S2], Watanabe [W3], Mehta and Srinivas [MS], and the author
[Ha] conclude that a ring in characteristic zero has at most rational (resp. log
terminal) singularities if and only if its reduction modulo p is F -rational (resp.
F -regular and Q-Gorenstein) for p� 0.

The aim of this paper is to generalize these results to wider classes of singularities.
To do this we use a fairly standard technique of “reduction modulo p,” starting from
a singularity in characteristic zero. Let (R,m) be a d-dimensional normal local ring
which is reduced from characteristic zero to characteristic p � 0, together with
a resolution of singularities f : X → SpecR. When the non-(F -)rational locus of
(R,m) is isolated, we actually proved in [Ha] that the tight closure of the zero
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1886 NOBUO HARA

submodule in the top local cohomology module Hd
m(R), denoted by 0∗Hdm(R), is

described as

0∗Hdm(R) = Hd−1(X,OX).

The length of the right-hand side of this formula is an important invariant of the
singularity, called the geometric genus. An isolated normal singularity in char-
acteristic zero is rational if and only if it is Cohen–Macaulay and its geometric
genus is zero. Therefore the above formula generalizes the correspondence of F -
rationality and rational singularity, because (R,m) is F -rational if and only if R is
Cohen–Macaulay and 0∗Hdm(R) = 0.

This result leads us to further questions. First, we ask what happens when the
non-(F -)rational locus of (R,m) is not isolated. Second, how can we generalize the
correspondence of F -regularity and log terminal singularity?

An answer to the first question is already found in the paper of Mehta and
Srinivas [MS]. They gave a cohomological description of 0∗Hdm(R) without assuming
the isolatedness of the non-(F -)rational locus. We give a slightly different proof to
this result, using the “Q-divisor technique” developed in [Ha]. Then we reformulate
it in a dual form in terms of the “parameter test submodule” of the canonical
module, which is an analog of the notion of the test ideal [HH1].

The test ideal is the annihilator of tight closure relations, and plays an impor-
tant role in the tight closure theory. A recent result of MacCrimmon [Mc] implies
that the test ideal τ(R) of a normal Q-Gorenstein local ring (R,m) coincides with
AnnR(0∗E), the annihilator ideal of the tight closure 0∗E of the zero submodule in
the injective envelope E = ER(R/m) of the residue field R/m. Analoguously, for a
d-dimensional normal local ring R, we define the parameter test submodule of the
canonical module ωR by

τ(ωR) = AnnωR(0∗Hdm(R)),

taking into account the duality pairing ωR ×Hd
m(R)→ E. This notion is a special

case of the notion of “F -submodule of ωR” studied by Smith [S1]. Roughly speaking,
τ(ωR) (resp. τ(R)) characterizes F -rationality (resp. F -regularity).

The answer to the first question is reinterpreted in the following theorem.

Theorem 5.2. Let (R,m) be a normal local ring which is reduced from charac-
teristic zero to characteristic p � 0, together with a resolution of singularities
f : X → SpecR.1 Then

τ(ωR) = H0(X,ωX) in ωR.

Note that R is F -rational (resp. R has rational singularities) if and only if R is
Cohen–Macaulay and τ(ωR) = ωR (resp. H0(X,ωX) = ωR).

The answer to the second question is deduced from the above theorem by using
cyclic covering. The main theorem of this paper states that the test ideal τ(R) has
a very geometric expression given by a resolution of singularities.

Theorem 5.9. Let R be a Q-Gorenstein normal ring which is reduced from char-
acteristic zero to characteristic p � 0, together with a resolution of singularities

1 The setup involving “reduction to characteristic p� 0” is explained in 4.6, 5.1 and 5.7.
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f : X → SpecR whose exceptional set is a simple normal crossing divisor. If we
write KX = f∗KR + ∆ for an f -exceptional Q-divisor ∆, then

τ(R) = H0(X,OX(d∆e)) in R.

The right-hand side of this equality is called the multiplier ideal ([E], [N]), and
plays an important role in birational algebraic geometry. From this theorem we
easily reprove the correspondence of F -regularity and log terminal singularity, since
a Q-Gorenstein local ring R is F -regular (resp. log terminal) if and only if τ(R) = R
(resp. d∆e ≥ 0, or equivalently, H0(X,OX(d∆e)) = R).

Theorem 5.9 is also proved by Karen E. Smith [S3] in a different way: Smith
studies the behavior of the multiplier ideal under the canonical covering quite ele-
gantly, using the log ramification formula. On the other hand, Theorem 5.9 is the
most important case of a more general result (Theorem 5.8). In fact, we can prove
Theorems 5.8 and 5.9 directly without referring to cyclic covering. The alternative
proof, being a little bit laborious, is achieved along the same line as in the proof
of Theorem 5.2. The entire proof of this alternative method is not recorded in this
paper, but its underlying spirit is found in the proof of Theorem 6.4.

This paper is organized as follows. In Section 1, we collect some generalities and
preliminary results on tight closure and test ideals. Section 2 is devoted to studying
the behavior of test ideals under cyclic covering. In Section 3, we define the test
submodule τ(ωR) of the canonical module ωR, via which Smith’s characterization
of the tight closure 0∗Hdm(R) is restated. After reviewing the correspondence of “F -
rings” and singularities in characteristic zero in terms of reduction modulo p in
Section 4, we proceed to Section 5, where the main results of this paper are proved.
We also give some “dual forms” of Theorems 5.2 and 5.9 in this section. In Section
6, we treat the case of graded rings, and give the “graded version” of the above
theorems.

Acknowledgements. A part of this work was done at the University of Michigan,
where the author stayed in the fall of 1996. The author expresses his deep gratitude
to Professor Melvin Hochster and especially to Professor Karen E. Smith for their
hospitality and interest to the subject. He also thanks Professor Smith for sending
the paper [S3]. Thanks are also due to Professor Kei-ichi Watanabe, who had many
discussions with the author and gave him helpful comments.

1. Tight closure and test ideals

We first review some generalities about tight closure and test ideals. The reader
is referred to Hochster and Huneke [HH1, HH2, HH3] and Huneke [Hu] for more
detail.

Throughout this paper all rings are excellent commutative rings with unity. For
a ring R, R◦ will denote the set of elements of R which are not in any minimal
prime ideal. We will often work over a field of characteristic p > 0. In this case we
always use the letter q for a power pe of p. Also, for an ideal I of R, I [q] will denote
the ideal of R generated by the qth powers of elements of I. The ring R viewed
as an R-module via the e-times iterated Frobenius map F e : R → R is denoted by
eR. If R is reduced, then F e : R → eR is identified with the natural inclusion map
R ↪→ R1/q.

Definition 1.1 ([HH1]). Let R be a Noetherian ring of characteristic p > 0, and
let I ⊂ R be an ideal. The tight closure I∗ of I in R is the ideal defined by x ∈ I∗

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1888 NOBUO HARA

if and only if there exists c ∈ R◦ such that cxq ∈ I [q] for all q = pe � 0. We say
that I is tightly closed if I∗ = I.

1.2. Basic Properties ([HH1]).
(i) If R is regular, then all ideals of R are tightly closed.
(ii) Colon Capturing. Let R be a locally equidimensional Noetherian ring that

is a homomorphic image of a Cohen–Macaulay ring, and let x1, . . . , xn ∈ R be
“parameters,” i.e., any i of them (1 ≤ i ≤ n) generate an ideal of height i. Then

(x1, . . . , xn−1) :R xn ⊆ (x1, . . . , xn−1)∗.

(iii) For any ideal I of R, one has I∗ ⊆ I, where I denotes the integral closure
of the ideal I ⊆ R.

Definition 1.3 ([HH1], [FW]). Let R denote a Noetherian ring of characteristic
p > 0.

(i) R is said to be weakly F-regular if every ideal of R is tightly closed. We say
that R is F-regular if every localization of R is weakly F -regular.

(ii) A local ring (R,m) is said to be F-rational if some (or, equivalently, every)
ideal generated by a system of parameters of R is tightly closed. When R is not
local, we say that R is F -rational if every local ring of R is F -rational.

1.4. Remark. It immediately follows from the definition and 1.2 that

regular ⇒ F -regular ⇒ F -rational ⇒ Cohen–Macaulay and normal.

Also, a Gorenstein F -rational ring is F -regular.

1.5. Definition and discussion. For an R-submodule N ⊆ M , we can define the
tight closure N∗M of N in M as well [HH1]. In the sequel we only treat the case
N = 0, and define the tight closure 0∗M ⊆ M of the zero submodule in M . Let
F e : M = R ⊗RM → eR ⊗RM be the e-times iterated Frobenius map induced on
an R-module M sending z ∈M to zq := F e(z) = 1⊗ z ∈ eR⊗RM . Then 0∗M ⊆M
is defined by

z ∈ 0∗M ⇐⇒ there exists c ∈ R◦ such that czq := c⊗ z = 0 for all q = pe � 0.

Note that c ∈ R acts on eR⊗RM from the left via the identification R = eR.
If I ⊆ R is an ideal, then I∗/I ∼= 0∗R/I . Moreover, the finitistic tight closure

0∗fgM ⊆M of the zero submodule in M is defined by

0∗fgM :=
⋃
M ′

0∗M ′ ,

where M ′ runs through all finitely generated R-submodules of M . One has 0∗fgM ⊆
0∗M in general, and if M itself is finitely generated, then 0∗fgM = 0∗M .

The important case for us is that (R,m) is a d-dimensional local ring and M =
Hd

m(R) or ER(R/m), the injective hull of the residue field. In the former case, for
a system of parameters x1, . . . , xd of R we have

Hd
m(R) ∼= lim

−→
R/(xt1, . . . , x

t
d),

so that eR⊗RHd
m(R) ∼= lim

−→
R/(xqt1 , . . . , x

qt
d ) ∼= Hd

m(R) as groups. Thus we see that

(R,m) is F -rational if and only if it is Cohen–Macaulay and 0∗Hdm(R) = 0.
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Definition 1.6 ([HH1, HH3]). Let R denote a Noetherian ring of characteristic
p > 0.

(i) The test ideal τ(R) of R is defined by τ(R) :=
⋂
M AnnR(0∗M ), where the

intersection is taken over all finitely generated R-modules M .
(ii) When (R,m) is a local ring, the parameter test ideal τpar(R) of R is defined

by τpar(R) :=
⋂
I (I :R I∗), where I runs through all ideals generated by a system

of parameters of R.
An element of τ(R) ∩ R◦ (resp. τpar(R) ∩ R◦) is called a test element (resp.

parameter test element) of R.

1.7. Remark. (i) It is easy to see that R is weakly F -regular if and only if τ(R) =
R, and a local ring (R,m) is F -rational if and only if it is Cohen–Macaulay and
τpar(R) = R.

(ii) An element c ∈ R◦ is a test element (resp. parameter test element) if and
only if, for every ideal (resp. every parameter ideal) I ⊂ R and every x ∈ R, one
has

x ∈ I∗ ⇐⇒ cxq ∈ I [q] for all q = p0, p1, p2, . . . .

The name “test element” comes from this property.

Let R be a normal ring with a canonical module ωR. We say that R is Q-
Gorenstein if there is a positive integer r such that the reflexive hull ω(r)

R of the
R-module ω⊗rR /torsion is a locally free R-module (in other words, rKR is a Cartier
divisor on SpecR, where KR denotes a canonical divisor of SpecR).

Theorem 1.8. Let R be a Noetherian ring of characteristic p > 0 and let E =⊕
m
ER(R/m), where m runs through all maximal ideals of R. Then:

(i) ([HH1]) τ(R) =
⋂

m
AnnRm

(0∗fgER(R/m)) = AnnR(0∗fgE ), where the intersec-
tion in the middle term is taken over all maximal ideals of R.

(ii) ([AM], [Mc], [S3]) If R is normal and Q-Gorenstein, τ(R) = AnnR(0∗E).
(iii) ([HH3], [S1]) If (R,m) is a d-dimensional Cohen–Macaulay local ring, then

τpar(R) = AnnR(0∗Hdm(R)). In particular, if R is Gorenstein, then τ(R) = τpar(R).

To deduce Theorem 1.8 (ii) from (i), one has to prove the equality 0∗E = 0∗fgE .
This is essentially achieved in [AM] and [Mc] by using the “F -bounded” property
introduced by Williams [Wi]. In fact, we want to use this result under a slightly
different hypothesis. (We assume normality instead of the Cohen–Macaulay prop-
erty.) So, in the appendix, we give a proof to the following theorem according to
the method of [Mc] and [Wi]. This is also proved in [S3] under the same hypothesis
as ours.

Theorem 1.9. Let (R,m) be a d-dimensional excellent normal local ring of char-
acteristic p > 0 and let J ⊆ R be a divisorial ideal such that the divisor class
cl(J) ∈ Cl(R) has a finite order. Then 0∗Hdm(J) = 0∗fg

Hdm(J)
.

Definition 1.10 ([HH2]). Let R be a reduced ring of characteristic p > 0 which is
F -finite (i.e., the Frobenius map F : R → 1R is finite). We say that R is strongly
F-regular if, for any c ∈ R◦ there exists a power q = pe such that the inclusion map
c1/qR ↪→ R1/q splits as an R-linear map.

1.11. Remark. For an F -finite reduced ring R, we have the implications “strongly
F -regular ⇒ F -regular ⇒ weakly F -regular,” and R is strongly F -regular if and
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only if 0∗E = 0, where E =
⊕

m
ER(R/m) as in 1.8. In particular, for a Q-Gorenstein

ring the three variations of F -regularity are all the same ([Mc], see also [LS1], [Wi]).
More generally, the equality 0∗E = 0∗fgE implies that the test ideal commutes with
localization and that the test ideal is a defining ideal of the non-F -regular locus,
see the recent result of Lyubeznik and Smith [LS2].

Theorem 1.12 ([HH1], [HH2]). Let R be a reduced ring of characteristic p > 0
and let Rc be the localization at an element c ∈ R◦.

(i) If R is essentially of finite type over an excellent local ring and Rc is regular,
then some power cn of c is a test element of R.

(ii) If R is F -finite and Rc is strongly F -regular, then some power cn of c is a
test element of R.

2. The behavior of test ideals under cyclic covering

In this section, we investigate the behavior of test ideals under cyclic covering,
based on an idea due to K.-i. Watanabe. The author thanks Watanabe for informing
him of the result proved in [NW], which is not published yet.

2.1. Cyclic covering. Let R be a normal domain and I ⊂ R a divisorial ideal. For
an integer i, we denote by I(i) the reflexive hull of Ii. We assume that the class
cl(I) of I in the divisor class group Cl(R) has finite order r > 0, i.e., I(r) = vR for
some v ∈ R. For a multiple n ∈ N of r we fix a w ∈ R such that I(n) = wR, and
consider an R-algebra S = (

⊕
i≥0 I

(i)zi)/(wzn − 1), where z is an indeterminate
of degree 1. We denote the image of z in S by u. Then S =

⊕n−1
i=0 I

(i)ui has a
natural Zn = Z/nZ-graded R-algebra structure. S is called a cyclic cover of R.
In particular, if I is isomorphic to the canonical module ωR of R, S is called a
canonical cover of R. See [TW] for a more detailed ring-theoretic study of S (the
normality of S, etc.).

2.2. Discussion. With the notation as in 2.1, assume that (R,m) is a local ring
of dimension d. Then S is a semilocal ring, since R → S is finite. Let n1, . . . , ns
be the maximal ideals of S. In the sequel we frequently use the following easy
fact: For non-negative integers i, j with i 6≡ i + j ≡ 0 mod r, one has I(i) · I(j) ⊆
mI(i+j). Indeed, if this is not the case, then there exist x ∈ I(i) and y ∈ I(j) such
that I(i+j) = xyR = I(i) · I(j). But this implies that xR = y−1I(i) · I(j) = I(i),
contradicting i 6≡ 0 mod r.

Let n be the Zn-graded R-submodule of S whose graded piece of degree i mod
n (0 ≤ i ≤ n− 1) is mI(i)ui for i ≡ 0 mod r, and I(i)ui for i 6≡ 0 mod r. Then the
above fact tells us that n is an ideal of S. Even more, n is the Jacobson radical of S.
To see this, we consider an R-subalgebra T =

⊕t−1
j=0 I

(jr)ujr of S, where t = n/r.
Then R ↪→ T is étale since each I(jr) is principal, so that mT =

⊕t−1
j=0 mI(jr)ujr

is the Jacobson radical of T . Hence S/n ∼= T/mT is a zero-dimensional reduced
ring, so n is a radical ideal containing

√
mS. On the other hand, if x ∈ S is a

homogeneous element of degree 6≡ 0 mod r, then xr ∈ mS by the fact we observed
above, whence x ∈

√
mS. Thus we conclude that

n =
√

mS = n1 ∩ · · · ∩ ns.

Now let ER := ER(R/m) ∼= Hd
m(ωR), ET := ET (T/mT ) ∼= Hd

m(ωT ) and ES :=
ES(S/n) =

⊕s
i=1 ES(S/ni) ∼= Hd

m(ωS). Then it easily follows that the “socles”
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of these are (0 :ER m) = R/m, (0 :ET mT ) = T/mT , and (0 :ES n) = S/n =⊕s
i=1 S/ni, respectively. On the other hand, since R → S is finite of relative di-

mension 0, one has that ωS ∼= HomR(S, ωR) = HomR(
⊕n−1

i=0 I
(i)ui, ωR) by the

adjunction formula. Hence ES ∼= Hd
m(ωS) has a natural Zn-graded S-module struc-

ture, and its graded piece of degree i is

[ES ]i ∼= Hd
m(HomR(I(−i), ωR))

∼= HomR(HomR(HomR(I(−i), ωR), ωR), ER) = HomR(I(−i), ER)

by the local dualty. Note that ER (resp. ET ∼=
⊕t−1

j=0 HomR(I(−jr), ER)) is embed-
ded in ES as the graded part of degree 0 (resp. degree ≡ 0 mod r).

Lemma 2.3 (cf. [NW]). With the notation as in 2.2, (0 :ES n) sits in the graded
part of ES of degree ≡ 0 mod r.

Proof. It is sufficient to prove (0 :ET m) ⊆ (0 :ES n). Indeed, this implies that
(0 :ES n) = (0 :ET m) ⊂ ET , since (0 :ET m) = T/mT and (0 :ES n) = S/n are both
R/m-vector spaces of the same dimension t = n/r.

Let ξ ∈ (0 :ET m) be a homogeneous element of degree jr in the Zn-grading
of ET ⊆ ES . To show ξ ∈ (0 :ES n), it suffices to prove that auiξ = 0 for every
a ∈ I(i) with i 6≡ 0 mod r. If we regard ξ as an element of HomR(I(−jr), ER)ujr,
then auiξ ∈ HomR(I(−i−jr), ER)ui+jr is defined by (auiξ)(x) = ξ(ax)ui for every
x ∈ I(−i−jr). However, since ax ∈ I(i) · I(−i−jr) ⊆ mI(−jr) as we have seen in 2.2,
there exist b ∈ m and y ∈ I(−jr) such that ax = by, so that (auiξ)(x) = ξ(by)ui =
bξ(y)ui = 0. Hence auiξ = 0 as required.

Proposition 2.4. With the notation as in 2.2, assume in addition that R is of
characteristic p > 0 and n is not divisible by p. Then 0∗ES is a Zn-graded S-
submodule of ES, and its graded piece of degree i is 0∗[ES]i

, the tight closure of zero
in [ES ]i as an R-module. In particular, the graded piece of 0∗ES of degree ≡ 0 mod n
is isomorphic to 0∗ER.

Proof. Since n is not divisible by p, the inclusion R ↪→ S is étale in codimension
1, so that the map eR ⊗R S → eS is isomorphic in codimension 1 by [W2]. This
implies that eR ⊗R Hd

m(ωS) ∼= eS ⊗S Hd
m(ωS) and that the e-times Frobenius map

on ES ∼= Hd
m(ωS) as S-module can be identified with that as R-module, F e : ES →

eR ⊗R ES =
⊕n−1

i=0
eR ⊗R [ES ]i. (See the proof of [W2, Theorem 2.7].) Now let

ξ ∈ 0∗ES and write ξ = ξ0 + ξ1 + · · · + ξn−1 with ξi ∈ [ES ]i. Then there exists a
c ∈ S◦ such that cξq = 0 in eS ⊗S ES ∼= eR ⊗R ES . As R ↪→ S is finite, there is
a b ∈ R◦ ∩ cS with bξq =

∑n−1
i=0 bξ

q
i = 0. This implies bξqi = 0 for 0 ≤ i ≤ n − 1,

since bξq0 , . . . , bξ
q
n−1 are in different graded pieces of eR⊗RES =

⊕n−1
i=0

eR⊗R [ES ]i.
Hence ξi ∈ 0∗[ES]i

⊆ 0∗ES for each i, whence 0∗ES is graded. It is now obvious that
[0∗ES ]i = 0∗[ES]i

.

Theorem 2.5. With the notation as in 2.2, assume in addition that R is of char-
acteristic p > 0 and n is not divisible by p. Then AnnS(0∗ES ) is a homogeneous
ideal in the Zn-grading of S, and its graded piece of degree 0 is

AnnR(0∗ER) = AnnS(0∗ES ) ∩R.

Proof. By Proposition 2.4 it is obvious that AnnR(0∗ER) ⊇ AnnS(0∗ES)∩R. For the
converse, assume to the contrary that there exists c ∈ AnnR(0∗ER) \ AnnS(0∗ES).
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Then there is a ξ ∈ 0∗ES such that cξ 6= 0. We may assume that ξ is homogeneous
in the Zn-grading of ES . Pick a homogeneous element b ∈ S such that b(cξ) is a
nonzero element of the socle (0 :ES n) of ES , which sits in degree ≡ 0 mod r by
Lemma 2.3. Since the degree of c ∈ R is 0, the degree of bξ is also divisible by r,
say deg(bξ) = jr. Then we have bξ ∈ [0∗ES ]jr ∼= 0∗ER by Proposition 2.4. It follows
that b(cξ) = c(bξ) = 0, a contradiction.

Corollary 2.6. Let R be a Q-Gorenstein normal domain of characteristic p > 0,
and let I ⊆ R be a divisorial ideal such that I(n) ∼= R for some n ∈ N which is not
divisible by p. Let S =

⊕n−1
i=0 I

(i)ui be a cyclic covering of R. Then τ(R) = τ(S)∩R.

Proof. For any maximal ideal m of R, we have τ(R)m = τ(Rm) and (τ(S) ∩R)m =
τ(Sm) ∩ Rm by Theorem 1.8 (i), since taking annihilator and intersection are pre-
served under localization. Hence we may assume that R is local. Note also that the
Q-Gorensteinness of R implies that S is Q-Gorenstein, because R → S is étale in
codimension 1. Therefore the result follows from the above theorem and Theorem
1.8 (ii).

3. The parameter test module

The test ideal τ(R) of a ring R measures how far the ring is from F -regular.
Similarly, the parameter test ideal is a measure of the distance from F -rational.
However, if we observe Theorem 1.8 from the viewpoint of the Matlis duality, we
find that the test ideal has an advantage over the parameter test ideal, because
τ(R) and 0∗fgE respectively lie in R and its Matlis dual E, while this is not the case
for the parameter test ideal in general. This simple observation suggests that it is
more natural to consider the following notion instead of the parameter test ideal
(see also [S1]).

Definition 3.1. Let (R,m) be a d-dimensional Noetherian normal local ring of
characteristic p > 0. We define the parameter test submodule τ(ωR) of the canonical
module ωR of R by

τ(ωR) = AnnωR(0∗Hdm(R)),

the annihilator of 0∗Hdm(R) in ωR with respect to the duality pairing ωR×Hd
m(R)→

E = ER(R/m).

3.2. Remark. (i) If (R,m) is quasi-Gorenstein (i.e., R ∼= ωR, with R possibly being
non-Cohen–Macaulay), then τ(R) and τ(ωR) coincide with each other via R ∼= ωR,
by Theorem 1.8. Also, if (R,m) is Gorenstein, we can identify τ(R), τpar(R) and
τ(ωR) via R ∼= ωR.

(ii) We can extend the above definition also to the case when R is not local as in
1.8. Namely, for a normal ring R with a canonical module ωR, τ(ωR) is defined to
be the unique R-submodule

⋂
m
τ(ωRm

) of ωR, where m runs through all maximal
ideals of R. It is easy to check that τ(ωR)m = τ(ωRm

) for every maximal ideal m.

For later use we state the following easy lemma, the proof of which needs only
some elementary facts about the Matlis duality (cf. [S1, Lemma 2.1]).

Lemma 3.3. Let M be a finitely generated module over a Noetherian local ring
(R,m), and denote its Matlis dual by M ′ = HomR(M,ER(R/m)). Let N (resp. L)
be any submodule of M (resp. M ′). If L = AnnM ′N , then N = AnnML. If (R,m)
is complete, the converse also holds true.
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Now we recall the following interesting characterization of the tight closure
0∗Hdm(R) due to Karen Smith according to a generalization by herself.

Theorem 3.4 (K. E. Smith [S2]). Let (R,m) be a d-dimensional excellent local
ring of characteristic p > 0. Then the tight closure of zero in Hd

m(R), 0∗Hdm(R),
is the maximal proper R-submodule of Hd

m(R) which is stable under the Frobenius
action on Hd

m(R).

Corollary 3.5. Let (R,m) be a normal local ring as in 3.4 and let f : X → SpecR
be a proper birational morphism from a normal scheme X. Then one has a natural
inclusion AnnHdm(R)H

0(X,ωX) ⊆ 0∗Hdm(R), or dually, τ(ωR) ⊆ H0(X,ωX) in ωR.

Proof. Let Z = f−1(m) be the closed fiber of f . By [S2, Proposition 1.12] we have
a commutative diagram

Hd
m(R) δ−→ Hd

Z(OX)
↓F ↓F

Hd
m(R) δ−→ Hd

Z(OX),

where F denotes the Frobenius map on Hd
m(R) (resp. Hd

Z(OX)), and δ is an edge
map of the Leray spectral sequence Hi

m(Hj(X,OX)) =⇒ Hi+j
Z (OX), which is the

Matlis dual of the natural inclusion map H0(X,ωX)→ ωR. (See the careful treat-
ments in [LT], [S2].) Since ωR/H0(X,ωX) is a torsion module, Ker(δ) is a proper
submodule of Hd

m(R) which is stable under the Frobenius action on Hd
m(R). Hence

Ker(δ) = HomR(ωR/H0(X,ωX), E) = AnnHdm(R)H
0(X,ωX)

is contained in 0∗Hdm(R) by Theorem 3.4. The dual form H0(X,ωX) ⊇ τ(ωR) follows
from Lemma 3.3.

3.6. Cyclic covering revisited. Let (R,m) be a d-dimensional normal local ring, let
I ⊆ R be a divisorial ideal with I(n) ∼= R for some n ∈ N, and let S =

⊕n−1
i=0 I

(i)

be a cyclic cover of R. Let ER = ER(R/m) and ES = ES(S/n) be as in 2.2.
Then Hd

n(S) =
⊕n−1

i=0 H
d
m(I(i)) and ωS =

⊕n−1
i=0 HomR(I(−i), ωR) as Zn-graded

S-modules.

Proposition 3.7. With the notation as above, assume in addition that R is of
characteristic p > 0 and n is not divisible by p. Then:

(i) 0∗Hdn(S) is a Zn-graded S-submodule of Hd
n(S), and its degree i part is

[0∗Hdn(S)]i = 0∗
Hdm(I(i))

in [Hd
n(S)]i = Hd

m(I(i)).

(ii) τ(ωS) is a Zn-graded S-submodule of ωS, and its degree i part is
[τ(ωS)]i = AnnHomR(I(−i),ωR)(0∗Hdm(I(i))

) in [ωS ]i = HomR(I(−i), ωR).

Proof. The proof is quite similar to the proofs of 2.4 and 2.5, if one notes that the
duality pairings ωS×Hd

n(S)→ ES as S-modules and HomR(I(−i), ωR)×Hd
m(I(i))→

ER as R-modules are compatible.

4. Singularities in characteristic zero and reduction modulo p

Although tight closure is at first glance a characteristic p notion, it turns out
to characterize singularities of algebraic varieties in characteristic zero. First of all
we shall recall some conventions and definitions. For a Q-divisor D on a normal

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1894 NOBUO HARA

variety Y , we denote its round-up and round-down by dDe and bDc, respectively.
We sometimes denote the divisorial sheaf OY (bDc) simply by OY (D).

Definition 4.1. Let Y be a normal variety over a field of characteristic zero and
let f : X → Y be a resolution of singularities whose exceptional set is a simple
normal crossing divisor with irreducible components E1, . . . , Er.

(i) Y is said to have rational singularities if Rif∗OX = 0 for all i > 0.
(ii) If Y is Q-Gorenstein (i.e., the canonical divisor KY of Y is Q-Cartier), then

one can write the canonical divisor of X as KX = f∗KY +∆, where ∆ =
∑r
i=1 aiEi

for some a1, . . . , ar ∈ Q. We call this Q-divisor ∆ the discrepancy of f .
(iii) Y is said to have log terminal singularities if Y is Q-Gorenstein and ai > −1

for each i = 1, . . . , r, where ∆ =
∑r

i=1 aiEi is the discrepancy of f as in (ii).

4.2. Remark. Properties (i) and (iii) in 4.1 do not depend on the choice of f : X →
Y ; nor does the ideal sheaf f∗OX(d∆e) ⊆ OY in the situation of (ii). This ideal
sheaf is called the multiplier ideal and plays an important role in birational algebraic
geometry (see [E]).

To relate the above notions with F -rational and F -regular rings, we use the
technique of “reduction modulo p.”

Definition 4.3 (cf. [HR]). Let R be a finitely generated algebra over a field k of
characteristic zero. We say that R has F-rational type (resp. F -regular type) if there
exist a finitely generated Z-subalgebra A of k and a finitely generated A-algebra
RA satisfying the following conditions:

(i) RA is flat over A and RA ⊗A k ∼= R.
(ii) Rκ = RA⊗Aκ(s) is F -rational (resp. F -regular) for every closed point s in a

dense open subset of S = SpecA, where κ = κ(s) denotes the residue field of s ∈ S.

4.4. Remark. In condition (ii), as A is finitely generated over Z, κ = κ(s) is a finite
field, and so it is a perfect field of positive characteristic. We frequently abbreviate
the statement in condition (ii) as “the fiber ring Rκ is F -rational (resp. F -regular)
for general closed points s ∈ S.”

The starting point of the present paper is the following characterization of “mild”
singularities via tight closure.

Theorem 4.5 ([Ha], [MS], [S2], [W3]). Let R be a finitely generated algebra over a
field of characteristic zero. Then SpecR has rational singularities (resp. log terminal
singularities) if and only if R is of F -rational type (resp. of F -regular type and Q-
Gorenstein).

To generalize the above theorem to wider classes of singularities, we have to
begin with a ring R in characteristic zero, and reduce it to characteristic p � 0,
together with a resolution of singularities f : X → SpecR. To see the properties
shared by such “general” modulo p reductions, we briefly review the argument in
[Ha, 4.2–4.5].

4.6. Discussion. Let R be a normal domain of dimension at least 2 which is finitely
generated over a field k of characteristic zero. Let f : X → SpecR be a resolution of
singularities whose exceptional set E ⊂ X is a simple normal crossing divisor, and
Γ an effective f -exceptional divisor such that −Γ is f -ample. We choose a rational
number ε > 0 such that the Q-divisor εΓ has no integral part, and set D = −εΓ.
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Choosing a suitable finitely generated Z-subalgebra A of k, one can construct a
finitely generated flat A-algebra RA, a smooth A-scheme XA and a birational A-
morphism fA : XA → SpecRA whose exceptional set EA ⊂ XA is a simple normal
crossing divisor over A, such that by tensoring k over A one gets back R, X , and
f : X → SpecR. We also have an fA-exceptional divisor ΓA which tensors back to
Γ such that DA = −εΓA is an fA-ample Q-Cartier divisor supported on EA with
b−DAc = 0.

Given a closed point s ∈ S = SpecA with residue field κ = κ(s), we denote
the corresponding fibers over s by fκ : Xκ → SpecRκ, etc. Obviously, all of the
above-mentioned properties are preserved in every closed fiber, i.e., Xκ is smooth
over κ, Eκ is the simple normal crossing exceptional divisor of fκ, and Dκ =
−εΓκ is an fκ-ample Q-Cartier divisor supported on Eκ such that b−Dκc = 0.
Moreover, not only do the fiber rings Rκ over general closed points s ∈ S inherit
the properties possessed by the original ring R (e.g. normality, Cohen–Macaulay
and Q-Gorenstein properties), but also what is true in characteristic zero (such as
the Grauert–Riemenschneider vanishing) holds for general closed fibers.

Now we fix a general closed point s ∈ S with residue field κ = κ(s) of sufficiently
large characteristic p, and work over κ. We refer to the fibers over s ∈ S as “reduc-
tion modulo p � 0,” and use the phrase “in characteristic p � 0” when we look
at general closed fibers which are reduced from characteristic zero to characteristic
p� 0 as above. Then we have the following vanishing of cohomologies for all e ≥ 0
[Ha, 4.3]:

(a) Hj(Xκ,ΩiXκ/κ(logEκ)(−Eκ − b−peDκc)) = 0 for i+ j = dimXκ + 1;
(b) Hj(Xκ,ΩiXκ/κ(logEκ)(−Eκ − b−pe+1Dκc)) = 0 for i+ j = dimXκ and

j > 0.
To be brief, vanishing (a) comes from the Akizuki–Nakano vanishing theorem

in characteristic zero (cf. [Ha, Corollary 3.8]), and (b) is due to the Serre van-
ishing since Dκ is ample and p � 0. Applying [Ha, Proposition 3.6] to (a)
and (b), we see that the map F∨ : H0(Xκ,HomOXκ (F∗OXκ(−pe+1Dκ), ωXκ)) →
H0(Xκ,HomOXκ (OXκ(−peDκ), ωXκ)) induced by the canonical dual of the Frobe-
nius F : OXκ(−peDκ) → F∗OXκ(−pe+1Dκ) is surjective for all e ≥ 0. Hence the
composition map

(F e)∨ : H0(Xκ,HomOXκ (F e∗OXκ(−qDκ), ωXκ))→ H0(Xκ,HomOXκ (OXκ , ωXκ))

is surjective for all q = pe. Note that the surjectivity of this map implies the
surjectivity of the corresponding map after moving to the local ring (Rκ)P at every
prime ideal P ∈ SpecRκ and its induced resolution (fκ)P : (Xκ)P → Spec(Rκ)P .

5. Geometric interpretation of test ideals and test modules

To state the results we change the notaiton from 4.6, and put the following:

5.1. Setup. Let (R,m) be a normal local ring of dimension d ≥ 2, essentially of finite
type over a perfect field κ of characteristic p > 0. Let f : X → SpecR be a resolution
of singularities with simple normal crossing exceptional divisor E ⊂ X , and let D
be an f -ample Q-Cartier divisor on X such that Supp(D) = E and b−Dc = 0. We
denote the closed fiber of f by Z. We assume that (R,m) is the localization at any
prime ideal of a finitely generated κ-algebra which is a “reduction modulo p � 0”
as in 4.6, as well as X , D, E and f : X → SpecR. This means that the map

(F e)∨ : H0(X,HomOX (F e∗OX(−qD), ωX))→ H0(X,HomOX (OX , ωX))
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is surjective, or dually, the e-times iterated Frobenius map

F e : Hd
Z(OX)→ Hd

Z(F e∗OX(−qD))

is injective for every q = pe.

The following theorem is obtained independently in [MS].

Theorem 5.2. Let the situation be as in Setup 5.1. Then

0∗Hdm(R) = AnnHdm(R)H
0(X,ωX) = Ker

(
Hd

m(R) δ−→ Hd
Z(OX)

)
,

where δ is an edge map of the Leray spectral sequence as in 3.5, or dually,
τ(ωR) = H0(X,ωX) in ωR.

Proof. By Corollary 3.5, we only have to prove that 0∗Hdm(R) ⊆ AnnHdm(R)H
0(X,ωX).

To see this we begin with the following assertion.

Claim. H0(X,ωX(dnDe)) ⊆ τ(ωR) for all n� 0.

Proof of Claim. First note that if the localization Rc at an element c ∈ R◦ is
regular, then τ(ωR)c = ωRc . Indeed, if Rc is strongly F -regular, then some power cn

of c is a test element by 1.12, so that cn · 0∗Hdm(R) = cn · 0∗fg
Hdm(R)

= 0, whence cnωR ⊆
AnnωR(0∗Hdm(R)) = τ(ωR). Thus, if P ∈ SpecR is not in f(E), then τ(ωR)P =
ωRP = H0(X,ωX)P . LetR =

⊕
n≥0 Jn be the Rees algebra defined by the filtration

Jn = H0(X,OX(nD)) on R. Since D is f -ample, K =
⊕

n>0H
0(X,ωX(dnDe)) is a

finitely generatedR-module. Say K is generated in degree≤ n0. On the other hand,
Jn1 ·H0(X,ωX) ⊆ τ(ωR) for some n1 ≥ 0, since Supp(H0(X,ωX)/τ(ωR)) ⊆ f(E).
Therefore, if n ≥ n0 + n1, then H0(X,ωX(dnDe)) ⊆ τ(ωR), as claimed.

Now, since −D is effective, we have the natural map

Hd
m(R) δ−→ Hd

Z(OX)→ Hd
Z(OX(−nD))

for each n ≥ 0. As Hd
Z(OX(−nD)) is the Matlis dual of H0(X,ωX(dnDe)), the

kernel of this map turns to be

Filtn(Hd
m(R)) := AnnHdm(R)H

0(X,ωX(dnDe))

= HomR

(
ωR

H0(X,ωX(dnDe)) , ER(R/m)
)
,

as in the proof of Corollary 3.5. Thus we have the following commutative diagram
with exact rows for each q = pe:

0 → Filt1(Hd
m(R)) → Hd

m(R) → Hd
Z(OX) → 0

↓ ↓F e ↓F e

0 → Filtq(Hd
m(R)) → Hd

m(R) → Hd
Z(OX(−qD)) → 0

Here the Frobenius map F e : Hd
Z(OX)→ Hd

Z(OX(−qD)) on the right-hand side is
injective (5.1).

Now let ξ ∈ Hd
m(R) \ Filt1(Hd

m(R)). Then ξq := F e(ξ) ∈ Hd
m(R) does not

lie in Filtq(Hd
m(R)) = AnnHdm(R)H

0(X,ωX(dqDe)) for all q = pe, by the above
diagram. Hence the claim tells us that ξq /∈ AnnHdm(R)τ(ωR) for sufficiently large
q. Since 0∗Hdm(R) is contained in AnnHdm(R)τ(ωR) and stable under the Frobenius
action on Hd

m(R), we have ξ /∈ 0∗Hdm(R). It follows that 0∗Hdm(R) ⊆ Filt1(Hd
m(R)) =
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AnnHdm(R)H
0(X,ωX), and that τ(ωR) ⊇ H0(X,ωX) by Lemma 3.3. This completes

the proof of the theorem.

5.3. Remark. (i) Theorem 5.2 implies that 0∗Hdm(R) = AnnHdm(R)AnnωR(0∗Hdm(R))
even though (R,m) is not complete. (This is trivial if (R,m) is complete; cf. Lemma
3.3.)

(ii) Since the surjectivity of the map (F e)∨ is preserved under localization (4.6),
Theorem 5.2 holds for all localizations of a finitely generated κ-algebra and its res-
olution reduced from characteristic zero to characteristic p� 0. This in particular
means that the parameter test module commutes with localization under Setup
5.1, because so does the cohomology module H0(X,ωX). Namely, in characteristic
p� 0 we have

τ(ωR)P = τ(ωRP )

for every P ∈ SpecR. However, we expect that this is true in arbitrary character-
istic, and our theorem does not answer the question. This problem is treated in
[LS2], [S1].

(iii) The argument in (ii) also tells us that the formula τ(ωR) = H0(X,ωX)
holds for a finitely generated κ-algebra in characteristic p � 0, where τ(ωR) of a
non-local ring is defined as in 3.2 (ii).

Corollary 5.4 ([Ha, Theorem 4.7]). In the situation of Setup 5.1, assume further
that the non-(F-)rational locus of SpecR is isolated. Then

Hd−1(X,OX) ∼= 0∗Hdm(R).

Proof. As we are working in characteristic p � 0, we have Hd−1
Z (OX) = 0 (the

dual Grauert–Riemenschneider vanishing), and

Hd−1(X − Z,OX−Z) ∼= Hd−1(SpecR− {m},OSpecR−{m}) ∼= Hd
m(R)

since SpecR− {m} is rational. Hence we have an exact sequence

0→ Hd−1(X,OX)→ Hd
m(R) δ→ Hd

Z(OX)→ 0,

which is the Matlis dual of 0→ f∗ωX → ωR → ωR/f∗ωX → 0. Thus we see that

Hd−1(X,OX) ∼= Ker(δ) = 0∗Hdm(R).

5.5. Discussion. We consider another dual form of the formula τ(ωR) = H0(X,ωX)
under Setup 5.1. Let D•X and D•R denote the dualizing complexes of X and R,
respectively. Then D•X = ωX [d] since X is Cohen–Macaulay. Note also that the
Grauert–Riemenschneider vanishing in characteristic zero [GR] descends to our
reduction modulo p� 0, i.e., Rif∗ωX = 0 for i > 0. Therefore one has

RHomR(Rf∗OX , D•R) = Rf∗(RHomOX (OX , D•X)) = Rf∗ωX [d] = f∗ωX [d]

by the Grothendieck duality [Ht]. By dualizing this formula one has

Rf∗OX = RHomR(f∗ωX , D•R)[−d].

Theorem 5.2 allows us to replace f∗ωX in the right-hand side by τ(ωR).
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Theorem 5.6. In the situation of Setup 5.1, assume further that R is Cohen–
Macaulay (with possibly non-isolated non-(F-)rational locus). Then

Hd−1(X,OX) ∼= Coker

( ⊕
htP=d−1

0∗
Hd−1
PRP

(RP )
→ 0∗Hdm(R)

)
,

where the map 0∗
Hd−1
PRP

(RP )
→ 0∗Hdm(R) is induced by the map ER(R/P )→ ER(R/m)

in the minimal injective resolution of the R-module ωR.

Proof. Since R is Cohen–Macaulay, D•R = ωR[d], so that by 5.5 one has

Rf∗OX = RHomR(τ(ωR), ωR).

Since ωR is also a Cohen–Macaulay R-module, it follows that

Rif∗OX = ExtiR(τ(ωR), ωR)

= Exti+1
R (ωR/τ(ωR), ωR) = Hi+1(HomR(ωR/τ(ωR), I•))

for i > 0, where I• ∼= D•R[−d] is the minimal injective resolution of ωR. The
theorem is proved, because the ith spot of the complex HomR(ωR/τ(ωR), I•) is

HomR

(
ωR/τ(ωR),

⊕
htP=i

ERP (RP /PRP )

)
=
⊕

htP=i

0∗HiPRP (RP )

by Remark 5.3.

5.7. Discussion. We now generalize Theorem 5.2 in terms of cyclic covering. To do
this we again start from characteristic zero, and then move to reduction modulo p
as in 4.6.

Let R be a normal finitely generated algebra over a field of characteristic zero,
and let I be a divisorial ideal such that I(n) ∼= R for some n ∈ N. Let D be the
Q-Cartier Weil divisor on SpecR corresponding to I (i.e., I = H0(SpecR,O(D))),
and let f : X → SpecR be a resolution of singularities whose exceptional set E ⊂ X
is a simple normal crossing divisor. Since nD is a Cartier divisor, one can define the
pull-back of D by f to be the Q-divisor f∗D := 1

nf
∗(nD). Note that the fractional

part f∗D − bf∗Dc of f∗D is supported in E.
For a fixed isomorphism I(n) ∼= R, we consider the corresponding cyclic cov-

erings π : SpecS → SpecR and π′ : Y → X , where S =
⊕n−1

i=0 I
(i) and Y =

SpecX(
⊕n−1

i=0 OX(bif∗Dc)). Let h : Ỹ → Y be a resolution of singularities. Since X
is smooth and the ramification divisor Supp(f∗D−bf∗Dc) of π′ : Y → X is simple
normal crossing, Y has rational singularities. (Even more, Y has toric singularities;
cf. [EV, Lemma 3.24], [TW].) By the adjunction formula we also have

h∗ωỸ = ωY = HomOX (OY , ωX) =
n−1⊕
i=0

ωX(dif∗De).

On the other hand, the natural map H0(X,OX(bif∗Dc)) ↪→ I(i) is an isomorphism
for each i. Indeed, if ϕ ∈ I(i), then ϕn ∈ I(in) = (I(n))i = H0(X,OX(if∗(nD))), so
that divX(ϕn)+if∗(nD) ≥ 0. Dividing out by n gives divX(ϕ)+bif∗Dc ≥ 0, since
divX(ϕ) has integer coefficients, so ϕ ∈ H0(X,OX(bif∗Dc)). Thus S = H0(Y,OY ),
and this gives rise to a proper birational morphism g : Y → SpecS. The natural
inclusion H0(Y, ωY )→ ωS induced by g preserves the Zn-grading of H0(Ỹ , ωỸ ) =
H0(Y, ωY ) =

⊕n−1
i=0 H

0(X,ωX(dif∗De)) and ωS =
⊕n−1

i=0 HomR(I(−i), ωR).
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Now we consider the following commutative diagram in characteristic zero:

Ỹ
h−→ Y

g−→ SpecS
π′↓ π↓

X
f−→ SpecR,

and reduce all the data to characteristic p � 0. We switch the notation to de-
note sufficiently general reduction modulo p (or localization thereof as in 5.1), and
assume in the sequel that the above diagram is defined over a perfect field κ of
characteristic p > 0 which does not divide n.

Theorem 5.8. In the situation of 5.7, let (R,m) be a normal local ring of di-
mension d which is reduced from characteristic zero to characteristic p � 0, to-
gether with the divisorial ideal I = H0(SpecR,O(D)), the resolution of singularities
f : X → SpecR, etc. Let Z denote the closed fiber of f . Then

0∗Hdm(I) = Ker
(
Hd

m(I) δ−→ Hd
Z(OX(bf∗Dc))

)
,

where δ denotes an edge map of the Leray spectral sequence Hi
m(Hj(X,OX(bf∗Dc)))

=⇒ H i+j
Z (OX(bf∗Dc)).

Proof. Since (R,m) is local, S is semilocal. Let n1, . . . , ns be the maximal ideals
of S, and Zi (resp. Z̃i) the fiber of g : Y → SpecS (resp. g ◦ h : Ỹ → SpecS) over
ni. Since Rjh∗OỸ = 0 for j > 0, we have 0∗Hdni (S) = Ker(Hd

ni
(S) → Hd

Z̃i
(OỸ ) =

Hd
Zi

(OY )) by Theorem 5.2. So, denoting n = n1 ∩ · · · ∩ ns and Z ′ = Z1 ∪ · · · ∪ Zs,
we have

0∗Hdn(S) = Ker
(
Hd

n(S) δ′−→ Hd
Z′(OY )

)
,

where δ′ is an edge map of the spectral sequence Hi
n(Hj(Y,OY )) =⇒ Hi+j

Z′ (OY )
induced from ΓZ′ = Γn ◦g∗. This map δ′, being the dual map of the Zn-graded map
H0(Y, ωY )→ ωS with respect to the Zn-graded module ES(S/n), is also Zn-graded,
and its degree 1 part is

δ : Hd
m(I) = Hd

m(H0(X,OX(bf∗Dc)))→ Hd
Z(OX(bf∗Dc)),

since Γn = Γm ◦ π∗ and ΓZ′ = ΓZ ◦ π′∗. On the other hand, the degree 1 part of
0∗Hdn(S) in the Zn-grading is 0∗Hdm(I) by Proposition 3.7. This completes the proof of
the theorem.

The most important application of Theorem 5.8 is the case I ∼= ωR, as follows.

Theorem 5.9. Let R be a normal Q-Gorenstein finitely generated κ-algebra (or
its local ring) which is reduced from characteristic zero to characteristic p � 0,
together with a resolution of singularities f : X → SpecR whose exceptional set
E ⊂ X is a simple normal crossing divisor, as in 5.7. Let ∆ = KX − f∗KR be the
discrepancy of f . Then the test ideal τ(R) of R is described as

τ(R) = H0(X,OX(d∆e)),

where the right-hand side is viewed as an ideal of R in terms of the natural inclusion
map H0(X,OX(d∆e))→ H0(X − E,OX(d∆e)) = R.
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Proof. We first consider the case when (R,m) is local, and apply Theorem 5.8 to
the case D = KR. Then we have f∗D = KX − ∆, and Hd

Z(OX(bKX −∆c)) =
Hd
Z(ωX(−d∆e)) is the Matlis dual of H0(X,OX(d∆e)). Hence the tight closure of

zero in ER(R/m) ∼= Hd
m(ωR) is described as

0∗Hdm(ωR) = Ker
(
Hd

m(ωR)→ Hd
Z(OX(bKX −∆c))

)
= AnnHdm(ωR)H

0(X,OX(d∆e)).

Therefore we have

τ(R) = AnnR(0∗Hdm(ωR)) = H0(X,OX(d∆e)),

by Theorem 1.8. This equality holds even when R is not local, because it is true
for all localizations at maximal ideals of R (cf. 5.3 (iii)).

5.10. Remark. (i) We have to assume in Theorem 5.9 that R is Q-Gorenstein, i.e.,
ω

(n)
R is locally free for some n ∈ N. But in fact, ω(n)

R need not be globally free.
(ii) When ωR ∼= R, the assertions in Theorems 5.2 and 5.9 exactly coincide with

each other via the identification ωR ∼= R.
(iii) The right-hand side of Theorem 5.9 is the multiplier ideal as in 4.2. From

this theorem we easily rediscover the equivalence of log terminal singularity and
F -regular type under the Q-Gorenstein property.

Corollary 5.11. Let R be a normal Q-Gorenstein finitely generated κ-algebra (or
its local ring) which is reduced from characteristic zero to characteristic p � 0, as
in 5.9. Then the test ideal τ(R) of R is integrally closed, and so τ(R) is tightly
closed.

Corollary 5.12. Let the situation be as in Theorem 5.9 and assume R = (R,m)
is a local ring of dimension d ≥ 2. Then:

(i) If SpecR \ {m} is F -regular, then Hd−1(X,ωX(b−∆c)) ∼= 0∗ER(R/m).

(ii) If R is Cohen–Macaulay, then

Hd−1(X,ωX(b−∆c)) ∼= Coker

( ⊕
htP=d−1

0∗ER(R/P ) → 0∗ER(R/m)

)
,

where the map 0∗ER(R/P ) → 0∗ER(R/m) is induced by the map ER(R/P )→ ER(R/m)
in the minimal injective resolution of the R-module ωR.

Proof. Since we are working in characteristic p � 0, we have Rif∗OX(d∆e) =
Rif∗ωX(d−f∗KRe) = 0 for i > 0 by the Kawamata–Viehweg vanishing theorem in
characteristic zero [KMM]. Then the similar argument as in the proof of Corollary
5.4 and Theorem 5.6 works.

5.13. Remark. In case (ii) of Corollary 5.12, we have shown that

Rf∗ωX(b−∆c) = RABS(ωR),

where ABS is the left exact functor defined in [HH1, 8.25].

6. The graded case

In this section we restrict ourselves to the case where R is an N-graded ring, and
reformulate the results in the previous section in terms of the graded structure.

We first interpret Corollary 5.4 in the graded case.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TIGHT CLOSURE AND TEST IDEALS 1901

6.1. Discussion. Let R =
⊕

n≥0Rn be a normal graded ring with dimR = d ≥ 2
over a field k = R0 of characteristic zero, and let m = R+ be the graded maximal
ideal. Let ϕ : Y = Proj(

⊕
n≥0R≥n) → SpecR be the blowing-up with respect to

the filtration of ideals R≥n =
⊕

m≥nRm ⊆ R (n = 0, 1, 2, . . . ). (We call Y the
graded blowing-up of SpecR.) Also let ψ : Ỹ → Y be a resolution of singularities
of Y . If SpecR \ {m} has only rational singularities, then Y also has only rational
singularities by [W1, Lemma 2.4]. So, by the Leray spectral sequence, we have

Hd−1(Ỹ ,OỸ ) = Hd−1(Y,OY ) = Hd
m(R)≥0,

where Hd
m(R)≥0 =

⊕
n≥0H

d
m(R)n is the nonnegative graded part of the graded R-

module Hd
m(R). Thus, Corollary 5.4 says that, after moving to reduction modulo

p� 0,

0∗Hdm(R) = Hd
m(R)≥0.

This is reformulated as follows.

Proposition 6.2 ([FW], [HS]). Let R =
⊕

n≥0Rn be a graded ring of dimR =
d ≥ 2 over a perfect field k = R0 of characteristic p > 0, and assume that SpecR
is F -rational off the vertex m = R+. Then the following conditions are equivalent:

(i) R is F -injective in negative degree, i.e., the Frobenius map acts injectively
on the negative graded part Hd

m(R)<0 of Hd
m(R).

(ii) 0∗Hdm(R) = Hd
m(R)≥0.

(iii) For every homogeneous system of parameters x1, . . . , xd of R, one has

(x1, . . . , xd)∗ = (x1, . . . , xd)lim +R≥δ,

where (x1, . . . , xd)lim is the “limit closure” of (x1, . . . , xd) as defined in [HS], and
δ =

∑d
i=1 deg xi.

(iv) τ(ωR) = AnnωR(0∗Hdm(R)) coincides with the positive graded part [ωR]>0 of
the canonical module ωR.

6.3. Remark. Huneke and Smith [HS] conjectured that condition (iii) in Proposition
6.2 holds true if R is a reduction modulo p � 0 of a graded ring of characteristic
zero (or, R has characteristic zero). They called this the “Vanishing Conjecture,”
and showed that it is related to the Kodaira vanishing theorem. As is mentioned in
6.1, the results in Section 5 gives an affirmative answer to the Vanishing Conjecture.
Here is another way to prove it, which we outline very briefly.

By [D], any normal graded ring R is represented by X = ProjR and an ample Q-
Cartier divisor D on X as R ∼= R(X,D) =

⊕
n≥0H

0(X,OX(nD))T n. In this man-
ner the top local cohomology is written as Hd

m(R) =
⊕

n∈ZH
d−1(X,OX(nD))T n.

Therefore, to check condition (i) of Proposition 6.2, we may prove that the induced
Frobenius map

F : Hd−1(X,OX(nD))→ Hd−1(X,OX(pnD))

is injective for all n < 0. If (X,D) is reduced from characteristic zero to character-
istic p� 0, this injectivity follows from the vanishing theorems of Akizuki–Nakano
and Serre by [Ha, Proposition 3.5] as in 4.6.

Next we reinterpret the test ideal in the graded case:
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Proposition 6.4. Let R =
⊕

n≥0Rn be a normal graded ring with dimR = d ≥ 2

over a perfect field k = R0 of characteristic p > 0. Assume that ω(r)
R
∼= R(b) for

some integers r > 0 and b ∈ Z. Also assume that SpecR is (strongly) F -regular off
the vertex m = R+. Then the following are equivalent:

(i) The Frobenius map F : Hd
m(ω(i)

R )n → Hd
m(ω(pi)

R )pn induced on the degree n

part of Hd
m(ω(i)

R ) is injective for all i = 0, . . . , r − 1 and n < −bi/r.
(ii) 0∗

Hdm(ω
(i)
R )

= Hd
m(ω(i)

R )≥−bi/r for all i = 0, . . . , r − 1.

In particular, if the above equivalent conditions hold, then

τ(R) = R>b/r.

Proof. First note that eR ⊗R Hd
m(ωR) ∼= Hd

m(ω(q)
R ) for each q = pe by [W2]. Then

the implication (ii) ⇒ (i) is obvious. For the converse implication, we fix an i with
0 ≤ i ≤ r − 1, and first show that 0∗

Hdm(ω
(i)
R )
⊇ Hd

m(ω(i)
R )≥−bi/r . Let ξ ∈ Hd

m(ω(i)
R )n

for n ≥ −bi/r. For a power q = pe, write qi = rs + j for integers s and j with
0 ≤ j ≤ r − 1. Then ξq ∈ Hd

m(ω(qi)
R )qn ∼= Hd

m(ω(j)
R )bs+qn, since ω(qi)

R
∼= ω

(j)
R (bs) as

graded R-modules. Since bs + qn > −b, it follows that
⋂
q=pe AnnR(ξq) contains⋂r−1

j=0 AnnR(Hd
m(ω(j)

R )>−b), which intersects R◦. This implies that ξ ∈ 0∗
Hdm(ω

(i)
R )

.

Now suppose condition (i) holds and let 0 6= ξ ∈ Hd
m(ω(i)

R )n for n < −bi/r. If we
write qi = rs+ j for 0 ≤ j ≤ r − 1 as above, then by the assumption we have that
0 6= ξq ∈ Hd

m(ω(qi)
R )qn ∼= Hd

m(ω(j)
R )bs+qn, where bs+ qn ≤ −q/r → −∞ as q → ∞.

For each q = pe, choose ce ∈ R◦ such that ceξq is a nonzero element of the socle of
Hd

m(ω(qi)
R ) ∼= Hd

m(ω(j)
R )(bs). Since the socles of Hd

m(R) = Hd
m(ω(0)

R ), . . . , Hd
m(ω(r−1)

R )
are finitely generated, they sit in degree ≥ n0 for some integer n0. Then deg ce ≥
n0 + q/r → ∞ as q = pe → ∞. This impies that ce is a test element of R if e
is sufficiently large, since the test ideal τ(R) is m-primary by Theorem 1.12 (i).
Hence it follows from ceξ

q 6= 0 that ξ /∈ 0∗fg
Hdm(ω

(i)
R )

= 0∗
Hdm(ω

(i)
R )

. Thus we have

0∗
Hdm(ω

(i)
R )
⊆ Hd

m(ω(i)
R )≥−bi/r, proving (i) ⇒ (ii).

The last assertion τ(R) = R>b/r is just a dual form of 0∗Hdm(ωR) = Hd
m(ωR)≥−b/r,

since Hd
m(ωR) ∼= ER(R/m).

6.5. Remark. (i) The injectivity of the Frobenius maps in (i) of the above theorem
can be proved in characteristic p� 0 as in 6.3. Hence in characteristic p� 0, the
test ideal of a graded ring R as in Theorem 6.4 is of the form τ(R) = R>b/r. This
implies that the multiplier ideal of such a ring is also described in this form.

(ii) In the situation of Proposition 6.4, the discrepancy of the unique exceptional
divisor of the graded blowing-up ϕ : Y → SpecR is −1 − b/r. When R is quasi-
Gorenstein (i.e., r = 1), b/r is nothing but the a-invariant a = a(R) of R, and the
description of the test ideal τ(R) = R≥a+1 is given in [HS].

(iii) The proof of Proposition 6.4 we presented above is a modification of the
original proof of Proposition 6.2 given by Fedder and Watanabe [FW]. Similarly,
we can prove Theorem 5.8 directly by modifying the proof of Theorem 5.2. The
advantage of this alternative proof is that we do not have to use cyclic covering (at
least apparently). But it is somewhat laborious, and we do not present it here. On
the other hand, when the index r is not divisible by p, 6.4 is directly reduced to 6.2
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by the canonical cover technique. This “second proof” of Proposition 6.4, which we
will see below, seems worth recording.

In the situation of 6.4, assume that r is not divisible by p, and let S =
⊕r−1

i=0 ω
(i)
R

be a canonical covering of R. Since R is strongly F -regular off the vertex, so is S,
too ([W2], see also [NW] for the case p|r). Taking into account the multiplicative
structure of S and the graded isomorphism ω

(r)
R
∼= R(b), we deduce that S also has

a structure of an N-graded ring given by Sn ∩ ω(i)
R = [ω(i)

R ]≥−bi/r for n ≥ 0 and
i = 0, . . . , r − 1, where ω(i)

R is considered to be the ith Zr-graded piece of S. Let
n = S+ =

⊕
n>0 Sn be the N-graded maximal ideal of S. Then we have

Hd
n(S)≥0 = Hd

m(S)≥0 =
r−1⊕
i=0

Hd
m(ω(i)

R )≥−bi/r.

Hence conditions (i) and (ii) of Proposition 6.4 respectively correspond to those in
Proposition 6.2 for S. (Here we need the assumption that r is not divisible by p,
to apply Proposition 3.7.)

6.6. Example. Let us consider the case when R = R(X,D) is a 2-dimensional
normal graded ring with ω

(r)
R
∼= R(b). Then X = ProjR is a smooth curve, and

r(KX + D′) − bD is a principal divisor, where D′ is the “fractional part” of the
Q-divisor D as defined in [W1]. In particular, b/r = deg(KX + D′)/ degD. Also,
the Frobenius map of Proposition 6.4 (i) is identified with the Frobenius

F : H1(X,OX(i(KX +D′) + nD))→ H1(X,OX(p(i(KX +D′) + nD))).

If n < −bi/r, then deg(i(KX +D′) + nD) < 0, so that by [HW, Theorem 2.3], the
above Frobenius map is injective if chark = p is greater than a certain bound given
explicitly by (X,D).

(i) Let X be a smooth curve of genus g ≥ 2 and characteristic p > 0, and let
D = rKX for an integer r ≥ 2. Then the geometric genus of R = R(X,D) is
pg(R) = g, which can take arbitrary integer values ≥ 2 as X varies. On the other
hand, we always have τ(R) = R>1/r = m.

(ii) Let X = P1
k, a smooth rational curve with chark = p, and let

D = (1/3n)(P1 + P2 + P3)

for a positive integer n and different points P1, P2, P3 ∈ X . Then R = R(X,D)
has a rational singularity, i.e., pg(R) = 0. Also assume that p > 3(n − 1). Then
R = R(X,D) is F -rational, i.e., τpar(R) = R and τ(ωR) = ωR. On the other hand,
the test ideal is τ(R) = R≥n.

Appendix: Proof of Theorem 1.9

In this appendix we prove Theorem 1.9 according to the method of MacCrimmon
[Mc] and Williams [Wi]. First, we recall

Theorem 1.9. Let (R,m) be a d-dimensional excellent normal local ring of char-
acteristic p > 0 and let J ⊆ R be a divisorial ideal such that the divisor class
cl(J) ∈ Cl(R) has a finite order. Then 0∗Hdm(J) = 0∗fg

Hdm(J)
.

To prove this theorem, we borrow some notation and preliminary results (with
slight modification) from [Mc] and [Wi].
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A.1. Notation. Let R be a Noetherian ring and M an R-module. For a sequence
of elements x = x1, . . . , xd of R and a positive integer t, we write xt = xt1, . . . , x

t
d,

and denote the kernel of the map Hd(x;M) → Hd(xt;M) induced for the Koszul
cohomologies by

K(x, t,M) := Ker
(

M

(x)M
(x1···xd)t−1

−−−−−−−→ M

(xt)M

)
.

We also write

K(x,∞,M) =
⋃
t∈N
K(x, t,M).

Theorem A.2 (Williams [Wi]). Let (R,m) be a d-dimensional normal local ring
of characteristic p > 0, and let J ⊆ R be a divisorial ideal. Let x = x1, . . . , xd be
a system of parameters of R. Suppose that there exist an element c ∈ R◦ and an
integer t0 ≥ 2 such that

cK(xqs,∞, J [q]) ⊆ K(xqs, t0, J [q])

for all s ≥ 1 and q = pe � 0. Then 0∗Hdm(J) = 0∗fg
Hdm(J)

.

Proof. Let ζ ∈ 0∗Hdm(J), i.e., there exists d ∈ R◦ such that dζq = 0 ∈ eR ⊗R Hd
m(J)

for q = pe � 0. Since Hd
m(J) ∼= lim

−→
J/(xt)J , ζ ∈ Hd

m(J) is represented by z mod

(xs) ∈ J/(xs)J for some z ∈ J and s ≥ 1. Without loss of generality, we may
replace x by xs and assume s = 1:

ζ = class of z mod (x)J ∈ Hd
m(J) = lim

−→

J

(xt)J
.

Now, the natural map eR⊗R (J/(xt)J)→ J · eR/(xt)J · eR = J [q]/(xqt)J [q] induces
a map

eR⊗R Hd
m(J)→ lim

−→

J [q]

(xqt)J [q]
,

which sends ζq to the class of zq mod (xq)J [q] ∈ J [q]/(xq)J [q]. So, for q = pe � 0,
the class of dzq mod (xq)J [q] in lim

−→
J [q]/(xqt)J [q] is zero, whence

dzq ∈ K(xq,∞, J [q]).

By our assumption, this implies that

cdzq ∈ K(xq, t0, J [q]) = Ker
(

J [q]

(xq)J [q]

(x1···xd)q(t0−1)

−−−−−−−−−−→ J [q]

(xqt0)J [q]

)
.

Hence one has

cdzq(x1 · · ·xd)q(t0−1) ∈ (xqt0)J [q] = ((xt0)J)[q]

for all q = pe � 0. Thus z(x1 · · ·xd)t0−1 ∈ ((xt0)J)∗, from which it follows that

ζ = class of z(x1 · · ·xd)t0−1 mod (xt0)J ∈ 0∗fg
Hdm(J)

.
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Lemma A.3 (cf. [Mc]). Suppose we are given an exact sequence of finitely gener-
ated R-modules 0→ A→ B → C → 0 satisfying the following condition: There ex-
ist c1, c2 ∈ R◦ and t1, t2 ≥ 1 such that c1 ·Image(Hd−1(xt;C)→ Hd−1(xt+t1 ;C)) =
0 for all t ≥ 1, and that c2K(x,∞, B) ⊆ K(x, t2, B). Then

c1c2K(x,∞, A) ⊆ K(x, t1 + t2, A).

Lemma A.4 ([Wi, Lemma 4.3]). Let R be a normal domain, J ⊆ R a divisorial
ideal, and let x1 ∈ J . Then there exist an element x2 ∈ R which is not in any
minimal prime divisor of x1 and c ∈ J such that xn2J

(n) ⊆ cnR for all n > 0.

Proof of Theorem 1.9. Let r > 0 be the order of cl(J) ∈ Cl(R), and let J (r) = x1R.
By Lemma A.4, there exist x2 ∈ R and 0 6= c ∈ J such that xn2J (n) ⊆ cnR for all
n > 0, and x1, x2 extends to a system of parameters x = x1, x2, . . . , xd of R.

Now, given any power q = pe, write q = kr + i for integers k and i with 0 ≤ i ≤
r − 1. Then we have

crxq2J
(kr) ⊆ crxkr2 J (kr) ⊆ cr+krR ⊆ cqR ⊆ J [q].

Since xq1 ∈ J [q], this implies cr(x1 · · ·xi−1xi+1 · · ·xd)qsJ (kr) ⊆ J [q] for s ≥ 1 and
1 ≤ i ≤ d. Therefore, letting c1 = cr, we have

c1 · Image(Hd−1(xqst; J (kr)/J [q])→ Hd−1(xqst+qs; J (kr)/J [q])) = 0

for all s, t ≥ 1. On the other hand, let c2 ∈ R◦ be a test element of R, which does
exist by Theorem 1.12. If z ∈ R is an element such that z mod (xqs) ∈ K(xqs,∞, R),
then z ∈ (xqst1 , . . . , xqstd ) : (x1 · · ·xd)qs(t−1) for some t ≥ 1, so z ∈ (xqs1 , . . . , x

qs
d )∗

by colon capturing [HH1]. This implies that

c2K(xqs,∞, J (kr)) ∼= c2K(xqs,∞, R) = 0.

Thus, applying Lemma A.3 to the exact sequence

0→ J [q] → J (kr) → J (kr)/J [q] → 0,

we see that

c1c2K(xqs,∞, J [q]) ⊆ K(xqs, 2, J [q])

for all s ≥ 1 and q = pe. Thanks to Theorem A.2, the proof is complete.
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