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GEOMETRIC ISOMORPHISM AND MINIMUM ABERRATION FOR
FACTORIAL DESIGNS WITH QUANTITATIVE FACTORS

BY SHAO-WEI CHENG1 AND KENNY Q. YE2

Academia Sinica and Albert Einstein College of Medicine

Factorial designs have broad applications in agricultural, engineering
and scientific studies. In constructing and studying properties of factorial
designs, traditional design theory treats all factors as nominal. However,
this is not appropriate for experiments that involve quantitative factors. For
designs with quantitative factors, level permutation of one or more factors
in a design matrix could result in different geometric structures, and, thus,
different design properties. In this paper indicator functions are introduced
to represent factorial designs. A polynomial form of indicator functions is
used to characterize the geometric structure of those designs.Geometric
isomorphism is defined for classifying designs with quantitative factors.
Based on indicator functions, a new aberration criteria is proposed and some
minimum aberration designs are presented.

1. Introduction. Factorial designs are commonly used in most industrial and
scientific studies. In such a study, a number of fixed levels (settings) are selected
for each factor (variable), and then some level combinations are chosen to be
the runs in an experiment. A factor can be either nominal or quantitative. For
nominal factors, there is no ordering among levels. The interest of analysis of
an experiment with nominal factors is to understand if there exist differences
in treatment means and if they exist, which treatment means differ. Analysis
such as ANOVA or various multiple comparison testing procedures is often
used for treatment comparison. In many studies, especially in response surface
exploration, factors are often quantitative and there exists an order among levels.
For an experiment with quantitative factors, the objective is usually achieved
through fitting a (polynomial) model thatcan “well” describe the relationship
between the response and the factors. The distinction in the analysis objective and
strategy for these two types of experiments requires different selection criteria and
classification methods.

For designs with nominal factors, the design properties should be invariant to
level permutation within one or more of its factors. However, for quantitative
factors, Cheng and Wu (2001) observed that level permutation of 34−1 designs
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TABLE 1
Combinatorially isomorphic designs
with different geometric structures

A B C A B C

0 0 0 0 0 0
0 1 2 0 1 1
0 2 1 0 2 2
1 0 2 1 0 1
1 1 1 1 1 2
1 2 0 1 2 0
2 0 1 2 0 2
2 1 0 2 1 0
2 2 2 2 2 1

could result in changes in model efficiency when a polynomial model is fitted,
which is referred to as “model nonisomorphism.” Independently, Ye (1999) also
observed that level permutation could alter the aliasing structure of designs when
linear-quadratic decomposition [see Wu and Hamada (2000), Section 5.6] is used.
As shown in the following example, such “model nonisomorphism” is, indeed,
the result of different geometric structures induced by permuting levels of factors.
Consider the two 33−1 designs in Table 1. In the table each design is written
as a design matrix in which each column represents a factor and each row
represents an experimental run. These designs arecombinatorially isomorphic
since one is obtained by applying the permutation{0,1,2} → {0,2,1} on the
third column of the other. However, if we treat these levels as quantitative, their
geometric structures are apparently different as shown in Figure 1. The difference

FIG. 1. Combinatorially isomorphic but geometrically nonisomorphic designs.
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in geometric structure also reflects on the model efficiency. For example, when a
model that contains all linear main effects and three linear-by-linear interactions is
considered, the design on the left-hand side has higherD-efficiency than the one
on the right-hand side.

The conventional mathematical tools used for factorial designs, such as group
theory and coding theory, treat all factors as nominal. Therefore, they do not
differentiate geometric structures resulting from level permutations and fail to
study the design properties associated with its geometric structure.

A new approach for characterizing designs with quantitative factors is devel-
oped in this paper. When allk factors in a factorial design are quantitative, it can
be viewed as a collection of points inRk . This collection of points is represented
by an indicator function, which will be defined in Section 2. The indicator func-
tion can be written in a polynomial form whichreveals the design’s properties and
characterizes its geometric structure. Thus, classification and design criteria are
developed based on the indicator functions. This approach is motivated by Pistone
and Wynn (1996), which first used polynomial systems to describe designs and
studied their properties using algebraic geometry methods. In this paper properties
of designs with quantitative factors arestudied. Section 2 introduces the indicator
function as a mathematical tool for examining the geometric structures of designs.
In Section 3 geometric isomorphism is defined for the classification of factorial
designs. Section 4 proposes a new aberration criterion for factorial designs with
quantitative factors. Some remarks are given in Section 5.

In the remainder of this section we will introduce some notation and terminol-
ogy. LetD be the OA(N, s1s2 . . . sk), which is a full factorial design withk factors
andN design points, whereN = s1s2 . . . sk. Unless specified, the levels ofith fac-
tor are set atGi = {0,1, . . . , si − 1} ⊂ R for each factor, which are evenly spaced.
Therefore,D is a set ofN points inR

k . A k-factor factorial designA is said to
be in adesign space D if its design points are all inD , that is,∀x ∈ A, x ∈ D .
A design point inD may appear more than once inA. Throughout this paper,∑

x∈A f (x) sums the functionf over all design points inA; that is, if x appears
multiple times,f (x) is summed over multiple times.

For each factorXi , define a set of orthogonal contrastsCi
0(x),Ci

1(x), . . . ,

Ci
si−1(x) such that

∑
x∈{0,1,...,si−1}

Ci
u(x)Ci

v(x) =
{

0, if u �= v,
si, if u = v.

(1.1)

Let T = G1 × · · ·× Gk. An orthonormal contrast basis (OCB) onD is defined as

Ct(x) =
k∏

i=1

Ci
ti
(xi)(1.2)

for t = (t1, t2, . . . , tk) ∈ T andx = (x1, x2, . . . , xk) ∈ D . It is obvious that∑
x∈D

Ct(x)Cu(x) =
{

0, if t �= u,
N, if t = u,

(1.3)
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wheret,u are elements in the setT . In statistical analysis,Ci
0(x) = 1 is often

adopted to represent a constant term. Therefore, we call{Ct(x)} with Ci
0 = 1 for

all i astatistical orthonormal contrast basis (SOCB). WhenCi
j (x) is a polynomial

of degreej for j = 0,1, . . . , si − 1 andi = 1,2, . . . , k, the SOCB is called an
orthogonal polynomial basis (OPB) [Draper and Smith (1998), Chapter 22]. Note
that an OPB is an SOCB, and an SOCB is an OCB.

We define two norms onT . Let ‖t‖0 be the number of nonzero elements int
and let

‖t‖1 =
k∑

i=1

ti .

For a contrastCt in an SOCB,‖t‖0 is the number of factors it involves. If the
SOCB is also an OPB,‖t‖1 gives its polynomial degree. Two contrastsCt and
Cu in an SOCB are said to bedisjoint if they have no common factors, that is,
max1≤i≤k min(ti , ui) = 0.

2. Indicator functions. Indicator functions are presented in Fontana, Pistone
and Rogantin (2000) for studying two-level fractional factorial designs (without
replicates). Ye (2003) generalizes to accommodate replicates. In this section the
definition is extended further to general factorial designs.

DEFINITION 2.1. LetA be a design in the design spaceD . The indicator
functionFA(x) of A is a function defined onD , such that forx ∈ D , the value of
FA(x) is the number of appearances of pointx in designA.

The following proposition followsimmediately from the definition.

PROPOSITION 2.1. Let A1, . . . ,Am be factorial designs of the same design
space D and FAi

(x), i = 1, . . . ,m, be their corresponding indicator functions.
Let B be the combined design (design points are repeatable in B) of A1, . . . ,Am.
Then the indicator function of B is

FB(x) =
m∑

i=1

FAi
(x).

Since a design is uniquely represented by its indicator function, the indicator
function carries all properties of this design. Some of these properties are revealed
when indicator functions are expanded with respect to an OCB.

THEOREM 2.1. Let A be a factorial design with n runs. Let D be the design
space of A, and {Ct(x), t ∈ T } be an OCB defined on D . The indicator function
of A can be represented as a linear combination of Cts as follows:

FA(x) = ∑
t∈T

btCt(x),(2.1)
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for all x ∈ D . The coefficients {bt, t ∈ T } are uniquely determined as

bt = 1

N

∑
x∈A

Ct(x).(2.2)

And, in particular, for an SOCB, b0 = n/N , where 0 = (0,0, . . . ,0).

PROOF. The indicator functionFA(x) is defined onD andFA(D) can be
viewed as a vector inRN . Since the{Ct(D), t ∈ T } forms a basis ofRN ,
FA(D) can be represented as a linear combination of{Ct(D)}. Equivalently,
(2.1) is true. For the coefficientsbts,∑

x∈A

Ct(x) = ∑
x∈D

FA(x)Ct(x) = ∑
x∈D

∑
s∈T

bsCs(x)Ct(x)

= ∑
s∈T

bs
∑
x∈D

Cs(x)Ct(x) = Nbt.

The proof is complete. �

Note that the theorem does not depend on level settings and choice ofCi
j (x),

as long as (1.1) is satisfied and{Ct} is defined as in (1.2). In the functional space
generated by linear combinations of{Ct}, the indicator function of a design has a
unique representation, that is, there is a one-to-one relation between a factorial
design and itsbt values. This is an extension of a similar result on two-level
designs presented in Ye (2003). When{Ct} is an OPB, an indicator function can
be uniquely represented as a polynomial of degree no more than

∏k
i=1(si − 1).

A projected design has the same number of runs as the original design but is in
a reduced design space with only a subset of the original factors. Given a design’s
polynomial representation in the form of (2.1), the polynomial representations of
its projected designs are easily available, as shown in the following corollary.

COROLLARY 2.1. Let A be a factorial design in design space D and
FA(x) = ∑

t∈T btCt(x) be its indicator function. Without loss of generality, let
B be its projection to factors X1, . . . ,Xl . If {Ct} is an SOCB, the indicator function
of B is then

FB(x1, . . . , xl) = N2
∑
t∈T1

btCt,(2.3)

where

N2 =
k∏

i=l+1

si and T1 = {t|tl+1 = · · · = tk = 0}.
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PROOF. From (2.2),bt = 1/N
∑

x∈A Ct(x). The coefficient ofCt(x) in FB(x)

is then 1/N1
∑

x∈B Ct(x), whereN1 = ∏l
i=1 si . Equation (2.3) follows. �

The coefficientsbt also relate to the orthogonality of a design. This can be
shown in the following corollary which follows immediately from (1.2) and (2.2).

COROLLARY 2.2. Let {Ct(x), t ∈ T } be an SOCB. For disjoint Cu and Cv,

bu+v = 1

N

∑
x∈A

Cu(x)Cv(x).

Furthermore, the correlation of Cu and Cv in A is bu+v/b0.

Let Cu(x) andCv(x) be two disjoint contrasts. From Corollary 2.2, the two
contrasts are zero correlated on designA if and only if bu+v = 0. As a special case,
bt = 0 implies that the contrastCt(x) has zero correlation with the constant term
on designA. In general, a smallerbt implies a lesser degree of aliasing between
effects and, therefore,bt can be used as a measurement of aliasing between effects.
Various statistical properties of designs can be studied through thebt’s. More
results will be shown in Sections 3 and 4.

EXAMPLE 2.1. Consider the case of three-level factorial designs with
k factors. The design spaceD is a collection of 3k points:{(d1, . . . , dk), di = 0,

1,2, i = 1, . . . , k}. From Definition 2.1, anyk-factor three-level factorial design
can be represented by an indicator function defined onD . The orthonormal
polynomials for a three-level factor are

C0(x) = 1, C1(x) =
√

3
2(x − 1) and C2(x) = √

2
(3

2(x − 1)2 − 1
)
.

Note that(C1(0),C1(1),C1(2)) = (−√
3/2,0,

√
3/2) and(C2(0),C2(1),C2(2))=

(1/
√

2,−√
2,1/

√
2) are proportional to the linear and quadratic contrasts,

respectively, as defined in Wu and Hamada [(2000), Section 5.6]. Thus,{Ct(x),

t ∈ T }, whereT is the vector space{0,1,2}k, is an OPB for the functional space
of D . By Theorem 2.1, an indicator function can be written as a linear combination
of Ct(x)’s with coefficients

bt = 1

3k

∑
x∈A

Ct(x)

and, in particular,b0 = n/3k . The coefficientsbt contain information about aliasing
between effects. For the design on the right-hand side of Table 1, which is also
shown on the right-hand side of Figure 1, its indicator function is

F(x) = 1
3C000(x) −

√
6

12 C111(x) −
√

2
12 C112(x) +

√
2

12 C121(x) +
√

2
12 C211(x)

(2.4)
−

√
6

12 C122(x) −
√

6
12 C212(x) +

√
6

12 C221(x) +
√

2
12 C222(x),
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where

Ci1i2i3(x) = Ci1(x1)Ci2(x2)Ci3(x3).

For the design on the left-hand side, its indicator function is

F(x) = 1
3C000(x) +

√
2

6 C112(x) +
√

2
6 C121(x) +

√
2

6 C211(x) −
√

2
6 C222(x).(2.5)

In (2.5), b111 = 0 implies that the linear-by-linear interactions are orthogonal to
linear main effects in the design. For the other design, they are not orthogonal since

b111 =
√

6
12 in (2.4). This is consistent with the higherD-efficiency of the former

design when a model with all linear main effects and linear-by-linear interactions
is considered.

3. Geometric isomorphism. When factors are all nominal in a factorial
design, new design matrices obtained through level permutations in one or more
factors are considered to be isomorphic to the original design. This is referred
to as the combinatorial isomorphism. As shown in Section 1, when factors
are quantitative, level permutations generate designs with different geometric
structures and, thus, different design properties. Cheng and Wu (2001) observed
differences inD-efficiency of these designs and proposed model isomorphism for
classification. However, such classification depends ona priori specified models.
Designs that have the same efficiencies with respect to a given model might have
different efficiencies with respect to another model. A classification with respect
to a certain model can be no longer useful when a different model is considered.
For consistency, a better classification method should be based on the geometric
structures, which are fundamental to design properties and do not depend on the
choice of the models.

From a geometric viewpoint, a geometric object remains the same structure
when rotating and/or reflecting with respect to a super-plane. In the context of a
factorial design, only rotations and reflections, after which the resulting designs
are still in the design spaceD , should be considered. Rotating then corresponds
to variable exchange and reflecting corresponds to reversing order of the levels.
Therefore, we definegeometric isomorphism of two designs as follows.

DEFINITION 3.1. LetA andB be two factorial designs from the same design
spaceD . DesignsA andB are said to be geometrically isomorphic if one can be
obtained from the other by variable exchange and/or reversing the level order of
one or more factors.

One can differentiate geometrically nonisomorphic designs by comparing
their indicator functions. LetFA(x1, . . . , xk) be the indicator function of design
A and A1 be the design obtained by reversing the level order of factorX1
in A. The indicator function ofA1 is FA(2d − x1, x2, . . . , xk), whered is the
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center of the levels. LetA2 be the design obtained by exchanging factorX1 with
factorX2 in A. Then its indicator function isFA(x2, x1, . . . , xk). If the indicator
functions of two designs are the same after a series of such operations, then they
are geometrically isomorphic.

Geometric isomorphism of two designs can be more easily examined when
indicator functions are expanded to polynomial form with respect to an OPB.
Theorem 3.1 implies that if two designs are geometrically isomorphic, the absolute
values of their coefficientsbt must show the same frequency patterns.

THEOREM 3.1. Let A and B be two factorial designs of the design space D ,
and {Ct(x)} be an OPB defined on D . Let FA(x) = ∑

btCt(x) and FB(x) =∑
b′

tCt(x) be the indicator functions of A and B, respectively. Designs A and
B are geometrically isomorphic if and only if there exist a permutation (i1i2 . . . ik)

and a vector (j1j2 . . . jk), where jl’s are either 0 or 1, such that

bt1t2...tk =
(

k∏
l=1

(−1)jl til

)
b′
ti1ti2...tik

(3.1)

for all t = (t1t2 . . . tk) ∈ T .

PROOF. Using the three-term recursive equation given in Kennedy and Gentle
[(1980), pages 343 and 344] for constructing orthogonal polynomials, it is easy
to show that the orthogonal polynomial contrastsCj (x) of a factor satisfy the
following condition:

Cj(x) =
{−Cj (2d − x), if j odd,

Cj(2d − x), if j even.
(3.2)

If A andB are geometrically isomorphic, then by definitionA must be obtained
from B by variable exchange and/or reversal of levels. Let the variable exchange
be xl → xil , and letjl = 1 if the levels of factorxl are reversed,jl = 0 if not.
Hence, (3.1) is truly based on (2.2) and (3.2). Conversely, if (3.1) is true,B can be
obtained fromA by the variable exchangexl → xil and the level reverses on the
factors withjl = 1. Therefore,A andB are geometrically isomorphic.�

Note that from the proof Theorem 3.1, it holds for any basis such that (3.2)
is satisfied. From the theorem, one can immediately show that (2.4) and (2.5)
represent two geometrically nonisomorphic designs as their coefficients show
different frequency patterns. In general, with a proper choice of{Ct(x)}, two
designs are geometrically isomorphic if and only if their indicator functions have
the same coefficientsbt after a certain type of permutation and sign reversal.
Otherwise, if two designs have different geometric structures, their coefficients
must show different frequency patterns.
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EXAMPLE 3.1. TheL18 array (shown in Table 2) is one of the most popular
designs among industrial experimenters. It has one two-level factor and seven
three-level factors. For the moment, we only consider the three-level factors.
Wang and Wu (1995) studied the projected design ofL18 and reported three
combinatorially nonisomorphic cases for 3-factor projections (denoted as 18-3.1,
18-3.2 and 18-3.3) and four combinatorially nonisomorphic cases for 4-factor
projections (denoted as 18-4.1, 18-4.2, 18-4.3, 18-4.4). As shown earlier in this
paper, level permutation in a design may create designs with different geometric
structures. There are a total of six permutations among three levels, that is,

{0,1,2} → {0,1,2}, {0,1,2} → {0,2,1}, {0,1,2} → {1,0,2},
{0,1,2} → {1,2,0}, {0,1,2} → {2,0,1} and {0,1,2} → {2,1,0}.

The six permutations can be divided into three pairs as shown in Table 3. Within
each pair, one permutation is the reverse of the other, hence, only one is needed
in generating geometrically nonisomorphic designs. For each combinatorially
nonisomorphic case, permutations are applied to each column to search for
all geometrically nonisomorphic cases. For three-factor projections, there are
two, four and two geometrically nonisomorphic cases within 18-3.1, 18-3.2
and 18-3.3, respectively. Cheng and Wu (2001) reported the same number of
model nonisomorphic cases for 18-3.1 and 18-3.2 but did not report model
nonisomorphic cases for 18-3.3. For four-factor projection, there are four, ten,

TABLE 2
L18 orthogonal array

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1
0 0 2 2 2 2 2 2
0 1 0 0 1 1 2 2
0 1 1 1 2 2 0 0
0 1 2 2 0 0 1 1
0 2 0 1 0 2 1 2
0 2 1 2 1 0 2 0
0 2 2 0 2 1 0 1
1 0 0 2 2 1 1 0
1 0 1 0 0 2 2 1
1 0 2 1 1 0 0 2
1 1 0 1 2 0 2 1
1 1 1 2 0 1 0 2
1 1 2 0 1 2 1 0
1 2 0 2 1 2 0 1
1 2 1 0 2 0 1 2
1 2 2 1 0 1 2 0
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TABLE 3
Six permutations

of three levels

I u u2

0 1 2
1 2 0
2 0 1
� � �

2 1 0
1 0 2
0 2 1

three and four geometrically nonisomorphic cases in 18.4-1, 18.4-2, 18-4.3 and 18-
4.4, respectively. Cheng and Wu (2001) only reported four model nonisomorphic
cases for 18-4.2 and none for the other three. A complete list of these geometrically
nonisomorphic projected designs is given in the Appendix.

4. Aberration criterion. A popular criteria for factorial designs is minimum
aberration. The original definition of minimum aberration based on group theory
applies to regularpm−n fractional factorial designs [Fries and Hunter (1980)].
Recently, Xu and Wu (2001) proposed an aberration criterion based on coding
theory for general factorial designs. It reduces to the traditional aberration criterion
for regularpm−n designs, and theG2 aberration criteria [Tang and Deng (1999)]
for general two-level factorial designs. A statistical justification is given by Xu and
Wu (2001) to relate the criterion with ANOVA. From this relation, it can be easily
seen that their aberration criterion can be redefined using the indicator functions
as follows.

DEFINITION 4.1. LetA be ann × k factorial design of design spaceD . Let
FA(x) = ∑

t∈T btCt(x) be its indicator function, where{Ct} is an SOCB. The
generalized wordlength pattern (α1(A), . . . , αk(A)) of designA is defined as

αi(A) = ∑
‖t‖0=i

(
bt

b0

)2

.(4.1)

The generalized minimum aberration criterion is to sequentially minimizeαi(A)

for i = 1,2, . . . , k. The resolution ofA equals the smallestr such thatαr > 0.

From Corollary 2.2,(bt/b0)
2 is a measurement that reflects the severity

of aliasing between the effectCt and the general mean. Therefore, in (4.1),
αi measures the overall aliasing between alli-factor effects and the general mean.
A smallerαi indicates a lesser degree of aliasing between thei-factor effects and
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the overall mean. Therefore, theαi ’s are to be minimized sequentially. Note that
the definition implicitly assumes alli-factor effects are equally important, which is
only suitable for nominal factors (see later discussion on the hierarchical ordering
principle). The above definition is a natural generalization of the definition of the
aberration criterion for two-level factorial designs given in Ye (2003). Xu and Wu
(2001) showed thatA is an orthogonal array of strengtht if and only if αi(A) = 0
for 1 ≤ i ≤ t . From the definition, the if and only if condition can be stated in the
language of indicator function as follows:bt = 0 for all t’s such that 1≤ ‖t‖0 ≤ t .
For example, the coefficientsbt in indicator functions (2.4) and (2.5) are zero for
all t such that 1≤ ‖t‖0 ≤ 2. Therefore, they are orthogonal arrays of strength two.
This aberration criterion is invariant to level permutation as well as the choice of
contrasts. While these features are desirable when all factors are nominal, it is
not quite desirable when factors are quantitative. An immediate problem is that
this aberration criterion completely fails to distinguish and rank combinatorially
isomorphic but geometrically nonisomorphic designs, for example, the two designs
in Table 1.

An important assumption behind aberration criteria is thehierarchical ordering
principle [Wu and Hamada (2000), Section 3.5]: (i) low-order effects are more
likely to be important than high-order effects, and (ii) effects of the same order
are equally likely to be important. The principle can be applied to nominal and
quantitative factors. However, the effect orders for the two types of factors should
be different. For nominal factors, the objective of analysis is treatment comparison.
Therefore, alli-factor effects are regarded as equally important andi-factor effects
are more important thanj -factor effects fori < j . The effect order is decided by
the number of factors that are related to the corresponding contrastCt, that is, the
value of‖t‖0. Therefore, in (4.1), the overall aliasing is measured by taking the
sum over thoset’s with the same‖t‖0 value. For experiments with quantitative
factors, polynomial models are often utilized to approximate the response. In this
case, effects of higher polynomial degree are regarded as less important than
effects of lower polynomial degree. Therefore, the order of effect importance
should be arranged according to polynomial degrees. Recall that in an OPB,Cj (x)

is a polynomial of degreej andCt(x) is a polynomial of degree‖t‖1. In this case,
the order of effect importance can be defined according to the values of‖t‖1. For
example, for quantitative three-level factors, the order of effect importance is as
follows:

l >> q == ll >> lq == ql == lll
(4.2)

>> qq == llq == lql == qll == llll >> · · · ,
where>> is read as “more important than” and== as “as important as,” and
l andq indicate linear and quadratic main effects, respectively,ll linear-by-linear
interaction, etc. Such ordering is consistent with the response surface methodology
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in which, based on a rationale from Taylor’s series expansion, effects of the same
degree are sequentially added to the model starting from the lowest degree.

Consider the two designs in Table 1. When all factors are quantitative and
OPB is used, the contrasts in equations (2.4) and (2.5) follow the linear-quadratic
decomposition and have clear interpretation in terms of fitting polynomial models.
As mentioned previously, in (2.5),b111 = 0 implies that thelll interactions have
zero correlation with the constant term, and thell interactions between any
two factors have zero correlation with the linear main effect of the third factor.
However, the design of (2.4) does not have this nice property sinceb111 =

√
6

12 ;
hence, thelll interaction is (partially) aliased with the constant term, similar with
the linear main effects andll interactions. In Xu and Wu (2001),b111 is considered
as important asb112, . . . , b222 and are summed up together inα3. This is not quite
appropriate if a polynomial model is to be fitted andlll interactions are regarded as
more important than all other three-way interactions as in (4.2). Therefore, when
all factors are quantitative with polynomial models as our point of interest, the
following aberration and resolution criteria are proposed.

DEFINITION 4.2. LetA be ann× k factorial design with quantitative factors,
and let{Ct} be an OPB. LetFA(x) = ∑

t∈T btCt(x) be the indicator function ofA.
The generalized wordlength pattern(β1(A), . . . , βK(A)) is defined as

βi(A) = ∑
‖t‖1=i

(
bt

b0

)2

.(4.3)

The generalized minimum aberration criterion is to sequentially minimizeβi for
i = 1,2, . . . ,K , where

K =
k∑

i=1

(si − 1)

is the highest possible degree in the decomposition. The resolution ofA is defined
to be the smallestr such thatβr > 0.

In the rest of this paper we refer to the word length pattern given in
Definition 4.1 as theα wordlength pattern, and the wordlength pattern in the
above definition as theβ wordlength pattern. It is probably more appropriate
to call the new aberration and resolution criteria “polynomial degree” aberration
and resolution. For three-level designs, (4.3) counts the overall aliasing between
the general mean and effects that are of the same importance in (4.2). Based
on the above definition, the wordlength patterns of the two designs in (2.4) and
(2.5) are(0,0, 3

8, 3
8, 9

8, 1
8) and(0,0,0, 3

2,0, 1
2), respectively. The latter one has less

aberration and higher resolution and is favored.
Two contrasts,Ct(x) and Cu(x) ∈ T , are treated as equally important if

and only if ‖t‖1 = ‖u‖1. Therefore, by Theorem 3.1, we can easily show that
geometrically isomorphic designs have identicalβ wordlength patterns.
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COROLLARY 4.1. Let A and B be two geometrically isomorphic designs in
design space D . Then their β wordlength patterns are identical.

PROOF. Let the indicator functions of two designs beFA = ∑
btCt(x) and

FB = ∑
b′

tCt(x). By Theorem 3.1, there must be a permutation(i1i2 . . . ik) such
that (bt1t2...tk )

2 = (b′
ti1ti2...tik

)2 for all t = (t1t2 . . . tk) ∈ T . For eacht, denote its

corresponding permutation ast′. Since‖t‖1 = ‖t′‖1, βj(A) andβj(B) sum over
the same values, and hence, are identical.�

By Corollary 4.1, two designs with differentβ wordlength patterns must be
geometrically nonisomorphic.

The only distinction between Definitions 4.1 and 4.2 are the norms oft used
in (4.1) and (4.3), which reflect the difference in ordering effects for nominal and
quantitative factors. For a given design, the sum of itsαi ’s is the same as the sum
of its βi ’s. The following theorem shows that this sum is a constant for designs that
have the same run sizes and replication patterns.

THEOREM 4.1. Let A be an n× k factorial design in the design space D . Let
FA(x) = ∑

t∈T btCt(x) be the indicator function of A. Then

∑
t∈T

(
bt

b0

)2

= n2N

n2
,(4.4)

where

n2 = ∑
x∈D

F 2
A(x) and N = s1 . . . sk.

For designs with no replicates, n2 = n.

PROOF.

∑
x∈D

F 2
A(x) = ∑

x∈D

(∑
t∈T

btCt

)2

= ∑
x∈D

∑
t1,t2∈T

bt1bt2Ct1(x)Ct2(x)

= ∑
t1,t2∈T

bt1bt2

∑
x∈D

Ct1(x)Ct2(x) = N
∑
t∈T

b2
t .

From Theorem 2.1,b0 = n/N . Hence, (4.4) is obtained. For designs with no
replicates,F 2

A(x) = FA(x), hencen2 = n. �

A special case of the above theorem is a well-known result for regular fractional
factorialpk−m designs, in which the sum of their wordlength pattern vector equals
pm − 1. The theorem shows that it holds for bothα andβ wordlength patterns.
The theorem also shows that the sum of wordlength pattern vectors is larger for
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TABLE 4
Minimum aberration projections of L18 with only three-level factors

# of factors Columns (β3,β4,β5) Resolution

3 1u2 2 5 (0, 0.125, 0.75) IV
4 1u2 2u2 3u2 5 (0, 1.875, 0) IV
5 1u2 2u2 3u2 4 5 (0, 6.0625, 0) IV
6 2u 3u 4u 5 6 7 (0.75, 6.9375, 6.75) III
7 1u 2u 3u 4u 5 6 7 (1.5, 14.625, 12) III

designs with higher degrees of replication asn2 is larger in (4.4). Therefore, they
tend to have higher aberration than those with less replicates.

Note that for two-level designs, bothα andβ wordlength patterns reduce to
the same generalized wordlength pattern by Tang and Deng (1999) and Ye (2003).
However, if the factors have more than two levels, these two wordlength patterns
often give different minimum aberration designs. One should choose from them
based on the nature of the factors, nominal or quantitative.

EXAMPLE 4.1. When less than seven three-level factors are considered in
an experiment, it would be of interest to know which columns in theL18 array
are the best to be assigned to those factors. To find the minimum aberration
projections of theL18 array, an exhaustive search over all possible projections was
performed, and three-level permutations were applied to each column. Tables 4 and
5 list theβ minimum aberration projected designs with and without the two-level
factors, respectively. In the tables,u denotes the permutation{0,1,2} → {1,2,0};
u2 denotes the permutation{0,1,2} → {2,0,1}. For example, the best projection
with three 3-level factors is columns 1u2, 2 and 5, where 1u2 means permutation
u2 applies to column 1 in Table 2. It should be mentioned that, with exception
of one trivial case in which the full factorial design is the only nonisomorphic
design, none of the designs in Tables 4 and 5 is combinatorially isomorphic to the
minimum aberration designs given by Xu and Wu (2001).

TABLE 5
Minimum aberration projections of L18 with the two-level factors

# of factors Columns (β3,β4,β5) Resolution

3 0 1 2 (0, 0, 0)
4 0 1u2 2 5 (0, 0.5, 1) IV
5 0 1 3u 4 7 (0, 3.75, 0) IV
6 0 1u 2 3u2 4u2 7 (0, 10.0625, 0) IV
7 0 1u 2 3u2 4u2 5 7 (1.25, 14.21874, 7.40625) III
8 0 1 2u 3u 4 5u 6 7 (2.5, 22.5, 17.3125) III
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5. Concluding remarks and some discussion. This paper proposes a geo-
metric approach in studying factorial designs with quantitative factors. When
factors are quantitative, the traditional mathematical treatment, which is appro-
priate for designs with nominal factors, no longer applies. The key in our approach
is indicator functions and their polynomial forms as expanded to OCBs. They are
used to distinguish designs’ geometric structures, which carry the designs’ proper-
ties. This approach is still appropriate even for ordinal categorical factors.

In Corollary 2.2, the connection betweenbt and the aliasing of contrasts with
no common factors is given. For contrasts that are not disjoint, the calculation of
their aliasing (correlation) is more complex, but still depends on thebt’s. In the
following, a general formula is offered, which covers the situations of disjoint and
nondisjoint contrasts. Let{Ct(x), t ∈ T } be an SOCB. For each factorXi , any
product of its two contrastsCi

u(x)Ci
v(x) can be expressed as a linear combination

of Ci
0(x), Ci

1(x), . . . , andCi
si−1(x) on the space{0, . . . , si − 1}. Let

Ci
u(x)Ci

v(x) =
si−1∑
w=0

h(i,u,v)
w Ci

w(x) for x = 0,1, . . . , si − 1.

The correlation of two contrastsCu(x) and Cv(x) can be written as a linear
combination ofbt’s by the following formula:

1

N

∑
x∈A

Cu(x)Cv(x) = 1

N

∑
x∈A

k∏
i=1

Ci
ui

(xi)C
i
vi

(xi)

= 1

N

∑
x∈A

k∏
i=1

si−1∑
wi=0

h(i,ui ,vi)
wi

Ci
wi

(xi)

(5.1)

=
s1−1∑
w1=0

s2−1∑
w2=0

· · ·
sk−1∑
wk=0

(
k∏

i=1

h(i,ui ,vi)
wi

)(
1

N

∑
x∈A

Cw(x)

)

= ∑
w∈T

(
k∏

i=1

h(i,ui ,vi)
wi

)
bw.

Note that for disjoint contrastsCu and Cv, where u = (u1, . . . , uk) and v =
(v1, . . . , vk),

h(i,ui ,vi)
wi

=
{

1, if wi = ui + vi ,
0, otherwise,

(5.2)

for i = 1, . . . , k, and Corollary 2.2 can be also derived from equations (5.1) and
(5.2). To demonstrate the calculation of aliasing between nondisjoint contrasts
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using (5.1), let us consider the two designs in Example 2.1. Notice that for
x ∈ {0,1,2},

C1(x)C1(x) = 1√
2
C2(x) + 1,

C1(x)C2(x) = 1√
2
C1(x) and

C2(x)C2(x) = −1√
2
C2(x) + 1.

Therefore, by (5.1) the correlation between two nondisjoint contrasts, sayC110(x)

andC101(x), equals( 1√
2
b211+ b011)/b000. Its value is1

4 for (2.4) and1
2 for (2.5).

In general, the aliasing among nondisjoint contrasts has also been captured in the
wordlength patterns, which can be viewed as a summary measure of aliasing and
are easy to compute. In theory, one can derive a criterion that explicitly calculates
aliasing among all pairs of contrasts by laborious computation and this deserves
some further investigation.

The β wordlength pattern can be generalized when effect order is defined in
other ways. For example, the effect order in Definition 4.1 is based on the number
of factors that correspond to an effect, whereas the effect order in Definition 4.2
is based on the degree of the polynomial that represents an effect. The two
characteristics can be combined to rank effect orders as follows: (a) first use the
degree of polynomials to rank effects and then for those effects with the same
order, use the number of factors to further rank their order; or (b) first use the
number of factors to rank effects and then for those effects with the same order,
use the degree of polynomials to further rank their order. For three-level designs,
(a) generates the following order:

l >> q >> ll >> lq == ql

>> lll >> qq >> llq == lql == qll >> llll >> · · · ,
and for (b), the effect order follows:

l >> q >> ll >> lq == ql

>> qq >> lll >> llq == lql == qll >> llll >> · · · .
In either case, the wordlength patterns can be defined by taking the sum of
(bt/b0)

2 over coefficients of theCt’s that are considered equally important. The
corresponding aberration criteria sequentially minimize these sums starting from
the most important effects. In general, this methodology is very flexible and can be
applied on any reasonable effect orders. Note that Corollary 4.1 and Theorem 4.1
still hold under these wordlength patterns. In addition, althoughβ wordlength
patterns are defined on the coefficients with respect to an OPB, they can be defined
with respect to an SOCB as long as an appropriate effect ordering exists.

We chose to present this work in a self-contained fashion rather than with full
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algebraic geometry language, so that the ideas are more accessible to the statistical
community. Nonetheless, this work is another example of how algebraic geometry
can be applied to statistics, and we will continue to explore the connections
between the two fields. For other applications of algebraic geometry methods in
statistics, see Pistone, Riccomagno and Wynn (2000).

APPENDIX

The geometrically nonisomorphic projected designs ofL18 are listed in Table 6.
All but two pairs of these designs have distinct wordlength patterns as defined
in (4.3).

TABLE 6
Combinatorially and geometrically nonisomorphic projected designs of L18

Comb. nonisomorphic Geom. nonisomorphic WLP (β3,β4,β5)

18-3.1 1 2 3 (0.09375,0.09375,0.2813)
1u2 2 3 (0,0.375,0)

18-3.2 1 2 5 (0.09375,0.594,0.281)
1u2 2 5 (0,0.125,0.75)
1u 2u2 5 (0.375,0.125,0.375)
1u2 2u2 5 (0,0.5,0)

18-3.3 1 3 4 (0.375,0.375,1.125)
1u 3 4 (0,1.5,0)

18-4.1 2 3 4 5 (0.375,0.515,1.313)
2u 3 4 5 (0.1875,0.938,0.938)
2u2 3 4 5 (0.281,0.797,1.406)
2u2 3u2 4 5 (0,2.064,0)

18-4.2 1 2 3 6 (0.1875,0.75,1.875)
1u 2 3 6 (0.375,0.891,1.313)
1u2 2 3 6 (0.281,1.172,1.031)
1u 2u2 3 6 (0.5625,0.75,1.125)
1 2u2 3 6 (0,1.875,0)

1 2u2 3u 6 (0.281,0.844,1.406)
1u 2u2 3u 6 (0.469,0.985,0.844)
1u2 2u2 3u 6 (0.656,0.422,1.406)
1u 2u 3u 6 (0.1875,1.5,0.75)
1 2u 3u 6 (0.1875,0.9375,1.313)

18-4.3 1 2 3 4 (0.5625,0.9375,1.688)
1u 2 3 4 (0.281,1.781,0.844)
1u 2u 3 4 (0,2.625,0)

18-4.4 1 2 5 6 (0.5625,0.9375,1.688)
1u 2 5 6 (0.281,1.781,0.844)
1u 2u2 5 6 (0.75,1.125,0.75)
1u 2u 5u 6 (0.1875,1.6875,1.3125)
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