
Geometric LDA: A Generative Model for

Particular Object Discovery

James Philbin1 Josef Sivic2 Andrew Zisserman1

1 Visual Geometry Group, Department of Engineering Science, University of Oxford
2INRIA, WILLOW Project-Team, Ecole Normale Superieure, Paris, France

Abstract

Automatically organizing collections of images presents serious challenges

to the current state-of-the art methods in image data mining. Often, what is

required is that images taken in the same place, of the same thing, or of the

same person be conceptually grouped together.

To achieve this, we introduce the Geometric Latent Dirichlet Allocation

(gLDA) model for unsupervised particular object discovery in unordered im-

age collections. This explicitly represents documents as mixtures of partic-

ular objects or facades, and builds rich latent topic models which incorpo-

rate the identity and locations of visual words specific to the topic in a ge-

ometrically consistent way. Applying standard inference techniques to this

model enables images likely to contain the same object to be probabilistically

grouped and ranked.

We demonstrate the model on a publicly available dataset of Oxford im-

ages, and show examples of spatially consistent groupings.

1 Introduction

Our goal is to automatically “discover” significant objects and scenes in photo collections.

In the statistical text community, latent topic models such as probabilistic Latent Se-

mantic Analysis (pLSA) [13] and Latent Dirichlet Allocation (LDA) [2] have had sig-

nificant impact as methods for “semantic” clustering. Given a collection of documents

such as scientific abstracts, with each document represented by a bag-of-words vector,

the models are able to learn common topics such as “biology” or “astronomy”. The mod-

els are able to associate relevant documents, even though the documents themselves may

have few words in common.

Given the success of these models, several vision papers [9, 19, 20, 21] have applied

them to the visual domain, replacing text words with visual words [7, 23]. The discovered

topics then correspond to discovered visual categories, such as cars or bikes in the image

collection. However, in the visual domain there are strong geometric relations between

images, which simply do not exist in the text domain. There has been only a limited

exploration of these relations in visual latent models: for incorporating segmentation [4,

20, 27, 28]; or for a grid-based layout of images and objects [3, 10, 14, 22].

In this paper we develop a generative latent model with geometric relations at its core.

It is an extension of LDA, with a geometric relation (an affine homography) built into

the generative process. We term the model gLDA for “Geometric Latent Dirichlet Allo-

cation”. The latent topics represent objects as a distribution over visual words and their

positions on a planar facet, like a “pin-board”. The visual words in an image (including
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Figure 1: The generative model. The two topic models (above) generate the visual words and their

layout in the three images (below). Each topic model can be thought of as a virtual pinboard, with

the words pinned at their mapped location. Image (a) is generated only from topic 1 with a single

affine transformation, and image (c) from topic 2, again with a single transformation. Image (b) is

a composite of topic 1 under one homography (for the rear building) and topic 2 under a different

homography (for the front building). This is a small subset of the images and topics learnt from the

set of images shown in figure 4. The lines show the inliers to each topic model. The gLDA model

correctly identified the Georgian facade (topic 1) and cloisters (topic 2) as being separate objects,

despite the linking image (b), and has correctly localized these two objects in all three images.

location and shape) are then generated by an affine geometric transformation from this

pinboard topic model. The generative process is illustrated in figure 1. We show that this

model can be learnt in an unsupervised manner by a modification of the standard LDA

learning procedure which proposes homography hypotheses using a RANSAC-like proce-

dure. The results demonstrate that this model is able to cluster significant objects in an

image collection despite large changes in scale, viewpoint, lighting and occlusions. Addi-

tionally, by representing images as a mixture over topics, the method effortlessly handles

the presence of multiple distinct objects.

The model can be thought of as an automated version of the Total Recall [6] retrieval

system – in Total Recall, a human selects a region of an image to issue as a search query

for an object; the system then returns images containing the object, and in turn uses these

images to issue new queries (spatial consistency is used for the relevance feedback), in

the process building up a latent model of the object. In gLDA every image of the corpus

provides a query, and the topic models learnt are those queries which have significant

returns.

To demonstrate the model we target the discovery of significant buildings or facades

in a collection of flickr images. We use the 5K image Oxford Building dataset from [1].

This contains images of many Oxford landmarks as well as many “distractor” images. It
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Figure 2: (a) The standard LDA model. (b) The gLDA model. M, P and Nm are the number of

documents, topics and words (in document m) respectively.

provides a ground truth annotation for certain landmarks that we use for measuring the

performance of gLDA.

There is limited prior work on clustering particular objects under changes in view-

point and scale from image collections. The two most convincing recent examples are

clustering particular objects (such as people, scenes) in video [18, 24]. For object and

scene categories, Sudderth et al. [25] introduced spatial transformations in a generative

framework describing locations of multiple objects and object parts within the scene, but

their focus is on modelling intra-class variations rather than scale and viewpoint variations

for particular objects.

2 Object Discovery

In this section, we review the standard LDA model and then describe how geometric

information is incorporated in the gLDA model.

2.1 Latent Dirichlet Allocation (LDA)

We will describe the LDA model with the original terms ‘documents’ and ‘words’ as used

in the text literature. Our visual application of these (as images and visual words) is given

in the following sections. Suppose we have a corpus of M documents, {w1,w2, . . .wM},

containing words from a vocabulary of V terms, where wi is the frequency histogram

of word ids for document i. A document is generated in the LDA model by picking a

distribution over topics and then picking words from a topic dependent word distribution.

Figure 2(a) shows the various components of this model. The document specific topic

distribution φ is sampled from a Dirichlet prior with parameters α . Similarly the topic

specific word distribution θ is sampled from a Dirichlet prior with parameters β . The z

variable is a topic indicator variable, one for each observed word, w. The aim is to find

the topic distributions which best describe the data by evaluating the posterior distribution

P(z|w,α,β ) ∝ P(z|α)P(w|z,β ). These last two terms can be found by integrating out

θ and φ respectively. Inference can be performed over this model by using a Gibbs

sampler [12] with the following update formula:

P(zi j = k|z−i j,w) =
ni·k +α

ni·· +Pα
×

n· jk +β

n··k +V β
. (1)



In this equation, zi j is the topic assigned to the jth word in the ith document, ni jk is the

number of words from document i, word id j assigned to topic k. A · denotes a summation

over that parameter. P and V denote the number of topics and words respectively. z−i j

denotes the current topic assignments for all words except the i jth. Note that in equa-

tion (1), the first term assigns higher probability to topics occurring more frequently in

the particular document, and the second term assigns higher probability to words more

frequently occurring in the particular topic.

2.2 Geometric LDA

In gLDA, the topics of the LDA model are augmented with the spatial position of the

visual words. Given a set of such latent topics, which may be thought of as pin-boards

(with the visual words pinned at their positions), an image is generated by picking a

distribution over the pinboards, and for each pinboard sampling an affine homography;

the image is then formed by the composition of the visual words from each topic mapped

under the corresponding homography – i.e. for each document, we pick a distribution

over topics, and then for each word pick a topic from this distribution, together with a

transformation from the latent spatial model to the document, and then pick a word plus

spatial location and shape. The gLDA model is shown in figure 2(b).

Note, an image will not contain all the words belonging to a topic. This is necessary

in the visual domain because not all visual words will be detected – there are errors due to

feature detection (such as drop out, or occlusions), feature description and quantization.

Others have handled this situation by learning a sensor model [8].

gLDA adds extra spatial transformation terms, H, to the LDA model and augments the

word terms, w, to contain both the visual identity and spatial location of the word in the

image. These image specific transformations, H, describe how the words for a particular

topic occurring in an image can be projected into the “pin-board” model for that topic.

H is assumed to be an affine transformation, so that the model can account for moderate

changes in viewpoint between the topic and the image.

For a particular word in an image, the joint probability of the gLDA model factors as

follows

P(w,z,θ ,φ ,H|α,β ,γ) = P(w|z,θ ,H)P(z|φ)P(θ |β )P(φ |α)P(H|γ). (2)

The generative distributions could be further specified and inference on the model carried

out in a similar manner to [25]. However, to avoid the expense of generatively sampling

the transformation hypotheses, we instead approximate the joint as described next.

2.3 Approximate inference

To perform approximate inference in the gLDA model we make the following simplifying

assumptions: (i) Rather than modelling the full generative likelihood of the pinboard

model, P(w|z,θ ,H), we ignore the location of individual visual words and assume that

the likelihood is independent of transformation H, i.e. P(w|z,H,θ) ≈ P(w|z,θ), where

P(w|z,θ) is the standard LDA multinomial likelihood; (ii) To take into account the degree

of spatial match between the pinboard model and an image we estimate the probability

P(H|γ) of transformation hypothesis H using a RANSAC matching procedure, commonly

used in multi-view geometry. Here we take P(H|γ) to be proportional to the number of

inliers between the particular pinboard and the image.
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Figure 3: Some of the Oxford landmarks.

The two approximations above allow us to integrate out θ and φ using Dirichlet priors,

P(θ |β ) and P(φ |α), as in standard LDA to obtain the following joint probability over all

images in the corpus P(z,H|w,α,β ,γ) ∝ P(z|α)P(w|z,β )P(H|γ). The goal is to obtain

samples from this joint. The pinboard assignments zi j are resampled using a modified

Gibbs sampler (1) with the following update formula

P(zi j = k|z−i j,w) =
ni·k +α

ni·· +Pα
×

n· jk +β

n··k +V β
×

qik + γ

qi· +Pγ
(3)

where qik is the number of inlier visual words between the pinboard k and image i, and

γ is a smoothing constant preventing assigning zero probability to topics with no inliers.

Note how inlier counts qik influence re-sampling of pinboard indicators zi j by assigning

higher probability to pinboards with higher number of inliers. The transformation hy-

potheses are estimated using RANSAC (for details see section 3.2). For each document we

alternate between resampling indicators zi· given the current transformation hypotheses

H and resampling the transformation hypothesis Hi· given the current indicators z.

Note that the interleaved sampling of pinboard assignments z using (3) and transfor-

mation hypothesis H using RANSAC can be viewed as data driven Markov Chain Monte

Carlo in the spirit of [26].

3 Dataset and Spatial Consistency
3.1 Dataset

For evaluating the performance of the gLDA model both quantitatively and qualitatively,

we use the Oxford dataset [1]. This consists of 5,062 high resolution (1024 × 768) images

automatically retrieved from Flickr, together with groundtruth occurrences for 11 different

landmarks in Oxford. A sample of 5 landmark images is shown in figure 3. Note that the

dataset also contains many images of other buildings and non-buildings.

To generate visual features for this dataset, we detect Hessian interest points and

fit affine covariant ellipses [16]. For each of these affine regions, we compute a 128-

dimensional SIFT descriptor [15]. A large discriminative vocabulary of 500K words is

generated using an approximate k-means clustering method [17]. Each descriptor is as-

signed to a single cluster centre to give one visual word. On average, there are ∼3,300

regions detected per image. Once processed, each image in the dataset is represented as a

set of visual words which include spatial location and the affine feature shape.

3.2 Spatial scoring using RANSAC

Our discriminative gLDA model relies on being able to score the spatial consistency be-

tween two spatially distributed sets of visual words (e.g. between the pinboard model and

an image) and return an approximate transformation between the two sets of visual words

as well as a matching score. The score is based on how well the feature locations are

predicted by the estimated transformation.



Figure 4: A sample of 10 images from a connected component associated with Magdalen college.

The component contains two separate buildings: A Georgian building and a college cloisters, linked

by the aerial photo shown (bottom right). Within the cloisters there are two distinct “facades”, one

of the wall, the other of a tower. Our method is able to extract all three “objects” (cloisters, tower

and building) completely automatically. The total size of the component is 42 images.

We use a deterministic variant of RANSAC [11]. It involves generating hypotheses of

an approximate transformation [17] and then iteratively re-evaluating promising hypothe-

ses using the full transformation. By selecting a restricted class of transformations for

the hypothesis generation stage and exploiting shape information in the affine-invariant

image regions, we are able to generate hypotheses with only a single feature correspon-

dence. We enumerate all such hypotheses, resulting in a deterministic procedure. The

inliers for a given transformation are the set of words which approximately agree with

that transformation. The size of this inlier set for the best transformation is directly used

as a measure of matching quality as outlined in section 2.3.

4 Object Discovery in Large Image Collections

There are issues of scalability in applying the gLDA model directly to large image col-

lections. Every word in the dataset must be present in a topic model and RANSAC is

repeatedly run between these large topic models and each document. This becomes pro-

hibitively slow when the amount of data becomes large.

4.1 Pre-clustering

To apply our method to large datasets we run a much simpler pre-clustering step on the

data, which splits it into a number of disjoint image sets. The aim is to pull all images that

might possibly contain the same object into the same cluster while excluding all images

which definitely do not contain the object. To do this we build a pairwise matching graph

between every pair of images in the dataset using fast methods from particular object

retrieval [17]. This is done by building an inverted index for all the identities of the visual

words in the dataset, then querying for each image in turn using this index and performing

spatial verification only for the top 500 returns. The worst case complexity of building

the graph is O(N2) in the number of images, N, but, in practice, the time taken is close to

linear in N.

We compute connected components over this graph thresholding at a particular sim-

ilarity level. This similarity is specified by the number of spatially consistent inliers be-

tween each image pair. In general, the connected components now contain images linked

together by some chain of similarities within the cluster, but will not necessarily be of the
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Figure 5: Automatically choosing the number of topics. We run the gLDA model over the connected

component shown in figure 4 for different numbers of topics plotting the log likelihood in (a). (b)

shows the top three documents (ranked by P(z|d) in columns) for each topic for different numbers

of topics, P. In this case three topics are chosen which separate the building, cloisters and tower.

same object. For example, “linking” images containing more than one object will join

other images of these objects into a single cluster (see figure 4).

Applying the graph pre-clustering method to the 5K Oxford dataset, linking all images

with at least 25 spatially consistent inliers between them results in 323 separate compo-

nents containing 2 or more images. The size of the largest component is 396 images. The

gLDA model can now be applied independently in each of these connected components.

The scale of the problem within each run of the model is much reduced and completely

irrelevant images are not considered.

4.2 gLDA implementation details

Topic initialization. For each connected component of the matching graph the topics

are initialized by first obtaining P separate clusters (using agglomerative clustering with

the average linkage as the similarity score). For each cluster, we project each document’s

words to a normalized size in the pinboard models: a transformation is found that projects

each image to a fixed size square in the topic model and these are used to initialize the

locations and shapes of the visual words in the model. Although this isn’t strictly neces-

sary for the gLDA model, it greatly improves convergence speed and generally leads to

improved results.

Prior parameters. The gLDA model (section 2.3) includes priors for the per document

topic distribution, α , the per topic word distribution, β , and the hypothesis likelihood, γ .

Empirically we find that using α = 200.0, β = 1.0 and γ = 20.0 gives reasonable results

and we use these parameter values for all subsequent experiments.

Choosing the number of topics. To select the number of topics within each connected

component, we run 100 iterations of the Gibbs sampler described in section 2.3 changing

the number of topics from 1 to 8, then choose the Markov chain with the highest likelihood

(see figure 5) [12]. We note here that it is better to choose too many topics than too few

as the model explicitly allows for documents to be a mixture of topics. In general, the

optimal number of topics found will vary with the choice of hyper-parameters, α and β .

Running the model. After the number of topics has been selected, we run the model

for a further 100 iterations. We find that with the geometric information, the gLDA model
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Figure 6: Comparing gLDA to standard LDA for a connected component containing images of the

Ashmolean, for P = 3. The top three images are shown for each topic, ranked by P(z|d) in columns.

LDA has failed to differentiate the facade of the Ashmolean museum from a separate building.

tends to converge to a mode extremely quickly and running it longer brings little appre-

ciable benefit.

Scalability. The time taken to run the gLDA model varies from a fraction of a second

per iteration for a component of less than 5 images up to about 55s per iteration for the

largest component of 396 images on a 2GHz machine.

5 Results

In this section we examine the performance of the gLDA both qualitatively and quantita-

tively. For the quantitative evaluation we determine if the discovered topics coincide with

any of the groundtruth labelled Oxford landmarks.

Evaluation on the Oxford dataset. Within each connected component, we use the doc-

ument specific mixing weights P(z|d) to produce a ranked list of documents for each dis-

covered topic. We then score this ranked list against the groundtruth landmarks from the

Oxford dataset using the average precision measure from information retrieval. For each

groundtruth landmark, we find the topic which gives the highest average precision – the

results are listed in table 1.

The topic model often effectively picks out the particular landmarks from the Oxford

dataset despite knowing nothing a priori about the objects contained in the groundtruth.

Most of the gaps in performance are explained by the topic model including neighbouring

facades to the landmark object which frequently co-occur with the object in question.

The model knows nothing about the extents of the landmarks required and will include

neighbouring objects when it is probabilistically beneficial to do so. We also note that

sometimes the connected components don’t contain all the images of the landmark – this

is mainly due to failures in the initial feature matching.

Robustness to imaging conditions. Due to the richness of the pinboard models, the

gLDA method is able to group images of a specific object despite large imaging variations

(see figure 7). Standard LDA often struggles to cluster challenging images due to the

absence of the extra spatial information.
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Figure 7: Due to the richness of the topic pinboards, gLDA is able to group these images (which

are all of the same landmark – the Sheldonian theatre) despite large changes in scale, viewpoint,

lighting and occlusions. P(z|d) is shown underneath each image.

Groundtruth Landmark LDA max AP gLDA max AP Component recall

all souls 0.90 0.95 0.96

ashmolean 0.49 0.59 0.60

balliol 0.23 0.23 0.33

bodleian 0.51 0.64 0.96

christ church 0.45 0.60 0.71

cornmarket 0.41 0.41 0.67

hertford 0.64 0.65 0.65

keble 0.57 0.57 0.57

magdalen 0.20 0.20 0.20

pitt rivers 1.00 1.00 1.00

radcliffe camera 0.82 0.91 0.98

Table 1: The performance of gLDA on the Oxford dataset compared to LDA. The scores list the

average precision (AP) of the best performing topic for each groundtruth landmark. gLDA always

outperforms or does as well as standard LDA for object mining. The last column shows the recall

for the component containing the best performing topic – the highest AP score either method could

have returned. Figure 6 examines the differences in results for the Ashmolean landmark.

Comparison with standard LDA. In figure 6 we compare gLDA to standard LDA. The

parameters were kept exactly the same between the two methods (except for the spatial

term). LDA was initialized by uniformly sampling the topic for each word and run for 500

iterations to account for its slower Gibbs convergence. From the figure we can see that the

LDA method has been unable to properly split the Ashmolean facade from an adjacent

building. Table 1 compares the methods quantitatively. In all cases gLDA is superior (or

at least equal) to LDA.

As well as being able to better discover different objects in the data, the gLDA method

can localize the occurrence of particular topics in each image instead of just describing

the mixture. This can be seen in figure 1 which displays three images from the Magdalen

cluster with correspondences to two automatically discovered topics.

6 Conclusion and Future Work

We have introduced a new generative latent topic model for unsupervised discovery of

particular objects and building facades in unordered image collections. In contrast to

previous approaches, the model incorporates strong geometric constraints in the form of

affine maps between images and latent aspects. This allows the model to cluster images

of particular objects despite significant changes in scale and camera viewpoint. We have

shown that the gLDA model outperforms the standard LDA model for discovering partic-

ular objects in image datasets.

The model can be generalized in several directions – for example using a fundamental



matrix (epipolar geometry) as its spatial relation instead of an affine homography; or

adding a background topic model in the manner of [5]. There is also room for improving

the computational efficiency in order to apply the model to larger datasets.
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