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Abstract. We relate the sequence of minimum bases of a matroid with linearly varying
weights to three problems from combinatorial geometry:k-sets, lower envelopes of line
segments, and convex polygons in line arrangements. Using these relations we show new
lower bounds on the number of base changes in such sequences:Ä(nr1/3) for a general
n-element matroid with rankr , andÄ(mα(n)) for the special case of parametric graph
minimum spanning trees. The only previous lower bound wasÄ(n logr ) for uniform ma-
troids; upper bounds ofO(mn1/2) for arbitrary matroids andO(mn1/2/log∗ n) for uniform
matroids were also known.

1. Introduction

In this paper we study connections between combinatorial geometry and matroid opti-
mization theory, as represented by the following problem.

Parametric Matroid Optimization. Given a matroid for which the elements have
weights that vary as a linear function of a parametert , what is the sequence of minimum
weight bases over the range of values oft? How many different bases can occur in such
a sequence?

For example, an important special case of this problem would ask for the sequence of
minimum spanning trees in a graph with linearly varying edge weights. This parametric
spanning tree problem has applications including the stochastic spanning tree problem
studied by Ishiiet al. [25]; other applications are discussed by Hassin and Tamir [23].
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Although related parametric spanning tree problems have also been studied for geo-
metric point set inputs [28], we are interested here in the general graph problem. Nev-
ertheless as we shall see, computational geometry has an interesting role to play in this
problem.

It has been known for some time that, in a matroid withn elements and rankk, the
number of different bases occurring as the solutions to a parametric matroid optimiza-
tion problem isO(n min(k,n− k)1/2) [18], [27]. Various authors have studied related
questions of computing an optimal value for the time parameter in this sequence of bases
[3], [5], [12], [15], [16], [31], [33], [35]. Katoh (personal communication) already no-
ticed one connection between parametric matroid optimization and a classical problem
of computational geometry:

k-Sets. Given a set ofn points in the plane, in how many combinatorially distinct ways
can subsets of exactlyk points be covered by half-spaces?

Thek-set problem has been studied since 1971, when Lov´asz [29] proved anO(nk1/2)

bound. As Katoh noted (and as we describe below) thek-set problem is equivalent
to the special case of parametric matroid optimization foruniform matroids, so this
result follows from the more general matroid bound. Since Lov´asz’ result, computational
geometers have struggled with little success to improve this bound. The best result to
date isO(nk1/2/log∗ k) [32].

Even less is known about lower bounds for these problems than is known about upper
bounds, and it is this question we study here. The best lower bound for thek-set problem
isÄ(n logk) [13], quite far from the upper bound. No other lower bound was known for
any other version of the parametric matroid problem. For graphic matroids (the minimum
spanning tree problem discussed above) no nontrivial bound was known. In this paper
we prove new lower bounds on the general parametric matroid optimization problem
and on its special case of parametric minimum spanning trees by showing connections
between these problems and two more seemingly unrelated problems from computational
geometry: envelopes of segments and polygons in arrangements.

1.1. New Results

We prove the following bounds:

• There can beÄ(mα(n)) different minimum spanning trees in a graph withmedges,
n vertices, and edge weights linearly varying with time, whereα(n) denotes the
inverse Ackermann function.
• There can beÄ(nr1/3) different minimum weight bases in a matroid withn ele-

ments, rankr , and element weights linearly varying with time.

The first bound comes from a reduction from the problem oflower envelopes of line
segments, for which a2(nα(n)) bound is known. We use lower envelopes to construct
a graph withO(n) edges and the sameÄ(nα(n)) bound on the number of minimum
spanning trees; the overall bound is found by forming the union ofO(m/n) such graphs
on the same vertex set.
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We prove the second bound by proving that the problem is equivalent up to constant
factors (forr ≤ n/2) to the following new geometric problem:

Polygons in Arrangements. Givenr convex polygons with sides formed byn lines,
no two polygons overlapping in a set of nonzero length, what is the maximum total
number of polygon vertices?

Although this problem has not been studied before, various special cases have. If the
polygons form faces of the arrangement, have disjoint interiors, or do not cross each
other, tight bounds of2(n + n2/3r 2/3) vertices are known [6], [9], [21], [24]; these
are sufficient to prove a bound ofÄ(n2/3r 2/3) on the matroid problem. Our new lower
bound is somewhat stronger than this forr = o(n), and shows that the general problem
of polygons in arrangements has somewhat different behavior than these special cases.
However our bounds and the lower bounds above are the same whenr = n, and it may
perhaps be possible for suchr to extend the upper bounds for the special cases above to
similar bounds for the general problem of polygons in arrangements. This could possibly
lead to anO(nr1/3)bound on the parametric matroid optimization problem and its special
case thek-set problem.

1.2. Notation and Definitions

A matroid [36] consists of a set ofelementsand a family of finite sets of elements (the
independent setsof the matroid) satisfying the following two axioms:

1. Any subset of an independent set is independent.
2. If I andJ are independent, with|I | < |J|, then, for somej ∈ J, the setI ∪ { j }

is independent.

The rank of a set in a matroid is the cardinality of its largest independent subset. We
usually letn denote the number of elements in a matroid, andr denote its rank. Abaseof
a matroid is a maximal independent set, or equivalently an independent set of cardinality
equal to the matroid’s rank. If the matroid elements have real-valued weights, we are
particularly interested in theminimum weight base, that is, the base minimizing the sum
of the element weights.

Standard examples of matroids include the following.

• Theuniform matroid Un
r . The set of elements is taken to be any set of cardinalityn;

its independent subsets are those of cardinality at mostr , and its bases are the
subsets of cardinality exactlyr . Finding a minimum weight base in such a matroid
is equivalent to selecting thekth smallest element weight, so uniform matroids are
related to median selection algorithms.
• Thegraphic matroids M(G) for some graphG. M(G) is defined to have the edges

of G as elements, the forests ofG as independent sets, and the spanning forests
of G as bases. IfG hasm edges,n vertices, andc connected components,M(G)
hasm elements and rankn − c. The minimum weight base inM(G) is just the
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minimum spanning tree ofG, so graphic matroids are related to minimum spanning
tree computation as well as to testing the connectivity of graphs.
• Thetransversal matroids T(F) for some finite family of setsF = {Si }. The set of

elements ofT(F) is the union of the setsSi . A set in a transversal matroid is inde-
pendent if its members can be matched one-for-one with setsSi containing them.
Another way of viewing this is to consider a bipartite graph with edges connecting
each set to its members; a collection of vertices on one side of the bipartition is
independent if there is a matching in the graph connecting the collection to the same
number of vertices on the other side. Therefore transversal matroids are related to
bipartite graph matching.

In any matroid, a minimimum weight base can be found by agreedy algorithm. The
elements are sorted by weight and then considered one at a time in sorted order. We
maintain an independent setS, and at each step add the elemente under consideration
to S if S+ e remains independent. For instance, this algorithm restricted to graphic
matroids is just Kruskal’s algorithm for minimum spanning trees.

2. Uniform Matroids and k-Sets

In this section we outline the connection between thek-set problem and the problem
of parametric optimization for uniform matroids, as pointed out by Katoh. Some of the
tools described here (in particular the correspondence between sets of element weights
and line arrangements) are reused later.

A k-set of a set ofn points is a subset of exactlyk points such that some half-
space covers exactly those points. LetKS(n, k) denote the maximum number ofk-sets
among sets ofn points, and letUM(n, r) denote the maximum length of the sequence of
minimum weight bases for a uniform matroidUn

r with linearly varying edge weights.

Theorem 1. Let UM(n, r) and KS(n, r) measure the complexities of parametric uni-
form matroid optimization and k-sets, as defined above. Then UM(n, r) ≤ 1+KS(n, r).

Proof. Let M be a linearly weighted uniform matroid achieving the maximum value
UM(n, r). For some sufficiently large value ofx replace each weight functionw = at+b
byw = (a+x)t+b; this affine transformation does not change the sequence of minimum
weight bases, but causes all weight functions to have positive slope.

Plot the edge weight functions of the elements ofM as an arrangementAof nonvertical
lines in the(w, t) plane. We can perform a small perturbation of the weight functions of
M , so that no three lines in the arrangement meet in a single point, without decreasing
the number of base changes in the sequence of minimum weight bases. The minimum
weight base at any timet0 can be found by selecting the elements corresponding to the
r lowest intersections of the lines inA with the vertical linet = t0, as depicted in Fig. 1.
As we sweep this vertical line from left to right, a change in the base occurs when it
crosses a vertexv of A that has exactlyr − 1 lines ofA passing below it; in the figure,
such a base change will happen at the next vertex swept over by the line.

Now if v is formed by two linesl1 andl2, let C be the cell between them on the left
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Fig. 1. Minimum weight base in a uniform matroid with positive-slope weight functions.

side ofv Since both lines have positive slope,v is the topmost vertex ofC andC has
exactlyr lines below it.

Thus the number of base changes is at most the number of cells withr lines below
them. We now show that this quantity is bounded byKS(n, r). We use projective duality
to transform the lines ofA into points, and vice versa: for each linew = at+b we place
a point(b,a), and for each point(w, t)we draw a lineb = −ta+w. This transformation
has the property that if a point is above a line in the(w, t) plane, the corresponding line
is above the corresponding point in the(b,a) plane. Therefore the cellC corresponds
to a set of lines, all above the same set ofr points in the(b,a) plane; this is exactly an
r -set and therefore the number of cells is bounded by the number of such sets.

Theorem 2. Let UM(n, r) and KS(n, r) measure the complexities of parametric uni-
form matroid optimization and k-sets, as defined above. Then KS(n, k) ≤
2(UM(n, k)− 1).

Proof. LetSbe a configuration of points realizingKS(n, k); without loss of generalityS
is placed above the horizontal axis. We can assume by symmetry that at leastKS(n, k)/2
of the k-sets are covered by the half-space below some line, rather than above a line.
(Somek-sets may be covered by half-spaces of both types, but this only works to our
advantage.) By applying the reverse of the duality transformation used above, we can
form an arrangement of positive-slope lines such that at leastKS(n, k)/2 cells have
exactlyk lines passing below them. Let these lines be formed as above from the weight
functions of a uniform matroidUn

k . Then the top vertices of each cell correspond to base
changes of this matroid.

As a consequence, any bound of the formO(nakb) for k-sets can be transformed into a
similar bound for parametric uniform matroid optimization, and vice versa. In particular
the knownÄ(n logk) bounds fork-sets lead to a bound of the same form for uniform
matroid optimization, and hence for parametric matroid optimization in general.
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Fig. 2. The lower envelope of line segments.

3. Graphic Matroids and Lower Envelopes

We next consider the parametric graph minimum spanning tree problem, which is the
restriction of parametric matroid optimization to graphic matroids. No lower bound was
known for this case; not even theÄ(n logk) bound above can be made to work here, as
graphic matroids do not have nontrivial uniform submatroids.

We relate this problem to the following seemingly unrelated problem from computa-
tional geometry. Givenn line segmentssi in the (x, y) plane, all above thex axis, the
lower envelopeof the segments is the functionf (x) giving the minimum value ofy
such that(x, y) is on some segment. (If no suchy exists, let f (x) = +∞.) Then f (x)
is a piecewise linear function ofx. Thecomplexityof f (x) is the minimum number of
intervals we need to partition the real line into, so thatf (x) is linear in each interval. In
other words, it is the number of contiguous pieces of line segments that can be connected
by vertical lines to thex axis (Fig. 2).

Lemma 1 [22], [37]. The maximum complexity of a lower envelope of line segments
is2(nα(n)), whereα is the inverse Ackermann function.

We now give the basic construction connecting this geometric concept with parametric
minimum spanning trees. The construction produces a sparse graph from a line segment
arrangement; we later show that a graph with any desired density can be formed by
combining several copies of these sparse graphs.

Lemma 2. Let S be a collection of n line segments in the plane, with lower envelope
complexity c. Then there is a graph G with3n edges and2n+ 2 vertices, and a set of
linearly varying edge weights on G, such that G has at least c− n different trees in its
sequence of minimum spanning trees.

Proof. Let G be formed by taking two verticess and t , and connecting them byn
three-edge paths (Fig. 3(a)). Each path will correspond to a single segmentsi in S; if
a path has three edgese1, e2, ande3 we lete1 have an edge weight function plotted by
the line throughsi , we lete2 have an edge weight function of very large negative slope,
such that the weights ofe1 ande2 are equal at the left endpoint ofsi , and we lete3 have
a weight function of large positive slope crossing the weight ofe1 at the right endpoint
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Fig. 3. Lower bound construction for graphic matroids: (a) the graphG; (b) weight functions for the three
edges corresponding to a line segment.

of si . These three weight functions and the segmentsi they correspond to are depicted
in Fig. 3(b).

Any spanning tree ofG is formed by choosing all three edges from one of then paths,
and any two edges from each of the remainingn − 1 paths. In the minimum spanning
tree, these pairs of edges are always the minimum two edges in each path. The path with
three edges is therefore chosen to minimize the weight of the maximum weight edge in
the path.

Within the values oft covered by segmentsi , the maximum edge in the corresponding
path ise1; outside this range it ise2 or e3. Therefore the function graphing the largest
weight in the path is closely approximated by the lower envelope of the single segment
si . The function graphing the minimum of these largest weights is closely approximated
by the lower envelope of all segments. Any breakpoint between finite-valued segments
of the lower envelope corresponds to a situation inG where the path with three chosen
edges changes; each such situation involves a change to the minimum spanning tree of
G. The infinite-valued segments of the lower envelope contribute two breakpoints, but
perhaps only one change to the tree; however, there can only ben− 1 such segments.

As a corollary, for anyn there is a graph withn vertices andm= O(n) edges, having
Ä(nα(n)) trees in its sequence of minimum spanning trees. We now extend this result
to allowm andn to differ.

Theorem 3. For any m and n there is a graph with m edges and n vertices, having
Ä(mα(n)) trees in its sequence of minimum spanning trees.

Proof. We choose a suitablex = O(n) and y = O(m/n), and form a graph with
2(x+ y) vertices: 2y verticesai andbi , 0≤ i < y, and 2x verticesci anddi , 0≤ i < x.
For anyi we can form a copy of the graphG in the lemma above by connectingai

to eachci , bi to eachdi , and connecting eachcj to d( j+i )modx. This gives a total ofy
edge-disjoint copies ofG.

By applying an affine transformation to the weight functions of the graphG in the
lemma above, we can cause all of its edges to have slope within someε of each other
without changing the sequence of minimum spanning trees. In this way we “flatten”
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Fig. 4. Combining several flattened line arrangements into a single convex chain.

the weights in each of the copies ofG to different ranges of slopes. We then use linear
translations to arrange the flattened sets of weight functions to form a large convex chain
(Fig. 4). Within each segment of the chain the sequence of minimum spanning trees
undergoesÄ(xα(x)) changes. Therefore overall there areÄ(xyα(x)) = Ä(mα(n))
changes. We then add additional edges or vertices to produce the desired total numbers
of edges and vertices, with sufficiently large edge weight functions so as not to change
the sequence of minimum spanning trees found above.

4. General Matroids and Polygons in Line Arrangements

We next show a relation between the general parametric matroid optimization problem
and the problem of polygons in arrangements defined in the Introduction. We use this
relation to prove anÄ(nr1/3) bound on the matroid optimization problem.

DefineMO(n, r) to be the maximum length of the sequence of minimum weight bases
among all matroids withn elements and rankr . DefineAP(n,m) to be the maximum
number of vertices in a collection ofm convex polygons with edges drawn from a
collection of n lines, no two polygon edges overlapping in a set of nonzero length
(Fig. 5(a)). Our first result gives an upper bound onMO(n, r) in terms ofAP(n,m);

Fig. 5. (a) Three nonoverlapping polygons in a line arrangement. (b) Adding steep tangents to left and right
sides of convex polygons.
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together with the lower bound that is our main result of this section, this shows the
equivalence forr ≤ n/2 of these two problems.

Theorem 4. Let MO(n, r) and AP(n, r) measure the complexity of matroid optimiz-
ation and polygons in arrangements as defined above. Then MO(n, r) ≤ AP(n+ r, r)−
2r + 1.

Proof. Given a matroidM with linearly varying element weights, form an arrangement
A of the lines in the(w, t) plane traced out by the element weights, as in the proof of
Theorem 1. As in that same proof, we assume that no three lines ofA meet in a point, for
otherwise we could perturb the weight functions slightly to achieve this property while
not decreasing the number of base changes inM .

We now use a token-passing scheme to trace out polygons in this arrangement. Con-
sider sweeping thet parameter from−∞ to +∞. At a value oft prior to any base
change, assign a token to each member of the minimum weight base fort . Whenever
the sweep reaches a value oft at which a base change occurs, reassign the token that
had been assigned to the changed member of the old base, so it becomes assigned to that
member’s replacement in the new base.

This token-assignment process can also be interpreted geometrically. Consider sweep-
ing a vertical line left-to-right through the arrangement, with each placement of the line
corresponding to a different parametert , as depicted in Fig. 1. As this sweep line pro-
gresses from left to right, we maintain the placement ofr tokens, on points where the
sweep line crosses arrangement lines representing the minimum weight base ofM for
that value oft . As the sweep line moves left to right, the tokens move with it along the
arrangement lines they are placed on. At points in the sweep corresponding to values of
t at which a base change occurs, a single element of the old base is removed and a new
element is added to replace it; in this case we move the token, from the arrangement
line corresponding to the old element, to the arrangement line corresponding to the new
element.

At the time of the base change, the old and new elements must have equal weights;
before the change the old element’s weight is smaller than the new element’s weight
and after the change the new element’s weight is smaller than the old element’s weight.
Therefore each base change corresponds to a convex vertex in the piecewise linear motion
of a single token, and each token traces out a convex chain in the arrangementA. By
addingr new lines toA, one per chain, we can complete these chains to convex polygons
of the same complexity. Each chain has one vertex per base change, plus two added when
we completed the chain to a polygon; therefore the total number of base changes is equal
to the number of vertices minus 2r .

We next show a bound in the other direction, a lower bound onMO in terms ofAP.

Theorem 5. Let MO(n, r)and AP(n, r)measure the complexity of matroid optimization
and polygons in arrangements as defined above. Then AP(n,m) ≤ 2(MO(n+ 2m,m)−
m− 1).



472 D. Eppstein

Proof. Let A be an arrangement ofn lines, with m nonoverlapping polygons inA
having a total ofAP(n,m) vertices. By symmetry we can assume that the number of
vertices visible from above in each polygon ism+ AP(n,m)/2.

We add toA a set of 2m more lines: one line of large positive slope tangent to each
polygon at its left extremum, and one line of large negative slope tangent to each polygon
at its right extremum (Fig. 5(b)). We use these lines to replace each polygon by a convex
chain similar to the chains in the theorem above, having the same vertices as the polygon.

Define a matroidM having this set ofn+ 2m lines as elements, with the lines giving
the weight function of these elements. To defineM , form a setSi for each of the convex
chains formed above, consisting of those lines having a nonzero-length segment in the
chain. We then letM be the transversal matroid of these setsSi .

We now show that the set of chains traced out by the token-passing procedure described
in the previous proof is exactly the set of chains constructed above. We show that any
time t0 such that no vertex of the arrangement hast-coordinatet0, the minimum weight
basis can be found by choosing the element in each convex chain crossed by the vertical
line t = t0. This follows by induction from the greedy algorithm for minimum weight
bases, as follows.

Assume we have chosen so far a setX of elements, with|X| < m, that are the|X|
least weight elements crossed by the linet = t0 among the collection of chains. LetCi

be a chain crossed byt = t0 above all members ofX; then no member ofX can be inSi ,
and so any sete+ X wheree ∈ Si is independent. Conversely suppose some sete+ X
is independent. Then this set can be matched against setsSi defining matroidM . By the
pigeonhole principle, some matchedSi corresponds to a chainCi above all crossings in
X. No element ofX is in Si , soe must be inSi . Thus the independent extensionse+ X
are exactly those for whiche is a member of someSi corresponding to a chainCi crossed
aboveX. Since the extension chosen by the greedy algorithm is the one minimizing the
weight ofe, emust be the element corresponding to the next crossing of a chain with the
line t = t0. This completes the induction and shows that except at arrangement vertices,
the minimum weight basis follows the chains. By continuity of the functions traced out
by the token-passing process, the same fact must be true at the vertices ofA. There-
fore all vertices of the set of chains correspond to basis changes in the transversal
matroidM .

These two results combine to give the following consequence, which may be useful
in proving further bounds on parametric matroid optimization.

Corollary 1. The maximum complexity of parametric matroid optimization can be
realized to within constant factors by a transversal matroid.

For completeness, we state an upper bound on polygons in arrangements. This is
similar to known bounds on parametric matroid optimization [18], [27] but holds also
for r > n.

Theorem 6. Let AP(n, r) measure the complexity of polygons in arrangements as de-
fined above. Then AP(n, r) = O(nr1/2).
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Proof. Given a collection of polygons in an arrangementA, we show that it has the
above complexity. PerturbA if necessary so no three lines meet at a point. Sort the lines
of Aby slope. We say that a vertex ofA issharpif the lines forming the vertex have slopes
separated by more thanr 1/2 positions apart in the sorted sequence, anddull otherwise.
Since the slopes of a polygon’s edges form a monotone sequence, each polygon can have
at mostn/r 1/2 sharp vertices, so the total number of such vertices in all the polygons
is O(nr1/2). The remaining vertices are dull, but there areO(nr1/2) dull vertices in the
entire arrangement, and each one can only be part of at most two polygons.

We now complete the lower bound for matroid optimization by constructing a col-
lection of nonoverlapping polygons with many vertices. Known results on faces in ar-
rangements give the boundÄ(n2/3r 2/3) on AP(n, r ), however, the bound in the theorem
below is stronger for the case of interest in whichr < n.

Theorem 7. For any n and r = O(n2) there is a collection of r nonoverlapping
polygons in an arrangement of n lines, havingÄ(nr1/3) vertices.

Proof. We first form an arrangementA′ with O(r ) lines, such that somer faces of
the arrangement have total complexityÄ(r 4/3) [6]. We then add steep left and right
tangents to these faces, as in the proof above, so that we haveO(r ) convex chains with
the same asymptotic complexity. To complete the construction we flattenA′ by an affine
transformation and connectO(n/r ) copies of the flattened arrangement in a large convex
chain shape, as in the proof of Theorem 3 and as depicted in Fig. 4. The sets ofr chains
in adjacent copies ofA′ can be connected where the copies cross, so we getr chains
overall andÄ(nr1/3) total complexity. As in Theorem 4, we can add additional lines to
the base of each of these chains, to form them back into convex polygons.

Corollary 2. There exist parametric matroid optimization problems with complexity
MO(n, r) = Ä(nr1/3).

5. Conclusions

We have described three different problems from combinatorial geometry and related
them all to a common nongeometric problem, of parametric matroid optimization. We
then used these relations to prove lower bounds on the matroid problem.

These results also give new hope for results on the geometric side of the problem,
on the longstanding open problem of bounds onk-sets. The matroid upper and lower
bounds are both of the formnrc, giving rise to the possibility that a similar lower bound
could be proved fork-sets. The fact that our problem of polygons in arrangements is
very similar to other problems withO(n4/3) bounds gives reason to believe that similar
bounds might hold for matroid optimization, and its special case thek-set problem.

An interesting related problem concerns similar parametric optimization questions
for nonmatroidal problems. Fern´andez-Baca and Slutzki [14] show that many such prob-
lems, when restricted to certain classes of graphs, produce a sequence of solutions of
polynomial length. One such question of particular interest is that ofparametric shortest
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paths[26], [38]: in a graph with linearly varying edge weights, how many times can the
shortest path between two vertices change? Parametric shortest-path problems have been
extensively studied for their application to minimum cost flow [17], but a solution to
this question would also help clarify the processor bounds needed for fast parallel linear
programming with two variables per inequality [30]. An argument similar to the proof
of Savitch’s theorem can be used to show annO(logn) bound on the number of shortest
paths (G. S. Lueker and N. Megiddo, personal communications; Carstensen attributes
this result to Gusfield [19]). Carstensen proved a matchingnÄ(logn) lower bound for
this problem [4]. Do other nonmatroidal parametric optimization problems give similar
quasi-polynomial bounds?

Another direction for generalization is in the functions defining the matroid element
weights as functions of the parametert . Work of Gusfieldet al. on parametric sequence
alignment [20] can be interpreted as a shortest-path problem with weights depending
linearly on two parameters, and, similarly to the situation in two dimensions, multipa-
rameter uniform matroid optimization problems are essentially equivalent to levels in
higher-dimensional arrangements [1], [2], [8], [11]. Tamaki and Tokuyama [34] have
also investigated parametric matroid problems with quadratic element weight functions,
but much more work remains to be done in this direction.

A final open problem concerns algorithms for parametric matroid optimization. It is
known that ak-level in a line arrangement (essentiallyequivalent to the set of base changes
in a parametric uniform matroid) can be constructed in timeO(n logn+x log2 n), where
x denotes the output complexity [7], [10]. Recently, we used some of the ideas from this
paper (in particular the equivalence between matroid optimization and convex polygons
in an arrangement) as part of an algorithm for finding all minimum spanning trees in
a graph with linearly varying edge weights, in timeO(mnlogn) [16]. However, there
may still be room for improvement in this bound, and known results for nonuniform and
nongraphic matroids are even further from the output complexity bounds proven here.
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Note added in proof. Very recently, Tamal Dey has proven anO(nr1/3) upper bound
on the number of base changes in a parametric matroid optimization problem, matching
theÄ(nr1/3) lower bound given here. The same upper bound also applies tok-sets
and parametric minimum spanning trees. Dey’s results will appear at the 38th IEEE
Symposium on Foundations of Computer Science.


