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Abstract

Matrix completion models are among the most common formulations of recom-
mender systems. Recent works have showed a boost of performance of these
techniques when introducing the pairwise relationships between users/items in the
form of graphs, and imposing smoothness priors on these graphs. However, such
techniques do not fully exploit the local stationary structures on user/item graphs,
and the number of parameters to learn is linear w.r.t. the number of users and items.
We propose a novel approach to overcome these limitations by using geometric
deep learning on graphs. Our matrix completion architecture combines a novel
multi-graph convolutional neural network that can learn meaningful statistical
graph-structured patterns from users and items, and a recurrent neural network that
applies a learnable diffusion on the score matrix. Our neural network system is
computationally attractive as it requires a constant number of parameters indepen-
dent of the matrix size. We apply our method on several standard datasets, showing
that it outperforms state-of-the-art matrix completion techniques.

1 Introduction

Recommender systems have become a central part of modern intelligent systems. Recommending
movies on Netflix, friends on Facebook, furniture on Amazon, and jobs on LinkedIn are a few
examples of the main purpose of these systems. Two major approaches to recommender systems are
collaborative [5] and content [32] filtering techniques. Systems based on collaborative filtering use
collected ratings of items by users and offer new recommendations by finding similar rating patterns.
Systems based on content filtering make use of similarities between items and users to recommend
new items. Hybrid systems combine collaborative and content techniques.

Matrix completion. Mathematically, a recommendation method can be posed as a matrix com-
pletion problem [9], where columns and rows represent users and items, respectively, and matrix
values represent scores determining whether a user would like an item or not. Given a small subset of
known elements of the matrix, the goal is to fill in the rest. A famous example is the Netflix challenge
[22] offered in 2009 and carrying a 1M$ prize for the algorithm that can best predict user ratings for
movies based on previous user ratings. The size of the Netflix matrix is 480k movies × 18k users
(8.5B entries), with only 0.011% known entries.

Recently, there have been several attempts to incorporate geometric structure into matrix completion
problems [27, 19, 33, 24], e.g. in the form of column and row graphs representing similarity of users
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and items, respectively. Such additional information defines e.g. the notion of smoothness of the
matrix and was shown beneficial for the performance of recommender systems. These approaches
can be generally related to the field of signal processing on graphs [37], extending classical harmonic
analysis methods to non-Euclidean domains (graphs).

Geometric deep learning. Of key interest to the design of recommender systems are deep learning
approaches. In the recent years, deep neural networks and, in particular, convolutional neural networks
(CNNs) [25] have been applied with great success to numerous applications. However, classical CNN
models cannot be directly applied to the recommendation problem to extract meaningful patterns in
users, items and ratings because these data are not Euclidean structured, i.e. they do not lie on regular
lattices like images but rather irregular domains like graphs. Recent works applying deep learning to
recommender systems used networks with fully connected or auto-encoder architectures [44, 35, 14].
Such methods are unable to extract the important local stationary patterns from the data, which is
one of the key properties of CNN architectures. New neural networks are necessary and this has
motivated the recent development of geometric deep learning techniques that can mathematically deal
with graph-structured data, which arises in numerous applications, ranging from computer graphics
and vision [28, 2, 4, 3, 30] to chemistry [12]. We recommend the review paper [6] to the reader not
familiar with this line of works.

The earliest attempts to apply neural networks to graphs are due to Scarselli et al. [13, 34] (see more
recent formulation [26, 40]). Bruna et al. [7, 15] formulated CNN-like deep neural architectures
on graphs in the spectral domain, employing the analogy between the classical Fourier transforms
and projections onto the eigenbasis of the graph Laplacian operator [37]. Defferrard et al. [10]
proposed an efficient filtering scheme using recurrent Chebyshev polynomials, which reduces the
complexity of CNNs on graphs to the same complexity of classical (Euclidean) CNNs. This model
was later extended to deal with dynamic data [36]. Kipf and Welling [21] proposed a simplification of
Chebychev networks using simple filters operating on 1-hop neighborhoods of the graph. Monti et al.
[30] introduced a spatial-domain generalization of CNNs to graphs local patch operators represented
as Gaussian mixture models, showing significantly better generalization across different graphs.

Contributions. We present two main contributions. First, we introduce a new multi-graph CNN
architecture that generalizes [10] to multiple graphs. This new architecture is able to extract local
stationary patterns from signals defined on multiple graphs simultaneously. While in this work we
apply multi-graph CNNs in the context of recommender systems to the graphs of users and items,
however, our architecture is generic and can be used in other applications, such as neuroscience
(autism detection with network of people and brain connectivity [31, 23]), computer graphics (shape
correspondence on product manifold [41]), or social network analysis (abnormal spending behavior
detection with graphs of customers and stores [39]). Second, we approach the matrix completion
problem as learning on user and item graphs using the new deep multi-graph CNN framework. Our
architecture is based on a cascade of multi-graph CNN followed by Long Short-Term Memory
(LSTM) recurrent neural network [16] that together can be regarded as a learnable diffusion process
that reconstructs the score matrix.

2 Background

2.1 Matrix Completion

Matrix completion problem. Recovering the missing values of a matrix given a small fraction
of its entries is an ill-posed problem without additional mathematical constraints on the space of
solutions. It is common to assume that the variables lie in a smaller subspace, i.e., the matrix is of
low rank,

min
X

rank(X) s.t. xij = yij , ∀ij ∈ Ω, (1)

where X denotes the matrix to recover, Ω is the set of the known entries and yij are their values.
Unfortunately, rank minimization turns out to be an NP-hard combinatorial problem that is computa-
tionally intractable in practical cases. The tightest possible convex relaxation of problem (1) is to
replace the rank with the nuclear norm ‖ · ‖⋆ equal to the sum of its singular values [8],

min
X

‖X‖⋆ +
µ

2
‖Ω ◦ (X−Y)‖2F; (2)

the equality constraint is also replaced with a penalty to make the problem more robust to noise (here
Ω is the indicator matrix of the known entries Ω and ◦ denotes the Hadamard pointwise product).
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Candès and Recht [8] proved that under some technical conditions the solutions of problems (2)
and (1) coincide.

Geometric matrix completion An alternative relaxation of the rank operator in (1) can be achieved
constraining the space of solutions to be smooth w.r.t. some geometric structure on the rows and
columns of the matrix [27, 19, 33, 1]. The simplest model is proximity structure represented as an
undirected weighted column graph Gc = ({1, . . . , n}, Ec,Wc) with adjacency matrix Wc = (wc

ij),
where wc

ij = wc
ji, w

c
ij = 0 if (i, j) /∈ Ec and wc

ij > 0 if (i, j) ∈ Ec. In our setting, the column
graph could be thought of as a social network capturing relations between users and the similarity of
their tastes. The row graph Gr = ({1, . . . ,m}, Er,Wr) representing the items similarities is defined
similarly.

On each of these graphs one can construct the (normalized) graph Laplacian, an n× n symmetric

positive-semidefinite matrix ∆ = I−D−1/2WD−1/2, where D = diag(
∑

j 6=i wij) is the degree

matrix. We denote the Laplacian associated with row and column graphs by ∆r and ∆c, respec-
tively. Considering the columns (respectively, rows) of matrix X as vector-valued functions on the
column graph Gc (respectively, row graph Gr), their smoothness can be expressed as the Dirichlet
norm ‖X‖2Gr

= trace(X⊤∆rX) (respecitvely, ‖X‖2Gc

= trace(X∆cX
⊤)). The geometric matrix

completion problem [19] thus boils down to minimizing

min
X

‖X‖2Gr

+ ‖X‖2Gc

+
µ

2
‖Ω ◦ (X−Y)‖2F. (3)

Factorized models. Matrix completion algorithms introduced in the previous section are well-posed
as convex optimization problems, guaranteeing existence, uniqueness and robustness of solutions.
Besides, fast algorithms have been developed for the minimization of the non-differentiable nuclear
norm. However, the variables in this formulation are the full m× n matrix X, making it hard to scale
up to large matrices such as the Netflix challenge.

A solution is to use a factorized representation [38, 22, 27, 43, 33, 1] X = WH⊤, where W,H are
m× r and n× r matrices, respectively, with r ≪ min(m,n). The use of factors W,H reduces the
number of degrees of freedom from O(mn) to O(m + n); this representation is also attractive as
people often assumes the original matrix to be low-rank for solving the matrix completion problem,
and rank(WH⊤) ≤ r by construction.

The nuclear norm minimization problem (2) can be rewritten in a factorized form as [38]:

min
W,H

1

2
‖W‖2F +

1

2
‖H‖2F +

µ

2
‖Ω ◦ (WH⊤ −Y)‖2F. (4)

and the factorized formulation of the graph-based minimization problem (3) as

min
W,H

1

2
‖W‖2Gr

+
1

2
‖H‖2Gc

+
µ

2
‖Ω ◦ (WH⊤ −Y)‖2F. (5)

The limitation of model (5) is that it decouples the regularization previously applied simultaneously
on the rows and columns of X in (3), but the advantage is linear instead of quadratic complexity.

2.2 Deep learning on graphs

The key concept underlying our work is geometric deep learning, an extension of CNNs to graphs. In
particular, we focus here on graph CNNs formulated in the spectral domain. A graph Laplacian admits

a spectral eigendecomposition of the form ∆ = ΦΛΦ⊤, where Φ = (φ1, . . .φn) denotes the matrix
of orthonormal eigenvectors and Λ = diag(λ1, . . . , λn) is the diagonal matrix of the corresponding
eigenvalues. The eigenvectors play the role of Fourier atoms in classical harmonic analysis and the
eigenvalues can be interpreted as frequencies. Given a function x = (x1, . . . , xn)

⊤ on the vertices

of the graph, its graph Fourier transform is given by x̂ = Φ⊤x. The spectral convolution of two
functions x,y can be defined as the element-wise product of the respective Fourier transforms,

x ⋆ y = Φ(Φ⊤y) ◦ (Φ⊤x) = Φ diag(ŷ1, . . . , ŷn) x̂, (6)

by analogy to the Convolution Theorem in the Euclidean case.

Bruna et al. [7] used the spectral definition of convolution (6) to generalize CNNs on graphs. A
spectral convolutional layer in this formulation has the form

x̃l = ξ





q′
∑

l′=1

ΦŶll′Φ
⊤xl′



 , l = 1, . . . , q, (7)
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where q′, q denote the number of input and output channels, respectively, Ŷll′ =
diag(ŷll′,1, . . . , ŷll′,n) is a diagonal matrix of spectral multipliers representing a learnable filter
in the spectral domain, and ξ is a nonlinearity (e.g. ReLU) applied on the vertex-wise function values.
Unlike classical convolutions carried out efficiently in the spectral domain using FFT, the computa-
tions of the forward and inverse graph Fourier transform incur expensive O(n2) multiplication by

the matrices Φ,Φ⊤, as there are no FFT-like algorithms on general graphs. Second, the number of
parameters representing the filters of each layer of a spectral CNN is O(n), as opposed to O(1) in
classical CNNs. Third, there is no guarantee that the filters represented in the spectral domain are
localized in the spatial domain, which is another important property of classical CNNs.

Henaff et al. [15] argued that spatial localization can be achieved by forcing the spectral mul-
tipliers to be smooth. The filter coefficients are represented as ŷk = τ(λk), where τ(λ) is a
smooth transfer function of frequency λ; its application to a signal x is expressed as τ(∆)x =

Φ diag(τ(λ1), . . . , τ(λn))Φ
⊤x, where applying a function to a matrix is understood in the operator

sense and boils down to applying the function to the matrix eigenvalues. In particular, the authors
used parametric filters of the form

τθ(λ) =

p
∑

j=1

θjβj(λ), (8)

where β1(λ), . . . , βr(λ) are some fixed interpolation kernels, and θ = (θ1, . . . , θp) are p = O(1)
interpolation coefficients acting as parameters of the spectral convolutional layer.

Defferrard et al. [10] used polynomial filters of order p represented in the Chebyshev basis,

τθ(λ̃) =

p
∑

j=0

θjTj(λ̃), (9)

where λ̃ is frequency rescaled in [−1, 1], θ is the (p+1)-dimensional vector of polynomial coefficients
parametrizing the filter, and Tj(λ) = 2λTj−1(λ)− Tj−2(λ) denotes the Chebyshev polynomial of

degree j defined in a recursive manner with T1(λ) = λ and T0(λ) = 1. Here, ∆̃ = 2λ−1
n ∆− I is

the rescaled Laplacian with eigenvalues Λ̃ = 2λ−1
n Λ− I in the interval [−1, 1].

This approach benefits from several advantages. First, it does not require an explicit computation of the

Laplacian eigenvectors, as applying a Chebyshev filter to x amounts to τθ(∆̃)x =
∑p

j=0 θjTj(∆̃)x;

due to the recursive definition of the Chebyshev polynomials, this incurs applying the Laplacian p
times. Multiplication by Laplacian has the cost of O(|E|), and assuming the graph has |E| = O(n)
edges (which is the case for k-nearest neighbors graphs and most real-world networks), the overall
complexity is O(n) rather than O(n2) operations, similarly to classical CNNs. Moreover, since the
Laplacian is a local operator affecting only 1-hop neighbors of a vertex and accordingly its pth power
affects the p-hop neighborhood, the resulting filters are spatially localized.

3 Our approach

In this paper, we propose formulating matrix completion as a problem of deep learning on user and
item graphs. We consider two architectures summarized in Figures 1 and 2. The first architecture
works on the full matrix model producing better accuracy but requiring higher complexity. The
second architecture used factorized matrix model, offering better scalability at the expense of slight
reduction of accuracy. For both architectures, we consider a combination of multi-graph CNN and
RNN, which will be described in detail in the following sections. Multi-graph CNNs are used to
extract local stationary features from the score matrix using row and column similarities encoded by
user and item graphs. Then, these spatial features are fed into a RNN that diffuses the score values
progressively, reconstructing the matrix.

3.1 Multi-Graph CNNs

Multi-graph convolution. Our first goal is to extend the notion of the aforementioned graph
Fourier transform to matrices whose rows and columns are defined on row- and column-graphs. We
recall that the classical two-dimensional Fourier transform of an image (matrix) can be thought of as
applying a one-dimensional Fourier transform to its rows and columns. In our setting, the analogy of
the two-dimensional Fourier transform has the form

X̂ = Φ⊤
r XΦc (10)
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where Φc,Φr and Λc = diag(λc,1, . . . , λc,n) and Λr = diag(λr,1, . . . , λr,m) denote the n× n and
m × m eigenvector- and eigenvalue matrices of the column- and row-graph Laplacians ∆c,∆r,
respectively. The multi-graph version of the spectral convolution (6) is given by

X ⋆Y = Φr(X̂ ◦ Ŷ)Φ⊤
c , (11)

and in the classical setting can be thought as the analogy of filtering a 2D image in the spectral domain
(column and row graph eigenvalues λc and λr generalize the x- and y-frequencies of an image).

As in [7], representing multi-graph filters as their spectral multipliers Ŷ would yield O(mn) parame-
ters, prohibitive in any practical application. To overcome this limitation, we follow [15], assuming
that the multi-graph filters are expressed in the spectral domain as a smooth function of both frequen-

cies (eigenvalues λc, λr of the row- and column graph Laplacians) of the form Ŷk,k′ = τ(λc,k, λr,k′).
In particular, using Chebychev polynomial filters of degree p,1

τΘ(λ̃c, λ̃r) =

p
∑

j,j′=0

θjj′Tj(λ̃c)Tj′(λ̃r), (12)

where λ̃c, λ̃r are the frequencies rescaled [−1, 1] (see Figure 4 for examples). Such filters are
parametrized by a (p+ 1)× (p+ 1) matrix of coefficients Θ = (θjj′), which is O(1) in the input
size as in classical CNNs on images. The application of a multi-graph filter to the matrix X

X̃ =

p
∑

j,j′=0

θjj′Tj(∆̃r)XTj′(∆̃c) (13)

incurs an O(mn) computational complexity (here, as previously, ∆̃c = 2λ−1
c,n∆c − I and ∆̃r =

2λ−1
r,m∆r − I denote the scaled Laplacians).

Similarly to (7), a multi-graph convolutional layer using the parametrization of filters according
to (13) is applied to q′ input channels (m× n matrices X1, . . . ,Xq′ or a tensor of size m× n× q′),

X̃l = ξ





q′
∑

l′=1

Xl′ ⋆Yll′



 = ξ





q′
∑

l′=1

p
∑

j,j′=0

θjj′,ll′Tj(∆̃r)Xl′Tj′(∆̃c)



 , l = 1, . . . , q, (14)

producing q outputs (tensor of size m× n× q). Several layers can be stacked together. We call such
an architecture a Multi-Graph CNN (MGCNN).

Separable convolution. A simplification of the multi-graph convolution is obtained considering
the factorized form of the matrix X = WH⊤ and applying one-dimensional convolutions to the
respective graph to each factor. Similarly to the previous case, we can express the filters resorting to
Chebyshev polynomials,

w̃l =

p
∑

j=0

θrjTj(∆̃r)wl, h̃l =

p
∑

j′=0

θcj′Tj′(∆̃c)hl, l = 1, . . . , r (15)

where wl,hl denote the lth columns of factors W, H and θr = (θr0, . . . , θ
r
p) and θc = (θc0, . . . , θ

c
p)

are the parameters of the row- and column- filters, respectively (a total of 2(p + 1) = O(1)).
Application of such filters to W and H incurs O(m+ n) complexity. Convolutional layers (14) thus
take the form

w̃l = ξ





q′
∑

l′=1

p
∑

j=0

θrj,ll′Tj(∆̃r)wl′



 , h̃l = ξ





q′
∑

l′=1

p
∑

j′=0

θcj′,ll′Tj′(∆̃c)hl′



 . (16)

We call such an architecture a separable MGCNN or sMGCNN.

3.2 Matrix diffusion with RNNs

The next step of our approach is to feed the spatial features extracted from the matrix by the MGCNN
or sMGCNN to a recurrent neural network (RNN) implementing a diffusion process that progressively
reconstructs the score matrix (see Figure 3). Modelling matrix completion as a diffusion process

1For simplicity, we use the same degree p for row- and column frequencies.
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X
X

(t)
X̃

(t)

MGCNN RNN

dX
(t)

X
(t+1)

= X
(t)

+ dX
(t)

row+column filtering

Figure 1: Recurrent MGCNN (RMGCNN) architecture using the full matrix completion model and
operating simultaneously on the rows and columns of the matrix X. Learning complexity is O(mn).

W

H
⊤

H
(t)

H̃
(t)

W
(t)

W̃
(t)

GCNN RNN

GCNN RNN

dH
(t)

dW
(t)

W
(t+1)

= W
(t)

+ dW
(t)

H
(t+1)

= H
(t)

+ dH
(t)

row filtering

column filtering

Figure 2: Separable Recurrent MGCNN (sRMGCNN) architecture using the factorized matrix
completion model and operating separately on the rows and columns of the factors W, H⊤. Learning
complexity is O(m+ n).

t = 0 1 2 3 4 5 6 7 8 9 10

2.26 1.89 1.60 1.78 1.31 0.52 0.48 0.63 0.38 0.07 0.01

1.15 1.04 0.94 0.89 0.84 0.76 0.69 0.49 0.27 0.11 0.01

Figure 3: Evolution of matrix X(t) with our architecture using full matrix completion model
RMGCNN (top) and factorized matrix completion model sRMGCNN (bottom). Numbers indi-
cate the RMS error.

appears particularly suitable for realizing an architecture which is independent of the sparsity of
the available information. In order to combine the few scores available in a sparse input matrix, a
multilayer CNN would require very large filters or many layers to diffuse the score information across
matrix domains. On the contrary, our diffusion-based approach allows to reconstruct the missing
information just by imposing the proper amount of diffusion iterations. This gives the possibility
to deal with extremely sparse data, without requiring at the same time excessive amounts of model
parameters. See Table 3 for an experimental evaluation on this aspect.

We use the classical LSTM architecture [16], which has demonstrated to be highly efficient to
learn complex non-linear diffusion processes due to its ability to keep long-term internal states
(in particular, limiting the vanishing gradient issue). The input of the LSTM gate is given by the
static features extracted from the MGCNN, which can be seen as a projection or dimensionality
reduction of the original matrix in the space of the most meaningful and representative information
(the disentanglement effect). This representation coupled with LSTM appears particularly well-suited
to keep a long term internal state, which allows to predict accurate small changes dX of the matrix
X (or dW, dH of the factors W, H) that can propagate through the full temporal steps.
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Figures 1 and 2 and Algorithms 1 and 2 summarize the proposed matrix completion architectures.
We refer to the whole architecture combining the MGCNN and RNN in the full matrix completion
setting as recurrent multi-graph CNN (RMGCNN). The factorized version with separable MGCNN
and RNN is referred to as separable RMGCNN (sRMGCNN). The complexity of Algorithm 1 scales
quadratically as O(mn) due to the use of MGCNN. For large matrices, Algorithm 2 that processes
the rows and columns separately with standard GCNNs and scales linearly as O(m+n) is preferable.

We will demonstrate in Section 4 that the proposed RMGCNN and sRMGCNN architectures show
themselves very well on different settings of matrix completion problems. However, we should note
that this is just one possible configuration, which we by no means claim to be optimal. For example,
in all our experiments we used only one convolutional layer; it is likely that better yet performance
could be achieved with more layers.

Algorithm 1 (RMGCNN)

input m× n matrix X(0) containing initial val-
ues

1: for t = 0 : T do
2: Apply the Multi-Graph CNN (13) on X(t)

producing an m× n× q output X̃(t).
3: for all elements (i, j) do

4: Apply RNN to q-dim x̃
(t)
ij =

(x̃
(t)
ij1, . . . , x̃

(t)
ijq) producing incremental

update dx
(t)
ij

5: end for
6: Update X(t+1) = X(t) + dX(t)

7: end for

Algorithm 2 (sRMGCNN)

input m× r factor H(0) and n× r factor W(0)

representing the matrix X(0)

1: for t = 0 : T do
2: Apply the Graph CNN on H(t) producing

an n× q output H̃(t).
3: for j = 1 : n do

4: Apply RNN to q-dim h̃
(t)
j =

(h̃
(t)
j1 , . . . , h̃

(t)
jq ) producing incremental

update dh
(t)
j

5: end for
6: Update H(t+1) = H(t) + dH(t)

7: Repeat steps 2-6 for W(t+1)

8: end for

3.3 Training

Training of the networks is performed by minimizing the loss

ℓ(Θ,σ) = ‖X
(T )
Θ,σ‖

2
Gr

+ ‖X
(T )
Θ,σ‖

2
Gc

+
µ

2
‖Ω ◦ (X

(T )
Θ,σ −Y)‖2F. (17)

Here, T denotes the number of diffusion iterations (applications of the RNN), and we use the

notation X
(T )
Θ,σ to emphasize that the matrix depends on the parameters of the MGCNN (Chebyshev

polynomial coefficients Θ) and those of the LSTM (denoted by σ). In the factorized setting, we use
the loss

ℓ(θr,θc,σ) = ‖W
(T )
θr,σ

‖2Gr

+ ‖H
(T )
θc,σ

‖2Gc

+
µ

2
‖Ω ◦ (W

(T )
θr,σ

(H
(T )
θc,σ

)⊤ −Y)‖2F (18)

where θc,θr are the parameters of the two GCNNs.

4 Results2

Experimental settings. We closely followed the experimental setup of [33], using five standard
datasets: Synthetic dataset from [19], MovieLens [29], Flixster [18], Douban [27], and YahooMusic
[11]. We used disjoint training and test sets and the presented results are reported on test sets in all
our experiments. As in [33], we evaluated MovieLens using only the first of the 5 provided data splits.
For Flixster, Douban and YahooMusic, we evaluated on a reduced matrix of 3000 users and items,
considering 90% of the given scores as training set and the remaining as test set. Classical Matrix
Completion (MC) [9], Inductive Matrix Completion (IMC) [17, 42], Geometric Matrix Completion
(GMC) [19], and Graph Regularized Alternating Least Squares (GRALS) [33] were used as baseline
methods. In all the experiments, we used the following settings for our RMGCNNs: Chebyshev
polynomials of order p = 4, outputting k = 32-dimensional features, LSTM cells with 32 features
and T = 10 diffusion steps (for both training and test). The number of diffusion steps T has been
estimated on the Movielens validation set and used in all our experiments. A better estimate of T
can be done by cross-validation, and thus can potentially only improve the final results. All the

2Code: https://github.com/fmonti/mgcnn
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models were implemented in Google TensorFlow and trained using the Adam stochastic optimization
algorithm [20] with learning rate 10−3. In factorized models, ranks r = 15 and 10 was used for
the synthetic and real datasets, respectively. For all methods, hyperparameters were chosen by
cross-validation.

Figure 4: Absolute value |τ(λ̃c, λ̃r)| of the first
ten spectral filters learnt by our MGCNN model.
In each matrix, rows and columns represent

frequencies λ̃r and λ̃c of the row and column
graphs, respectively.
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Figure 5: Absolute values |τ(λ̃c)| and |τ(λ̃r)|
of the first four column (solid) and row (dashed)
spectral filters learned by our sMGCNN model.

4.1 Synthetic data

We start the experimental evaluation showing the performance of our approach on a small synthetic
dataset, in which the user and item graphs have strong communities structure. Though rather simple,
such a dataset allows to study the behavior of different algorithms in controlled settings.

The performance of different matrix completion methods is reported in Table 1, along with their
theoretical complexity. Our RMGCNN and sRMGCNN models achieve better accuracy than other
methods with lower complexity. Different diffusion time steps of these two models are visualized in
Figure 3. Figures 4 and 5 depict the spectral filters learnt by MGCNN and row- and column-GCNNs.

We repeated the same experiment assuming only the column (users) graph to be given. In this setting,
RMGCNN cannot be applied, while sRMGCNN has only one GCNN applied on the factor H (the
other factor W is free). Table 2 summarizes the results of this experiment, again, showing that our
approach performs the best.

Table 3 compares our RMGCNN with more classical multilayer MGCNNs. Our recurrent solutions
outperforms deeper and more complex architectures, requiring at the same time a lower amount of
parameters.

Table 1: Comparison of different matrix comple-
tion methods using users+items graphs in terms
of number of parameters (optimization variables)
and computational complexity order (operations
per iteration). Big-O notation is avoided for clar-
ity reasons. Rightmost column shows the RMS
error on Synthetic dataset.

METHOD PARAMS NO. OP. RMSE
GMC mn mn 0.3693
GRALS m+ n m+ n 0.0114
sRMGCNN 1 m + n 0.0106
RMGCNN 1 mn 0.0053

Table 2: Comparison of different matrix comple-
tion methods using users graph only in terms of
number of parameters (optimization variables)
and computational complexity order (operations
per iteration). Big-O notation is avoided for clar-
ity reasons. Rightmost column shows the RMS
error on Synthetic dataset.

METHOD PARAMS NO. OP. RMSE
GRALS m+ n m+ n 0.0452
sRMGCNN m m + n 0.0362

Table 3: Reconstruction errors for the synthetic dataset between multiple convolutional layers
architectures and the proposed architecture. Chebyshev polynomials of order 4 have been used for
both users and movies graphs (q′MGCq denotes a multi-graph convolutional layer with q′ input
features and q output features).

Method Params Architecture RMSE
MGCNN3layers 9K 1MGC32, 32MGC10, 10MGC1 0.0116
MGCNN4layers 53K 1MGC32, 32MGC32 × 2, 32MGC1 0.0073
MGCNN5layers 78K 1MGC32, 32MGC32 × 3, 32MGC1 0.0074
MGCNN6layers 104K 1MGC32, 32MGC32 × 4, 32MGC1 0.0064
RMGCNN 9K 1MGC32 + LSTM 0.0053
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4.2 Real data

Following [33], we evaluated the proposed approach on the MovieLens, Flixster, Douban and
YahooMusic datasets. For the MovieLens dataset we constructed the user and item (movie) graphs as
unweighted 10-nearest neighbor graphs in the space of user and movie features, respectively. For
Flixster, the user and item graphs were constructed from the scores of the original matrix. On this
dataset, we also performed an experiment using only the users graph. For the Douban dataset, we
used only the user graph (provided in the form of a social network). For the YahooMusic dataset,
we used only the item graph, constructed with unweighted 10-nearest neighbors in the space of
item features (artists, albums, and genres). For the latter three datasets, we used a sub-matrix of
3000× 3000 entries for evaluating the performance. Tables 4 and 5 summarize the performance of
different methods. sRMGCNN outperforms the competitors in all the experiments.

Table 4: Performance (RMS error)
of different matrix completion meth-
ods on the MovieLens dataset.

METHOD RMSE
GLOBAL MEAN 1.154
USER MEAN 1.063
MOVIE MEAN 1.033
MC [9] 0.973
IMC [17, 42] 1.653
GMC [19] 0.996
GRALS [33] 0.945
sRMGCNN 0.929

Table 5: Performance (RMS error) on several datasets. For
Douban and YahooMusic, a single graph (of users and items
respectively) was used. For Flixster, two settings are shown:
users+items graphs / only users graph.

METHOD FLIXSTER DOUBAN YAHOOMUSIC

GRALS 1.3126 / 1.2447 0.8326 38.0423
sRMGCNN 1.1788 / 0.9258 0.8012 22.4149

5 Conclusions

In this paper, we presented a new deep learning approach for matrix completion based on multi-graph
convolutional neural network architecture. Among the key advantages of our approach compared to
traditional methods is its low computational complexity and constant number of degrees of freedom
independent of the matrix size. We showed that the use of deep learning for matrix completion allows
to beat related state-of-the-art recommender system methods. To our knowledge, our work is the first
application of deep learning on graphs to this class of problems. We believe that it shows the potential
of the nascent field of geometric deep learning on non-Euclidean domains, and will encourage future
works in this direction.
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