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Preface

Introduction

This is the 2nd edition of the text for a course of 33 lectures in geo-
metric mechanics, taught annually by the author to fourth-year un-
dergraduates in their last term in applied mathematics at Imperial
College London. The text mimics the lectures, which attempt to
provide an air of immediacy and flexibility in which students may
achieve insight and proficiency in using one of the fundamental ap-
proaches for solving a variety of problems in geometric mechan-
ics. This is the Euler–Poincaré approach, which uses the Lie group
invariance of Hamilton’s principle to produce symmetry-reduced
motion equations and reveal their geometrical meaning. It has been
taught to students with various academic backgrounds from math-
ematics, physics and engineering.

Each chapter of the text is presented as a line of inquiry, often by
asking sequences of related questions such as “What is angular ve-
locity?”, “What is kinetic energy?”, “What is angular momentum?”,
and so forth. In adopting such an inquiry-based approach, one fo-
cuses on a sequence of exemplary problems, each of whose solution
facilitates taking the next step. The present text takes those steps,
forgoing any attempt at mathematical rigour. Readers interested in
a more rigorous approach are invited to consult some of the many
works cited in the bibliography which treat the subject in that style.
This book is meant to be an intermediate introduction to geomet-
ric mechanics that bridges standard textbooks and more advanced
study.
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Prerequisites

The prerequisites are standard for an advanced undergraduate stu-
dent. Namely, the student should be familiar with the linear algebra
of vectors and matrices, ordinary differential equations, multivari-
able calculus and have some familiarity with variational principles
and canonical Poisson brackets in classical mechanics at the level
of a second- or third-year undergraduate in mathematics, physics
or engineering. An undergraduate background in physics is partic-
ularly helpful, because all the examples of rotating, spinning and
rolling rigid bodies treated here from a geometric viewpoint would
be familiar from undergraduate physics classes.

How to read this book

Most of the book is meant to be read in sequential order from front
to back. The 120 Exercises are an important aspect of the text. These
are shaded, indented and marked with ⋆.

Exercise. ⋆

Their 55 Worked Answers are indented and marked with N.

Key theorems, results and remarks are placed in frames.

The three appendices provide supplementary material, such as con-
densed summaries of the essentials of manifolds (Appendix A) and
Lie groups (Appendix B) for students who may wish to acquire a bit
more mathematical background. In addition, the appendices pro-
vide material for supplementary lectures that extend the course ma-
terial. Examples include variants of rotating motion that depend on
more than one time variable, as well as rotations in complex space



September 24, 2011 11:41am Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

PREFACE xvii

and in higher dimensions in Appendix C. The appendices also con-
tain ideas for additional homework and exam problems that go be-
yond the many exercises and examples sprinkled throughout the
text.

Description of contents

Galilean relativity and the idea of a uniformly moving reference
frame are explained in Chapter 1. Freely rotating motion is then
treated in Chapters 2, 3 and 4, first by reviewing Newton’s and La-
grange’s approaches, then by following Hamilton’s approach via
quaternions and Cayley–Klein parameters, not Euler angles.

Hamilton’s rules for multiplication of quaternions introduced
the adjoint and coadjoint actions that lie at the heart of geometric
mechanics. For the rotations and translations in R3 studied in Chap-
ters 5 and 6, the adjoint and coadjoint actions are both equivalent to
the vector cross product. Poincaré [Po1901] opened the field of ge-
ometric mechanics by noticing that these actions define the motion
generated by any Lie group.

When applied to Hamilton’s principle defined on the tangent
space of an arbitrary Lie group, the adjoint and coadjoint actions
studied in Chapter 6 result in the Euler–Poincaré equations derived
in Chapter 7. Legendre-transforming the Lagrangian in Hamil-
ton’s principle summons the Lie–Poisson Hamiltonian formulation
of dynamics on a Lie group. The Euler–Poincaré equations pro-
vide the framework for all of the applications treated in this text.
These applications include finite-dimensional dynamics of three-
dimensional rotations and translations in the special Euclidean
group SE(3). The Euler–Poincaré problem on SE(3) recovers Kirch-
hoff’s classic treatment in modern form of the dynamics of an el-
lipsoidal body moving in an incompressible fluid flow without
vorticity.

The Euler–Poincaré formulation of Kirchhoff’s problem on
SE(3) in Chapter 7 couples rotations and translations, but it does
not yet introduce potential energy. The semidirect-product struc-
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ture of SE(3), however, introduces the key idea for incorporating
potential energy. Namely, the same semidirect-product structure
is also invoked in passing from rotations of a free rigid body to
rotations of a heavy top with a fixed point of support under gravity.
Thereby, semidirect-product reduction becomes a central focus of
the text.

The heavy top treated in Chapter 8 is a key example, because
it introduces the dual representation of the action of a Lie algebra
on a vector space. This is the diamond operation ( ⋄ ), by which
the forces and torques produced by potential energy gradients are
represented in the Euler–Poincaré framework in Chapters 9 and 10.
The diamond operation is then found in Chapter 11 to lie at the heart
of the standard (cotangent-lift) momentum map.

This observation reveals the relation between the results of re-
duction by Lie symmetry on the Lagrangian and Hamiltonian sides.
Namely,

Lie symmetry reduction on the Lagrangian side pro-
duces the Euler–Poincaré equation, whose formulation
on the Hamiltonian side as a Lie–Poisson equation gov-
erns the dynamics of the momentum map associated
with the cotangent lift of the Lie algebra action of that
Lie symmetry on the configuration manifold.

The chief purpose of this book is to explain that statement, so
that it may be understood by undergraduate students in mathemat-
ics, physics and engineering.

In the Euler–Poincaré framework, the adjoint and coadjoint ac-
tions combine with the diamond operation to provide a powerful
tool for investigating other applications of geometric mechanics, in-
cluding nonholonomic constraints discussed in Chapter 12. In the
same chapter, nonholonomic mechanics is discussed in the context
of two classic problems, known as Chaplygin’s ball (an unbalanced
rolling ball) and Euler’s disk (a spinning, falling, rolling flat coin).
In these classic examples, the semidirect-product structure couples
rotations, translations and potential energy together with the rolling
constraint.
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What is new in the 2nd edition?

The organisation of the 1st edition has been preserved in the 2nd
edition. However, the substance of the text has been rewritten
throughout to improve the flow and enrich the development of
the material. Some examples of the new improvements include the
following:

The Galilean group and the implications of Galilean relativity
for Noether’s theorem have been developed further.

The role of Noether’s theorem has been given added emphasis
throughout, with various applications for Euler–Poincaré sys-
tems, Lie–Poisson systems and nonholonomically constrained
systems, such as the rolling bodies treated in Chapter 12.

Additional examples of adjoint and coadjoint actions of Lie
groups have been worked out. These include the Heisenberg
group, and the semidirect-product Lie group SL(2, R)sR2,
which is the group of motions of ellipses that translate, rotate
and dilate in the plane, while preserving their area.

Manakov’s approach of regarding the rigid body as an
isospectral eigenvalue problem has been developed further
and additional examples of its application have been given,
particularly for the Euler top and the Lagrange top.

A section has been added about coquaternions. The coquater-
nions comprise a representation of SP (2), while the more
well-known quaternions form a representation of SU(2).

Momentum maps are discussed in more depth in the 2nd edi-
tion. For example, dual pairs of momentum maps are dis-
cussed in Chapter 11 in the context of the Hopf fibration, un-
der the reduction of C2 by S1 from the right and by SU(2)
from the left.

Additional enhanced coursework has been provided, includ-
ing treatments of Euler–Poincaré equations for (i) the articu-
lated motion of two coupled rigid bodies; and (ii) geodesic
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motion on the symplectic group SP (2), which leads to a
Bloch–Iserles equation [BlIs2006].

A new English translation is provided in Appendix D of
Poincaré’s famous two-page paper [Po1901]. There, Poincaré
derived the Euler–Poincaré equations by using Lie’s theory
of infinitesimal transformations for variations in Hamilton’s
principle. Thus began modern geometric mechanics.
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1.1 Principle of Galilean relativity

Galileo Galilei

Principles of relativity address the prob-
lem of how events that occur in one
place or state of motion are observed
from another. And if events occurring
in one place or state of motion look dif-
ferent from those in another, how should
one determine the laws of motion?

Galileo approached this problem via
a thought experiment which imagined
observations of motion made inside a
ship by people who could not see out-
side. He showed that the people isolated

inside a uniformly moving ship would be unable to determine by mea-
surements made inside it whether they were moving!

. . . have the ship proceed with any speed you like, so
long as the motion is uniform and not fluctuating this
way and that. You will discover not the least change
in all the effects named, nor could you tell from any of
them whether the ship was moving or standing still.
– Galileo, Dialogue Concerning the Two Chief World
Systems [Ga1632]

Galileo’s thought experiment showed that a man who is below
decks on a ship cannot tell whether the ship is docked or is moving
uniformly through the water at constant velocity. He may observe
water dripping from a bottle, fish swimming in a tank, butterflies
flying, etc. Their behaviour will be just the same, whether the ship
is moving or not.

Definition 1.1.1 (Galilean transformations) Transformations of ref-
erence location, time, orientation or state of uniform translation at con-
stant velocity are called Galilean transformations.
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Definition 1.1.2 (Uniform rectilinear motion) Coordinate systems re-
lated by Galilean transformations are said to be in uniform rectilinear
motion relative to each other.

Galileo’s thought experiment led him to the following principle.

Definition 1.1.3 (Principle of Galilean relativity) The laws of mo-
tion are independent of reference location, time, orientation or state of
uniform translation at constant velocity. Hence, these laws are invariant
(i.e., they do not change their forms) under Galilean transformations.

Remark 1.1.1 (Two tenets of Galilean relativity) Galilean relativity
sets out two important tenets:

It is impossible to determine who is actually at rest.

Objects continue in uniform motion unless acted upon.

The second tenet is known as Galileo’s law of inertia. It is also the
basis for Newton’s first law of motion. ✷

1.2 Galilean transformations

Definition 1.2.1 (Galilean transformations) Galilean transformations
of a coordinate frame consist of space-time translations, rotations and re-
flections of spatial coordinates, as well as Galilean “boosts” into uniform
rectilinear motion.

In three dimensions, the Galilean transformations depend smoothly on
ten real parameters, as follows:

Space-time translations,

g1(r, t) = (r+ r0, t+ t0) .

These possess four real parameters: (r0, t0) ∈ R3 × R, for the three
dimensions of space, plus time.
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Spatial rotations and reflections,

g2(r, t) = (Or, t) ,

for any linear orthogonal transformation O : R3 7→ R3 with
OT = O−1. These have three real parameters, for the three axes of ro-
tation and reflection. Because the inverse of an orthogonal transfor-
mation is its transpose (O−1 = OT ) they preserve both the lengths
and relative orientations of vectors. It has two connected compo-
nents corresponding to the positive and negative values of the deter-
minant, detO = ±1, which changes sign under reflections.

Galilean boosts into uniform rectilinear motion,

g3(r, t) = (r+ v0t, t) .

These have three real parameters: v0 ∈ R3, for the three components
of the velocity boost vector.

Definition 1.2.2 (Group) A group G is a set of elements that possesses
a binary product (multiplication), G × G → G, such that the following
properties hold:

The product gh of g and h is associative, that is, (gh)k = g(hk).

An identity element exists, e : eg = g and ge = g, for all g ∈ G.

The inverse operation exists, G→ G, so that gg−1 = g−1g = e.

Definition 1.2.3 (Lie group) A Lie group is a group that depends
smoothly on a set of parameters. That is, a Lie group is both a group
and a smooth manifold, for which the group operation is by composition of
smooth invertible functions.

Proposition 1.2.1 (Lie group property) Galilean transformations form
a Lie group, modulo reflections.

Proof. Any Galilean transformation

g ∈ G(3) : R3 × R 7→ R
3 × R
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may be expressed uniquely as a composition of the three basic trans-
formations {g1, g2, g3} ∈ G(3). Consequently, the set of elements
comprising the transformations {g1, g2, g3} ∈ G(3) closes under the
binary operation of composition. The Galilean transformations also
possess an identity element e : egi = gi = gie, i = 1, 2, 3, and each
element g possesses a unique inverse g−1, so that gg−1 = e = g−1g.

These properties, plus associativity, define a group. The smooth
dependence of the group of Galilean transformations on its ten pa-
rameters means that the Galilean group G(3) is a Lie group (except
for the reflections, which are discrete, not smooth).

Remark 1.2.1 Compositions of Galilean boosts and translations
commute. That is,

g1g3 = g3g1 .

However, the order of composition does matter in Galilean transfor-
mations when rotations and reflections are involved. For example,
the action of the Galilean group composition g1g3g2 on (r, t) from
the left is given by

g(r, t) = (Or+ tv0 + r0, t+ t0) ,

for

g = g1(r0, t0)g3(v0)g2(O) =: g1g3g2 .

However, the result for another composition, say g1g2g3, would in
general be different. ✷

Exercise. Write the corresponding transformations for
g1g2g3, g1g3g2, g2g1g3 and g3g2g1, showing how they de-
pend on the order in which the rotations, boosts and trans-
lations are composed. Write the inverse transformation for
each of these compositions of left actions. ⋆
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Answer. The various compositions of translations
g1(r0, t0), rotations g2(O) and boosts g3(v0) in general
yield different results, as

g1g2g3(r, t) =
(
O(r+ tv0) + r0, t+ t0

)
,

g1g3g2(r, t) =
(
Or+ tv0 + r0, t+ t0

)
,

g2g1g3(r, t) =
(
O(r+ tv0 + r0), t+ t0

)
,

g3g2g1(r, t) =
(
O(r+ r0) + tv0, t+ t0

)
.

The inverses are (g1g2g3)
−1 = g−1

3 g−1
2 g−1

1 , etc. N

Remark 1.2.2 (Decomposition of the Galilean group) Because the
rotations take vectors into vectors, any element of the transforma-
tions g1g2g3, g2g1g3 and g3g2g1 in the Galilean group may be written
uniquely in the simplest form, as g1g3g2.

Thus, any element of the Galilean group may be written
uniquely as a rotation, followed by a space translation, a Galilean
boost and a time translation. The latter three may be composed in
any order, because they commute with each other. ✷

Exercise. What properties are preserved by the Galilean
group? ⋆

Answer. The Galilean group G(3) preserves the results
of measuring length and time intervals, and relative ori-
entation in different frames of motion related to each
other by Galilean transformations. N

1.2.1 Admissible force laws for an N particle system

For a system ofN interacting particles, Newton’s second law of mo-
tion (the law of acceleration) determines the motion resulting from
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the force Fj exerted on the jth particle by the other N − 1 particles
as

mj r̈j = Fj(rk − rl, ṙk − ṙl) , with j, k, l = 1, 2, . . . , N (no sum) .

This force law is independent of reference location, time or state of
uniform translation at constant velocity. It will also be independent
of reference orientation and thus will be Galilean-invariant, pro-
vided the forces Fj transform under rotations and parity reflections
as vectors

mjOr̈j = OFj = Fj

(
O(rk − rl), O(ṙk − ṙl)

)
, (1.2.1)

for any orthogonal transformation O.

This requirement for Galilean invariance that the force in New-
ton’s law of acceleration transforms as a vector is the reason that
vectors are so important in classical mechanics.

For example, Newton’s law of gravitational motion is given by

mj r̈j =
∑

k 6=j

Fjk , (1.2.2)

in which the gravitational forces Fjk between (j, k) particle pairs
are given by

Fjk =
γ mjmk

|rjk|3
rjk , with rjk = rj − rk , (1.2.3)

and γ is the gravitational constant.

Exercise. Prove that Newton’s law (1.2.2) for gravitational
forces (1.2.3) is Galilean-invariant. That is, prove that New-
ton’s law of gravitational motion takes the same form in
any Galilean reference frame. ⋆
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1.3 Subgroups of the Galilean transformations

Definition 1.3.1 (Subgroup) A subgroup is a subset of a group whose
elements also satisfy the defining properties of a group.

Exercise. List the subgroups of the Galilean group that do
not involve time. ⋆

Answer. The subgroups of the Galilean group that are
independent of time consist of

Spatial translations g1(r0) acting on r as g1(r0)r =
r+ r0.

Proper rotations g2(O) with g2(O)r = Or where
OT = O−1 and detO = +1. This subgroup is
called SO(3), the special orthogonal group in three
dimensions.

Rotations and reflections g2(O) withOT = O−1 and
detO = ±1. This subgroup is called O(3), the or-
thogonal group in three dimensions.

Spatial translations g1(r0) with r0 ∈ R3 compose
with proper rotations g2(O) ∈ SO(3) acting on a
vector r ∈ R3 as

E(O, r0)r = g1(r0)g2(O)r = Or+ r0 ,

whereOT = O−1 and detO = +1. This subgroup is
called SE(3), the special Euclidean group in three
dimensions. Its action on R3 is written abstractly
as SE(3)× R3 → R3.

Spatial translations g1(r0) compose with proper ro-
tations and reflections g2(O), as g1(r0)g2(O) acting
on r. This subgroup is called E(3), the Euclidean
group in three dimensions. N
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Remark 1.3.1 Spatial translations and rotations do not commute in
general. That is, g1g2 6= g2g1, unless the direction of translation and
axis of rotation are collinear. ✷

1.3.1 Matrix representation of SE(3)

As we have seen, the special Euclidean group in three dimensions
SE(3) acts on a position vector r ∈ R3 by

E(O, r0)r = Or+ r0 .

A 4×4 matrix representation of this action may be found by noticing
that its right-hand side arises in multiplying the matrix times the
extended vector (r, 1)T as

(
O r0
0 1

)(
r

1

)
=

(
Or+ r0

1

)
.

Therefore we may identify a group element of SE(3) with a 4 × 4
matrix,

E(O, r0) =

(
O r0
0 1

)
.

The group SE(3) has six parameters. These are the angles of ro-
tation about each of the three spatial axes by the orthogonal matrix
O ∈ SO(3) with OT = O−1 and the three components of the vector
of translations r0 ∈ R3.

The group composition law for SE(3) is expressed as

E(Õ, r̃0)E(O, r0)r = E(Õ, r̃0)(Or+ r0)

= Õ(Or+ r0) + r̃0 ,

with (O , Õ) ∈ SO(3) and (r , r̃0) ∈ R3. This formula for group
composition may be represented by matrix multiplication from the
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left as

E(Õ, r̃0)E(O, r0) =

(
Õ r̃0
0 1

)(
O r0
0 1

)

=

(
ÕO Õr0 + r̃0
0 1

)
,

which may also be expressed by simply writing the top row,

(Õ , r̃0)(O , r0) = (ÕO , Õr0 + r̃0) .

The identity element (e) of SE(3) is represented by

e = E(I,0) =

(
I 0

0 1

)
,

or simply e = (I,0). The inverse element is represented by the
matrix inverse

E(O, r0)
−1 =

(
O−1 −O−1r0
0 1

)
.

In this matrix representation of SE(3), one checks directly that

E(O, r0)
−1E(O, r0) =

(
O−1 −O−1r0
0 1

)(
O r0
0 1

)

=

(
I 0

0 1

)
= (I,0) = e .

In the shorter notation, the inverse may be written as

(O , r0)
−1 = (O−1 , −O−1r0)

and O−1 = OT since the 3× 3 matrix O ∈ SO(3) is orthogonal.

Remark 1.3.2 The inverse operation of SE(3) involves composition
of the inverse for rotations with the inverse for translations. This
entwining means that the group structure of SE(3) is not simply a
direct product of its two subgroups R3 and SO(3). ✷
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1.4 Lie group actions of SE(3)

Group multiplication in SE(3) is denoted as

(Õ , r̃0)(O , r0) = (ÕO , Õr0 + r̃0) . (1.4.1)

This notation demonstrates the following group properties of
SE(3):

Translations in the subgroup R3 ⊂ SE(3) act on each other by
vector addition,

R
3 × R

3 7→ R
3 : (I , r̃0)(I , r0) = (I , r0 + r̃0) .

Rotations in the subgroup SO(3) ⊂ SE(3) act on each other
by composition,

SO(3)× SO(3) 7→ SO(3) : (Õ , 0)(O , 0) = (ÕO , 0) .

Rotations in the subgroup SO(3) ⊂ SE(3) act homogeneously
on the vector space of translations in the subgroup R3 ⊂
SE(3),

SO(3)× R
3 7→ R

3 : (Õ , 0)(I , r0) = (Õ , Õr0) .

That is, the action of the subgroup SO(3) ⊂ SE(3) on the
subgroup R3 ⊂ SE(3) maps R3 into itself. The translations
R3 ⊂ SE(3) are thus said to form a normal, or invariant sub-
group of the group SE(3).

Every element of (O , r0) of SE(3) may be represented
uniquely by composing a translation acting from the left on a
rotation. That is, each element may be decomposed into

(O , r0) = (I , r0)(O , 0) ,

for a unique r0 ∈ R3 and O ∈ SO(3). Conversely, one may
uniquely represent

(O , r0) = (O , 0)(I , O−1r0) ,
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by composing a rotation acting from the left on a translation.

This equivalence endows the Lie group SE(3) with a semidi-
rect-product structure,

SE(3) = SO(3)sR
3 . (1.4.2)

Definition 1.4.1 (Semidirect-product Lie group) A Lie group G
that may be decomposed uniquely into a normal subgroup N and a sub-
group H such that every group element may be written as

g = nh or g = hn (in either order), (1.4.3)

for unique choices of n ∈ N and h ∈ H , is called a semidirect product
of H and N , denoted here by s, as in

G = HsN .

When the normal subgroup N is a vector space, the action of a
semidirect-product group on itself is given as in formula (1.4.1) for
SE(3). If the normal subgroup N is not a vector space, then the op-
eration of addition in formula (1.4.1) is replaced by the composition
law for N .

1.5 Lie group actions of G(3)

The Galiliean group in three dimensions G(3) has ten parameters
(O ∈ SO(3) , r0 ∈ R3 , v0 ∈ R3 , t0 ∈ R ). The Galilean group is also
a semidirect-product Lie group, which may be written as

G(3) = SE(3)sR
4 =

(
SO(3)sR

3
)
sR

4 . (1.5.1)

That is, the subgroup of Euclidean motions consisting of rotations
and Galilean velocity boosts (O,v0) ∈ SE(3) acts homogeneously
on the subgroups of space and time translations (r0, t0) ∈ R4 which
commute with each other.
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Exercise. Compute explicitly the inverse of the Galilean
group element g = g1g3g2 obtained by representing the ac-
tion of the Galilean group as matrix multiplication G(3) ×
R4 → R4 on the extended vector (r, t, 1)T ∈ R4,

g1g3g2




r

t

1


 =




O v0 r0
0 1 t0
0 0 1







r

t

1


 (1.5.2)

=




Or+ tv0 + r0
t+ t0
1


 .

⋆

Answer. Write the product g = g1g3g2 as

g = g1g3g2 =




I 0 r0
0 1 t0
0 0 1







I v0 0

0 1 0

0 0 1







O 0 0

0 1 0

0 0 1


 .

Then, the product g−1 = (g1g3g2)
−1 = g−1

2 g−1
3 g−1

1 ap-
pears in matrix form as

g−1 =




O−1 0 0

0 1 0

0 0 1







I −v0 0

0 1 0

0 0 1







I 0 − r0
0 1 − t0
0 0 1




=




O−1 −O−1v0 −O−1(r0 − tv0)

0 1 − t0
0 0 1


 .

N
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Exercise. Write the corresponding matrices for the Galilean
transformations for g1g2g3, g2g1g3 and g3g2g1. ⋆

1.5.1 Matrix representation of G(3)

The formula for group composition G(3) × G(3) → G(3) may be
represented by matrix multiplication from the left as




Õ ṽ0 r̃0
0 1 t̃0
0 0 1







O v0 r0
0 1 t0
0 0 1


 (1.5.3)

=




ÕO Õv0 + ṽ0 Õr0 + ṽ0t0 + r̃0
0 1 t̃0 + t0
0 0 1


 ,

which may be expressed more succinctly as

(Õ, ṽ0, r̃0, t̃0)(O,v0, r0, t0) (1.5.4)

= (ÕO, Õv0 + ṽ0, Õr0 + ṽ0t0 + r̃0, t̃0 + t0).

Exercise. Check the semidirect-product structure (1.5.1) for
the Lie group G(3) = SE(3)sR4, by writing explicit ma-
trix expressions for g = nh and g = hnwith h = SE(3) and
n = R4. ⋆

Answer. In verifying the semidirect-product structure
condition (1.4.3) that g = nh or g = hn in either order,
we write explicitly

(O,v0, r0, t0) = (I, 0, r0, t0) (O,v0, 0, 0) (1.5.5)

= (O,v0, 0, 0) (I, 0, O
−1(r0 − v0t0), t0) .

N
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1.6 Lie algebra of SE(3)

A 4 × 4 matrix representation of tangent vectors for SE(3) at the
identity may be found by first computing the derivative of a general
group element (O(s), r0(s)) along the group path with parameter s
and bringing the result back to the identity at s = 0,

[(
O(s) r0(s)

0 1

)−1(
O ′(s) r′0(s)

0 0

)]

s=0

=

(
O−1(0)O ′(0) O−1(0)r′0(0)

0 0

)
=:

(
Ξ̂ r0
0 0

)
,

where in the last step we have dropped the unnecessary superscript
prime ( ′ ). The quantity Ξ̂ = O−1(s)O ′(s)|s=0 is a 3 × 3 skew-
symmetric matrix, since O is a 3 × 3 orthogonal matrix. Thus, Ξ̂
may be written using the hat map, defined by

Ξ̂ =




0 −Ξ3 Ξ2

Ξ3 0 −Ξ1

−Ξ2 Ξ1 0


 , (1.6.1)

in terms of a vector Ξ ∈ R3 with components Ξi, with i = 1, 2, 3.
Infinitesimal rotations are expressed by the vector cross product,

Ξ̂r = Ξ× r . (1.6.2)

The matrix components of Ξ̂ may also be written in terms of the
components of the vector Ξ as

Ξ̂jk =

(
O−1dO

ds

)

jk

∣∣∣∣∣
s=0

= −Ξiǫijk ,

where ǫijk with i, j, k = 1, 2, 3 is the totally antisymmetric tensor
with ǫ123 = 1, ǫ213 = −1, etc. One may compute directly, for a fixed
vector r,

d

ds
esΞ̂r = Ξ̂esΞ̂r = Ξ× esΞ̂r .
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Consequently, one may evaluate, at s = 0,

d

ds
esΞ̂r

∣∣∣∣
s=0

= Ξ̂r = Ξ× r .

This expression recovers the expected result in (1.6.2) in terms of
the exponential notation. It means the quantity r(s) = exp(sΞ̂)r
describes a finite, right-handed rotation of the initial vector r = r(0)
by the angle s|Ξ| around the axis pointing in the direction of Ξ.

Remark 1.6.1 (Properties of the hat map) The hat map arises in the
infinitesimal rotations

Ξ̂jk = (O−1dO/ds)jk|s=0 = −Ξiǫijk .

The hat map is an isomorphism:

(R3,×) 7→ (so(3), [ · , · ] ) .

That is, the hat map identifies the composition of two vectors in
R3 using the cross product with the commutator of two skew-
symmetric 3× 3 matrices. Specifically, we write for any two vectors
Q,Ξ ∈ R3,

− (Q×Ξ)k = ǫklmΞ lQm = Ξ̂kmQ
m .

That is,
Ξ×Q = Ξ̂Q for all Ξ, Q ∈ R

3 .

The following formulas may be easily verified for P,Q,Ξ ∈ R3:

(P×Q)̂ =
[
P̂ , Q̂

]
,

[
P̂ , Q̂

]
Ξ = (P×Q)×Ξ ,

P ·Q = − 1

2
trace

(
P̂ Q̂
)
.

✷

Remark 1.6.2 The commutator of infinitesimal transformation ma-
trices given by the formula
[(

Ξ̂1 r1
0 0

)
,

(
Ξ̂2 r2
0 0

)]
=

(
Ξ̂1Ξ̂2 − Ξ̂2Ξ̂1 Ξ̂1r2 − Ξ̂2r1

0 0

)
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provides a matrix representation of se(3), the Lie algebra of the Lie
group SE(3). In vector notation, this becomes
[(

Ξ1× r1
0 0

)
,

(
Ξ2× r2
0 0

)]
=

((
Ξ1 ×Ξ2

)
× Ξ1 × r2 −Ξ2 × r1

0 0

)
.

✷

Remark 1.6.3 The se(3) matrix commutator yields
[
(Ξ̂1 , r1) , (Ξ̂2 , r2)

]
=

(
Ξ̂1Ξ̂2 − Ξ̂2Ξ̂1, Ξ̂1r2 − Ξ̂2r1

)

=
([

Ξ̂1, Ξ̂2

]
, Ξ̂1r2 − Ξ̂2r1

)
,

which is the classic expression for the Lie algebra of a semidirect-
product Lie group. ✷

1.7 Lie algebra of G(3)

A 5×5 matrix representation of tangent vectors forG(3) at the iden-
tity may be found by computing the derivative of a general group
element (O(s),v0(s), r0(s), t0(s)) along the group path with param-
eter s and bringing the result back to the identity at s = 0,

[

O(s) v0(s) r0(s)

0 1 t0(s)

0 0 1




−1

O ′(s) v′

0(s) r′0(s)

0 0 t′0(s)

0 0 0



]

s=0

=



O−1(s)O ′(s) O−1(s)v′

0(s) O−1(s)(r′0(s)− v′

0(s)t
′

0(s))

0 0 t′0(s)

0 0 0



∣∣∣∣∣
s=0

=




Ξ̂ v0 r0 − v0t0
0 0 t0
0 0 0


 =:

(
Ξ̂, v0, r0, t0

)
,

in terms of the 3 × 3 skew-symmetric matrix Ξ̂ = O−1(s)O ′(s)|s=0.
For notational convenience, the superscript primes that would have



September 24, 2011 11:41am Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

18 1 : GALILEO

appeared on the tangents of the Galilean shift parameters r′0(0),
v′
0(0) and t′0(0) at the identity s = 0 have been dropped in the last

line and replaced by the simpler forms r0, v0, t0, respectively.

Exercise. (Galilean Lie algebra commutator) Verify the
commutation relation
[
(Ξ̂1, v1, r1, t1), (Ξ̂2, v2, r2, t2)

]

=
([

Ξ̂1, Ξ̂2

]
, Ξ̂1v2 − Ξ̂2v1, Ξ̂1(r2,v2, t2)− Ξ̂2(r1,v1, t1), 0

)
,

where

Ξ̂1(r2,v2, t2)− Ξ̂2(r1,v1, t1)

=
(
Ξ̂1(r2 − v2t2) + v1t2

)
−
(
Ξ̂2(r1 − v1t1) + v2t1

)
.

⋆

According to the principle of Galilean relativity, the laws of
mechanics must take the same form in any uniformly moving
reference frame. That is, the expressions of these laws must be
invariant in form under Galilean transformations. In this chap-
ter, we have introduced the Galilean transformations, shown that
they comprise a Lie group, found its subgroups, endowed them
with a matrix representation, and identified their group structure
mathematically as a nested semidirect product.

Rigid motion in R3 corresponds to a smoothly varying se-
quence of changes of reference frame along a time-dependent
path in the special Euclidean Lie group, SE(3). This is the main
subject of the text.
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2.1 Newton

2.1.1 Newtonian form of free rigid rotation

Isaac Newton

Definition 2.1.1 In free rigid rotation a
body rotates about its centre of mass and the
pairwise distances between all points in the
body remain fixed.

Definition 2.1.2 A system of coordinates
fixed in a body undergoing free rigid rota-
tion is stationary in the rotating orthonor-
mal basis called the body frame, introduced
by Euler [Eu1758].

The orientation of the orthonormal
frame (E1,E2,E3) fixed in the rotat-
ing body relative to a basis (e1, e2, e3)
fixed in space depends smoothly on time

t ∈ R. In the fixed spatial coordinate system, the body frame is seen
as the moving frame

(O(t)E1, O(t)E2, O(t)E3) ,

where O(t) ∈ SO(3) defines the attitude of the body relative to its
reference configuration according to the following matrix multipli-
cation on its three unit vectors:

ea(t) = O(t)Ea , a = 1, 2, 3. (2.1.1)

Here the unit vectors ea(0) = Ea with a = 1, 2, 3 comprise at initial
time t = 0 an orthonormal basis of coordinates and O(t) is a special
(detO(t) = 1) orthogonal (OT (t)O(t) = Id) 3 × 3 matrix. That is,
O(t) is a continuous function defined along a curve parameterised
by time t in the special orthogonal matrix group SO(3). At the initial
time t = 0, we may take O(0) = Id, without any loss.
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As the orientation of the body is evolving according to (2.1.1),
each basis vector in the set,

e(t) ∈ {e1(t), e2(t), e3(t)},

preserves its (unit) length. We prove this and fix notation by writing

1 = |e(t)|2 := e(t) · e(t) := e(t)Te(t) = (O(t)E)TO(t)E

= ETOT (t)O(t)E = ET (Id)E = |E|2 , (2.1.2)

which follows because O(t) is orthogonal; that is, OT (t)O(t) = Id.

The basis vectors in the orthonormal frame ea(0) = Ea define
the initial orientation of the set of rotating points with respect to
some choice of fixed spatial coordinates at time t = 0. Each point
r(t) in the subsequent rigid motion may be represented in either
fixed or rotating coordinates as

r(t) = rA0 (t)eA(0) in the fixed basis, (2.1.3)

= raea(t) in the rotating basis. (2.1.4)

The fixed basis is called the spatial frame and the rotating basis is
the body frame.

The constant components ra of a position vector relative to the
rotating basis are related to its initial spatial position as

ra = Oa
A(0)r

A
0 (0).

This is simply ra = δaAr
A
0 (0) for the choice O(0) = Id in which the

two coordinate bases are initially aligned. The components of any
vector J in the fixed (spatial) frame are related to those in the mov-
ing (body) frame by the mutual rotation of their axes in (2.1.1) at any
time. That is,

J = ea(0)J
a
space(t) = ea(t)J

a
body = O(t)ea(0)J

a
body , (2.1.5)

or equivalently, as in Equation (2.1.1),

Jspace(t) = O(t)Jbody . (2.1.6)



September 24, 2011 11:41am Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

2.1 NEWTON 23

Lemma 2.1.1 The velocity ṙ(t) of a point r(t) in free rigid rotation de-
pends linearly on its position relative to the centre of mass.

Proof. In particular, r(t) = raO(t)ea(0) implies

ṙ(t) = raėa(t) = raȮ(t)ea(0) =: raȮO−1(t)ea(t) =: ω̂(t)r , (2.1.7)

which is linear.

Remark 2.1.1 (Wide-hat notation) The wide-hat notation ( ·̂ ) de-
notes a skew-symmetric 3 × 3 matrix. There is no danger of con-
fusing wide-hat notation ( ·̂ ) with narrow-hat notation ( ·̂ ), which
denotes a unit vector (or, later, a unit quaternion). ✷

Lemma 2.1.2 (Skew-symmetry) The spatial angular velocity ma-
trix ω̂(t) = ȮO−1(t) in (2.1.7) is skew-symmetric, i.e.,

ω̂T = − ω̂ .

Proof. Being orthogonal, the matrix O(t) satisfies OOT = Id. This
implies that ω̂ is skew-symmetric,

0 = (OOT ) ˙ = ȮOT +OȮT = ȮOT + (ȮOT )T

= ȮO−1 + (ȮO−1)T = ω̂ + ω̂T .

Remark 2.1.2 The skew 3×3 real matrices form a closed linear space
under addition. ✷

Definition 2.1.3 (Commutator product of skew matrices) The com-

mutator product of two skew matrices ω̂ and ξ̂ is defined as the skew matrix
product

[ω̂, ξ̂] := ω̂ ξ̂ − ξ̂ ω̂ . (2.1.8)

Remark 2.1.3 This commutator product is again a skew 3 × 3 real
matrix. ✷
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Definition 2.1.4 (Basis set for skew matrices) Any 3×3 antisymmet-
ric matrix ω̂T = − ω̂ may be written as a linear combination of the follow-
ing three linearly independent basis elements for the 3× 3 skew matrices:

Ĵ1 =



0 0 0

0 0 −1
0 1 0


 , Ĵ2 =




0 0 1

0 0 0

−1 0 0


 , Ĵ3 =



0 −1 0

1 0 0

0 0 0


 .

That is, the element Ĵa for this choice of basis has matrix components

(Ĵa)bc = − ǫabc,

where ǫabc is the totally antisymmetric tensor with

ǫ123 = +1, ǫ213 = −1, ǫ113 = 0, etc.

Lemma 2.1.3 (Commutation relations) The skew matrix basis Ĵa with
a = 1, 2, 3 satisfies the commutation relations,

[ Ĵa, Ĵb ] := ĴaĴb − ĴbĴa = ǫabcĴc . (2.1.9)

Proof. This may be verified by a direct calculation, [ Ĵ1, Ĵ2 ] = Ĵ3,
etc.

Remark 2.1.4 The closure of the basis set of skew-symmetric matri-
ces under the commutator product gives the linear space of skew-
symmetric matrices a Lie algebra structure. The constants ǫabc in the
commutation relations among the skew 3× 3 matrix basis elements
are called the structure constants and the corresponding Lie algebra
is called so(3). This also means the abstract so(3) Lie algebra may
be represented by skew 3×3 matrices, which is a great convenience,
as we shall see for example in Section 4.2. The Lie algebra so(3) may
also be defined as the tangent space to the Lie group SO(3) at the
identity, as discussed in Appendix B. ✷

Theorem 2.1.1 (Hat map) The components of any 3 × 3 skew matrix ω̂
may be identified with the corresponding components of a vector ω ∈ R3.
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Proof. In the basis (2.1.4), one writes the linear invertible relation,

ω̂ =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 = ωaĴa =: ω · Ĵ , (2.1.10)

for a = 1, 2, 3. This is a one-to-one invertible map, i.e., it is an iso-
morphism, between 3 × 3 skew-symmetric matrices and vectors in
R3.

Remark 2.1.5 The superscript hat (̂ ) applied to a vector identifies
that vector in R3 with a 3× 3 skew-symmetric matrix. For example,
the unit vectors in the Cartesian basis set, {e1, e2, e3}, are associated
with the basis elements Ĵa, for a = 1, 2, 3, in Equation (2.1.4) by
Ĵa = êa, or in matrix components,

(êa)bc = −δdaǫdbc = −ǫabc = (ea×)bc .
✷

Remark 2.1.6 The last equality in the definition of the hat map in
Equation (2.1.10) introduces the convenient notation Ĵ that denotes
the basis for the 3 × 3 skew-symmetric matrices Ĵa, with a = 1, 2, 3
as a vector of matrices. ✷

Definition 2.1.5 (Hat map for angular velocity vector) The relation
ω̂ = ω · Ĵ in Equation (2.1.10) identifies the skew-symmetric 3 × 3 ma-
trix ω̂(t) with the angular velocity vector ω(t) ∈ R3 whose components
ωc(t), with c = 1, 2, 3, are given by

(ȮO−1)ab(t) = ω̂ab(t) = − ǫabc ωc(t) . (2.1.11)

Equation (2.1.11) defines the matrix components of the hat map for an-
gular velocity.

Remark 2.1.7 Equivalently, the hat map in Equation (2.1.10) is de-
fined by the identity

ω̂ λ = ω × λ for all ω,λ ∈ R
3.

Thus, we may write ω̂ = ω̂ = ω× to identify the vector ω ∈ R3 with
the skew 3× 3 matrix ω̂ ∈ so(3). ✷
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Proposition 2.1.1 The 3× 3 skew matrices

ω̂ = ω · Ĵ and λ̂ = λ · Ĵ

associated with the vectors ω and λ in R3 satisfy the commutation relation

[ ω̂, λ̂ ] = ω × λ · Ĵ =: (ω × λ)̂ , (2.1.12)

where ω × λ is the vector product in R3.

Proof. Formula (2.1.9) implies the result, by

[ ω̂, λ̂ ] = [ω · Ĵ , λ · Ĵ ] = [ωaĴa, λ
bĴb ]

= ωaλb[ Ĵa, Ĵb ] = ωaλbǫabcĴc = ω × λ · Ĵ .

Remark 2.1.8 According to Proposition 2.1.1, the hat map ̂ :
(R3,×) 7→ (so(3), [ · , · ] ) allows the velocity in space (2.1.7) of a
point at r undergoing rigid-body motion to be expressed equiva-
lently either by a skew-matrix multiplication, or as a vector product.
That is,

ṙ(t) =: ω̂(t)r =: ω(t)× r . (2.1.13)

Hence, free rigid motion of a point displaced by r from the centre
of mass is a rotation in space of r about the time-dependent angular
velocity vector ω(t). Accordingly, d|r|2/dt = 2r · ṙ = 0, and the
displacement distance is preserved, |r|(t) = |r|(0). ✷

Kinetic energy of free rigid rotation

The kinetic energy for N particles of masses mj j = 1, 2, . . . , N , mu-
tually undergoing free rigid rotation is computed in terms of the
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angular velocity as

K =
1

2

N∑

j=1

mj ṙj · ṙj

=
1

2

N∑

j=1

mj(ω × rj) · (ω × rj)

=:
1

2
〈〈ω,ω〉〉 .

Definition 2.1.6 (Symmetric mass-weighted pairing) The kinetic
energy induces a symmetric mass-weighted pairing

〈〈 · , · 〉〉 : R3 × R
3 7→ R ,

defined for any two vectors a,b ∈ R3 as

〈〈a,b〉〉 :=
∑

j

mj(a× rj) · (b× rj) =: Ia · b . (2.1.14)

Definition 2.1.7 (Moment of inertia tensor) The mass-weighted pair-
ing, or inner product in (2.1.14)

〈〈a,b〉〉 = Ia · b ,
defines the symmetric moment of inertia tensor I for the particle system.

Definition 2.1.8 (Angular momentum of rigid motion) The angular
momentum is defined as the derivative of the kinetic energy with respect
to angular velocity. In the present case with (2.1.14), this produces the
linear relation

J =
∂K

∂ω
= − 1

2

N∑

j=1

mjrj ×
(
rj × ω

)

=
1

2

N∑

j=1

mj

(
|rj |2Id− rj ⊗ rj

))
ω

=: Iω , (2.1.15)

where I is the moment of inertia tensor defined by the symmetric pairing
in (2.1.14).
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Conservation of angular momentum in free rigid rotation

In free rigid rotation no external torques are applied, so the angular
momentum J is conserved. In the fixed basis J = JA

0 (t)eA(0) and
this conservation law is expressed as

0 =
dJ

dt
=
dJA

0

dt
eA(0) , (2.1.16)

so each component JA
0 , for A = 1, 2, 3 of angular momentum in

the spatial frame is separately conserved. In the rotating basis J =
Ja(t)ea(t) and angular momentum conservation becomes

0 =
dJ

dt
=

dJa

dt
ea(t) + Jadea(t)

dt

=
dJa

dt
ea(t) + ω × Jaea(t)

=
(dJa

dt
+ (ω × J)a

)
ea(t) . (2.1.17)

Consequently, the components Ja, for a = 1, 2, 3 of angular momen-
tum in the body frame satisfy the quadratically nonlinear system of
Equations (2.1.17) with J = Iω.

Lemma 2.1.4 (Space vs body dynamics) Upon denoting Jspace =
(J1

0 , J
2
0 , J

3
0 ) in the fixed basis eA(0) and Jbody = (J1, J2, J3) in the

time-dependent basis ea(t), with

Jspace = O(t)Jbody , (2.1.18)

one may summarise the two equivalent sets of Equations (2.1.16) and
(2.1.17) as

dJspace

dt
= 0 and

dJbody

dt
+
(
I
−1Jbody

)
× Jbody = 0 . (2.1.19)
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Proof. The time derivative of relation (2.1.18) gives

dJbody

dt
=

d

dt

(
O−1(t)Jspace(t)

)

= −O−1Ȯ
(
O−1(t)Jspace(t)

)
+O−1 dJspace

dt︸ ︷︷ ︸
vanishes

= − ω̂bodyJbody = −ωbody × Jbody , (2.1.20)

with ω̂body := O−1Ȯ = ωbody× and ωbody = I−1Jbody, which defines
the body angular velocity. This is the usual heuristic derivation of
the dynamics for body angular momentum.

Remark 2.1.9 (Darwin, Coriolis and centrifugal forces) Many
elementary mechanics texts make the following points about the
various noninertial forces that arise in a rotating frame. For any
vector r(t) = ra(t)ea(t) the body and space time derivatives sat-
isfy the first time-derivative relation, as in (2.1.17),

ṙ(t) = ṙaea(t) + raėa(t)

= ṙaea(t) + ω × raea(t)
=

(
ṙa + ǫabcω

brc
)
ea(t)

=:
(
ṙa + (ω × r)a

)
ea(t) . (2.1.21)

Taking a second time derivative in this notation yields

r̈(t) =
(
r̈ a + (ω̇ × r)a + (ω × ṙ)a

)
ea(t) +

(
ṙa + (ω × r)a

)
ėa(t)

=
(
r̈ a + (ω̇ × r)a + (ω × ṙ)a

)
ea(t) +

(
ω ×

(
ṙ+ ω × r

))a
ea(t)

=
(
r̈ a + (ω̇ × r)a + 2(ω × ṙ)a + (ω × ω × r)

)a
ea(t) .

Newton’s second law for the evolution of the position vector r(t)
of a particle of mass m in a frame rotating with time-dependent
angular velocity ω(t) becomes

F(r) = m
(
r̈+ ω̇ × r︸ ︷︷ ︸

Darwin

+ 2(ω × ṙ)︸ ︷︷ ︸
Coriolis

+ ω × (ω × r)︸ ︷︷ ︸
centrifugal

)
. (2.1.22)
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The Darwin force is usually small; so it is often neglected.

Only the Coriolis force depends on the velocity in the mov-
ing frame. The Coriolis force is very important in large-
scale motions on Earth. For example, pressure balance with
the Coriolis force dominates the (geostrophic) motion of
weather systems that comprise the climate.

The centrifugal force is important, for example, in obtaining
orbital equilibria in gravitationally attracting systems.

✷

Remark 2.1.10 The space and body angular velocities differ by

ω̂body := O−1Ȯ versus ω̂space := ȮO−1 = Oω̂bodyO
−1 .

Namely, ω̂body is left-invariant under O → RO and ω̂space is right-
invariant under O → OR, for any choice of matrix R ∈ SO(3). This
means that neither angular velocity depends on the initial orienta-
tion. ✷

Remark 2.1.11 The angular velocities ω̂body = O−1Ȯ and ω̂space =
ȮO−1 are respectively the left and right translations to the identity
of the tangent matrix Ȯ(t) at O(t). These are called the left and right
tangent spaces of SO(3) at its identity. ✷

Remark 2.1.12 Equations (2.1.19) for free rigid rotations of particle
systems are prototypes of Euler’s equations for the motion of a rigid
body. ✷

2.1.2 Newtonian form of rigidbody motion

In describing rotations of a rigid body, for example a solid object oc-
cupying a spatial domain B ⊂ R3, one replaces the mass-weighted
sums over points in space in the previous definitions of dynamical
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quantities for free rigid rotation, with volume integrals weighted
with a mass density as a function of position in the body. That is,

∑

j

mj →
∫

B
d 3X ρ(X) ,

where ρ(X) is the mass density at a point X ∈ B fixed inside the
body, as measured in coordinates whose origin is at the centre of
mass.

Example 2.1.1 (Kinetic energy of a rotating solid body) The kinetic
energy of a solid body rotating about its centre of mass is given by

K =
1

2

∫

B
ρ(X) |ẋ(X, t)|2 d 3X , (2.1.23)

where the spatial path in R3 of a point X ∈ B in the rotating body is
given by

x(X, t) = O(t)X ∈ R
3 with O(t) ∈ SO(3) .

The time derivative of this rotating motion yields the spatial velocity

ẋ(X, t) = Ȯ(t)X = ȮO−1(t)x =: ω̂(t)x =: ω(t)× x , (2.1.24)

as in Equation (2.1.7) for free rotation.

Kinetic energy and angular momentum of a rigid body

The kinetic energy (2.1.23) of a rigid body rotating about its centre
of mass may be expressed in the spatial frame in analogy to Equa-
tion (2.1.14) for free rotation,

K =
1

2

∫

O(t)B
ρ(O−1(t)x) |ω(t)× x|2 d 3x . (2.1.25)

However, its additional time dependence makes this integral un-
wieldy. Instead, one takes advantage of the preservation of scalar
products by rotations to write

|ẋ|2 = |O−1ẋ|2 ,
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and one computes as in Equation (2.1.24) the body velocity

O−1ẋ(X, t) = O−1Ȯ(t)X =: Ω̂(t)X =: Ω(t)×X . (2.1.26)

Here, skew-symmetry Ω̂T = −Ω̂ of the matrix

Ω̂ = O−1Ȯ = ω̂body

follows because the matrix O is orthogonal, that is, OOT = Id.
Skew-symmetry of Ω̂ allows one to introduce the body angular ve-
locity vector Ω(t) whose components Ωi, with i = 1, 2, 3, are given
in body coordinates by

(O−1Ȯ)jk = Ω̂jk = −Ωiǫijk . (2.1.27)

In terms of body angular velocity vector Ω(t) the kinetic energy of
a rigid body becomes

K =
1

2

∫

B
ρ(X) |Ω(t)×X|2 d 3X =:

1

2

〈〈
Ω(t),Ω(t)

〉〉
, (2.1.28)

where 〈〈 · , · 〉〉 is a mass-weighted symmetric pairing, defined for
any two vectors a,b ∈ R3 as the following integration over the body,

〈〈
a,b

〉〉
:=

∫

B
ρ(X)(a×X) · (b×X) d3X . (2.1.29)

Definition 2.1.9 (Moment of inertia tensor) The mass-weighted pair-
ing, or inner product in (2.1.29)

〈〈
a,b

〉〉
= Ia · b ,

defines the symmetric moment of inertia tensor I for the rigid body.

Exercise. By definition, I is constant in the body frame.
What is its time dependence in the spatial frame? ⋆



September 24, 2011 11:41am Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

2.1 NEWTON 33

Remark 2.1.13 (Principal axis frame) The moment of inertia tensor
becomes diagonal,

I = diag(I1, I2, I3) ,

upon aligning the body reference coordinates with its principal axis
frame. In the principal axis coordinates of I, the kinetic energy
(2.1.28) takes the elegant form

K =
1

2
〈〈Ω , Ω 〉〉 = 1

2
IΩ ·Ω =

1

2
(I1Ω

2
1 + I2Ω

2
2 + I3Ω

2
3) .

✷

Definition 2.1.10 (Body angular momentum) The body angular mo-
mentum is defined as the derivative of the kinetic energy (2.1.28) with
respect to body angular velocity. This produces the linear relation

Π =
∂K

∂Ω
= −

∫

B
ρ(X)X×

(
X×Ω(t)

)
d 3X

=

(∫

B
ρ(X)

(
|X|2Id−X⊗X

)
d 3X

)
Ω(t)

= IΩ . (2.1.30)

This I is the continuum version of the moment of inertia tensor defined for
particle systems in Equation (2.1.14). It is called the moment of inertia
tensor of the rigid body.

Remark 2.1.14 In general, the body angular momentum vector Π is
not parallel to the body angular velocity vector Ω. Their misalign-
ment is measured by Π×Ω 6= 0. ✷

Angular momentum conservation

The rigid body rotates freely along O(t) in the absence of any ex-
ternally applied forces or torques, so Newton’s second law implies
that the motion of the rigid body conserves total angular momen-
tum when expressed in the fixed space coordinates in R3. This con-
servation law is expressed in the spatial frame as

dπ

dt
= 0 ,
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where π(t) is the angular momentum vector in space. The angular
momentum vector in space π(t) is related to the angular momen-
tum vector in the body Π(t) by the mutual rotation of their axes at
any time. That is, π(t) = O(t)Π(t). Likewise, the angular veloc-
ity vector in space satisfies ω(t) = O(t)Ω(t). The angular velocity
vector in space is related to its corresponding angular momentum
vector by

π(t) = O(t)Π(t) = O(t)IΩ(t)

=
(
O(t)IO−1(t)

)
ω(t) =: Ispace(t)ω(t) .

Thus, the moment of inertia tensor in space Ispace(t) transforms as a
symmetric tensor,

Ispace(t) = O(t)IO−1(t) , (2.1.31)

so it is time-dependent and the relation of the spatial angular velocity
vector ω(t) to the motion of the rigid body may be found by using
(2.1.26), as

ẋ(X, t) = Ȯ(t)X =: ȮO−1(t)x =: ω̂(t)x =: ω(t)× x . (2.1.32)

As expected, the motion in space of a point at x within the rigid
body is a rotation by the time-dependent angular velocity ω(t). We
may formally confirm the relation of the spatial angular velocity
vector to the body angular velocity vector ω(t) = O(t)Ω(t) by using
(2.1.26) in the following calculation:

Ω(t)×X = Ω̂(t)X = O−1ȮX

= O−1ω̂(t)x = O−1(ω(t)× x) = (O−1ω(t)×O−1x) .

Consequently, the conservation of spatial angular momentum in the
absence of external torques implies

dπ

dt
=

d

dt

(
O(t)Π

)

= O(t)
(dΠ
dt

+O−1ȮΠ
)

= O(t)
(dΠ
dt

+ Ω̂Π
)

= O(t)
(dΠ
dt

+ Ω×Π
)
= 0 .
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Hence, the body angular momentum satisfies Euler’s equations
for a rigid body,

dΠ

dt
+Ω×Π = 0 . (2.1.33)

Remark 2.1.15 (Body angular momentum equation) Viewed in the
moving frame, the rigid body occupies a fixed domain B, so its mo-
ment of inertia tensor in that frame I is constant. Its body angular
momentum vector Π = IΩ evolves according to (2.1.33) by rotating
around the body angular velocity vector Ω = I−1Π. That is, con-
servation of spatial angular momentum π(t) = O(t)Π(t) relative to
a fixed frame implies the body angular momentum Π appears con-
stant in a frame rotating with the body angular velocity Ω = I−1Π.

✷

Proposition 2.1.2 (Conservation laws) The dynamics of Equation
(2.1.33) conserves both the square of the body angular momentum |Π|2
and the kinetic energy K = Ω ·Π/2.

Proof. These two conservation laws may be verified by direct cal-
culations:

d|Π|2
dt

= 2Π · dΠ
dt

= 2Π ·Π×Ω = 0 ,

d(Ω ·Π)

dt
= 2Ω · dΠ

dt
= 2Ω ·Π×Ω = 0 ,

where one uses the symmetry of the moment of inertia tensor in the
second line.

Remark 2.1.16 (Reconstruction formula) Having found the evolu-
tion of Π(t) and thus Ω(t) by solving (2.1.33), one may compute
the net angle of rotation O(t) in body coordinates from the skew-
symmetric angular velocity matrix Ω̂ in (2.1.27) and its defining re-
lation,

Ȯ(t) = OΩ̂(t) .
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Solving this linear differential equation with time-dependent coeffi-
cients yields the paths of rotations O(t) ∈ SO(3). Having these, one
may finally construct the trajectories in space taken by points X in
the body B given by x(X, t) = O(t)X ∈ R3. ✷

2.2 Lagrange

2.2.1 The principle of stationary action

Joseph-Louis Lagrange

In Lagrangian mechanics, a mechani-
cal system in a configuration space with
generalised coordinates and velocities,

qa, q̇a , a = 1, 2, . . . , 3N ,

is characterised by its Lagrangian
L(q(t), q̇(t)) – a smooth, real-valued
function. The motion of a Lagrangian
system is determined by the principle of
stationary action, formulated using the
operation of variational derivative.

Definition 2.2.1 (Variational derivative) The variational derivative
of a functional S[q] is defined as its linearisation in an arbitrary direction
δq in the configuration space. That is, S[q] is defined as

δS[q]; = lim
s→0

S[q + sδq]− S[q]
s

=
d

ds

∣∣∣
s=0

S[q + sδq] =:
〈δS
δq

, δq
〉
,

where the pairing 〈 · , · 〉 is obtained in the process of linearisation.

Theorem 2.2.1 (Principle of stationary action) The Euler–Lagrange
equations,

[
L
]
qa

:=
d

dt

∂L

∂q̇a
− ∂L

∂qa
= 0 , (2.2.1)
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follow from stationarity of the action integral, S, defined as the integral
over a time interval t ∈ (t1 , t2),

S :=

∫ t2

t1

L(q, q̇) dt . (2.2.2)

Then the principle of stationary action,

δS = 0 ,

implies [L ]qa = 0, for variations δqa that vanish at the endpoints in time.

Proof. Applying the variational derivative in Definition 2.2.1 to the
action integral in (2.2.2) yields

δS[q] =

∫ t2

t1

(
∂L

∂qa
δqa +

∂L

∂q̇a
δq̇a
)
dt

=

∫ t2

t1

(
∂L

∂qa
− d

dt

∂L

∂q̇a

)
δqa dt+

[
∂L

∂q̇a
δqa
]t2

t1

=: −
∫ t2

t1

[
L
]
qa
δqa dt . (2.2.3)

Here one integrates by parts and in the last step applies the condi-
tion that the variations δqa vanish at the endpoints in time. Because
the variations δqa are otherwise arbitrary, one concludes that the
Euler–Lagrange Equations (2.2.1) are satisfied.

Remark 2.2.1 The principle of stationary action is sometimes also
called Hamilton’s principle. ✷

Example 2.2.1 (Simple mechanical systems) The Lagrangian for the
motion of a simple mechanical system is given in the separated form,

L(q, q̇) =
m

2
|q̇|2 − V (q) with Euclidean norm |q̇|2 := q̇bδbcq̇

c .

The Lagrangian in this case has partial derivatives

∂L

∂q̇a
= mδacq̇

c and
∂L

∂qa
= −∂V (q)

∂qa
.
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Consequently, its Euler–Lagrange equations [L ]qa = 0 are

[
L
]
qa

:=
d

dt

∂L

∂q̇a
− ∂L

∂qa

= mδacq̈
c +

∂V (q)

∂qa
= 0.

This is Newton’s law of acceleration for a potential force.

Example 2.2.2 (GeodesicmotioninaRiemannianspace) The Lagran-
gian for the motion of a free particle in a Riemannian space is its kinetic
energy with respect to the Riemannian metric,

L(q, q̇) =
1

2
q̇bgbc(q)q̇

c .

The Lagrangian in this case has partial derivatives

∂L

∂q̇a
= gac(q)q̇

c and
∂L

∂qa
=

1

2

∂gbc(q)

∂qa
q̇bq̇c .

Consequently, its Euler–Lagrange equations [L ]qa = 0 are

[
L
]
qa

:=
d

dt

∂L

∂q̇a
− ∂L

∂qa

= gae(q)q̈
e +

∂gae(q)

∂qb
q̇bq̇e − 1

2

∂gbe(q)

∂qa
q̇bq̇e = 0 .

Symmetrising the middle term and contracting with co-metric gca satisfy-
ing gcagae = δce yields

q̈ c + Γc
be(q)q̇

bq̇e = 0 , (2.2.4)

where Γc
be are the Christoffel symbols, given in terms of the metric by

Γc
be(q) =

1

2
gca
[
∂gae(q)

∂qb
+
∂gab(q)

∂qe
− ∂gbe(q)

∂qa

]
. (2.2.5)

These Euler–Lagrange equations are the geodesic equations of a free par-
ticle moving in a Riemannian space.
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2.3 Noether’s theorem

2.3.1 Lie symmetries and conservation laws

Emmy Noether

Recall from Definition 1.2.3 that a Lie
group depends smoothly on its param-
eters. (See Appendix B for more details.)

Definition 2.3.1 (Lie symmetry) A smooth
transformation of variables {t, q} depending
on a single parameter s defined by

{t, q} 7→ { t(t, q, s), q(t, q, s)} ,

that leaves the action S =
∫
Ldt invariant

is called a Lie symmetry of the action.

Theorem 2.3.1 (Noether’s theorem) Each Lie symmetry of the action
for a Lagrangian system defined on a manifold M with Lagrangian L cor-
responds to a constant of the motion [No1918].

Example 2.3.1 Suppose the variation of the action in (2.2.3) vanishes
(δS = 0) because of a Lie symmetry which does not preserve the end-
points. Then on solutions of the Euler–Lagrange equations, the endpoint
term must vanish for another reason. For example, if the Lie symmetry
leaves time invariant, so that

{t, q} 7→ { t, q(t, q, s)} ,

then the endpoint term must vanish,

[
∂L

∂q̇
δq

]t2

t1

= 0 .

Hence, the quantity

A(q, q̇, δq) =
∂L

∂q̇a
δqa
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is a constant of motion for solutions of the Euler–Lagrange equations.
In particular, if δqa = ca for constants ca, a = 1, . . . , n, that is, for spatial
translations in n dimensions, then the quantities ∂L/∂q̇a (the correspond-
ing momentum components) are constants of motion.

Remark 2.3.1 This result first appeared in Noether [No1918]. See,
e.g., [Ol2000, SaCa1981] for good discussions of the history, frame-
work and applications of Noether’s theorem. We shall see in a mo-
ment that Lie symmetries that reparameterise time may also yield
constants of motion. ✷

2.3.2 Infinitesimal transformations of a Lie group

Definition 2.3.2 (Infinitesimal Lie transformations)

Sophus Lie

Consider the Lie group of transformations

{t, q} 7→ { t(t, q, s), q(t, q, s)} ,

and suppose the identity transformation is
arranged to occur for s = 0. The derivatives
with respect to the group parameters s at the
identity,

τ(t, q) =
d

ds

∣∣∣∣
s=0

t(t, q, s) ,

ξa(t, q) =
d

ds

∣∣∣∣
s=0

qa(t, q, s) ,

are called the infinitesimal transformations of the action of a Lie group
on the time and space variables.

Thus, at linear order in a Taylor expansion in the group parameter s
one has

t = t+ sτ(t, q) , qa = qa + sξa(t, q) , (2.3.1)

where τ and ξa are functions of coordinates and time, but do not
depend on velocities. Then, to first order in s the velocities of the
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transformed trajectories are computed as

dqa

dt
=
q̇a + sξ̇a

1 + sτ̇
= q̇a + s(ξ̇a − q̇aτ̇) , (2.3.2)

where orderO(s2) terms are neglected and one defines the total time
derivatives

τ̇ ≡ ∂τ

∂t
(t, q) + q̇b

∂τ

∂qb
(t, q) and ξ̇a ≡ ∂ξa

∂t
(t, q) + q̇b

∂ξa

∂qb
(t, q) .

Remark 2.3.2 The result (2.3.2) for the infinitesimal transformation
of the derivative when both the independent and dependent vari-
ables are transformed is the operation introduced by Lie of prolon-
gation of the infinitesimal Lie group actions (2.3.1). Prolongation is
a generalisation of the tangent lift explained in Definition A.3.3. ✷

We are now in a position to prove Noether’s Theorem 2.3.1.

Proof. The variation of the action corresponding to the Lie symme-
try with infinitesimal transformations (2.3.1) is

δS =

∫ t2

t1

(∂L
∂t
δt+

∂L

∂qa
δqa +

∂L

∂q̇a
δq̇a + L

dδt

dt

)
dt

=

∫ t2

t1

(∂L
∂t
τ +

∂L

∂qa
ξa +

∂L

∂q̇a
(ξ̇a − q̇aτ̇) + Lτ̇

)
dt

=

∫ t2

t1

( ∂L
∂qa
− d

dt

∂L

∂q̇a

)
(ξa − q̇aτ) + d

dt

(
Lτ +

∂L

∂q̇a
(ξa − q̇aτ)

)
dt

=

∫ t2

t1

[L ]qa(ξ
a − q̇aτ) + d

dt

[
∂L

∂q̇a
ξa −

( ∂L
∂q̇a

q̇a − L
)
τ

]
dt .

Thus, stationarity δS = 0 and the Euler–Lagrange equations
[L ]qa = 0 imply

0 =

[
∂L

∂q̇a
ξa −

( ∂L
∂q̇a

q̇a − L
)
τ

]t2

t1

,
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so that the quantity

C(t, q, q̇) =
∂L

∂q̇a
ξa −

( ∂L
∂q̇a

q̇a − L
)
τ (2.3.3)

≡ 〈 p , δq 〉 −H δt (2.3.4)

has the same value at every time along the solution path. That is,
C(t, q, q̇) is a constant of the motion.

Remark 2.3.3 The abbreviated notation in Equation (2.3.4) for δq
and δt is standard. If δt is absent and δq is a constant (corresponding
to translations in space in a certain direction) then δS = 0 implies
that the linear momentum p = ∂L/∂q̇ in that direction is conserved
for solutions of the Euler–Lagrange equations [L ]q = 0. ✷

Exercise. Show that conservation of energy results from
Noether’s theorem if, in Hamilton’s principle, the varia-
tions are chosen as

δq(t) =
d

ds

∣∣∣∣
s=0

q( t(t, q, s)) ,

corresponding to symmetry of the Lagrangian under
space-time-dependent transformations of time along a
given curve, so that t → t(t, q, s) and q(t) → q( t(t, q, s))
with t(t, q, 0) = t. ⋆

Answer. Under reparameterisations of time along the
curve

q(t)→ q( t(t, q, s)) ,

the action S =
∫ t2
t1
L(q, q̇) dt changes infinitesimally ac-

cording to

δS =

[(
L(q, q̇)− ∂L

∂q̇
q̇
)
δt

]t2

t1

,
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with variations in position and time defined by

δq(t) =
d

ds

∣∣∣∣
s=0

q( t(t, q, s))

= q̇(t)δt and δt =
dt(t, q, s)

ds

∣∣∣∣
s=0

.

For translations in time, δt is a constant and stationarity
of the action δS = 0 implies that the energy

E(t, q, q̇) ≡ ∂L

∂q̇a
q̇a − L (2.3.5)

is a constant of motion along solutions of the Euler–
Lagrange equations. N

Exercise. (Infinitesimal Galilean transformations) From
their finite transformations in Definition 1.2.1, compute the
infinitesimal transformations of the Galilean group under
composition of first rotations, then boosts, then transla-
tions in space and time, in the case when they act on a
velocity-space-time point (q̇,q, t). ⋆

Answer. The composition of translations g1(q0(s), t0(s)),
Galilean boosts g3(v0(s)) and rotations g2(O(s)) acting
on a velocity-space-time point (q̇,q, t) is given by
g1g3g2(q̇,q, t) =(

O(s)q̇+ v0(s), O(s)q+ tv0(s) + q0(s), t+ t0(s)
)
.

One computes the infinitesimal transformations as

τ =
dt

ds

∣∣∣
s=0

= t0 ,

ξ =
dq

ds

∣∣∣
s=0

= q0 + v0t+Ξ× q ,

ξ̇ − q̇τ̇ =
dq̇

ds

∣∣∣
s=0

= v0 +Ξ× q̇ .
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The infinitesimal velocity transformation may also be
computed from Equation (2.3.2).

Consequently, the infinitesimal transformation by the
Galilean group of a function F (t,q, q̇) is given by op-
eration of the following vector field, obtained as the first
term in a Taylor series,

d

ds

∣∣∣∣
s=0

F (t(s),q(s), q̇(s)) (2.3.6)

= t0
∂F

∂t
+
(
q0 + v0t+Ξ× q

)
· ∂F
∂q

+
(
v0 +Ξ× q̇

)
· ∂F
∂q̇

.
N

Exercise. (Galilean Lie symmetries) Since the Galilean
transformations form a Lie group, one may expect them to
be a source of Lie symmetries of the Lagrangian in Hamil-
ton’s principle. Compute the corresponding Noether con-
servation laws. ⋆

Answer. As we have already seen, symmetries under
space and time translations imply conservation of linear
momentum and energy, respectively. Likewise, symme-
try under rotations implies conservation of angular mo-
mentum.

Suppose the Lagrangian in Hamilton’s principle (2.2.2)
is invariant under S1 rotations about a spatial direction
Ξ. The infinitesimal transformation of such a rotation is
δq = Ξ×q. In this case, the conserved Noether quantity
(2.3.4) is

JΞ(q, q̇) =
∂L

∂q̇
· δq = q× ∂L

∂q̇
·Ξ , (2.3.7)
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which is the angular momentum about the Ξ-axis.

Finally, symmetry under Galilean boosts implies vanish-
ing of total momentum for a system of N particles, la-
belled by an index j = 1, 2, . . . , N . The last statement
may be proved explicitly from Noether’s theorem and
the infinitesimal Galilean boost transformations, as fol-
lows:

δS =

∫ t2

t1

(∂L
∂t
δt+

∑

j

( ∂L
∂qj
· δqj +

∂L

∂q̇j
· δq̇j

)
+ L

dδt

dt

)
dt

=

∫ t2

t1

∑

j

( ∂L
∂qj
· v0t+

∂L

∂q̇j
· v0

)
dt

=

∫ t2

t1

∑

j

( ∂L
∂qj
− d

dt

∂L

∂q̇j

)
· v0t+

d

dt

∑

j

( ∂L
∂q̇j
· v0t

)
dt

=

∫ t2

t1

−
∑

j

[L ]qj · v0t dt+

[(∑

j

∂L

∂q̇j

)
· v0t

]t2

t1

.

So the Euler–Lagrange equations [L ]qj = 0 and station-
arity δS = 0 for any time t ∈ [t1, t2] together imply

Pt · v0 = constant, with P :=
∑

j

∂L

∂q̇j
.

Let’s explore the meaning of this result for a system of
N particles with constant total mass M =

∑
j mj . The

centre of mass of the system is defined as

QCM :=M−1
∑

j

mjq
j .

For a simple mechanical system with Lagrangian

L(q, q̇) =
1

2

(∑

j

mj |q̇j |2)− V ({qj}
)
,
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one finds that

P =
∑

j

∂L

∂q̇j
=
∑

j

mjq̇
j

=
d

dt

∑

j

mjq
j(t) =:

d

dt
(MQCM ) .

Hence, for such a system Noether’s theorem yields

Pt−MQCM = 0,

provided the action principle is also invariant under spa-
tial translations, so that P is also a constant of the motion.
Consequently, the motion of a simple mechanical system
of particles may always be taken as being relative to a
fixed centre of mass. N

2.4 Lagrangian form of rigidbody motion

In the absence of external torques, Euler’s equations in (2.1.33) for
rigid-body motion in principal axis coordinates are

I1Ω̇1 = (I2 − I3)Ω2Ω3,

I2Ω̇2 = (I3 − I1)Ω3Ω1,

I3Ω̇3 = (I1 − I2)Ω1Ω2,

(2.4.1)

or, equivalently,

IΩ̇ = IΩ×Ω , (2.4.2)

where Ω = (Ω1,Ω2,Ω3) is the body angular velocity vector and
I1, I2, I3 are the moments of inertia in the principal axis frame of
the rigid body. We ask whether these equations may be expressed
using Hamilton’s principle on R3. For this, we will need to define
the variational derivative of a functional S[(Ω].
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Definition 2.4.1 (Variational derivative) The variational derivative of
a functional S[(Ω] is defined as its linearisation in an arbitrary direction
δΩ in the vector space of body angular velocities. That is,

δS[Ω] := lim
s→0

S[Ω+ sδΩ]− S[Ω]

s
=
d

ds

∣∣∣
s=0

S[Ω+ sδΩ]=:
〈 δS
δΩ

, δΩ
〉
,

where the new pairing, also denoted as 〈 · , · 〉, is between the space of body
angular velocities and its dual, the space of body angular momenta.

Theorem 2.4.1 (Euler’s rigid-body equations) Euler’s rigid-body
equations are equivalent to Hamilton’s principle

δS(Ω) = δ

∫ b

a
l(Ω) dt = 0, (2.4.3)

in which the Lagrangian l(Ω) appearing in the action integral

S(Ω) =
∫ b
a l(Ω) dt is given by the kinetic energy in principal axis co-

ordinates,

l(Ω) =
1

2
〈IΩ,Ω〉 = 1

2
IΩ ·Ω =

1

2
(I1Ω

2
1 + I2Ω

2
2 + I3Ω

2
3) , (2.4.4)

and variations of Ω are restricted to be of the form

δΩ = Ξ̇+Ω×Ξ , (2.4.5)

where Ξ(t) is a curve in R3 that vanishes at the endpoints in time.

Proof. Since l(Ω) = 1
2〈IΩ,Ω〉, and I is symmetric, one obtains

δ

∫ b

a
l(Ω) dt =

∫ b

a

〈
IΩ, δΩ

〉
dt

=

∫ b

a

〈
IΩ, Ξ̇+Ω×Ξ

〉
dt

=

∫ b

a

[〈
− d

dt
IΩ,Ξ

〉
+
〈
IΩ,Ω×Ξ

〉]
dt

=

∫ b

a

〈
− d

dt
IΩ+ IΩ×Ω, Ξ

〉
dt+

〈
IΩ, Ξ

〉∣∣∣
tb

ta
,
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upon integrating by parts. The last term vanishes, upon using the
endpoint conditions,

Ξ(a) = 0 = Ξ(b) .

Since Ξ is otherwise arbitrary, (2.4.3) is equivalent to

− d

dt
(IΩ) + IΩ×Ω = 0,

which recovers Euler’s Equations (2.4.1) in vector form.

Proposition 2.4.1 (Derivation of the restricted variation) The re-
stricted variation in (2.4.5) arises via the following steps:

(i) Vary the definition of body angular velocity, Ω̂ = O−1Ȯ.

(ii) Take the time derivative of the variation, Ξ̂ = O−1O ′.

(iii) Use the equality of cross derivatives, O ˙ ′ = d2O/dtds = O ′ .̇

(iv) Apply the hat map.

Proof. One computes directly that

Ω̂ ′ = (O−1Ȯ) ′ = −O−1O ′O−1Ȯ +O−1O ˙ ′ = − Ξ̂Ω̂ +O−1O ˙ ′ ,

Ξ̂ ˙ = (O−1O ′) ˙ = −O−1ȮO−1O ′ +O−1O ′ ˙ = − Ω̂Ξ̂ +O−1O ′ ˙ .

On taking the difference, the cross derivatives cancel and one finds
a variational formula equivalent to (2.4.5),

Ω̂ ′ − Ξ̂ ˙ =
[
Ω̂ , Ξ̂

]
with [ Ω̂ , Ξ̂ ] := Ω̂Ξ̂− Ξ̂Ω̂ . (2.4.6)

Under the bracket relation (2.1.12) for the hat map, this equation
recovers the vector relation (2.4.5) in the form

Ω ′ − Ξ̇ = Ω×Ξ . (2.4.7)



September 24, 2011 11:41am Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

2.4 LAGRANGIAN FORM OF RIGIDBODY MOTION 49

Thus, Euler’s equations for the rigid body in TR3,

IΩ̇ = IΩ×Ω , (2.4.8)

do follow from the variational principle (2.4.3) with variations of the
form (2.4.5) derived from the definition of body angular velocity Ω̂.

Remark 2.4.1 The body angular velocity is expressed in terms of
the spatial angular velocity by Ω(t) = O−1(t)ω(t). Consequently,
the kinetic energy Lagrangian in (2.4.4) transforms as

l(Ω) =
1

2
Ω · IΩ =

1

2
ω · Ispace(t)ω =: lspace(ω) ,

where
Ispace(t) = O(t)IO−1(t) ,

as in (2.1.31). ✷

Exercise. Show that Hamilton’s principle for the action

S(ω) =

∫ b

a
lspace(ω) dt

yields conservation of spatial angular momentum

π = Ispace(t)ω(t) .

Hint: First derive δIspace = [ξ, Ispace] with right-invariant
ξ = δOO−1. ⋆

Exercise. (Noether’s theorem for the rigid body) What
conservation law does Theorem 2.3.1 (Noether’s theorem)
imply for the rigid-body Equations (2.4.2)?
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Hint: Transform the endpoint terms arising on integrating
the variation δS by parts in the proof of Theorem 2.4.1 into
the spatial representation by setting Ξ = O−1(t)Γ and Ω =
O−1(t)ω. ⋆

Remark 2.4.2 (Reconstruction ofO(t) ∈ SO(3)) The Euler solu-
tion is expressed in terms of the time-dependent angular veloc-
ity vector in the body, Ω. The body angular velocity vector Ω(t)
yields the tangent vector Ȯ(t) ∈ TO(t)SO(3) along the integral
curve in the rotation group O(t) ∈ SO(3) by the relation

Ȯ(t) = O(t)Ω̂(t) , (2.4.9)

where the left-invariant skew-symmetric 3×3 matrix Ω̂ is defined
by the hat map (2.1.27)

(O−1Ȯ)jk = Ω̂jk = −Ωiǫijk . (2.4.10)

Equation (2.4.9) is the reconstruction formula for O(t) ∈ SO(3).

Once the time dependence of Ω(t) and hence Ω̂(t) is deter-
mined from the Euler equations, solving formula (2.4.9) as a lin-
ear differential equation with time-dependent coefficients yields
the integral curve O(t) ∈ SO(3) for the orientation of the rigid
body. ✷

2.4.1 Hamilton–Pontryagin constrained variations

Formula (2.4.6) for the variation Ω̂ of the skew-symmetric matrix

Ω̂ = O−1Ȯ
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may be imposed as a constraint in Hamilton’s principle and thereby
provide a variational derivation of Euler’s Equations (2.1.33) for
rigid-body motion in principal axis coordinates. This constraint is
incorporated into the matrix Euler equations, as follows.

Proposition 2.4.2 (Matrix Euler equations) Euler’s rigid-body equa-
tion may be written in matrix form as

dΠ

dt
= −

[
Ω̂ , Π

]
with Π = IΩ̂ =

δl

δΩ̂
, (2.4.11)

for the Lagrangian l(Ω̂) given by

l =
1

2

〈
IΩ̂ , Ω̂

〉
. (2.4.12)

Here, the bracket [
Ω̂ , Π

]
:= Ω̂Π−ΠΩ̂ (2.4.13)

denotes the commutator and 〈 · , · 〉 denotes the trace pairing, e.g.,

〈
Π , Ω̂

〉
=:

1

2
trace

(
ΠT Ω̂

)
. (2.4.14)

Remark 2.4.3 Note that the symmetric part of Π does not contribute
in the pairing and if set equal to zero initially, it will remain zero. ✷

Proposition 2.4.3 (Constrained variational principle) The matrix
Euler Equations (2.4.11) are equivalent to stationarity δS = 0 of the
following constrained action:

S(Ω̂, O, Ȯ,Π) =

∫ b

a
l(Ω̂, O, Ȯ,Π) dt (2.4.15)

=

∫ b

a

[
l(Ω̂) + 〈Π , (O−1Ȯ − Ω̂ ) 〉

]
dt .

Remark 2.4.4 The integrand of the constrained action in (2.4.15)
is similar to the formula for the Legendre transform, but its func-
tional dependence is different. This variational approach is related
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to the classic Hamilton–Pontryagin principle for control theory in
[YoMa2006]. It is also used in [BoMa2009] to develop algorithms for
geometric numerical integrations of rotating motion. ✷

Proof. The variations of S in formula (2.4.15) are given by

δS =

∫ b

a

{〈 δl

δΩ̂
−Π , δΩ̂

〉

+
〈
δΠ , (O−1Ȯ − Ω)

〉
+
〈
Π , δ(O−1Ȯ)

〉}
dt ,

where
δ(O−1Ȯ) = Ξ̂ ˙+ [ Ω̂ , Ξ̂ ] , (2.4.16)

and Ξ̂ = (O−1δO) from Equation (2.4.6).

Substituting for δ(O−1Ȯ) into the last term of δS produces

∫ b

a

〈
Π , δ(O−1Ȯ)

〉
dt =

∫ b

a

〈
Π , Ξ̂ ˙ + [ Ω̂ , Ξ̂ ]

〉
dt

=

∫ b

a

〈
− Π˙− [ Ω̂ , Π ] , Ξ̂

〉
dt

+
〈
Π , Ξ̂

〉∣∣∣
b

a
, (2.4.17)

where one uses the cyclic properties of the trace operation for ma-
trices,

trace
(
ΠT Ξ̂ Ω̂

)
= trace

(
Ω̂ ΠT Ξ̂

)
. (2.4.18)

Thus, stationarity of the Hamilton–Pontryagin variational principle
for vanishing endpoint conditions Ξ̂(a) = 0 = Ξ̂(b) implies the fol-
lowing set of equations:

δl

δΩ̂
= Π , O−1Ȯ = Ω̂ , Π˙ = −[ Ω̂ , Π ] . (2.4.19)
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Remark 2.4.5 (Interpreting the formulas in (2.4.19)) The first for-
mula in (2.4.19) defines the angular momentum matrix Π as the
fibre derivative of the Lagrangian with respect to the angular ve-
locity matrix Ω̂. The second formula is the reconstruction formula
(2.4.9) for the solution curve O(t) ∈ SO(3), given the solution
Ω̂(t) = O−1Ȯ. And the third formula is Euler’s equation for rigid-
body motion in matrix form. ✷

We transform the endpoint terms in (2.4.20), arising on integrating
the variation δS by parts in the proof of Theorem 2.4.3, into the
spatial representation by setting Ξ̂(t) =: O(t) ξ̂ O−1(t) and Π̂(t) =:
O(t)π̂(t)O−1(t), as follows:

〈
Π , Ξ̂

〉
= trace

(
ΠT Ξ̂

)
= trace

(
πT ξ̂

)
=
〈
π , ξ̂

〉
. (2.4.20)

Thus, the vanishing of both endpoints for a constant infinitesimal
spatial rotation ξ̂ = (δOO−1) = const implies

π(a) = π(b) . (2.4.21)

This is Noether’s theorem for the rigid body.

Theorem 2.4.2 (Noether’s theorem for the rigid body) Invariance
of the constrained Hamilton–Pontryagin action under spatial rotations im-
plies conservation of spatial angular momentum,

π = O−1(t)Π(t)O(t) =: Ad∗O−1(t)Π(t). (2.4.22)

Proof.

d

dt

〈
π , ξ̂

〉
=

d

dt

〈
O−1ΠO , ξ̂

〉
=

d

dt
trace

(
ΠT O−1ξ̂O

)

=
〈 d

dt
Π+

[
Ω̂ , Π

]
, O−1ξ̂O

〉
= 0

=:
〈 d

dt
Π− ad∗

Ω̂
Π , AdO−1 ξ̂

〉
,

d

dt

〈
Ad∗O−1Π , ξ̂

〉
=

〈
Ad∗O−1

( d

dt
Π− ad∗

Ω̂
Π
)
, ξ̂
〉
. (2.4.23)

The proof of Noether’s theorem for the rigid body is already on the
second line. However, the last line gives a general result.
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Remark 2.4.6 The proof of Noether’s theorem for the rigid body
when the constrained Hamilton–Pontryagin action is invariant un-
der spatial rotations also proves a general result in Equation (2.4.23),
with Ω̂ = O−1Ȯ for a Lie group O, that

d

dt

(
Ad∗O−1Π

)
= Ad∗O−1

( d

dt
Π− ad∗

Ω̂
Π
)
. (2.4.24)

This equation will be useful in the remainder of the text. In particu-
lar, it provides the solution of a differential equation defined on the
dual of a Lie algebra. Namely, for a Lie group O with Lie algebra o,
the equation for Π ∈ o∗ and Ω̂ = O−1Ȯ ∈ o

d

dt
Π− ad∗

Ω̂
Π = 0 has solution Π(t) = Ad∗O(t)π , (2.4.25)

in which the constant π ∈ o∗ is obtained from the initial conditions.

✷

2.4.2 Manakov’s formulation of the SO(n) rigid body

Proposition 2.4.4 (Manakov [Man1976]) Euler’s equations for a rigid
body on SO(n) take the matrix commutator form,

dM

dt
= [M , Ω ] with M = AΩ+ ΩA , (2.4.26)

where the n×n matrices M, Ω are skew-symmetric (forgoing superfluous
hats) and A is symmetric.

Proof. Manakov’s commutator form of the SO(n) rigid-body Equa-
tions (2.4.26) follows as the Euler–Lagrange equations for Hamil-
ton’s principle δS = 0 with S =

∫
l dt for the Lagrangian

l = −1

2
tr(ΩAΩ) ,

where Ω = O−1Ȯ ∈ so(n) and the n × n matrix A is symmetric.
Taking matrix variations in Hamilton’s principle yields

δS = −1

2

∫ b

a
tr
(
δΩ (AΩ+ ΩA)

)
dt = −1

2

∫ b

a
tr
(
δΩM

)
dt ,
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after cyclically permuting the order of matrix multiplication under
the trace and substituting M := AΩ + ΩA. Using the variational
formula (2.4.16) for δΩ now leads to

δS = −1

2

∫ b

a
tr
(
(Ξ˙+ ΩΞ− ΞΩ)M

)
dt .

Integrating by parts and permuting under the trace then yields the
equation

δS =
1

2

∫ b

a
tr
(
Ξ ( Ṁ +ΩM −MΩ )

)
dt .

Finally, invoking stationarity for arbitrary Ξ implies the commuta-
tor form (2.4.26).

2.4.3 Matrix Euler–Poincaré equations

Manakov’s commutator form of the rigid-body equations recalls
much earlier work by Poincaré [Po1901], who also noticed that the
matrix commutator form of Euler’s rigid-body equations suggests
an additional mathematical structure going back to Lie’s theory of
groups of transformations depending continuously on parameters.
In particular, Poincaré [Po1901] remarked that the commutator form
of Euler’s rigid-body equations would make sense for any Lie alge-
bra, not just for so(3). The proof of Manakov’s commutator form
(2.4.26) by Hamilton’s principle is essentially the same as Poincaré’s
proof in [Po1901], which is translated into English in Appendix D.

Theorem 2.4.3 (Matrix Euler–Poincaré equations) The Euler–La-
grange equations for Hamilton’s principle δS = 0 with S =

∫
l(Ω) dt

may be expressed in matrix commutator form,

dM

dt
= [M , Ω ] with M =

δl

δΩ
, (2.4.27)

for any Lagrangian l(Ω), where Ω = g−1ġ ∈ g and g is the matrix Lie
algebra of any matrix Lie group G.
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Proof. The proof here is the same as the proof of Manakov’s
commutator formula via Hamilton’s principle, modulo replacing
O−1Ȯ ∈ so(n) with g−1ġ ∈ g.

Remark 2.4.7 Poincaré’s observation leading to the matrix Euler–
Poincaré Equation (2.4.27) was reported in two pages with no ref-
erences [Po1901]. The proof above shows that the matrix Euler–
Poincaré equations possess a natural variational principle. Note
that if Ω = g−1ġ ∈ g, then M = δl/δΩ ∈ g∗, where the dual is
defined in terms of the matrix trace pairing. ✷

Exercise. Retrace the proof of the variational principle for
the Euler–Poincaré equation, replacing the left-invariant
quantity g−1ġ with the right-invariant quantity ġg−1. ⋆

2.4.4 An isospectral eigenvalue problem for the SO(n)
rigid body

The solution of the SO(n) rigid-body dynamics

dM

dt
= [M , Ω ] with M = AΩ+ ΩA ,

for the evolution of the n × n skew-symmetric matrices M, Ω,
with constant symmetric A, is given by a similarity transforma-
tion (later to be identified as coadjoint motion),

M(t) = O(t)−1M(0)O(t) =: Ad∗O(t)M(0) ,

with O(t) ∈ SO(n) and Ω := O−1Ȯ(t). Consequently, the evolu-
tion of M(t) is isospectral. This means that
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The initial eigenvalues of the matrix M(0) are preserved by
the motion; that is, dλ/dt = 0 in

M(t)ψ(t) = λψ(t) ,

provided its eigenvectors ψ ∈ Rn evolve according to

ψ(t) = O(t)−1ψ(0) .

The proof of this statement follows from the corresponding
property of similarity transformations.

Its matrix invariants are preserved:

d

dt
tr(M − λId)K = 0 ,

for every non-negative integer power K.

This is clear because the invariants of the matrix M may be
expressed in terms of its eigenvalues; but these are invari-
ant under a similarity transformation.

Proposition 2.4.5 Isospectrality allows the quadratic rigid-body dy-
namics (2.4.26) on SO(n) to be rephrased as a system of two coupled
linear equations: the eigenvalue problem for M and an evolution equa-
tion for its eigenvectors ψ, as follows:

Mψ = λψ and ψ̇ = −Ωψ , with Ω = O−1Ȯ(t) .

Proof. Applying isospectrality in the time derivative of the first
equation yields

( Ṁ + [Ω,M ] )ψ + (M − λId)(ψ̇ +Ωψ) = 0 .

Now substitute the second equation to recover (2.4.26).
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2.4.5 Manakov’s integration of the SO(n) rigid body

Manakov [Man1976] observed that Equations (2.4.26) may be “de-
formed” into

d

dt
(M + λA) = [(M + λA), (Ω + λB)] , (2.4.28)

where A, B are also n×n matrices and λ is a scalar constant param-
eter. For these deformed rigid-body equations on SO(n) to hold for
any value of λ, the coefficient of each power must vanish.

The coefficent of λ2 is

0 = [A,B] .

Therefore, A and B must commute. For this, let them be con-
stant and diagonal:

Aij = diag(ai)δij , Bij = diag(bi)δij (no sum).

The coefficent of λ is

0 =
dA

dt
= [A,Ω] + [M,B] .

Therefore, by antisymmetry of M and Ω,

(ai − aj)Ωij = (bi − bj)Mij ,

which implies that

Ωij =
bi − bj
ai − aj

Mij (no sum).

Hence, angular velocity Ω is a linear function of angular mo-
mentum, M .

Finally, the coefficent of λ0 recovers the Euler equation

dM

dt
= [M,Ω] ,
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but now with the restriction that the moments of inertia are of
the form

Ωij =
bi − bj
ai − aj

Mij (no sum).

This relation turns out to possess only five free parameters for
n = 4.

Under these conditions, Manakov’s deformation of the SO(n) rigid-
body equation into the commutator form (2.4.28) implies for every
non-negative integer power K that

d

dt
(M + λA)K = [(M + λA)K , (Ω + λB)] .

Since the commutator is antisymmetric, its trace vanishes and K
conservation laws emerge, as

d

dt
tr(M + λA)K = 0 ,

after commuting the trace operation with the time derivative. Con-
sequently,

tr(M + λA)K = constant ,

for each power of λ. That is, all the coefficients of each power of λ
are constant in time for the SO(n) rigid body. Manakov [Man1976]
proved that these constants of motion are sufficient to completely
determine the solution for n = 4.

Remark 2.4.8 This result generalises considerably. For example,
Manakov’s method determines the solution for all the algebraically
solvable rigid bodies on SO(n). The moments of inertia of these
bodies possess only 2n − 3 parameters. (Recall that in Manakov’s
case for SO(4) the moment of inertia possesses only five parame-
ters.) ✷
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Exercise. Try computing the constants of motion tr(M +
λA)K for the values K = 2, 3, 4.

Hint: Keep in mind that M is a skew-symmetric matrix,
MT = −M , so the trace of the product of any diagonal
matrix times an odd power of M vanishes. ⋆

Answer. The traces of the powers trace(M + λA)n are
given by

n = 2 : trM2 + 2λtr(AM) + λ2trA2 ,

n = 3 : trM3 + 3λtr(AM2) + 3λ2trA2M + λ3trA3 ,

n = 4 : trM4 + 4λtr(AM3)

+ λ2(2trA2M2 + 4trAMAM)

+ λ3trA3M + λ4trA4 .

The number of conserved quantities for n = 2, 3, 4 are,
respectively, one (C2 = trM2), one (C3 = trAM2) and
two (C4 = trM4 and I4 = 2trA2M2 + 4trAMAM ). N

Exercise. How do the Euler equations look on so(4)∗ as a
matrix equation? Is there an analogue of the hat map for
so(4)?

Hint: The Lie algebra so(4) is locally isomorphic to so(3)×
so(3). ⋆

2.5 Hamilton

The Legendre transform of the Lagrangian (2.4.4) in the variational
principle (2.4.3) for Euler’s rigid-body dynamics (2.4.8) on R3 will
reveal its well-known Hamiltonian formulation.
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Definition 2.5.1 (Legendre transformation) The Legendre transfor-
mation Fl : R3 → R3∗ ≃ R3 is defined by the fibre derivative,

Fl(Ω) =
δl

δΩ
= Π .

The Legendre transformation defines the body angular momen-
tum by the variations of the rigid body’s reduced Lagrangian with
respect to the body angular velocity. For the Lagrangian in (2.4.3),
the R3 components of the body angular momentum are

Πi = IiΩi =
∂l

∂Ωi
, i = 1, 2, 3. (2.5.1)

Remark 2.5.1 This is also how body angular momentum was de-
fined in the Newtonian setting. See Definition 2.1.10. ✷

Exercise. Express the Lagrangian (2.4.4) in terms of the
matrices O(t) and Ȯ(t). Show that this Lagrangian is left-
invariant under (O, Ȯ) 7→ (RO, RȮ) for any orthogonal
matrix RT = R−1. Compute the Euler–Lagrange equations
for this Lagrangian in geodesic form (2.2.4). ⋆

Exercise. Compute the Legendre transformation and pass
to the canonical Hamiltonian formulation using the La-
grangian l(Ω) = L(O , Ȯ) and the following definitions of
the canonical momentum and Hamiltonian,

P =
∂L(O , Ȯ)

∂Ȯ
and H(P , O) =

〈
P , Ȯ

〉
−L(O , Ȯ) ,

in combination with the chain rule for Ω = O−1Ȯ. ⋆
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2.5.1 Hamiltonian form of rigidbody motion

Definition 2.5.2 (Dynamical systems in Hamiltonian form) Adyna-
mical system on a manifold M

ẋ(t) = F(x) , x ∈M ,

is said to be in Hamiltonian form, if it can be expressed as

ẋ(t) = {x, H} , for H :M 7→ R ,

in terms of a Poisson bracket operation {· , ·} among smooth real functions
F(M) : M 7→ R on the manifold M ,

{· , ·} : F(M)×F(M) 7→ F(M) ,

so that Ḟ = {F , H} for any F ∈ F(M).

Definition 2.5.3 (Poisson bracket) A Poisson bracket operation
{· , ·} is defined as possessing the following properties:

It is bilinear.

It is skew-symmetric, {F , H} = −{H , F}.

It satisfies the Leibniz rule (product rule),

{FG , H} = {F , H}G+ F{G , H} ,

for the product of any two functions F and G on M .

It satisfies the Jacobi identity,

{F , {G , H}}+ {G , {H , F}}+ {H , {F , G}} = 0 , (2.5.2)

for any three functions F , G and H on M .

Remark 2.5.2 This definition of a Poisson bracket does not require
it to be the standard canonical bracket in position q and conjugate
momentum p, although it does include that case as well. ✷
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2.5.2 Lie–Poisson Hamiltonian rigidbody dynamics

Let
h(Π) := 〈Π,Ω〉 − l(Ω) , (2.5.3)

where the pairing 〈· , ·〉 : R3∗ × R3 → R denotes the vector dot
product on R3,

〈Π,Ω〉 := Π ·Ω , (2.5.4)

in which indices are suppressed within the brackets. Hence, one
finds the expected expression for the rigid-body Hamiltonian

h =
1

2

〈
Π , I−1Π

〉
=

1

2
Π · I−1Π :=

Π2
1

2I1
+

Π2
2

2I2
+

Π2
3

2I3
. (2.5.5)

The Legendre transform Fl for this case is a diffeomorphism, so one
may solve for

∂h

∂Π
= Ω+

〈
Π ,

∂Ω

∂Π

〉
−
〈
∂l

∂Ω
,
∂Ω

∂Π

〉
= Ω (2.5.6)

upon using the definition of angular momentum Π = ∂l/∂Ω in
(2.5.1). In R3 coordinates, the relation (2.5.6) expresses the body an-
gular velocity as the derivative of the reduced Hamiltonian with
respect to the body angular momentum, namely,

∂h

∂Π
= Ω . (2.5.7)

Hence, the reduced Euler–Lagrange equations for l may be ex-
pressed equivalently in angular momentum vector components in
R3 and Hamiltonian h as

d

dt
(IΩ) = IΩ×Ω⇐⇒ Π̇ = Π× ∂h

∂Π
:= {Π, h} .

This expression suggests we introduce the following rigid-body
Poisson bracket on functions of the Π’s:

{f, h}(Π) := −Π ·
(
∂f

∂Π
× ∂h

∂Π

)
. (2.5.8)
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For the Hamiltonian (2.5.5), one checks that the Euler equations in
terms of the rigid-body angular momenta,

Π̇1 =

(
1

I3
− 1

I2

)
Π2Π3 ,

Π̇2 =

(
1

I1
− 1

I3

)
Π3Π1 ,

Π̇3 =

(
1

I2
− 1

I1

)
Π1Π2 ,

(2.5.9)

that is, the equations
Π̇ = Π× I

−1Π , (2.5.10)

are equivalent to

ḟ = {f, h} , with f = Π .

2.5.3 Lie–Poisson bracket

The Poisson bracket proposed in (2.5.8) is an example of a Lie–
Poisson bracket.

It satisfies the defining relations of a Poisson bracket for a num-
ber of reasons, not least because it is the hat map to R3 of the follow-
ing bracket defined by the general form in Equation (2.4.23) in terms
of the so(3)∗ × so(3) pairing 〈 · , · 〉 in Equation (2.4.20). Namely,

dF

dt
=

〈
d

dt
Π,

∂F

∂Π

〉
=

〈
ad∗

Ω̂
Π,

∂F

∂Π

〉

=

〈
Π, ad

Ω̂

∂F

∂Π

〉
=

〈
Π,

[
Ω̂,

∂F

∂Π

]〉

= −
〈
Π,

[
∂F

∂Π
,
∂H

∂Π

]〉
, (2.5.11)

where we have used the equation corresponding to (2.5.7) under the
inverse of the hat map

Ω̂ =
∂H

∂Π
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and applied antisymmetry of the matrix commutator. Writing Equa-
tion (2.5.11) as

dF

dt
= −

〈
Π,

[
∂F

∂Π
,
∂H

∂Π

]〉
=:
{
F, H

}
(2.5.12)

defines the Lie–Poisson bracket { · , · } on smooth functions (F,H) :
so(3)∗ → R. This bracket satisfies the defining relations of a Poisson
bracket because it is a linear functional of the commutator prod-
uct of skew-symmetric matrices, which is bilinear, skew-symmetric,
satisfies the Leibniz rule (because of the partial derivatives) and also
satisfies the Jacobi identity.

These Lie–Poisson brackets may be written in tabular form as

{Πi, Πj} =

{ · , · } Π1 Π2 Π3

Π1

Π2

Π3

0 −Π3 Π2

Π3 0 −Π1

−Π2 Π1 0

(2.5.13)

or, in index notation,

{Πi , Πj} = −ǫijkΠk = Π̂ij . (2.5.14)

Remark 2.5.3 The Lie–Poisson bracket in the form (2.5.12) would
apply to any Lie algebra. This Lie–Poisson Hamiltonian form of
the rigid-body dynamics substantiates Poincaré’s observation in
[Po1901] that the corresponding equations could have been written
on the dual of any Lie algebra by using the ad∗ operation for that
Lie algebra. ✷

The corresponding Poisson bracket in (2.5.8) in R3-vector form also
satisfies the defining relations of a Poisson bracket because it is an
example of a Nambu bracket, to be discussed next.

2.5.4 Nambu’s R3 Poisson bracket

The rigid-body Poisson bracket (2.5.8) is a special case of the Poisson
bracket for functions of x ∈ R3 introduced in [Na1973],

{f, h} = −∇c · ∇f ×∇h . (2.5.15)
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This bracket generates the motion

ẋ = {x, h} = ∇c×∇h . (2.5.16)

For this bracket the motion takes place along the intersections of
level surfaces of the functions c and h in R3. In particular, for the
rigid body, the motion takes place along intersections of angular
momentum spheres c = |x|2/2 and energy ellipsoids h = x · Ix. (See
the cover illustration of [MaRa1994].)

Exercise. Consider the Nambu R3 bracket

{f, h} = −∇c · ∇f ×∇h . (2.5.17)

Let c = xT · Cx/2 be a quadratic form on R3, and let C

be the associated symmetric 3 × 3 matrix. Show by direct
computation that this Nambu bracket satisfies the Jacobi
identity. ⋆

Exercise. Find the general conditions on the function c(x)
so that the R3 bracket

{f, h} = −∇c · ∇f ×∇h

satisfies the defining properties of a Poisson bracket. Is this
R3 bracket also a derivation satisfying the Leibniz relation
for a product of functions on R3? If so, why? ⋆

Answer. The bilinear skew-symmetric Nambu R3 brac-
ket yields the divergenceless vector field

Xc,h = { · , h} = (∇c×∇h) · ∇ with div(∇c×∇h) = 0 .
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Divergenceless vector fields are derivative operators
that satisfy the Leibniz product rule. They also satisfy
the Jacobi identity for any choice of C2 functions c and
h. Hence, the Nambu R3 bracket is a bilinear skew-
symmetric operation satisfying the defining properties
of a Poisson bracket. N

Theorem 2.5.1 (Jacobi identity) The Nambu R3 bracket (2.5.17) satis-
fies the Jacobi identity.

Proof. The isomorphism XH = { · , H} between the Lie algebra of
divergenceless vector fields and functions under the R3 bracket is
the key to proving this theorem. The Lie derivative among vector
fields is identified with the Nambu bracket by

LXG
XH = [XG, XH ] = −X{G,H} .

Repeating the Lie derivative produces

LXF
(LXG

XH) = [XF , [XG, XH ] ] = X{F,{G,H}} .

The result follows because both the left- and right-hand sides in this
equation satisfy the Jacobi identity.

Exercise. How is the R3 bracket related to the canonical
Poisson bracket?

Hint: Restrict to level surfaces of the function c(x). ⋆

Exercise. (Casimirs of the R3 bracket) The Casimirs (or
distinguished functions, as Lie called them) of a Poisson
bracket satisfy

{c, h}(x) = 0 , for all h(x) .
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Suppose the function c(x) is chosen so that the R3 bracket
(2.5.15) defines a proper Poisson bracket. What are the
Casimirs for the R3 bracket (2.5.15)? Why? ⋆

Exercise. (Geometric interpretation of Nambu motion)

Show that the Nambu motion equation (2.5.16)

ẋ = {x, h} = ∇c×∇h

for the R3 bracket (2.5.15) is invariant under a cer-
tain linear combination of the functions c and h. In-
terpret this invariance geometrically.

Show that the rigid-body equations for

I = diag(1, 1/2, 1/3)

may be interpreted as intersections in R3 of the
spheres x21 + x22 + x23 = constant and the hyperbolic
cylinders x21 − x23 = constant. See [HoMa1991] for
more discussions of this geometric interpretation of
solutions under the R3 bracket.

A special case of the equations for three-wave in-
teractions is [AlLuMaRo1998]

ẋ1 = s1γ1x2x3 , ẋ2 = s2γ2x3x1 , ẋ3 = s3γ3x1x2 ,

for a set of constants γ1 + γ2 + γ3 = 0 and signs
s1, s2, s3 = ±1. Write these equations as a Nambu
motion equation on R3 of the form (2.5.16). Inter-
pret their solutions geometrically as intersections
of level surfaces of quadratic functions for various
values and signs of the γ’s. ⋆
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2.5.5 Clebsch variational principle for the rigid body

Proposition 2.5.1 (Clebsch variational principle) The Euler rigid-
body Equations (2.4.2) on TR3 are equivalent to the constrained vari-
ational principle,

δS(Ω,Q, Q̇;P) = δ

∫ b

a
l(Ω,Q, Q̇;P) dt = 0, (2.5.18)

for a constrained action integral

S(Ω,Q, Q̇) =

∫ b

a
l(Ω,Q, Q̇) dt (2.5.19)

=

∫ b

a

1

2
Ω · IΩ+P ·

(
Q̇+Ω×Q

)
dt .

Remark 2.5.4 (Reconstruction as constraint)

The first term in the Lagrangian (2.5.19),

l(Ω) =
1

2
(I1Ω

2
1 + I2Ω

2
2 + I3Ω

2
3) =

1

2
ΩT

IΩ , (2.5.20)

is again the (rotational) kinetic energy of the rigid body in
(2.1.23).

The second term in the Lagrangian (2.5.19) introduces the
Lagrange multiplier P which imposes the constraint

Q̇+Ω×Q = 0 .

This reconstruction formula has the solution

Q(t) = O−1(t)Q(0) ,

which satisfies

Q̇(t) = − (O−1Ȯ)O−1(t)Q(0)

= − Ω̂(t)Q(t) = −Ω(t)×Q(t) . (2.5.21)

✷
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Proof. The variations of S are given by

δS =

∫ b

a

( δl

δΩ
· δΩ+

δl

δP
· δP+

δl

δQ
· δQ

)
dt

=

∫ b

a

[(
IΩ−P×Q

)
· δΩ

+ δP ·
(
Q̇+Ω×Q

)
− δQ ·

(
Ṗ+Ω×P

)]
dt .

Thus, stationarity of this implicit variational principle implies the
following set of equations:

IΩ = P×Q , Q̇ = −Ω×Q , Ṗ = −Ω×P . (2.5.22)

These symmetric equations for the rigid body first appeared in the
theory of optimal control of rigid bodies [BlCrMaRa1998]. Euler’s
form of the rigid-body equations emerges from these, upon elimi-
nation of Q and P, as

IΩ̇ = Ṗ×Q+P× Q̇

= Q× (Ω×P) +P× (Q×Ω)

= −Ω× (P×Q) = −Ω× IΩ ,

which are Euler’s equations for the rigid body in TR3.

Remark 2.5.5 The Clebsch variational principle for the rigid body
is a natural approach in developing geometric algorithms for nu-
merical integrations of rotating motion. Geometric integrators for
rotations are derived using the Clebsch approach in [CoHo2007]. ✷

Remark 2.5.6 The Clebsch approach is also a natural path across
to the Hamiltonian formulation of the rigid-body equations. This
becomes clear in the course of the following exercise. ✷

Exercise. Given that the canonical Poisson brackets in
Hamilton’s approach are

{Qi, Pj} = δij and {Qi, Qj} = 0 = {Pi, Pj} ,
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what are the Poisson brackets for Π = P×Q ∈ R3 in
(2.5.22)? Show that these Poisson brackets recover the
rigid-body Poisson bracket (2.5.8). ⋆

Answer. The components of the angular momentum
Π = IΩ in (2.5.22) are

Πa = ǫabcPbQc ,

and their canonical Poisson brackets are (noting the sim-
ilarity with the hat map)

{Πa,Πi} = {ǫabcPbQc , ǫijkPjQk} = − ǫailΠl .

Consequently, the derivative property of the canonical
Poisson bracket yields

{f, h}(Π) =
∂f

∂Πa
{Πa,Πi}

∂h

∂Πb
= − ǫabcΠc

∂f

∂Πa

∂h

∂Πb
,

(2.5.23)

which is indeed the Lie–Poisson bracket in (2.5.8) on
functions of the Π’s. The correspondence with the hat
map noted above shows that this Poisson bracket satis-
fies the Jacobi identity as a result of the Jacobi identity
for the vector cross product on R3. N

Remark 2.5.7 This exercise proves that the map T ∗R3 → R3 given
by Π = P × Q ∈ R3 in (2.5.22) is Poisson. That is, the map takes
Poisson brackets on one manifold into Poisson brackets on another
manifold. Later we will recognise such an occurrence as one of the
properties of a momentum map. ✷
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Exercise. The Euler–Lagrange equations in matrix commu-
tator form of Manakov’s formulation of the rigid body on
SO(n) are

dM

dt
= [M , Ω ] ,

where the n× n matrices M, Ω are skew-symmetric. Show
that these equations may be derived from Hamilton’s prin-
ciple δS = 0 with constrained action integral

S(Ω, Q, P ) =

∫ b

a
l(Ω) + tr

(
P T
(
Q̇−QΩ

))
dt ,

for which M = δl/δΩ = P TQ − QTP and Q,P ∈ SO(n)
satisfy the following symmetric equations reminiscent of
those in (2.5.22),

Q̇ = QΩ and Ṗ = PΩ , (2.5.24)

as a result of the constraints. ⋆

Exercise. Write Manakov’s deformation of the rigid-body
Equations (2.4.28) in the symmetric form (2.5.24). ⋆

2.5.6 Rotating motion with potential energy

Manakov’s method for showing the integrability of the n-dimen-
sional rigid body illustrates the conditions necessary to prove
isospectral integrability for any Lie–Poisson system. For exam-
ple, consider the problem of a rigid body in a quadratic potential,
first studied in [Bo1985].
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The Lagrangian of an arbitrary rigid body rotating about a fixed
point at the origin of spatial coordinates x ∈ Rn in a field with a
quadratic potential

φ(x) =
1

2
tr
(
xTS0x

)

is defined in the body coordinates by the difference between its ki-
netic and potential energies in the form

l =
1

2
tr(ΩT

AΩ)
︸ ︷︷ ︸

kinetic

− 1

2
tr(SA)

︸ ︷︷ ︸
potential

.

Here, Ω(t) = O−1(t)Ȯ(t) ∈ so(n), the n× n constant matrices A and
S0 are symmetric, and S(t) = O−1(t)S0O(t).

The reduced Euler–Lagrange equations for this Lagrangian are
computed by taking matrix variations in its Hamilton’s principle
δS = 0 with S =

∫
l dt, to find

δS =
1

2

∫ b

a
tr
(
δΩM

)
dt+

1

2

∫ b

a
tr
(
Ξ
[
S , A

])
dt ,

with matrix commutator [S,A] := SA−AS, variation Ξ := O−1δO ∈
so(n) and variational derivative M := ∂l/∂Ω = AΩ+ ΩA.

Integrating by parts, invoking homogeneous endpoint condi-
tions, then rearranging as in the proof of Proposition 2.4.2 and using
the variational relation (2.4.16), rewritten here as

δΩ =
dΞ

dt
+ [Ω , Ξ ] ,

finally yields the following formula for the variation,

δS = − 1

2

∫ b

a
tr

((
dM

dt
−
[
M , Ω

]
−
[
S , A

])
Ξ

)
dt .

Hence, Hamilton’s principle for δS = 0 with arbitrary Ξ implies an
equation for the evolution of M given by

dM

dt
=
[
M , Ω

]
+
[
S(t) , A

]
. (2.5.25)
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A differential equation for S(t) follows from the time derivative of
its definition S(t) := O−1(t)S0O(t), as

dS

dt
=
[
S , Ω

]
. (2.5.26)

The last two equations constitute a closed dynamical system for
M(t) and S(t), with initial conditions specified by the values of Ω(0)
and S(0) = S0 for O(0) = Id at time t = 0.

Following Manakov’s idea [Man1976], these equations may be
combined into a commutator of polynomials,

d

dt

(
S+ λM + λ2A2

)
=
[
S+ λM + λ2A2 , Ω+ λA

]
. (2.5.27)

The commutator form (2.5.27) implies for every non-negative inte-
ger power K that

d

dt
(S+ λM + λ2A2)K = [(S+ λM + λ2A2)K , (Ω + λA)] .

Since the commutator is antisymmetric, its trace vanishes and K
conservation laws emerge, as

d

dt
tr(S+ λM + λ2A2)K = 0 ,

after commuting the trace operation with the time derivative. Con-
sequently,

tr(S+ λM + λ2A2)K = constant , (2.5.28)

for each power of λ. That is, all the coefficients of each power of λ
are constant in time for the motion of a rigid body in a quadratic
field.

Exercise. Show that the Hamiltonian formulation of this
system is Lie–Poisson, with Hamiltonian function

H(M, S) =
1

2
tr
(
ΩTM

)
+

1

2
tr
(
S,A

)
.

Determine the Lie algebra involved. ⋆
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Exercise. Explicitly compute the conservation laws in
(2.5.28) for n = 4. ⋆

Exercise. What is the dimension of the generic solution of
the system of equations (2.5.25) and (2.5.26)? That is, what
is the sum of the dimensions of so(n) and the symmet-
ric n×nmatrices, minus the number of conservation laws?

⋆

Exercise. Write the equations of motion and their Lie–Pois-
son Hamiltonian formulation in R3-vector form for the case
when Ω(t) = O−1(t)Ȯ(t) ∈ so(3) by using the hat map. List
the conservation laws in this case. ⋆

Exercise. How would the variational calculation of the sys-
tem (2.5.25) and (2.5.26) have changed if the Lie group had
been unitary instead of orthogonal and the matrices S0, A
and S(t) were Hermitian, rather than symmetric? ⋆
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3.1 Operating with quaternions

William Rowan Hamilton

Hamilton had great hopes for the util-
ity of quaternions, although he was not
entirely sure how their utility would
emerge. This was evidenced by his ap-
peal to the following quotation of John
Wallis [Wa1685] in the preface of Hamil-
ton’s book on quaternions:

We find therefore that in Equations,
whether Lateral or Quadratick, which
in the strict Sense, and first Prospect,
appear Impossible; some mitigation
may be allowed to make them Possi-
ble; and in such a mitigated interpre-
tation they may yet be useful.
– Wallis, 1685

However, not all of his peers had such great hopes for quater-
nions and history treated them rather unkindly. Decades later, Lord
Kelvin condemned them harshly [OcoRo1998]:

Quaternions came from Hamilton after his best work had
been done, and though beautifully ingenious, they have
been an unmixed evil to those who have touched them in
any way. – Lord Kelvin (William Thomson), 1890

Hamilton’s hope that quaternions “may yet be useful” was even-
tually redeemed by their broad modern applications. The relation
between quaternions and vectors is now understood, as we shall
explain, and quaternions are used for their special advantages in
the robotics and avionics industries to track objects moving contin-
uously along a curve of tumbling rotations. They are also heavily
used in graphics [Ha2006, Ku1999].

Hamilton was correct: quaternions are special. For example,
they form the only associative division ring containing both real and
complex numbers. For us, they also form a natural introduction to
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geometric mechanics. In particular, quaternions will introduce us
to mechanics on Lie groups; namely, mechanics on the Lie group
SU(2) of 2× 2 special unitary matrices.

3.1.1 Multiplying quaternions using Pauli matrices

Every quaternion q ∈ H is a real linear combination of the basis
quaternions, denoted as (J0, J1, J2, J3). The multiplication rules for
their basis are given by the triple product

J1J2J3 = −J0 , (3.1.1)

and the squares
J
2
1 = J

2
2 = J

2
3 = −J0 , (3.1.2)

where J0 is the identity element. Thus, J1J2 = J3 holds, with cyclic
permutations of (1, 2, 3). According to a famous story, Hamilton in-
scribed a version of their triple product formula on Brougham (pro-
nounced “Broom”) bridge in Dublin [OcoRo1998].

Quaternions combine a real scalar q ∈ R and a real three-vector
q ∈ R3 with components qa a = 1, 2, 3, into a tetrad

q = [q0, q ] = q0J0 + q1J1 + q2J2 + q3J3 ∈ H . (3.1.3)

The multiplication table of the quaternion basis elements may
be expressed as

J0 J1 J2 J3

J0

J1

J2

J3

J0 J1 J2 J3

J1 −J0 J3 −J2
J2 −J3 −J0 J1

J3 J2 −J1 −J0

. (3.1.4)

Definition 3.1.1 (Multiplication of quaternions) The multipli-
cation rule for two quaternions,

q = [q0, q ] and r = [r0, r ] ∈ H ,
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may be defined in vector notation as

qr = [q0, q ][r0, r ] = [ q0r0 − q · r , q0r + r0q + q× r ] . (3.1.5)

Remark 3.1.1 The antisymmetric and symmetric parts of the
quaternionic product correspond to vector operations1:

1

2

(
qr− rq

)
= [0 , q× r ] , (3.1.6)

1

2

(
qr+ rq

)
= [q0r0 − q · r , q0r + r0q ] . (3.1.7)

The product of quaternions is not commutative. (It has a nonzero
antisymmetric part.) ✷

Theorem 3.1.1 (Isomorphism with Pauli matrix product) The
multiplication rule (3.1.5) may be represented in a 2×2 matrix basis as

q = [q0, q] = q0σ0 − iq · σ , with q · σ :=

3∑

a=1

qaσa , (3.1.8)

where σ0 is the 2 × 2 identity matrix and σa, with a = 1, 2, 3, are the
Hermitian Pauli spin matrices,

σ0 =

[
1 0

0 1

]
, σ1 =

[
0 1

1 0

]
,

σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
. (3.1.9)

Proof. The isomorphism is implied by the product relation for the
Pauli matrices

σaσb = δab σ0 + iǫabcσc for a, b, c = 1, 2, 3, (3.1.10)
1Hamilton introduced the word vector in 1846 as a synonym for a pure quaternion,
whose scalar part vanishes.
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where ǫabc is the totally antisymmetric tensor density with ǫ123 = 1.
The Pauli matrices also satisfy σ21 = σ22 = σ23 = σ0 and one has
σ1σ2σ3 = i σ0 as well as cyclic permutations of {1, 2, 3}. Identifying
J0 = σ0 and Ja = −iσa, with a = 1, 2, 3, provides the basic quater-
nionic properties.

Exercise. Verify by antisymmetry of ǫabc the commutator
relation for the Pauli matrices

[σa , σb ] := σaσb − σbσa = 2iǫabcσc for a, b, c = 1, 2, 3,
(3.1.11)

and their anticommutator relation

{σa , σb }+ := σaσb + σbσa = 2δabσ0 for a, b = 1, 2, 3.
(3.1.12)

The corresponding relations among quaternions are given
in (3.1.6) and (3.1.7), respectively. ⋆

Exercise. Verify the quaternionic multiplication rule ex-
pressed in the tetrad-bracket notation in (3.1.5) by using the
isomorphism (3.1.8) and the product relation for the Pauli
matrices in Equation (3.1.10). ⋆

Answer.

qr = (q0σ0 − iqaσa)(r0σ0 − irbσb)
= (q0r0 − q · r)σ0 − i(q0r + r0q + q× r) · σ .

N
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Exercise. Use Equations (3.1.11), (3.1.12) and isomorphism
(3.1.8) to verify relations (3.1.6) and (3.1.7). ⋆

Exercise. Use formula (3.1.10) to verify the decomposition
of a vector in Pauli matrices

qσ0 = (q · σ)σ − iq× σ , (3.1.13)

which is valid for three-vectors q ∈ R3. Verify also that

− |q× σ|2 = 2|q|2σ0 = 2(q · σ)2.
⋆

Exercise. Use Equations (3.1.11) to verify the commutation
relation

[p · σ, q · σ ] = 2ip× q · σ
for three-vectors p,q ∈ R3. ⋆

3.1.2 Quaternionic conjugate

Remark 3.1.2 (Quaternionic product is associative) The quaterni-
onic product is associative:

p(qr) = (pq)r . (3.1.14)

However, the quaternionic product is not commutative,

[p, q] := pq− qp = [0, 2p× q ] , (3.1.15)

as we saw earlier in (3.1.6). ✷
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Definition 3.1.2 (Quaternionic conjugate) One defines the conjugate
of q := [q0 , q] in analogy to complex variables as

q∗ = [q0 , −q] . (3.1.16)

Following this analogy, the scalar and vector parts of a quaternion are
defined as

Re q :=
1

2
(q+ q∗) = [ q0, 0 ] , (3.1.17)

Im q :=
1

2
(q− q∗) = [ 0 , q ] . (3.1.18)

Lemma 3.1.1 (Properties of quaternionic conjugation) Two impor-
tant properties of quaternionic conjugation are easily demonstrated.
Namely,

(pq)∗ = q∗p∗ (note reversed order), (3.1.19)

Re(pq∗) :=
1

2
(pq∗ + qp∗)

= [p0q0 + p · q , 0 ] (yields real part). (3.1.20)

Note that conjugation reverses the order in the product of two quaternions.

Definition 3.1.3 (Dot product of quaternions) The quaternionic dot
product, or inner product, is defined as

p · q = [p0 , p ] · [q0 , q ]

:= [p0q0 + p · q , 0 ] = Re(pq∗) . (3.1.21)

Definition 3.1.4 (Pairing of quaternions) The quaternionic dot prod-
uct (3.1.21) defines a real symmetric pairing 〈 · , · 〉 : H×H 7→ R, denoted
as

〈 p , q 〉 = Re(pq∗) := Re(qp∗) = 〈 q , p 〉 . (3.1.22)

In particular, 〈 q , q 〉 = Re(qq∗) =: |q|2 is a positive real number.
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Definition 3.1.5 (Magnitude of a quaternion) The magnitude of a
quaternion q may be defined by

|q| := (q · q)1/2 = (q0
2 + q · q)1/2 . (3.1.23)

Remark 3.1.3 A level set of |q| defines a three-sphere S3. ✷

Definition 3.1.6 (Quaternionic inverse) We have the product

|q|2 := qq∗ = (q · q)e , (3.1.24)

where e = [1, 0] is the identity quaternion. Hence, one may define

q−1 := q∗/|q|2 (3.1.25)

to be the inverse of quaternion q.

Exercise. Does a quaternion q have a square root? Prove it.
⋆

Exercise. Show that the magnitude of the product of two
quaternions is the product of their magnitudes. ⋆

Answer. From the definitions of the quaternionic mul-
tiplication rule (3.1.5), inner product (3.1.21) and magni-
tude (3.1.23), one verifies that

|pq|2 = (p0q0 − p · q)2 + |p0q+ pq0 + p× q|2

= (p0
2 + |p|2)(q02 + |q|2) = |p|2|q|2 .

N

Definition 3.1.7 A quaternion q with magnitude |q| = 1 is called a unit
quaternion.
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Definition 3.1.8 A quaternion with no scalar (or real) part q = [0, q] is
called a pure quaternion, or equivalently a vector (a term introduced by
Hamilton in 1846 [Ne1997]).

Exercise. Show that the antisymmetric and symmetric
parts of the product of two pure quaternions v = [0 , v ]
and w = [0 , w ] yield, respectively, the cross product and
(minus) the scalar product of the two corresponding vec-
tors v, w. ⋆

Answer. The quaternionic product of pure quaternions
v = [0 , v ] and w = [0 , w ] is defined as

vw =
[
− v ·w, v×w

]
.

Its antisymmetric (vector) part yields the cross product
of the corresponding vectors:

Im(vw) =
1

2

(
vw−wv

)
= [0 , v×w ]

(vanishes for v‖w) .

Its symmetric (or real) part yields minus the scalar prod-
uct of the vectors:

Re(vw) =
1

2

(
vw+wv

)
= [− v ·w , 0 ]

(vanishes for v ⊥ w) . N

Remark 3.1.4 (H0 ≃ R3) Being three-dimensional linear spaces pos-
sessing the same vector and scalar products, pure quaternions in H0

(with no real part) are equivalent to vectors in R3. ✷

3.1.3 Decomposition of threevectors

Pure quaternions have been identified with vectors in R3. Under
this identification, the two types of products of pure quaternions
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[0, v] and [0, w] are given by

[0, v] · [0, w] = [v ·w, 0] and [0, v][0, w] = [−v ·w, v ×w] .

Thus, the dot ( · ) and cross (× ) products of three-vectors may be
identified with these two products of pure quaternions. The prod-
uct of an arbitrary quaternion [α, χ] with a pure unit quaternion
[0, ω̂] produces another pure quaternion, provided χ · ω̂ = 0. In this
case, one computes

[α, χ][0, ω̂] = [−χ · ω̂, α ω̂+χ× ω̂] =: [0, v], for χ · ω̂ = 0 . (3.1.26)

Remark 3.1.5 Quaternions are summoned whenever a three-vector
v is decomposed into its components parallel (‖) and perpendicular
(⊥) to a unit three-vector direction ω̂, according to

v = α ω̂ + χ× ω̂ = [α, χ][0, ω̂] = v‖ + v⊥ . (3.1.27)

Here α = ω̂ ·v and χ = ω̂×v so that χ ·ω̂ = 0 and one uses ω̂ ·ω̂ = 1
to find v · v = α2 + χ2 with χ := |χ|. The vector decomposition
(3.1.27) is precisely the quaternionic product (3.1.26), in which the
vectors v and ω̂ are treated as pure quaternions. ✷

This remark may be summarised by the following.

Proposition 3.1.1 (Vector decomposition) Quaternionic left multipli-
cation of [0, ω̂] by [α, χ] = [ω̂ ·v, ω̂×v] decomposes the pure quaternion
[0 ,v] into components that are ‖ and⊥ to the pure unit quaternion [0 , ω̂].

3.1.4 Alignment dynamics for Newton’s second law

Newton’s second law of motion is a set of ordinary differential equa-
tions for vectors of position and velocity (r, v) ∈ R3 × R3. Namely,

dr

dt
= v and

dv

dt
= f ,

where f is the force per unit mass. Quaternions [αv, χv] and [αf , χf ]
are defined by the dot ( · ) and cross (× ) products of the three-
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vectors of velocity and force with the radial unit vector r̂ as

[αv, χv] =
[
r̂ · dr

dt
, r̂× dr

dt

]
= [̂r · v, r̂× v] , with χv · r̂ = 0 ,

[αf , χf ] =
[
r̂ · dv

dt
, r̂× dv

dt

]
= [̂r · f , r̂× f ] , with χf · r̂ = 0 .

In these equations, αv = r̂ · v = dr/dt represents radial velocity,
χv = r̂ × v represents angular velocity, αf = r̂ · f represents radial
force per unit mass and χf = r̂ × f represents twist, or torque per
unit (mass × length), which vanishes for central forces.

Upon decomposing into components that are parallel (‖) and
perpendicular (⊥) to the position unit vector r̂, Newton’s second
law (dr/dt, dv/dt) = (v, f) may be expressed as a pair of quater-
nionic equations,

dr

dt
= v = αv r̂+ χv × r̂ = [αv, χv][0, r̂] , using χv · r̂ = 0 ,

dv

dt
= f = αf r̂+ χf × r̂ = [αf , χf ][0, r̂] , using χf · r̂ = 0 .

In this representation the alignment parameters for force [αf , χf ]
drive those for velocity [αv, χv]. That is, upon using

d[0, r̂]/dt = [0, χv/r][0, r̂] ,

one finds
( d

dt
[αv, χv] + [αv, χv][0, χv/r]− [αf , χf ]

)
[0, r̂] = [0, 0] . (3.1.28)

Since χv · r̂ = 0 = χf · r̂, the term in parentheses vanishes.

The force vector f in the orthonormal frame ea = (r̂, r̂× χ̂v, χ̂v)
may be expanded as

f = αf r̂+ βf r̂× χ̂v + γf χ̂v , (3.1.29)

in which the coefficients βf and γf are defined as

βf = f · r̂× χ̂v and γf = f · χ̂v . (3.1.30)
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In this orthonormal frame the twist vector becomes

χf := r̂× f = −βf χ̂v + γf r̂× χ̂v ,

in which βf and γf represent components of the twist that are par-
allel and perpendicular to the direction of angular frequency χ̂v. As
a pure quaternion, the twist vector [0, χf ] may be decomposed as

[0, χf ] = [−βf , γf r̂][0, χ̂v] .

Expanding the quaternionic representation of Newton’s second law
in Equation (3.1.28) provides the alignment dynamics,

d

dt
[αv, χv] + [−χ2

v/r, αvχv/r] = [αf , −βf χ̂v + γf r̂× χ̂v] . (3.1.31)

The scalar part of this equation and the magnitude of its vector part
yield

dαv

dt
=
d2r

dt2
=
χ2
v

r
+ αf and

dχv

dt
= − αvχv

r
− βf , (3.1.32)

with αv = r̂ · v, χv = |̂r × v| and force components αf , βf defined
in (3.1.29). Its unit-vector parts yield an evolution equation for the
alignment dynamics of the following orthonormal frame,

d

dt




r̂

r̂× χ̂v

χ̂v


 =




0 −χv/r 0

χv/r 0 − γf/χv

0 γf/χv 0







r̂

r̂× χ̂v

χ̂v


 ,

(3.1.33)
with γf = f · χ̂v = v̂ · f × r̂. Thus, the alignment dynamics of
Newton’s second law is expressed as rotation of the orthonormal
frame ea = (r̂, r̂× χ̂v, χ̂v), a = 1, 2, 3 given by
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dea
dt

= D̂ ea = D× ea , (3.1.34)

with angular frequency vector

D =
χv

r
χ̂v +

γf
χv

r̂ (3.1.35)

lying in the (r̂, χ̂v) plane. The components of the antisymmetric
matrix D̂ in Equation (3.1.34) are related to the components of the
vector D by the hat map D̂ij = − ǫijkDk.

The three unit vectors in the orthonormal frame

ea = (r̂, r̂× χ̂v, χ̂v)
T

point along the position vector, opposite the nonradial component
of the velocity vector, and along the angular velocity vector, respec-
tively. For central forces, there are no torques and βf = 0 = γf in
Equations (3.1.32) and (3.1.33). In that case, Equation (3.1.33) im-
plies that the direction of the angular velocity χ̂v = r̂ × v̂ remains
fixed. The other two unit vectors in the orthonormal frame ea then
rotate around χ̂v at angular frequency χv/r. For χv 6= 0, one may
assume r(t) 6= 0 for r(0) 6= 0. (One may have r = 0 for χv ≡ 0, but
in that case the motions are only one-dimensional and rotations are
not defined.)

Remark 3.1.6 The alignment Equation (3.1.33) governs the evolu-
tion of an orthonormal frame for any application of Newton’s sec-
ond law. However, this idea goes much further than particle dy-
namics. For example, in ideal incompressible fluid dynamics, the
alignment of the vorticity vector with the velocity shear tensor in
ideal incompressible fluids may be analysed by following similar
steps to those used here for Newtonian mechanics [GiHoKeRo2006].

✷
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3.1.5 Quaternionic dynamics of Kepler’s problem

Johannes Kepler

Newton’s dynamical equation for the re-
duced Kepler problem is

r̈+
µr

r3
= 0 , (3.1.36)

in which µ is the gravitational constant
times the reduced mass of the system of
two particles in the centre of mass frame.
Scale invariance of this equation under
the changes R → s2R and T → s3 T in
the units of space R and time T for any
constant s means that it admits families
of solutions whose space and time scales
are related by T 2/R3 = const (Kepler’s
third law).

The reduced Kepler problem conserves the quantities

E =
1

2
|ṙ|2 − µ

r
(energy) ,

L = r× ṙ (specific angular momentum) .

Constancy of magnitude L means the orbit sweeps out equal ar-
eas in equal times (Kepler’s second law). Constancy of direction L̂
means the orbital position r and velocity ṙ span a plane with unit
normal vector L̂. In that orbital plane one may specify plane polar
coordinates (r, θ) with unit vectors (r̂, θ̂) in the plane and r̂× θ̂ = L̂
normal to it.

The radial quaternionic variables in Equation (3.1.31) for Ke-
pler’s problem are αv = ṙ and αf = −µ/r2. The angular velocity is
χv = L/r and the angular frequency vector in (3.1.35) is

D = χv/r = L/r2 ,

whose magnitude is χv/r = L/r2. The quantity χf and its com-
ponents γf and βf all vanish in (3.1.29) because gravity is a central
force.
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Substituting these values into the scalar alignment equations in
(3.1.32) yields

dαv

dt
=
d2r

dt2
=
L

r3
− µ

r2
and

d

dt

(L
r

)
= − ṙL

r2
. (3.1.37)

The former equation is the balance of radial centrifugal and gravi-
tational forces. The latter implies dL/dt = 0.

The unit vectors for polar coordinates in the orbital plane are

r̂ , χ̂v = L̂ = r̂× θ̂ and r̂× χ̂v = − θ̂ . (3.1.38)

These orthogonal unit vectors form an orthonormal frame, whose
alignment dynamics is governed by Equation (3.1.33) as

d

dt




r̂

− θ̂

r̂× θ̂


 =




0 −L/r2 0

L/r2 0 0

0 0 0







r̂

− θ̂

r̂× θ̂


 =




L/r2 θ̂

L/r2 r̂

0


 .

That is, the normal to the orbital plane is the constant unit vector
r̂× θ̂ = L̂, while

dr̂

dt
= θ̇ θ̂ ,

dθ̂

dt
= − θ̇ r̂ and θ̇ =

L

r2
.

Newton’s equation of motion (3.1.36) for the Kepler problem may
now be written equivalently as

0 = r̈+
µr

r3
= r̈+

µ

L
θ̇ r̂ =

d

dt

(
ṙ− µ

L
θ̂
)
.

This equation implies conservation of the following vector in the
plane of motion:

K = ṙ− µ

L
θ̂ (Hamilton’s vector) .

The vector in the plane given by the cross product of the two con-
served vectors K and L,

J = K× L = ṙ× L− µr̂ (Laplace–Runge–Lenz vector) ,
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is also conserved. From their definitions, these conserved quantities
are related by

K2 = 2E +
µ2

L2
=
J2

L2
.

Choose the conserved Laplace–Runge–Lenz vector J in the
plane of the orbit as the reference line for the measurement of the
polar angle θ. The scalar product of r and J then yields an elegant
result for the Kepler orbit in plane polar coordinates:

r · J = rJ cos θ = r · (ṙ× L)− µ r · r̂ ,

which implies

r(θ) =
L2

µ+ J cos θ
=

l⊥
1 + e cos θ

.

As expected, the orbit is a conic section whose origin is at one of the
two foci. This is Kepler’s first law.

The Laplace–Runge–Lenz vector J is directed from the focus of
the orbit to its perihelion (point of closest approach). The eccen-
tricity of the conic section is e = J/µ = KL/µ and its semi-latus
rectum (normal distance from the line through the foci to the orbit)
is l⊥ = L2/µ. The eccentricity vanishes (e = 0) for a circle and cor-
respondingly K = 0 implies that ṙ = µ θ̂/L. The eccentricity takes
values 0 < e < 1 for an ellipse, e = 1 for a parabola and e > 1 for a
hyperbola.

Exercise. (Monopole Kepler problem [LeFl2003]) Consi-
der the Kepler problem with a magnetic monopole, whose
dynamical equation is, for constants λ and µ,

r̈+
λ

r3
L+

( µ
r3
− λ2

r4

)
r = 0 . (3.1.39)

Take vector cross products of this equation with r and
L = r × ṙ to find its conserved Hamilton’s vector and
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Laplace–Runge–Lenz vector. Are energy and angular mo-
mentum conserved? Are negative energy orbits ellipses?
Do Kepler’s three laws still hold when λ 6= 0? ⋆

Exercise. Derive Equation (3.1.39) from Hamilton’s prin-
ciple.

Hint: Assume there exists a generalised function A(r)
whose curl satisfies curlA = r/r3. ⋆

Exercise. Write the Hamiltonian formulation and Poisson
brackets for Equation (3.1.39). Compute the Poisson brack-
ets for {ṙi, ṙj}. ⋆

Exercise. Write the alignment Equations (3.1.33) for the
dynamics of Equation (3.1.39). ⋆

3.2 Quaternionic conjugation

3.2.1 Cayley–Klein parameters

Definition 3.2.1 (Quaternionic conjugation) Quaternionic conju-
gation is defined as the map under the quaternionic product (recalling that
it is associative),

r→ r ′ = q̂ r q̂∗ , (3.2.1)
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where q̂ = [q0 , q] is a unit quaternion, q̂ · q̂ = 1, so q̂q̂∗ = e = [1, 0]. The
inverse map is

r = q̂∗r ′q̂ .

Exercise. Show that the product of a quaternion r = [r0, r]
with a unit quaternion q̂ = [q0, q], whose inverse is q̂∗ =
[q0,− q], satisfies

rq̂∗ =
[
r · q̂,− r0q + q0r + q× r

]
,

q̂ r q̂∗ =
[
r0|q̂|2, r + 2q0q× r + 2q× (q× r)

]
,

where r · q̂ = r0q0 + r · q and |q̂|2 = q̂ · q̂ = q0
2 + q · q = 1

according to the definitions of the dot product in (3.1.21)
and magnitude in (3.1.23). ⋆

Remark 3.2.1 The same products using the pure unit quaternion
ẑ = [0, ẑ] with ẑ = (0, 0, 1)T and the unit quaternion q̂ = [q0, q]
satisfy

ẑq̂∗ =
[
q3, q0ẑ+ q× ẑ

]
,

q̂ ẑ q̂∗ =
[
0, ẑ+ 2q0q× ẑ+ 2q× (q× ẑ)

]
,

which produces a complete set of unit vectors. ✷

Remark 3.2.2 Conjugation q̂ r q̂∗ is a wise choice, as opposed to, say,
choosing the apparently less meaningful triple product

q̂ r q̂ = [0, r] + (r0q0 − r · q)[q0, q]

for quaternions r = [r0, r] and q̂ = [q0, q] with |q|2 = q0
2 + q · q = 1.

✷
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Exercise. For q∗ = [q0, − q], such that q∗q = J0|q|2, verify
that

2q∗ = −J0qJ∗0 + J1qJ
∗
1 + J2qJ

∗
2 + J3qJ

∗
3 .

What does this identity mean geometrically? Does the
complex conjugate z∗ for z ∈ C satisfy such an identity?
Prove it. ⋆

Lemma 3.2.1 As a consequence of Remark 3.2.1 and the Exercise just be-
fore it, one finds that conjugation q̂ r q̂∗ of a quaternion r by a unit quater-
nion q̂ preserves the sphere S3

|r| given by any level set of |r|. That is, the

value of |r|2 is invariant under conjugation by a unit quaternion:

|q̂ r q̂∗|2 = |r|2 = r0
2 + r · r . (3.2.2)

Definition 3.2.2 (Conjugacy classes) The set

C(r) :=
{
r′ ∈ H

∣∣∣ r′ = q̂ r q̂∗
}

(3.2.3)

is called the conjugacy class of the quaternion r.

Corollary 3.2.1 The conjugacy classes of the three-sphere S3
|r| under con-

jugation by a unit quaternion q̂ are the two-spheres given by

{
r ∈ R

3
∣∣∣ r · r = |r|2 − r02

}
. (3.2.4)

Proof. The proof is a straightforward exercise.

Remark 3.2.3 The expressions in Remark 3.2.1 correspond to spa-
tial rotations when r0 = 0 so that r = [0, r ]. ✷
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Lemma 3.2.2 (Euler–Rodrigues formula) If r = [0, r] is a pure
quaternion and q̂ = [q0 , q] is a unit quaternion, then under quater-
nionic conjugation,

r ′ = q̂ r q̂∗ =
[
0, r ′

]

=
[
0, r + 2q0(q× r) + 2q× (q× r)

]
. (3.2.5)

For q̂ := ±[cos θ
2 , sin

θ
2 n̂], we have

[
0, r ′

]
=
[
cos

θ

2
, sin

θ

2
n̂
] [

0, r
] [

cos
θ

2
,− sin

θ

2
n̂
]
,

so that

r ′ = r + 2 cos
θ

2
sin

θ

2
(n̂× r) + 2 sin2

θ

2

(
n̂× (n̂× r)

)

= r + sin θ (n̂× r) + (1− cos θ)
(
n̂× (n̂× r)

)
(3.2.6)

=: Oθ
n̂ r .

This is the famous Euler–Rodrigues formula for the rotation Oθ
n̂ r of a

vector r by an angle θ about the unit vector n̂.

Exercise. Verify the Euler–Rodrigues formula (3.2.6) by a
direct computation using quaternionic multiplication. ⋆

Exercise. Write formula (3.2.5) for conjugation of a pure
quaternion by a unit quaternion q02 + q · q = 1 as a 3 × 3
matrix operation acting on a vector. ⋆
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Answer. As a 3 × 3 matrix operation acting on a vector,
r ′ = O3×3r, formula (3.2.5) becomes

r ′ = r + 2q0(q× r) + 2q× (q× r)

=
[
(2q0

2 − 1)Id+ 2q0q̂ + 2qqT
]
r =: O3×3r ,

where q̂ = q×, or in components q̂lm = −qkǫklm by the
hat map in (2.1.10) and (2.1.11). When q = [q0, q] is a
unit quaternion, the Euler–Rodrigues formula implies
O3×3 ∈ SO(3). N

Definition 3.2.3 (Euler parameters) In the Euler–Rodrigues formula
(3.2.6) for the rotation of vector r by angle θ about n̂, the quantities θ, n̂

are called the Euler parameters.

Definition 3.2.4 (Cayley–Klein parameters) The unit quaternion q̂ =
[q0 , q] corresponding to the rotation of a pure quaternion r = [0 , r] by
angle θ about n̂ using quaternionic conjugation is

q̂ := ±
[
cos

θ

2
, sin

θ

2
n̂
]
. (3.2.7)

The quantities q0 = ± cos θ
2 and q = ± sin θ

2 n̂ in (3.2.7) are called the
Cayley–Klein parameters.

Remark 3.2.4 (Cayley–Klein coordinates of a quaternion) An arbi-
trary quaternion may be written in terms of its magnitude and its
Cayley–Klein parameters as

q = |q|q̂ = |q|
[
cos

θ

2
, sin

θ

2
n̂
]
. (3.2.8)

✷

The calculation of the Euler–Rodrigues formula (3.2.6) shows
the equivalence of quaternionic conjugation and rotations of vec-
tors. Moreover, compositions of quaternionic products imply the
following.



September 24, 2011 11:41am Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

98 3 : QUATERNIONS

Corollary 3.2.2 Composition of rotations

Oθ′

n̂′Oθ
n̂ r = q̂′(q̂ r q̂∗)q̂′

∗

is equivalent to multiplication of (±) unit quaternions.

Exercise. Show directly by quaternionic multiplication that

O
π/2
ŷ O

π/2
x̂ = O

2π/3
n̂ with n̂ = (x̂+ ŷ − ẑ)/

√
3 .

⋆

Answer. One multiplies the corresponding unit quater-
nions, yielding

[ 1√
2
, ŷ

1√
2

][ 1√
2
, x̂

1√
2

]
=

[1
2
,
1

2
(x̂+ ŷ − ẑ)

]

=
[1
2
,

1√
3
(x̂+ ŷ − ẑ)

√
3

2

]

=
[
cos

π

3
,

1√
3
(x̂+ ŷ − ẑ) sin

π

3

]

=
[
cos

θ

2
, sin

θ

2
n̂
]
,

which is the Cayley–Klein form for a rotation of

θ = 2π/3 about n̂ = (x̂+ ŷ − ẑ)/
√
3 .

N

Exercise. Compute Oπ
ŷO

π
x̂ − Oπ

x̂O
π
ŷ by quaternionic multi-

plication. Does it vanish? Prove it. ⋆
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Remark 3.2.5 (Cayley–Klein parameters for three-vectors) Con-
sider the unit Cayley–Klein quaternion, p̂ := ±[cos θ

2 , sin
θ
2 χ̂]. Then

the decompositions for quaternions (3.1.26) and for vectors (3.1.27)
may be set equal to find

[0, v̂] := |v|−1[0,v] = p̂[0, ω̂]p̂∗

= [0, cos θ ω̂ + sin θ χ̂× ω̂]

= |v|−1[α, χ][0, ω̂]

= (α2 + χ2)−1/2 [0, α ω̂ + χ× ω̂] .

Thus, the unit vector v̂ = |v|−1v is a rotation of ω̂ by angle θ around
χ̂ with

cos θ =
α

(α2 + χ2)1/2
and sin θ =

χ

(α2 + χ2)1/2
.

Hence, the alignment parameters α and χ in (3.1.26) and (3.1.27)
define the three-vector v in [0, v] = [α, χ][0, ω̂] as a stretching of ω̂
by (α2 + χ2)1/2 and a rotation of ω̂ by θ = tan−1 χ/α about χ̂. The
Cayley–Klein angle θ is the relative angle between the directions v̂
and ω̂. ✷

3.2.2 Pure quaternions, Pauli matrices and SU(2)

Exercise. Write the product of two pure unit quaternions
as a multiplication of Pauli matrices. ⋆

Answer. By the quaternionic multiplication rule (3.1.5),
one finds

[0 , v̂][0 , ŵ] = [− v̂ · ŵ , v̂ × ŵ] =: [cos θ , n̂ sin θ] . (3.2.9)



September 24, 2011 11:41am Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

100 3 : QUATERNIONS

Here v̂ · ŵ = − cos θ, so that θ is the relative angle be-
tween the unit three-vectors v̂ and ŵ, and v̂×ŵ = n̂ sin θ
is their cross product, satisfying

|v̂ × ŵ|2 = |v̂|2|ŵ|2 − (v̂ · ŵ)2 = 1− cos2 θ = sin2 θ .

This is equivalent to following the multiplication of
Pauli matrices,

(−iv̂ · σ)(−iŵ · σ) = − v̂ · ŵ σ0 − i v̂ × ŵ · σ
= − (cos θ σ0 + i sin θ n̂ · σ) ,

(3.2.10)

with, e.g., n̂ · σ =
∑3

a=1 n̂aσa. N

Proposition 3.2.1 (De Moivre’s theorem for quaternions) De Moi-
vre’s theorem for complex numbers of unit modulus is

(cos θ + i sin θ)m = (cosmθ + i sinmθ) .

The analogue of De Moivre’s theorem for unit quaternions is

[cos θ, sin θn̂]m = [cosmθ, sinmθn̂] .

Proof. The proof follows immediately from the Cayley–Klein repre-
sentation of a unit quaternion.

Theorem 3.2.1 The unit quaternions form a representation of the ma-
trix Lie group SU(2).

Proof. The matrix representation of a unit quaternion is given in
(3.1.8). Let q̂ = [q0, q] be a unit quaternion (|q̂|2 = q20 + q · q = 1)
and define the matrix Q by

Q = q0σ0 − iq · σ

=

[
q0 − iq3 −iq1 − q2
−iq1 + q2 q0 + iq3

]
. (3.2.11)
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The matrix Q is a unitary 2 × 2 matrix (QQ† = Id) with unit
determinant (detQ = 1). That is, Q ∈ SU(2). In fact, we may
rewrite the map (3.2.1) for quaternionic conjugation of a vector
r = [0, r] by a unit quaternion equivalently in terms of unitary
conjugation of the Hermitian Pauli spin matrices as

r ′ = q̂ r q̂∗ ⇐⇒ r′ · σ = Q r · σQ† , (3.2.12)

with

r · σ =

[
r3 r1 − ir2

r1 + ir2 − r3

]
. (3.2.13)

This is the standard representation of SO(3) rotations as a dou-
ble covering (±J) by SU(2) matrices, which is now seen to be
equivalent to quaternionic multiplication.

Remark 3.2.6 A variant of the map (3.2.11), known as the Kustaan-
heimo–Stiefel map [KuSt1965], establishes a relation between the
solutions of a constrained isotropic harmonic oscillator in four di-
mensions and those of the Kepler problem in three dimensions. The
KS map is beyond our present scope. However, for an interesting
discussion of it, see [Co2003]. ✷

Remark 3.2.7 Composition of SU(2) matrices by matrix multiplica-
tion forms a Lie subgroup of the Lie group of 2×2 complex matrices
GL(2, C), see, e.g., [MaRa1994]. ✷

Exercise. Check that the matrix Q in (3.2.11) is a special
unitary matrix so that Q ∈ SU(2). That is, show that Q is
unitary and has unit determinant. ⋆
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Exercise. Verify the conjugacy formula (3.2.12) aris-
ing from the isomorphism between unit quaternions and
SU(2). ⋆

Remark 3.2.8 The (±) in the Cayley–Klein parameters reflects the
2:1 covering of the map SU(2)→ SO(3). ✷

3.2.3 Tilde map: R3 ≃ su(2) ≃ so(3)

The following tilde map may be defined by considering the isomor-
phism (3.1.8) for a pure quaternion [0, q ]. Namely,

q ∈ R
3 7→ −i q · σ = − i

3∑

j=1

qjσj (3.2.14)

=

[
−iq3 −iq1 − q2

−iq1 + q2 iq3

]
=: q̃ ∈ su(2) .

The tilde map (3.2.14) is a Lie algebra isomorphism between R3 with
the cross product of vectors and the Lie algebra su(2) of 2× 2 skew-
Hermitian traceless matrices. Just as in the hat map one writes

JJ†(t) = Id =⇒ J̇J† + (J̇J†)† = 0 ,

so the tangent space at the identity for the SU(2) matrices comprises
2 × 2 skew-Hermitian traceless matrices, whose basis is −iσ, the
imaginary number (−i) times the three Pauli matrices. This com-
pletes the circle of the isomorphisms between Pauli matrices and
quaternions, and between pure quaternions and vectors in R3. In
particular, their Lie products are all isomorphic. That is,

Im(pq) =
1

2

(
pq− qp

)
= [p̃, q̃] = (p× q)˜. (3.2.15)



September 24, 2011 11:41am Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

3.2 QUATERNIONIC CONJUGATION 103

In addition, recalling that Re(pq∗) = [ p · q , 0 ] helps prove the
following identities:

det(q · σ) = |q|2 , (p̃q̃) = − p · q .

3.2.4 Dual of the tilde map: R3∗ ≃ su(2)∗ ≃ so(3)∗

One may identify su(2)∗ with R3 via the map µ ∈ su(2)∗ → µ̆ ∈ R3

defined by
µ̆ · q :=

〈
µ, q̃

〉
su(2)∗×su(2)

for any q ∈ R3.

Then, for example,

µ̆ · (p× q) :=
〈
µ, [p̃, q̃]

〉
su(2)∗×su(2)

,

which foreshadows the adjoint and coadjoint actions of SU(2) to
appear in our discussions of rigid-body dynamics in Chapter 5 and
momentum maps in Chapter 11.

3.2.5 Pauli matrices and Poincaré’s sphere C2 → S2

The Lie algebra isomorphisms given by the Pauli matrix representa-
tion of the quaternions (3.1.8) and the tilde map (3.2.14) are related
to a map C2 7→ S2 first introduced by Poincaré [Po1892] and later
studied by Hopf [Ho1931]. Consider for ak ∈ C2, with k = 1, 2 the
four real combinations written in terms of the Pauli matrices

nα =

2∑

k,l=1

a∗k{σα}kl al with α = 0, 1, 2, 3 . (3.2.16)

The nα ∈ R4 have components

n0 = |a1|2 + |a2|2 ,
n3 = |a1|2 − |a2|2 , (3.2.17)

n1 + i n2 = 2a∗1a2 .
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Remark 3.2.9 One may motivate the definition of nα ∈ R4 in
(3.2.16) by introducing the following Hermitian matrix,

ρ = a⊗ a∗ =
1

2

(
n0σ0 + n · σ

)
, (3.2.18)

in which the vector n is defined as

n = tr ρσ = ala
∗
kσkl . (3.2.19)

The last equation recovers (3.2.16). We will return to the interpreta-
tion of this map when we discuss momentum maps in Chapter 11.
For now, we simply observe that the components of the singular
Hermitian matrix (det ρ = 0)

ρ = a⊗ a∗ =
1

2

[
n0 + n3 n1 − in2
n1 + in2 n0 − n3

]

are all invariant under the diagonal action

S1 : a→ eiφa, a∗ → e−iφa∗.

✷

A fixed value n0 = const defines a three-sphere S3 ∈ R4. More-
over, because det ρ = 0 the remaining three components satisfy an
additional relation which defines the Poincaré sphere S2 ∈ S3 as

n20 = n21 + n22 + n23 = |n|2 . (3.2.20)

Each point on this sphere defines a direction introduced by Poincaré
to represent polarised light. The north (resp. south) pole repre-
sents right (resp. left) circular polarisation and the equator repre-
sents the various inclinations of linear polarisation. Off the equator
and the poles the remaining directions in the upper and lower hemi-
spheres represent right- and left-handed elliptical polarisations, re-
spectively. Opposing directions ±n correspond to orthogonal po-
larisations. See [BoWo1965] for details of the physical interpretation
of the Poincaré sphere for polarised ray optics.
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3.2.6 Poincaré’s sphere and Hopf’s fibration

The same map S3 7→ S2 given by (3.2.16) from the n0 = const S3

to the Poincaré sphere S2 was later studied by Hopf [Ho1931], who
found it to be a fibration of S3 over S2. That is, S3 ≃ S2 × S1

locally, where S1 is the fibre. A fibre bundle structure is defined
descriptively, as follows.

Definition 3.2.5 (Fibre bundle) In topology, a fibre bundle is a space
which locally looks like a product of two spaces but may possess a differ-
ent global structure. Every fibre bundle consists of a continuous surjective
map π : E 7→ B, where small regions in the total space E look like small
regions in the product space B × F , of the base space B with the fibre
space F (Figure 3.1). Fibre bundles comprise a rich mathematical sub-
ject that is explained more completely in, e.g., [Is1999, La1999, Wa1983,
Sp1979]. We shall confine our attention here to the one particular case
leading to the Poincaré sphere.

π

F

Figure 3.1. A fibre bundleE looks locally like the product spaceB×F , of the

base space B with the fibre space F . The map π : E ≈ B × F 7→ B projects

E onto the base space B.
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Remark 3.2.10 The Hopf fibration, or fibre bundle, S3 ≃ S2×S1 has
spheres as its total space, base space and fibre, respectively. In terms
of the Poincaré sphere one may think of the Hopf fibration locally as
a sphere S2 which has a great circle S1 attached at every point. The
phase on the great circles at opposite points are orthogonal (rotated
by π/2, not π); so passing once around the Poincaré sphere along a
great circle rotates the S1 phase only by π, not 2π. One must pass
twice around a great circle on the Poincaré sphere to return to the
original phase. Thus, the relation S3 ≃ S2 × S1 only holds locally,
not globally. ✷

Remark 3.2.11 The conjugacy classes of S3 by unit quaternions
yield the family of two-spheres S2 in formula (3.2.4) of Corol-
lary 3.2.1. These also produce a version of the Hopf fibration
S3 ≃ S2 × S1, obtained by identifying the Poincaré sphere (3.2.20)
from the definitions (3.2.17). ✷

Remark 3.2.12 (Hopf fibration/quaternionic conjugation) Conju-
gating the pure unit quaternion along the z-axis [0, ẑ] by the other
unit quaternions yields the entire unit two-sphere S2. This is to
be expected from the complete set of unit vectors found by quater-
nionic conjugation in (3.2.2). However, it may be shown explicitly
by computing the SU(2) multiplication for |a1|2 + |a2|2 = 1,

[
a1 − a∗2
a2 a∗1

][
− i 0

0 i

][
a∗1 a∗2
− a2 a1

]
=

[
− in3 − in1 + n2

− in1 − n2 in3

]
.

This is the tilde map (3.2.14) once again and (n1, n2, n3) are the com-
ponents of the Hopf fibration [MaRa1994, El2007]. ✷

In other words, cf. Equation (3.2.11),

−igσ3g† = −in · σ,

in which g† = g−1 ∈ SU(2) and |n|2 = 1. This is the tilde map
(3.2.14) once again and (n1, n2, n3) are the spatial components of the
Hopf fibration in (3.2.17).
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Thus, the isomorphism given in (3.1.8) and (3.2.14) between the
unit quaternions and SU(2) expressed in terms of the Pauli spin
matrices connects the quaternions to the mathematics of Poincaré’s
sphere C2 7→ S2, Hopf’s fibration S3 ≃ S2×S1 and the geometry of
fibre bundles. This is a very deep network of connections that will
amply reward the efforts of further study.

Exercise. Show that the Hopf fibration is a decomposition
law for the group SU(2).

Hint: Write the Hopf fibration in quaternionic form. ⋆

Exercise. Write the quaternionic version of unitary trans-
formations of Hermitian matrices.

Hint: The Pauli spin matrices defined in (3.1.9) are Hermi-
tian. To get started, you may want to take a look at Equa-
tion (3.2.12). ⋆

Exercise. Write the quaternionic version of orthogonal
transformations of symmetric matrices as in Section 2.5.6.
⋆

Remark 3.2.13 In quantum mechanics, the quantity corresponding
to the Hermitian matrix ρ = a⊗ a∗ in Equation (3.2.18) is called the
density matrix and the Poincaré sphere in Equation (3.2.20) is called
the Bloch sphere. ✷
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3.2.7 Coquaternions

Not long after Hamilton discovered quaternions, James Cockle
[Co1848] proposed an alternative field of numbers called co-
quaternions. A coquaternion c = [w, x, y, z] is defined by four
real numbers, as follows:

c = w1l+ xi+ yj+ zk, with (w, x, y, z) ∈ R
4,

where 1l is the identity element and the other three coquaternion
basis elements (i, j, k) satisfy the multiplication rules,

ij = k = −ji, jk = −i = −kj, ki = j = −ik,
1l2 = 1l, i2 = −1l, j2 = 1l, k2 = 1l, ijk = 1l .

The multiplication table of the coquaternion basis may be ex-
pressed as

1l i j k

1l

i

j

k

1l i j k

i −1l k −j
j −k 1l −i
k j i 1l

. (3.2.21)

The multiplication rules for coquaternions may be repre-
sented in a basis of real 2× 2 matrices,

1l =

[
1 0

0 1

]
, i =

[
0 1

−1 0

]
,

j =

[
0 1

1 0

]
, k =

[
1 0

0 −1

]
. (3.2.22)

This means the coquaternion c = [w, x, y, z] may be represented
as a real matrix

C =

[
w + z y + x

y − x w − z

]
, (3.2.23)
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with determinant det (C) = w2 + x2 − y2 − z2.

One defines the conjugate of the coquaternion c = [w, x, y, z]
as c∗ = [w,−x,−y,−z],

c∗ = w1l− xi− yj− zk.

Thus, in a matrix representation, the conjugate coquaternion is
expressed as

C∗ =

[
w − z −y − x
−y + x w + z

]
. (3.2.24)

An inner product for coquaternions based on the matrix inner
product may be defined as

(c1, c2) = c∗1 · c2 :=
1

2
tr(C∗

1C2) = w1w2 + x1x2 − y1y2 − z1z2.

The inner product of a coquaternion with its conjugate then de-
fines its squared magnitude

|c|2 = c∗ · c := 1

2
tr(C∗C) = w2 + x2 − y2 − z2 = det (C),

which is indefinite in sign.

Exercise. Show that the unit coquaternions with |c|2 = 1
form a representation of the Lie group of 2 × 2 symplectic
matrices Sp(2,R).

Hint: A symplectic matrix M ∈ Sp(2,R) satisfies

MJMT = J for J =

[
0 −1
1 0

]
. (3.2.25)

⋆
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Remark 3.2.14 For a discussion of symplectic matrices in the con-
text of the geometric mechanics approach to ray optics via Fermat’s
principle, see, e.g., [Ho2008]. ✷

Exercise. Follow the developments in the earlier part of
this chapter for quaternions far enough to define conjugacy
classes for the action of unit coquaternions on vectors in R3.

⋆

Exercise. Compute the Euler–Rodrigues formula for the
coquaternions. ⋆

Remark 3.2.15 For a recent discussion of coquaternions in the study
of complexified mechanics, see [BrGr2011]. ✷
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4.1 Cayley–Klein dynamics for the rigid body

4.1.1 Cayley–Klein parameters, rigidbody dynamics

Recall that a time-dependent rotation by angle θ(t) about direction
n̂(t) is given by the unit quaternion (3.2.7) in Cayley–Klein parame-
ters,

q̂(t) = [q0(t),q(t)] = ±
[
cos

θ(t)

2
, sin

θ(t)

2
n̂(t)

]
. (4.1.1)

The operation of the unit quaternion q̂(t) on a vector X = [0, X] is
given by quaternionic multiplication as

q̂(t)X = [q0,q][0, X] = [−q ·X , q0X+ q×X] (4.1.2)

= ±
[
− sin

θ(t)

2
n̂(t) ·X, cos θ(t)

2
X+ sin

θ(t)

2
n̂(t)×X

]
.

The corresponding time-dependent rotation is given by the Euler–
Rodrigues formula (3.2.6) as

x(t) = q̂(t)Xq̂∗(t) so that X = q̂∗(t)x(t)q̂(t) (4.1.3)

in terms of the unit quaternion q̂(t). Its time derivative is given by

ẋ(t) = ˙̂qq̂∗xq̂q̂∗ + q̂q̂∗xq̂ ˙̂q∗ = ˙̂qq̂∗x+ xq̂ ˙̂q∗

= ˙̂qq̂∗x+ x( ˙̂qq̂∗)∗ = ˙̂qq̂∗x− x( ˙̂qq̂∗)

= ˙̂qq̂∗x−
(
( ˙̂qq̂∗)x

)∗

= 2Im
(
( ˙̂qq̂∗)x

)

= 2( ˙̂qq̂∗)x . (4.1.4)

In quaternion components, this equation may be rewritten using

2 ˙̂qq̂∗ = [ 0 , θ̇n̂ + sin θ ˙̂n + (1− cos θ)n̂× ˙̂n ] . (4.1.5)

The quantity 2 ˙̂qq̂∗ = [0, 2( ˙̂qq̂∗)] is a pure quaternion whose vector
component is denoted for the moment by enclosing it in parentheses
as

2( ˙̂qq̂∗) = θ̇n̂ + sin θ ˙̂n + (1− cos θ)n̂× ˙̂n .
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As a consequence, the vector component of the quaternion equation
(4.1.4) becomes

[ 0, ẋ(t) ] = 2[0, ( ˙̂qq̂∗)] [0, x ] = 2[ 0 , ( ˙̂qq̂∗)× x ] . (4.1.6)

Spatial angular frequency

Upon recalling the isomorphism provided by the Euler–Rodrigues
formula (3.2.6) for finite rotations,

x(t) = O(t)X = q̂(t)Xq̂∗(t) , (4.1.7)

the vector component of (4.1.6) yields a series of isomorphisms for
the angular frequency,

ẋ(t) = ȮO−1(t)x

= ω̂(t)x

= ω(t)× x

= 2( ˙̂qq̂∗)(t)× x . (4.1.8)

Since the quaternion 2 ˙̂qq̂∗(t) = [ 0 , 2( ˙̂qq̂∗)(t) ] is equivalent to a vec-
tor in R3, we may simply use vector notation for it and equate the
spatial angular frequencies as vectors. That is, we shall write

ω(t) = 2 ˙̂qq̂∗(t) , (4.1.9)

and drop the parentheses ( · ) when identifying pure quaternions
with angular velocity vectors.

Remark 4.1.1 Pure quaternions of the form ˙̂qq̂∗(t) may be identified
with the tangent space of the unit quaternions at the identity. ✷

4.1.2 Body angular frequency

The quaternion for the body angular frequency will have the corre-
sponding vector expression,

Ω(t) = 2q̂∗ ˙̂q(t) . (4.1.10)



September 24, 2011 11:41am Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

114 4 : ADJOINT AND COADJOINT ACTIONS

Thus, only the vector parts enter the quaternionic descriptions of the
spatial and body angular frequencies. The resulting isomorphisms
are entirely sufficient to express the quaternionic versions of the
rigid-body equations of motion in their Newtonian, Lagrangian and
Hamiltonian forms, including the Lie–Poisson brackets. In particu-
lar, the kinetic energy for the rigid body is given by

K =
1

2
Ω(t) · IΩ(t) = 2

〈
q̂∗ ˙̂q(t) , I q̂∗ ˙̂q(t)

〉
. (4.1.11)

So the quaternionic description of rigid-body dynamics reduces to
the equivalent description in R3.

This equivalence in the two descriptions of rigid-body dynamics
means that the relations for angular momentum, Hamilton’s prin-
ciple and the Lie–Poisson brackets in terms of vector quantities all
have identical expressions in the quaternionic picture. Likewise, the
reconstruction of the Cayley–Klein parameters from the solution for
the body angular velocity vector may be accomplished by integrat-
ing the linear quaternionic equation

˙̂q(t) = q̂Ω(t)/2 , (4.1.12)

or explicitly,

d

dt

[
cos

θ

2
, sin

θ

2
n̂
]
=
[
cos

θ

2
, sin

θ

2
n̂
][

0, Ω(t)/2
]
. (4.1.13)

This is the linear reconstruction formula for the Cayley–Klein pa-
rameters.

Remark 4.1.2 Expanding this linear equation for the Cayley–Klein
parameters leads to a quaternionic equation for the Euler parame-
ters that is linear in Ω(t), but is nonlinear in θ and n̂, namely

[
θ̇, ˙̂n

]
=
[
0, n̂

][
0, Ω(t) +Ω(t)× n̂ cot

θ

2

]
. (4.1.14)

✷
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4.1.3 Cayley–Klein parameters

The series of isomorphisms in Equation (4.1.8) holds the key for
rewriting Hamilton’s principle in Proposition 2.4.1 for Euler’s rigid-
body equations in quaternionic form using Cayley–Klein parame-
ters. The key step in proving Proposition 2.4.1 was deriving formula
(2.4.7) for the variation of the body angular velocity. For this, one in-
vokes equality of cross derivatives with respect to time t and varia-
tional parameter s. The hat map in that case then led to the key vari-
ational formula (2.4.7). The corresponding step for the quaternionic
form of Hamilton’s principle in Cayley–Klein parameters also pro-
duces the key formula needed in this case.

Proposition 4.1.1 (Cayley–Klein variational formula) The variation
of the pure quaternion Ω = 2q̂∗ ˙̂q corresponding to body angular velocity
in Cayley–Klein parameters satisfies the identity

Ω ′ − Ξ̇ = (ΩΞ−ΞΩ)/2 = Im(ΩΞ) , (4.1.15)

where Ξ := 2q̂∗q̂′ and ( · )′ denotes variation.

Proof. The body angular velocity is defined as Ω = 2q̂∗ ˙̂q in (4.1.10).
Its variational derivative is found to be

δΩ :=
d

ds
Ω(s)

∣∣∣
s=0

=: Ω′ . (4.1.16)

Thus, the variation of Ω may be expressed as

Ω ′/2 = (q̂∗)′ ˙̂q+ q̂∗ ˙̂q′ . (4.1.17)

Now e = q̂∗q̂ so that

e
′ = 0 = (q̂∗)′q̂+ q̂∗q̂′ and (q̂∗)′ = − q̂∗q̂′q̂∗ . (4.1.18)

Hence, the variation of the angular frequency becomes

δΩ/2 = Ω ′/2 = − q̂∗q̂′q̂∗ ˙̂q+ q̂∗ ˙̂q′

= −ΞΩ/4 + q̂∗ ˙̂q′ , (4.1.19)
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where we have defined Ξ := 2q̂∗q̂′, which satisfies a similar relation,

Ξ̇/2 = −ΩΞ/4 + q̂∗ ˙̂q′ . (4.1.20)

Taking the difference of (4.1.19) and (4.1.20) yields

Ω ′ − Ξ̇ = (ΩΞ−ΞΩ)/2 = Im(ΩΞ) . (4.1.21)

In quaternion components this formula becomes

[
0 , Ω ′

]
−
[
0 , Ξ̇

]
=

1

2

(
[ 0 , Ω ][ 0 , Ξ ]− [ 0 , Ξ ][ 0 , Ω ]

)

=
[
0 , Ω×Ξ

]
, (4.1.22)

or, in the equivalent vector form,

Ω ′ − Ξ̇ = Ω×Ξ . (4.1.23)

This recovers the vector Equation (2.4.7), which was the key for-
mula needed for writing Hamilton’s principle in vector form, now
reproduced in its pure quaternionic form for the Cayley–Klein pa-
rameters.

Remark 4.1.3 Having expressed the key vector variational formula
(2.4.7) in quaternionic form (4.1.21), the path for deriving Hamil-
ton’s principle for the rigid body in the quaternionic picture pro-
ceeds in parallel with the vector case. ✷

Exercise. State and prove Hamilton’s principle for the rigid
body in quaternionic form. ⋆

4.2 Actions of quaternions, Lie groups and
Lie algebras

Quaternionic operations are isomorphic to the actions of Lie groups
and Lie algebras. This isomorphism will allow us to develop Hamil-
ton’s principle for mechanics on Lie groups by following a path that
parallels the one taken for quaternions.
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4.2.1 AD, Ad, ad, Ad* and ad* actions of quaternions

We introduce the following notation for how the quaternions act
among themselves and on the vectors in their left- and right-
invariant tangent spaces at the identity. (These left- and right-
invariant vectors are the body and space angular frequencies, re-
spectively.)

AD (conjugacy of quaternions),

ADq̂ r := q̂ r q̂∗ ,

Ad (conjugacy of angular velocities),

Adq̂Ω = q̂Ω q̂∗ =: ω ,

ad (commutator of angular velocities),

adΩΞ = Im(ΩΞ) := (ΩΞ−ΞΩ)/2 .

The pairing 〈 · , · 〉 : H × H 7→ R in formula (3.1.22) also allows
one to define the corresponding dual operations. These are

coAD 〈AD∗
q̂
s , r 〉 = 〈 s , ADq̂r 〉,

coAd 〈Ad∗
q̂
Ξ ,Ω 〉 = 〈Ξ , Adq̂Ω 〉,

coad 〈 ad∗ΩΥ , Ξ 〉 = 〈Υ , adΩΞ 〉.

Exercise. Prove that any pure quaternion is in the conju-
gacy class of [ 0, k̂ ] with k̂ = (0, 0, 1)T under the Ad action
of a unit quaternion.

Hint: Compare with the formula in Remark 3.2.12. ⋆
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e

Figure 4.1. The tangent space at the identity e of the groupG is its Lie algebra

g, a vector space represented here as a plane. The moment of inertia I maps the

vector Ω ∈ g into the dual vector Π = IΩ ∈ g∗. The dual Lie algebra g∗ is

another vector space, also represented as a plane in the figure. A group orbit inG
has tangent vector ġ(t) at point g(t) which may be transported back to the identity

by acting with g−1(t) ∈ G from either the left as Ω = g−1(t)ġ(t) or the right as

ω = ġ(t)g−1(t).

4.2.2 AD, Ad, and ad for Lie algebras and groups

The notation for the conjugacy relations among the quaternions in
Section 4.2.1 follows the standard notation for the corresponding ac-
tions of a Lie group on itself, on its Lie algebra (its tangent space at
the identity), the action of the Lie algebra on itself, and their dual ac-
tions. By the isomorphism between the quaternions and the matrix
Lie group G = SU(2), one may define these corresponding opera-
tions for other matrix Lie groups.

ADjoint, Adjoint and adjoint for matrix Lie groups

AD (conjugacy classes of a matrix Lie group): The map Ig :
G→ G given by Ig(h)→ ghg−1 for matrix Lie group elements
g, h ∈ G is the inner automorphism associated with g. Orbits
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of this action are called conjugacy classes.

AD : G×G→ G : ADgh := ghg−1 .

Differentiate Ig(h) with respect to h at h = e to produce the
Adjoint operation,

Ad : G× g→ g : Adg η = TeIg η =: gηg−1 ,

with η = h′(0).

Differentiate Adg η with respect to g at g = e in the direction ξ
to produce the adjoint operation,

ad : g× g→ g : Te(Adg η) ξ = [ξ, η] = adξ η .

Explicitly, one computes the ad operation by differentiating
the Ad operation directly as

d

dt

∣∣∣
t=0

Adg(t) η =
d

dt

∣∣∣
t=0

(
g(t)ηg−1(t)

)

= ġ(0)ηg−1(0)− g(0)ηg−1(0)ġ(0)g−1(0)

= ξ η − η ξ = [ξ, η] = adξ η , (4.2.1)

where g(0) = Id, ξ = ġ(0) and the Lie bracket

[ξ, η] : g× g→ g ,

is the matrix commutator for a matrix Lie algebra.

Remark 4.2.1 (Adjoint action) Composition of the Adjoint action
of G × g → g of a Lie group on its Lie algebra represents the group
composition law as

AdgAdhη = g(hηh−1)g−1 = (gh)η(gh)−1 = Adghη ,

for any η ∈ g. ✷
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e

Figure 4.2. The Ad and Ad∗ operations of g(t) act, respectively, on the Lie

algebra Ad : G× g→ g and on its dual Ad∗ : G× g∗ → g∗.

Exercise. Verify that (note the minus sign)

d

dt

∣∣∣
t=0

Adg−1(t) η = − adξ η ,

for any fixed η ∈ g. ⋆

Proposition 4.2.1 (Adjoint motion equation) Let g(t) be a path in
a Lie group G and η(t) be a path in its Lie algebra g. Then

d

dt
Adg(t)η(t) = Adg(t)

[
dη

dt
+ adξ(t)η(t)

]
,

where ξ(t) = g(t)−1ġ(t).
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Proof. By Equation (4.2.1), for a curve η(t) ∈ g,

d

dt

∣∣∣
t=t0

Adg(t) η(t) =
d

dt

∣∣∣
t=t0

(
g(t)η(t)g−1(t)

)

= g(t0)
(
η̇(t0) + g−1(t0)ġ(t0)η(t0)

− η(t0)g−1(t0)ġ(t0)
)
g−1(t0)

=

[
Adg(t)

(
dη

dt
+ adξη

)]

t=t0

. (4.2.2)

Exercise. (Inverse Adjoint motion relation) Verify that

d

dt
Adg(t)−1η = −adξAdg(t)−1η , (4.2.3)

for any fixed η ∈ g. Note the placement of Adg(t)−1 and
compare with Exercise on page 120. ⋆

Compute the coAdjoint and coadjoint operations by taking duals

The pairing 〈
· , ·
〉
: g∗ × g 7→ R (4.2.4)

(which is assumed to be nondegenerate) between a Lie algebra g

and its dual vector space g∗ allows one to define the following dual
operations:

The coAdjoint operation of a Lie group on the dual of its Lie
algebra is defined by the pairing with the Ad operation,

Ad∗ : G× g∗ → g∗ : 〈Ad∗g µ , η 〉 := 〈µ , Adg η 〉 , (4.2.5)

for g ∈ G, µ ∈ g∗ and ξ ∈ g.
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Likewise, the coadjoint operation is defined by the pairing
with the ad operation,

ad∗ : g× g∗ → g∗ : 〈 ad∗ξ µ , η 〉 := 〈µ , adξ η 〉 , (4.2.6)

for µ ∈ g∗ and ξ, η ∈ g.

Definition 4.2.1 (CoAdjoint action) The map

Φ∗ : G× g∗ → g∗ given by (g, µ) 7→ Ad∗g−1µ (4.2.7)

defines the coAdjoint action of the Lie groupG on its dual Lie algebra g∗.

Remark 4.2.2 (Coadjoint group action with g−1) Composition of
coAdjoint operations with Φ∗ reverses the order in the group com-
position law as

Ad∗gAd
∗
h = Ad∗hg .

However, taking the inverse g−1 in Definition 4.2.1 of the coAdjoint
action Φ∗ restores the order and thereby allows it to represent the
group composition law when acting on the dual Lie algebra, for
then

Ad∗g−1Ad
∗
h−1 = Ad∗h−1g−1 = Ad∗(gh)−1 . (4.2.8)

(See [MaRa1994] for further discussion of this point.) ✷

The following proposition will be used later in the context of Euler–
Poincaré reduction.

Proposition 4.2.2 (Coadjoint motion relation) Let g(t) be a path
in a Lie group G and µ(t) be a path in g∗. The corresponding Ad∗

operation satisfies

d

dt
Ad∗g(t)−1µ(t) = Ad∗g(t)−1

[
dµ

dt
− ad∗ξ(t)µ(t)

]
, (4.2.9)

where ξ(t) = g(t)−1ġ(t).
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Proof. The exercise on page 121 introduces the inverse Adjoint mo-
tion relation (4.2.3) for any fixed η ∈ g, repeated as

d

dt
Adg(t)−1η = −adξ(t)

(
Adg(t)−1η

)
.

Relation (4.2.3) may be proven by the following computation,

d

dt

∣∣∣∣
t=t0

Adg(t)−1η =
d

dt

∣∣∣∣
t=t0

Adg(t)−1g(t0)

(
Adg(t0)−1η

)

= −adξ(t0)
(
Adg(t0)−1η

)
,

in which for the last step one recalls

d

dt

∣∣∣∣
t=t0

g(t)−1g(t0) =
(
−g(t0)−1ġ(t0)g(t0)

−1
)
g(t0) = −ξ(t0) .

Relation (4.2.3) plays a key role in demonstrating relation (4.2.9) in
the theorem, as follows. Using the pairing 〈 · , · 〉 : g∗ × g 7→ R

between the Lie algebra and its dual, one computes
〈
d

dt
Ad∗g(t)−1µ(t), η

〉
=
d

dt

〈
Ad∗g(t)−1µ(t), η

〉

by (4.2.5) =
d

dt

〈
µ(t),Adg(t)−1η

〉

=

〈
dµ

dt
,Adg(t)−1η

〉
+

〈
µ(t),

d

dt
Adg(t)−1η

〉

by (4.2.3) =

〈
dµ

dt
,Adg(t)−1η

〉
+
〈
µ(t),−adξ(t)

(
Adg(t)−1η

)〉

by (4.2.6) =

〈
dµ

dt
,Adg(t)−1η

〉
−
〈
ad∗ξ(t)µ(t),Adg(t)−1η

〉

by (4.2.5) =

〈
Ad∗g(t)−1

dµ

dt
, η

〉
−
〈
Ad∗g(t)−1ad∗ξ(t)µ(t), η

〉

=

〈
Ad∗g(t)−1

[
dµ

dt
− ad∗ξ(t)µ(t)

]
, η

〉
.

This concludes the proof.
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Corollary 4.2.1 The coadjoint orbit relation

µ(t) = Ad∗g(t)µ(0) (4.2.10)

is the solution of the coadjoint motion equation for µ(t),

dµ

dt
− ad∗ξ(t)µ(t) = 0 . (4.2.11)

Proof. Substituting Equation (4.2.11) into Equation (4.2.9) yields

Ad∗g(t)−1µ(t) = µ(0) .

Operating on this equation with Ad∗g(t) and recalling the composi-
tion rule for Ad∗ from Remark 4.2.2 yields the result (4.2.10).

4.3 Example: The Heisenberg Lie group

4.3.1 Definitions for the Heisenberg group

The subset of the 3 × 3 real matrices SL(3,R) given by the upper
triangular matrices




H =



1 a c

0 1 b

0 0 1


 a, b, c ∈ R





(4.3.1)

defines a noncommutative group under matrix multiplication.

The 3×3 matrix representation of this group acts on the extended
planar vector (x, y, 1)T as



1 a c

0 1 b

0 0 1







x

y

1


 =




x+ ay + c

y + b

1


 .
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The groupH is called the Heisenberg group and it has three param-
eters. To begin studying its properties, consider the matrices in H
given by

A =



1 a1 a3
0 1 a2
0 0 1


 , B =



1 b1 b3
0 1 b2
0 0 1


 . (4.3.2)

The matrix product gives another element of H ,

AB =



1 a1 + b1 a3 + b3 + a1b2
0 1 a2 + b2
0 0 1


 , (4.3.3)

and the inverses are

A−1 =



1 −a1 a1a2 − a3
0 1 −a2
0 0 1


 , B−1 =



1 −b1 b1b2 − b3
0 1 −b2
0 0 1


 .

(4.3.4)

We are dealing with a matrix (Lie) group. The group commutator is
defined by

[A, B] := ABA−1B−1 =



1 0 a1b2 − b1a2
0 1 0

0 0 1


 . (4.3.5)

Hence, the commutator subgroup Γ1(H) = [H, H] has the form

Γ1(H) =
{
[A, B] : A,B ∈ H

}






1 0 k

0 1 0

0 0 1


 ; k ∈ R




. (4.3.6)

An element C of the commutator subgroup Γ1(H) is of the form

C =



1 0 k

0 1 0

0 0 1


 ∈ Γ1(H), (4.3.7)



September 24, 2011 11:41am Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

126 4 : ADJOINT AND COADJOINT ACTIONS

and we have the products

AC =



1 a1 a3 + k

0 1 a2
0 0 1


 = CA. (4.3.8)

Consequently, [A,C] = AC(CA)−1 = AC(AC)−1 = I3. Hence, the
subgroup of second commutators Γ2(H) = [Γ1(H), H] commutes
with the rest of the group, which is thus nilpotent of second order.

4.3.2 Adjoint actions: AD, Ad and ad

Using the inverses in Equation (4.3.4) we compute the group auto-
morphism

ADBA = BAB−1 =



1 a1 a3 − a1b2 + b1a2
0 1 a2
0 0 1


 . (4.3.9)

Linearising the group automorphism ADBA in A at the identity
yields the Ad operation,

AdBξ = B ξ|IdB−1 =



1 b1 b3
0 1 b2
0 0 1





0 ξ1 ξ3
0 0 ξ2
0 0 0





1 −b1 b1b2 − b3
0 1 −b2
0 0 1




=



0 ξ1 ξ3 + b1ξ2 − b2ξ1
0 0 ξ2
0 0 0


 . (4.3.10)

This is the Ad operation of the Heisenberg group H on its Lie alge-
bra h(R) ≃ R3:

Ad : H(R)× h(R)→ h(R) . (4.3.11)

One defines the right-invariant tangent vector,

ξ = ȦA−1 =



0 ȧ1 ȧ3 − a2ȧ1
0 0 ȧ2
0 0 0


 =



0 ξ1 ξ3
0 0 ξ2
0 0 0


 ∈ h, (4.3.12)
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and the left-invariant tangent vector,

Ξ = A−1Ȧ =



0 ȧ1 ȧ3 − a1ȧ2
0 0 ȧ2
0 0 0


 =



0 Ξ1 Ξ3

0 0 Ξ2

0 0 0


 ∈ h. (4.3.13)

Next, we linearise AdBξ in B around the identity to find the ad
operation of the Heisenberg Lie algebra h on itself,

ad : h× h→ h . (4.3.14)

This is given explicitly by

adηξ = [η, ξ] := ηξ − ξη =



0 0 η1ξ2 − ξ1η2
0 0 0

0 0 0


 . (4.3.15)

Under the equivalence h ≃ R3 provided by



0 ξ1 ξ3
0 0 ξ2
0 0 0


 7→



ξ1
ξ2
ξ3


 := ξ (4.3.16)

we may identify the Lie bracket with the projection onto the third
component of the vector cross product:

[η, ξ] 7→




0

0

3̂ · η × ξ


 . (4.3.17)

4.3.3 Coadjoint actions: Ad* and ad*

The inner product on the Heisenberg Lie algebra h × h → R is de-
fined by the matrix trace pairing

〈η, ξ〉 = Tr(ηT ξ) = η · ξ . (4.3.18)
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Thus, elements of the dual Lie algebra h∗(R) may be represented as
lower triangular matrices,

µ =



0 0 0

µ1 0 0

µ3 µ2 0


 ∈ h∗(R) . (4.3.19)

The Ad∗ operation of the Heisenberg group H(R) on its dual Lie
algebra h∗ ≃ R3 is defined in terms of the matrix pairing by

〈Ad∗Bµ, ξ〉 := 〈µ, AdBξ〉. (4.3.20)

Explicitly, one may compute

〈µ, AdBξ〉 = Tr






0 0 0

µ1 0 0

µ3 µ2 0






0 ξ1 ξ3 + b1ξ2 − b2ξ1
0 0 ξ2
0 0 0







= µ · ξ + µ3(b1ξ2 − b2ξ1) (4.3.21)

= Tr







0 0 0

µ1 − b2µ3 0 0

µ3 µ2 + b1µ3 0






0 ξ1 ξ3
0 0 ξ2
0 0 0







= 〈Ad∗Bµ, ξ〉 . (4.3.22)

Thus, we have the formula for Ad∗B µ:

Ad∗Bµ =




0 0 0

µ1 − b2µ3 0 0

µ3 µ2 + b1µ3 0


 . (4.3.23)

Likewise, the ad∗ operation of the Heisenberg Lie algebra h on
its dual h∗ is defined in terms of the matrix pairing by

〈ad∗ηµ, ξ〉 := 〈µ, adηξ〉 (4.3.24)
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〈µ, adηξ〉 = Tr






0 0 0

µ1 0 0

µ3 µ2 0






0 0 η1ξ2 − ξ1η2
0 0 0

0 0 0







= µ3(η1ξ2 − η2ξ1) (4.3.25)

= Tr







0 0 0

−η2µ3 0 0

0 η1µ3 0






0 ξ1 ξ3
0 0 ξ2
0 0 0







= 〈ad∗ηµ, ξ〉. (4.3.26)

Thus, we have the formula for ad∗η µ:

ad∗ηµ =




0 0 0

−η2µ3 0 0

0 η1µ3 0


 . (4.3.27)

4.3.4 Coadjoint motion and harmonic oscillations

According to Proposition 4.2.2, the coadjoint motion relation arises
by differentiating along the coadjoint orbit. Let A(t) be a path in the
Heisenberg Lie group H and µ(t) be a path in h∗. Then we compute

d

dt

(
Ad∗A(t)−1µ(t)

)
= Ad∗A(t)−1

[
dµ

dt
− ad∗η(t)µ(t)

]
, (4.3.28)

where η(t) = A(t)−1Ȧ(t).

With η = A−1Ȧ, Corollary 4.2.11 provides the differential equa-
tion for the coadjoint orbit,

µ(t) = Ad∗A(t)µ(0) .

The desired differential equation is the coadjoint motion equation

µ̇ = ad∗ηµ ,
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which may be written for the Heisenberg Lie group H as

µ̇ =



0 0 0

µ̇1 0 0

µ̇3 µ̇2 0


 = ad∗ηµ =




0 0 0

−η2µ3 0 0

0 η1µ3 0


 . (4.3.29)

That is,
d

dt
(µ1, µ2, µ3) = (−η2µ3, η1µ3, 0). (4.3.30)

Thus, the coadjoint motion equation for the Heisenberg group pre-
serves the level sets of µ3.

If we define the linear map h → h∗ : (µ1, µ2) = (I1η1, I2η2) then
the coadjoint motion equations become

µ̇1 = −µ3µ2/I2 ,
µ̇2 = µ3µ1/I1 , (4.3.31)

µ̇3 = 0 .

Upon taking another time derivative, this set reduces to the equa-
tions

µ̈k = − µ23
I1I2

µk , for k = 1, 2. (4.3.32)

These are the equations for a planar isotropic harmonic oscillator on
a level set of µ3.

This calculation has proved the following.

Proposition 4.3.1 Planar isotropic harmonic oscillations describe
coadjoint orbits on the Heisenberg Lie group. The coadjoint orbits are
(µ1, µ2) ellipses on level sets of µ3.
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5.1 Adjoint and coadjoint actions of SO(3)

Recall that the Lie group SO(3) of special orthogonal matrices is
defined by

SO(3) := {A | A ∈ 3× 3 orthogonal matrices, det(A) = 1} .

The action of the matrix Lie group SO(3) on vectors in R3 by left
multiplication represents rotations in three dimensions. Its Lie alge-
bra so(3) comprises the 3 × 3 skew-symmetric matrices. Elements
of so(3) represent angular velocities, and elements of its dual space
so(3)∗ under the matrix trace pairing represent angular momenta.

5.1.1 Ad and ad operations for the hat map

As shown in Theorem 2.1.1, the Lie algebra (so(3), [·, ·]) with ma-
trix commutator bracket [ · , · ] maps to the Lie algebra (R3,×) with
vector product ×, by the linear isomorphism

u := (u1, u2, u3) ∈ R
3 7→ û :=




0 −u3 u2

u3 0 −u1
−u2 u1 0


 ∈ so(3) .

In matrix and vector components, the linear isomorphism is

ûij := − ǫijkuk .

Equivalently, this isomorphism is given by

ûv = u× v for all u,v ∈ R
3.

This is the hat map ̂ : (so(3), [·, ·]) → (R3,×) defined earlier in
(2.1.10) and (2.1.11) using

û = u · Ĵ = uaĴa ,

which holds for the so(3) basis set (2.1.4) of skew-symmetric 3 × 3

matrices Ĵa, with a = 1, 2, 3.
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Exercise. Verify the following formulas for u,v,w ∈ R3:

(u× v)̂ = û v̂ − v̂ û =: [û, v̂] ,

[û, v̂]w = (u× v)×w ,(
(u× v)×w

)
̂ =

[
[û, v̂] , ŵ

]
,

u · v = −1

2
trace(û v̂)

=:
〈
û , v̂

〉
,

in which the dot product of vectors is also the natural pair-
ing of 3× 3 skew-symmetric matrices.

⋆

Exercise. (Jacobi identity under the hat map) Verify that
the Jacobi identity for the cross product of vectors in R3 is
equivalent to the Jacobi identity for the commutator prod-
uct of 3×3 skew matrices by proving the following identity
satisfied by the hat map,

(
(u× v)×w + (v ×w)× u+ (w × u)× v

)
̂

= 0 =
[
[û, v̂] , ŵ

]
+
[
[v̂, ŵ] , û

]
+
[
[ŵ, û] , v̂

]
.

⋆

5.1.2 AD, Ad and ad actions of SO(3)

AD action of SO(3) on itself: The AD action for SO(3) is con-
jugation by matrix multiplication

IA(B) = ABA−1 .

Ad action of SO(3) on its Lie algebra so(3): The corresponding
adjoint action of SO(3) on so(3) may be obtained as follows.
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Differentiating B(t) at B(0) = Id gives

AdA v̂ =
d

dt

∣∣∣
t=0

AB(t)A−1 = Av̂A−1 , with v̂ = B′(0) .

One calculates the pairing with a vector w ∈ R3 as

AdAv̂(w) = Av̂(A−1w) = A(v×A−1w) = Av×w = (Av)̂w ,

where we have used the relation

A(u× v) = Au×Av ,

which holds for any u,v ∈ R3 and A ∈ SO(3). Consequently,

AdAv̂ = (Av)̂ .

Identifying so(3) ≃ R3 then gives

AdAv = Av.

So (speaking prose all our lives) the adjoint (Ad) action of the
Lie group SO(3) on its Lie algebra so(3) may be identified
with multiplication of a matrix in SO(3) times a vector in R3.

ad action of so(3) on itself: Differentiating again gives the ad
action of the Lie algebra so(3) on itself:

[ û, v̂ ] = adû v̂ =
d

dt

∣∣∣∣
t=0

(
etûv

)
̂ = (ûv)̂ = (u× v)̂ .

So the ad action of the Lie algebra so(3) on itself is by the ma-
trix commutator of skew-symmetric matrices, which the hat
map (isomorphism) identifies with the vector cross product.

Infinitesimal generator: Likewise, the infinitesimal generator
corresponding to u ∈ R3 has the expression

uR3(x) :=
d

dt

∣∣∣∣
t=0

etûx = ûx = u× x .
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5.1.3 Dual Lie algebra isomorphism˘ : so(3)∗ → R3

Proposition 5.1.1 (Coadjoint actions) The dual so(3)∗ is identified
with R3 by the isomorphism

Π ∈ R
3 7→ Π̆ ∈ so(3)∗ :

〈
Π̆ , û

〉
:= Π · u for any u ∈ R

3 .

In terms of this isomorphism, the coAdjoint action of SO(3) on so(3)∗ is
given by

Ad∗A−1 Π̆ = (AΠ)˘ , (5.1.1)

and the coadjoint action of so(3) on so(3)∗ is given by

ad∗û Π̆ = (Π× u)˘. (5.1.2)

Proof.

Computing the coAdjoint Ad∗ action of SO(3) on so(3)∗: One
computes from the definition,
〈
Ad∗A−1 Π̆ , û

〉
=
〈
Π̆ , AdA−1 û

〉
=
〈
Π̆ , (A−1u)̂

〉
= Π ·ATu

= AΠ · u =
〈
(AΠ)˘ , û

〉
.

That is, the coAdjoint action of SO(3) on so(3)∗ has the expres-
sion in (5.1.1),

Ad∗A−1 Π̆ = (AΠ)˘ .

Computing the ad∗ action of so(3) on its dual so(3)∗: Let u,v ∈
R3 and note that
〈
ad∗û Π̆, v̂

〉
=
〈
Π̆, [û, v̂]

〉
=
〈
Π̆, (u× v)̂

〉
= Π · (u× v)

= (Π× u) · v =
〈
(Π× u)˘, v̂

〉
,

which shows that ad∗û Π̆ = (Π× u)˘, thereby proving (5.1.2).
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Figure 5.1. A coAdjoint orbit of the action of SO(3) on so(3)∗ is a sphere of

radius |Π|. The curves on this coAdjoint orbit are its intersections with the level

sets of kinetic energy of a rigid body.

Remark 5.1.1

The coAdjoint orbit

O = {AΠ | A ∈ SO(3)} ⊂ R
3

of SO(3) through Π ∈ R3 is a sphere S2 of radius |Π| centred
at the origin (Figure 5.1).

The set
{
Π× u | u ∈ R3

}
= TΠO is the plane perpendicular to

Π, i.e., the tangent space to the sphere S2 of radius |Π| centred
at the origin.

✷
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Exercise. What are the analogues of the hat map

̂ : (so(3), ad)→ (R3,×) ,

and its dual
˘ : (so(3)∗, ad∗)→ (R3,×) ,

for the three-dimensional Lie algebras sp(2,R),
so(2, 1), su(1, 1) and sl(2,R)?

for the six-dimensional Lie algebra so(4)? ⋆

Exercise. Compute formula (4.2.9) from Proposition 4.2.2
for the matrix Lie group SO(3). ⋆

Answer. Let A(t) be a path in the matrix Lie group
SO(3) and Π̆(t) be a path in g∗. Then compute

d

dt
Ad∗A(t)−1Π̆(t) = Ad∗A(t)−1

[
dΠ̆

dt
− ad∗

Ω̂
Π̆(t)

]
, (5.1.3)

where Ω̂(t) = A(t)−1Ȧ(t) ∈ so(3) is the body angular
velocity.

〈
d

dt
Ad∗A(t)−1 Π̆(t) , û

〉
=

d

dt

〈
Π̆(t) , AdA(t)−1 û

〉

=
d

dt

〈
Π̆(t) , (A(t)−1u)̂

〉

=
d

dt

(
Π(t) ·A(t)−1u

)
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=
(
Π̇ ·A(t)−1u

)
−
(
Π ·A(t)−1ȦA(t)−1u

)

=
(
Π̇ ·A(t)−1u

)
−
(
Π · Ω̂A(t)−1u

)

=
(
Π̇ ·A(t)−1u

)
−
(
Π · Ω×A(t)−1u

)

=
((

Π̇ + Ω × Π
)
·A(t)−1u

)

=
(
A(t)

(
Π̇ + Ω × Π

))
· u

=

〈
Ad∗A(t)−1

[
dΠ̆

dt
− ad∗

Ω̂
Π̆(t)

]
, û

〉
.

N

Remark 5.1.2 (Spatial angular momentum conservation) This com-
putation provides a geometrical proof that the equation of motion
for the body angular momentum Π,

dΠ

dt
+Ω × Π = 0 ,

implies conservation of the spatial angular momentum π given by

π(t) = A(t)Π(t) . (5.1.4)

Namely, the quantity Π(t)·A(t)−1u is conserved for any fixed vector
u ∈ R3, and

Π(t) ·A(t)−1u = A(t)Π(t) · u = π(t) · u .

This conservation law makes perfect sense in the light of Lemma
2.1.4 for the rigid body, which summarises the two equivalent sets
of equations in the spatial and body frames as

dπ

dt
= 0 and

dΠ

dt
+
(
I
−1Π

)
×Π = 0 . (5.1.5)
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Since dπ/dt = 0, we may invert the relation (5.1.4) as

Π(t) = A(t)−1π = A(t)−1Π(0) (5.1.6)

and interpret π as the initial value of Π(t) by setting A(0)−1 =
Id. This interpretation is also consistent with the representation of
rigid-body motion as a time-dependent curve A(t) in the Lie group
SO(3). ✷
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6.1 Special Euclidean group SE(3)

As a set, the special Euclidean group in three dimensions SE(3) is
the Cartesian product S = SO(3) × R3. The group SE(3) acts on
x ∈ R3 by rotations and translations: x → Rx + v, with R ∈ SO(3)
and v ∈ R3. This group action may be represented by multiplication
from the left of 4× 4 block matrices of the form

E(R, v)

[
x

1

]
=

(
R v

0 1

)[
x

1

]
=

[
Rx+ v

1

]
.

Group multiplication in SE(3) may also be represented by 4 × 4
matrix multiplication, as

E(R̃, ṽ)E(R, v) =

(
R̃ ṽ

0 1

)(
R v

0 1

)

=

(
R̃R R̃v + ṽ

0 1

)
= E(R̃R, R̃v + ṽ) .

One may abbreviate this multiplication by merely writing the top
row as

(R̃ , ṽ)(R , v) = (R̃R , R̃v + ṽ) .

The inverse of a group element (R, v)−1 is naturally identified with
the matrix inverse as

E(R, v)−1 =

(
R v

0 1

)−1

=

(
R−1 −R−1v

0 1

)
,

so that

E(R, v)−1E(R, v) =

(
R−1 −R−1v

0 1

)(
R v

0 1

)
=

(
1 0

0 1

)
,
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or in the abbreviated top-row notation

(R , v)−1 = (R−1 , −R−1v) .

Remark 6.1.1 More generally, these formulas for SE(3) are identi-
fied as the left action of a semidirect-product Lie group,

SE(3) ≃ SO(3)sR
3 .

Semidirect-product Lie groups were defined in Chapter 1. For more
details, see, e.g., [MaRa1994]. Semidirect-product group multipli-
cation is defined as follows for the case treated here, in which the
normal subgroup is a vector space. ✷

Definition 6.1.1 (Semidirect-product group action) Suppose a
Lie group G acts from the left by linear maps on a vector space V .
(This will also induce a left action of G on the dual space V ∗.) The
semidirect-product group S = GsV is the Cartesian product of
sets S = G× V whose group multiplication is defined by

(g1, v1)(g2, v2) = (g1g2, v1 + g1v2), (6.1.1)

where the action of g ∈ G on v ∈ V is denoted simply as gv (on the
left). The identity element is (e, 0) where e is the identity in G. The
inverse of an element is given by

(g, v)−1 = (g−1,− g−1v). (6.1.2)

Remark 6.1.2 These formulas show that SE(3) is a semidirect-
product Lie group. ✷
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6.2 Adjoint operations for SE(3)

AD operation

The AD operation AD : SE(3) × SE(3) 7→ SE(3) is conveniently
expressed in the top-row notation as

AD(R , v)(R̃ , ṽ) = (R , v)(R̃ , ṽ)(R , v)−1

= (R , v)(R̃ , ṽ)(R−1 , −R−1v)

= (R , v)(R̃R−1 , ṽ − R̃R−1v)

= (RR̃R−1 , v +Rṽ −RR̃R−1v) . (6.2.1)

Remark 6.2.1 This formula has its counterpart for general semidi-
rect products in which the normal subgroup is a vector space,

AD(g1 , v1)(g2 , v2) = (g1 , v1)(g2 , v2)(g1 , v1)
−1

= (g1g2g
−1
1 , v1 + g1v2 − g1g2g−1

1 v1) .

✷

Ad operation

Taking time derivatives of quantities adorned with the tilde ˜( · ) in
formula (6.2.1) for AD(R , v)(R̃(t) , ṽ(t)) and evaluating at the iden-
tity t = 0 yields

Ad(R , v)(
˙̃R(0) , ˙̃v(0)) = (AdR

˙̃R(0) , −AdR
˙̃R(0)v +R ˙̃v(0)) .

Setting ˙̃R(0) = ξ̃ and ˙̃v(0) = α̃ defines the Ad action of SE(3) on its
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Lie algebra with elements (ξ̃, α̃) ∈ se(3) as Ad : SE(3) × se(3) →
se(3),

Ad(R , v)(ξ̃ , α̃) = (AdRξ̃ , −AdRξ̃v +Rα̃)

= (Rξ̃R−1 , −Rξ̃R−1v +Rα̃) . (6.2.2)

Remark 6.2.2 In vector form under the hat map this becomes

Ad(R ,v)(ξ̃ , α̃) = (Rξ̃ , −Rξ̃ × v +Rα̃) . (6.2.3)

✷

Remark 6.2.3 The Ad operation for left actions of a semidirect-
product group S is given by

Ad(g , v)(ξ , α) = (gξg−1 , gα− gξg−1v) .

By Equation (6.1.2) one then finds the Adjoint action of the inverse

Ad(g , v)−1(ξ , α) = Ad(g−1 ,−g−1v)(ξ , α) = (g−1ξg , g−1α+ g−1ξv) ,

where the left action of the Lie algebra g on V is denoted by con-
catenation, as in ξv. ✷

Ad∗ operation

The pairing 〈 · , · 〉 : se(3)∗ × se(3) 7→ R is obtained by identifying
SE(3) ≃ SO(3)× R3 and taking the sum,

〈 (µ, β) , (ξ , α) 〉 ≡ 1

2
tr(µT ξ ) + β · α , (6.2.4)

with µ ∈ so(3)∗, ξ ∈ so(3) represented as skew-symmetric 3 × 3
matrices and β, α ∈ R3 represented in usual vector notation. Thus,
one computes the Ad∗ operation as

〈Ad∗(R , v)−1(µ, β) , (ξ , α) 〉 = 〈 (µ, β) , Ad(R , v)−1(ξ , α) 〉

= 〈 (µ, β) , (R−1ξR , R−1α+ R−1ξv) 〉

= 〈µ , R−1ξR 〉+ 〈β , R−1α+ R−1ξv 〉
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= 〈RµR−1 , ξ 〉+ 〈Rβ , α+ ξv 〉

= 〈RµR−1 , ξ 〉+ 〈Rβ , α 〉
+ 〈 skew(v ⊗Rβ) , ξ 〉

= 〈RµR−1 + skew(v ⊗Rβ) , ξ 〉
+ 〈Rβ , α 〉 ,

where skew(v ⊗ Rβ) is the skew-symmetric part of v ⊗ Rβ, which
arises upon taking the trace of the product v ⊗ Rβ with the skew-
symmetric 3× 3 matrix ξ. One also uses the induced pairing

〈β , R−1α 〉 = 〈Rβ , α 〉 ,

since βTR−1α = (Rβ)Tα.

Remark 6.2.4 This computation expresses the Ad∗ operation Ad∗ :
SE(3)× se(3)∗ 7→ se(3)∗ in its SO(3) and R3 components explicitly
as

Ad∗(R , v)−1(µ, β) =
(
RµR−1 + skew(v ⊗Rβ) , Rβ

)
. (6.2.5)

In vector form under the dual of the hat map the previous for-
mula becomes

Ad∗(R ,v)−1(µ , β) = (Rµ+ v ×Rβ , Rβ) . (6.2.6)

✷

Remark 6.2.5 (Semidirect-product Ad, Ad∗ actions) Upon de-
noting the various group and algebra actions by concatenation
from the left, the Adjoint and coAdjoint actions for semidirect
products may be expressed in slightly simpler form as (see, e.g.,
[MaRa1994])

(g, v)(ξ, α) = (gξ, gα− (gξ)v) (6.2.7)



September 24, 2011 11:41am Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

6.2 ADJOINT OPERATIONS FOR SE(3) 147

and
(g, v)(µ, β) = (gµ+ v ⋄ (gβ), gβ), (6.2.8)

where (g, v) ∈ S = G×V , (ξ, α) ∈ s = g×V , (µ, β) ∈ s∗ = g∗×V ∗,
gξ = Adgξ, gµ = Ad∗g−1µ, gβ denotes the induced left action of g
on β (the left action of G on V induces a left action of G on V ∗ –
the inverse of the transpose of the action on V ).

✷

Definition 6.2.1 (The diamond operation ⋄) The diamond opera-
tion ⋄ that appears in Equation (6.2.8) is defined by

〈 v ⋄ (gβ) , ξ 〉 = −〈 (gβ) ⋄ v , ξ 〉 = 〈 (gβ) , ξv 〉 . (6.2.9)

That is, the diamond operation minus the dual of the (left) Lie algebra
action. In the present case for SE(3) one has

v ⋄ (Rβ) = skew(v ⊗Rβ) = (v ×Rβ)̂ ,

by the hat map, as in Equation (6.2.6).

Exercise. (Coadjoint action Ad∗g−1 of semidirect-product

groups) Show that the map Ad∗(g,v)−1 preserves the action

(g1, v1)(g2, v2) = (g1g2, v1 + g1v2)

of a semidirect-product group by computing the composi-
tion,

Ad∗(g1,v1)−1Ad
∗
(g2,v1)−1 = Ad∗(g1g2,v1+g1v2)−1 .

⋆



September 24, 2011 11:41am Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

148 6 : SEMIDIRECTPRODUCT GROUP ACTIONS

6.3 Adjoint actions of SE(3)’s Lie algebra

6.3.1 The ad action of se(3) on itself

To express the operation ad∗ : se(3)∗ × se(3) → se(3)∗, one begins
by computing its corresponding ad operation, ad : se(3) × se(3) →
se(3). This is done by taking time derivatives of unadorned quanti-
ties of Ad(R(t) , v(t))(ξ̃ , α̃) in Equation (6.2.2) evaluated at the identity
to find

ad(Ṙ(0) , v̇(0))(ξ̃ , α̃)

=

(
Ṙξ̃R−1 −Rξ̃R−1ṘR−1 ,

− Ṙξ̃R−1v +Rξ̃R−1ṘR−1v −Rξ̃R−1v̇ + Ṙα̃

)∣∣∣∣
Id

.

As before, one sets Ṙ(0) = ξ, v̇(0) = α, R(0) = Id and v(0) = 0.
In this notation, the ad operation ad(ξ , α) for the right-invariant Lie
algebra action of se(3) may thus be rewritten as

ad(ξ , α)(ξ̃ , α̃) = (ξξ̃ − ξ̃ξ , −(ξξ̃ − ξ̃ξ)v − ξ̃(ξv + α) + ξα̃)
∣∣∣
Id

= ([ξ , ξ̃] , − ξξ̃v + ξα̃− ξ̃α)
∣∣∣
Id

= (adξ ξ̃ , ξα̃− ξ̃α) ,

where the last step uses v(0) = 0. The result is just the matrix com-
mutator,

ad(ξ , α)(ξ̃ , α̃) =

[(
ξ α

0 0

)
,

(
ξ̃ α̃

0 0

)]
=

(
[ξ , ξ̃ ] ξα̃− ξ̃α
0 0

)
.

Remark 6.3.1 (The semidirect-product Lie bracket) The (left)
Lie algebra of the semidirect-product Lie group S is the
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semidirect-product Lie algebra, s = gsV , whose Lie bracket is
expressed as

[(ξ1, v1), (ξ2, v2)] = ([ξ1, ξ2], ξ1v2 − ξ2v1) , (6.3.1)

where the induced action of g on V is denoted by concatenation,
as in ξ1v2. ✷

Remark 6.3.2 In vector notation, using the hat map ̂ : R3 7→
so(3) given by (v̂)ij = −ǫijkvk so that v̂w = v ×w and [v̂ , ŵ] =

(v ×w)̂, one has [ξ , ξ̃] = (ξ × ξ̃)̂and finds the correspondence
(isomorphism)

ad(ξ , α)(ξ̃ , α̃) = [(ξ, α) , (ξ̃, α̃) ]

=
(
[ξ , ξ̃ ] , ξα̃− ξ̃α

)

=
(
(ξ × ξ̃)̂, (ξ × α̃ − ξ̃ × α)

)
.

This expression will be useful in interpreting the ad and ad∗ ac-
tions as motion on R3. ✷

6.3.2 The ad∗ action of se(3) on its dual se(3)∗

One computes the ad∗ action of se(3) on its dual se(3)∗ by using the
pairing,

〈ad∗(ξ , α)(µ , β) , (ξ̃ , α̃)〉 = 〈(µ , β) , ad(ξ , α)(ξ̃ , α̃)〉

= 〈(µ , β) , (adξ ξ̃ , ξα̃− ξ̃α)〉 (6.3.2)

= 〈µ , adξ ξ̃〉+ 〈β , ξα̃〉 − 〈β , ξ̃α〉
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= 〈ad∗ξ µ , ξ̃〉+ 〈−ξβ , α̃〉+ 〈β ⋄ α , ξ̃〉

= 〈(ad∗ξ µ+ β ⋄ α , −ξβ) , (ξ̃ , α̃)〉.

Remark 6.3.3 Again the diamond operation

⋄ : R3 × R
3 7→ so(3)∗ ≃ R

3

arises, as defined in Equation (6.2.9) by the dual Lie algebra ac-
tions,

〈β ⋄ α , ξ̃ 〉 = −〈β , ξ̃α〉 .

In vector notation, this becomes

−〈β , ξ̃α〉 = −β · ξ̃ × α = β × α · ξ̃ = 〈β ⋄ α , ξ̃ 〉 .

Thus, the diamond operation for se(3) is simply the cross product
of vectors in R3. ✷

Under the hat map, the pairing 〈 · , · 〉 : se(3)∗ × se(3) → R in
(6.2.4) transforms into the dot product of vectors in R3,

〈(µ , β) , (ξ , α)〉 = µ · ξ + β · α .

Thus, the ad∗ action of se(3) may be expressed in terms of vector
operations, as

〈ad∗(ξ , α)(µ , β) , (ξ̃ , α̃)〉

= 〈(µ , β) , ad(ξ , α)(ξ̃ , α̃)〉

= µ · (ξ × ξ̃) + β · (ξ × α̃ − ξ̃ × α)

= (µ × ξ − α × β) · ξ̃ − ξ × β · α̃ . (6.3.3)
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Exercise. Find the conservation laws for the equation of
coadjoint motion

d

dt
(µ , β) = ad∗(ξ , α)(µ , β)

on se(3)∗, the dual of the special Euclidean Lie algebra
in three dimensions, when (µ , β) are linearly related to
(ξ , α) by (µ , β) = (Iξ , Kα), for symmetric matrices
(I, K). ⋆

Summary. The adjoint and coadjoint actions for SE(3) ≃ SO(3)sR3

are

AD(R , v)(R̃ , ṽ) = (RR̃R−1 , v +Rṽ −RR̃R−1v),

Ad(R , v)−1(ξ , α) = (R−1ξR , R−1α+ R−1ξv),

ad(ξ , α)(ξ̃ , α̃) =
(
(ξ × ξ̃)̂, (ξ × α̃ − ξ̃ × α)

)
,

Ad∗(R ,v)−1(µ , β) = (Rµ+ v ×Rβ , Rβ),

ad∗(ξ , α)(µ , β) =
(
µ × ξ − α × β, − ξ × β

)
.

6.3.3 Left versus right

When working with various models of continuum mechanics and
plasmas it is convenient to work with right representations of G on
the vector space V (as in, for example, [HoMaRa1998]). We shall
denote the semidirect product by the same symbol, S = GsV , the
action of G on V being denoted by vg. The formulas change under
these conventions as follows. Group multiplication (the analogue of
(6.1.1)) is given by

(g1, v1)(g2, v2) = (g1g2, v2 + v1g2), (6.3.4)
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and the Lie algebra bracket on s = gsV (the analogue of (6.3.1))
has the expression

[(ξ1, v1), (ξ2, v2)] = ([ξ1, ξ2], v1ξ2 − v2ξ1), (6.3.5)

where we denote the induced action of g on V by concatenation, as
in v1ξ2. The adjoint and coadjoint actions have the formulas (ana-
logues of (6.2.7) and (6.2.8))

(g, v)(ξ, u) = (gξ, (u+ vξ)g−1) , (6.3.6)

(g, v)(µ, a) = (gµ+ (vg−1) ⋄ (ag−1), ag−1) , (6.3.7)

where, as usual, gξ = Adgξ, gµ = Ad∗g−1µ, ag denotes the inverse of
the dual isomorphism defined by g ∈ G (so that g 7→ ag is a right
action). Note that the adjoint and coadjoint actions are left actions.
In this case, the g-actions on g∗ and V ∗ are defined as before to be
minus the dual map given by the g-actions on g and V and are de-
noted, respectively, by ξµ (because it is a left action) and aξ (because
it is a right action).

Leftinvariant tangent vectors

The left-invariant tangent vectors to (R, v) at the identity (Id, 0) are
given by

(ξ, α) = (R, v)−1(Ṙ, v̇) , (6.3.8)

or, in matrix form,

(
ξ α

0 0

)
=

(
R−1 −R−1v

0 1

)(
Ṙ v̇

0 0

)

=

(
R−1Ṙ R−1v̇

0 0

)
=

(
ξ R−1v̇

0 0

)
.

This gives the reconstruction formula for left-invariant tangent vec-
tors,

(Ṙ, v̇) = (R, v)(ξ, α) = (Rξ,Rα) , (6.3.9)
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which may also be expressed in matrix form as
(
Ṙ v̇

0 0

)
=

(
R v

0 1

)(
ξ α

0 0

)
=

(
Rξ Rα

0 0

)
.

Exercise. (Right-invariant tangent vectors) The right-in-
variant tangent vectors to (R, v) at the identity (Id, 0) are
given by

(ξ, α) = (Ṙ, v̇)(R, v)−1 = (ṘR−1, − ṘR−1v + v̇) .
(6.3.10)

Show that the reconstruction formula for right-invariant
tangent vectors is given by

(Ṙ, v̇) = (ξ, α)(R, v) = (ξR, ξv + α) . (6.3.11)
⋆

Remark 6.3.4 (Right- vs left-invariant reconstructions) The recon-
struction formulas for right-invariant (6.3.11) and left-invariant
(6.3.9) tangent vectors in SE(3) are completely different. In par-
ticular, right-invariant reconstruction involves translations, while
left-invariant reconstruction does not. ✷

6.4 Special Euclidean group SE(2)

The special Euclidean group of the plane SE(2) ≃ SO(2)sR2 has
coordinates

(Rθ, v) =

(
Rθ v

0 1

)
,

where v ∈ R2 is a vector in the plane and Rθ is the rotation matrix

Rθ =

(
cos θ − sin θ

sin θ cos θ

)
.
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Exercise. Calculate the inverse of (Rθ, v) and show that
the Lie algebra se(2) of SE(2) consists of the 3 × 3 block
matrices of the form

(
− ξJ α

0 0

)
, where J =

(
0 1

−1 0

)
.

(The skew-symmetric 2× 2 matrix J = −JT = −J−1 repre-
sents rotation by −π/2.) ⋆

Exercise. Identify the Lie algebra se(2) with R3 via the iso-
morphism

(
− ξJ α

0 0

)
∈ se(2) 7→ (ξ, α) ∈ R

3 ,

and compute the expression for the Lie algebra bracket as
[
( ξ, α1, α2) , (ξ̃, α̃1, α̃2)

]
= (0, −ξα̃2 + ξ̃α2, ξα̃1 − ξ̃α1 )

= (0, −ξJα̃+ ξ̃Jα ) ,

where α = (α1, α2) and α̃ = (α̃1, α̃2). ⋆

Exercise. Check using RθJ = JRθ that the adjoint action
for SE(2) of

(Rθ, v) =

(
Rθ v

0 1

)
on (ξ, α) =

(
− ξJ α

0 0

)

is given by

(Rθ, v)(ξ, α)(Rθ, v)
−1 =

(
− ξJ ξJv +Rθα

0 0

)
,
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or in coordinates

Ad(Rθ,v)(ξ, α) = (ξ, ξJv +Rθα) . (6.4.1)

⋆

The pairing 〈 · , · 〉 : se(2)∗×se(2) 7→ R is obtained by identifying
SE(2) ≃ SO(2)× R2 and taking the sum,

〈 (µ, β) , (ξ , α) 〉 ≡ µξ + β · α , (6.4.2)

with µ ∈ so(2)∗, ξ ∈ so(2) represented as skew-symmetric 2 × 2
matrices and β, α ∈ R2 represented as planar vectors. Elements of
the dual Lie algebra se(2)∗ may be written as block matrices of the
form

(µ, β) =

(
µ
2J 0

β 0

)
,

since

tr

[(
µ
2J 0

β 0

)(
− ξJ α

0 0

)]
= µξ + β · α ,

via the nondegenerate pairing provided by the trace of the matrix
product. Thus, we may identify the dual Lie algebra se(2)∗ with R3

via the isomorphism
(

µ
2J 0

β 0

)
∈ se(2)∗ 7→ (µ, β) ∈ R

3 ,

so that in these coordinates the pairing (6.4.2) between se(2)∗ and
se(2) becomes the usual dot product in R3.

Exercise. Check that the coadjoint action of SE(2) on
se(2)∗ is given by

Ad∗(Rθ,v)−1(µ, β) = (µ−Rθβ · Jv, Rθβ) . (6.4.3)

⋆
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Exercise. Show that the coadjoint orbits for SE(2) are the
cylinders T ∗S1

α = {(µ, β) : |β| = constant}, together with
points on the µ-axis. ⋆

Exercise. What are the Casimirs for SE(2)? ⋆

6.5 Semidirectproduct group SL(2,R)sR2

As a further example, we compute the adjoint and coadjoint ac-
tions for the semidirect-product group SL(2,R)sR2. The change
to SL(2,R)sR2 from SE(2) ∼= SO(2)sR2 incorporates area-
preserving dilations and both left and right SO(2) rotations into
SE(2), as well as the translations R2. These additional degrees
of freedom may be recognised in the polar decomposition of
R ∈ SL(2,R) into R = O1SO2, in which S is a 2 × 2 diagonal
matrix of unit determinant, and O1 and O2 are the left and right
SO(2) rotations, respectively. After defining the matrix represen-
tations of the Lie group and its Lie algebra, we derive its AD, Ad
and ad actions. We then define the dual Lie algebra and derive
its Ad∗ and ad∗ actions. Finally, we compute its coadjoint motion
equations.

6.5.1 Definitions for SL(2,R)sR2

We consider the semidirect-product Lie group G = SL(2,R)sR2

in which SL(2,R) acts on R2 by matrix multiplication from the left.
The group composition rule is

(R̃, ṽ)(R, v) = (R̃R, R̃v + ṽ) , (6.5.1)
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which can be represented by multiplication of 3 × 3 matrices. That
is, the action of G on R3 has a matrix representation, given by

(R, v) 7→
(
R v

0 1

)
, (6.5.2)

for R ∈ SL(2,R), so that detR = 1 and v ∈ R2. The matrix multipli-
cation (

R̃ ṽ

0 1

)(
R v

0 1

)
=

(
R̃R R̃v + ṽ

0 1

)
(6.5.3)

agrees with (6.5.1). The inverse is given by

(R̃, ṽ)−1 = (R̃−1,−R̃−1ṽ) (6.5.4)

and the identity element is (1l, 0), where 1l is the 2×2 identity element
of SL(2,R).

The 3 × 3 matrix representation of this group in (6.5.2) acts on
the extended vector (r, 1)T as

(
R v

0 1

)(
r

1

)
=

(
Rr + v

1

)
.

The Lie group G = SL(2,R)sR2 has five parameters. These may
be identified by considering their action on an ellipse whose centre
is initially at the origin of coordinates in the plane. In the polar de-
composition of the matrix R = O2SO1 ∈ SL(2,R), the orthogonal
matrix O1 ∈ SO(2) rotates the planar reference coordinates about
the centre at the origin into the principal axes of the fixed ellipse.
The diagonal matrix S with detS = 1 then stretches the principal
axes while preserving the area of the ellipse. Next, the orthogo-
nal matrix O2 ∈ SO(2) rigidly rotates the rescaled ellipse about its
centre. And finally, the vector v ∈ R2 translates the centre of the
rescaled rotated ellipse to a new location in the plane.
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6.5.2 AD, Ad, and ad actions

A matrix calculation represents the AD action G×G→ G as

AD(R̃,ṽ)(R, v) = (R̃, ṽ)(R, v)(R̃−1,−R̃−1ṽ)

= (ADR̃R,−ADR̃Rṽ + R̃v + ṽ)

=

(
R̃RR̃−1 −R̃RR̃−1ṽ + R̃v + ṽ

0 1

)
.

Next, the Ad action G × g → g may be computed. By taking
derivatives of the matrix representation (6.5.2) for the Lie group
G = SL(2,R)sR2 at the identity, one defines the basis

X =

(
1 0

0 −1

)
, Y =

(
0 1

1 0

)
, Z =

(
0 1

−1 0

)
,

H1 =

(
1

0

)
, H2 =

(
0

1

)
, (6.5.5)

for the matrix representation of the Lie algebra g = sl(2,R)⊕R2. The
traceless property of the 2× 2 sl(2,R) matrices follows from taking
the derivative at the identity of the unit determinant condition for
SL(2,R). A matrix representation of the Lie algebra

ξ = (A, h) ∈ g = sl(2,R)⊕ R
2

is given in this basis by A = xX + yY + zZ and h = h1H1 + h2H2,
with (x, y, z) ∈ R3 and (h1, h2) ∈ R2, so that

A =

(
x y + z

y − z −x

)
∈ sl(2,R) and h =

(
h1
h2

)
. (6.5.6)

Consequently, one finds the Ad action in matrix form,

Ad(R̃,ṽ)(A, h) =
d

dt

∣∣∣∣
t=0

AD(R̃,ṽ)(e
tA, th)

=

(
R̃AR̃−1 −R̃AR̃−1ṽ + R̃h

0 0

)
. (6.5.7)
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The matrix Lie group representation (6.5.2) implies the following
3× 3 matrix Lie algebra representation, denoted by M ,

(A, h) 7→M(x, y, z, h1, h2) =




x y + z h1
y − z −x h2
0 0 0


 . (6.5.8)

This may be abbreviated as

(A, h) 7→M(A, h) =

(
A h

0 0

)
. (6.5.9)

In this matrix representation, one obtains

Ad(R̃,ṽ)(A, h) =

(
R̃ ṽ

0 1

)(
A h

0 0

)(
R̃−1 −R̃−1ṽ

0 1

)
,

(6.5.10)
which recovers the result in formula (6.5.7).

The ad action may now be computed by a matrix commutation,

ad(Ã,h̃)(A, h) =

[(
Ã h̃

0 0

)
,

(
A h

0 0

)]

=

(
[Ã, A] Ãh−Ah̃
0 0

)

=:
([
Ã, A

]
, Ãh−Ah̃

)
. (6.5.11)

This is the standard form of the ad action of a semidirect-product
Lie algebra.
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6.5.3 Ad∗ and ad∗ actions

A 3× 3 matrix representation of the Lie algebra g = sl(2,R)⊕ R2 is
defined by the basis

X =




1 0 0

0 −1 0

0 0 0


 , Y =




0 1 0

1 0 0

0 0 0


 , Z =




0 1 0

−1 0 0

0 0 0


 ,

H1 =




0 0 1

0 0 0

0 0 0


 , H2 =




0 0 0

0 0 1

0 0 0


 . (6.5.12)

The corresponding basis elements in g∗ dual to these are their trans-
poses, denoted byX∗, Y ∗, Z∗, H∗

1 , H
∗
2 . An element of g∗ can be writ-

ten as a row component vector with respect to this basis. Namely,

aX∗ + bY ∗ + cZ∗ + k1H
∗
1 + k2H

∗
2 =:

(
a b c k1 k2

)
. (6.5.13)

The matrix representation of the dual Lie algebra g∗ is defined via
the following map,

aX∗ + bY ∗ + cZ∗ + k1H
∗
1 + k2H

∗
2 7→M∗(a, b, c, k1, k2) , (6.5.14)

with the traceless matrix representation

M∗(a, b, c, k1, k2) =




a b− c 0

b+ c −a 0

k1 k2 0


 . (6.5.15)

To compute the Ad∗ action, denote

D =

(
a b− c

b+ c −a

)
, k =

(
k1 k2

)
. (6.5.16)

Then consider (D, k) ∈ g∗ defined as the element aX∗ + · · ·+ k2H
∗
2 ,

which in the matrix representation (6.5.15) corresponds to

(D, k) 7→
(
D 0

k 0

)
. (6.5.17)
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LetA and h be as in (6.5.6). Then, upon denoting the map g∗×g→ R

as the pairing 〈 · , · 〉g∗×g, one finds

〈
Ad∗(R,v)(D, k), (A, h)

〉
g×g∗

=
〈
(D, k),Ad(R,v)(A, h)

〉

=
1

2
Tr

((
D 0

k 0

)
g

(
A h

0 0

)
g−1

)

=
1

2
Tr

(
g−1

(
D 0

k 0

)
g

(
A h

0 0

))

where, as in (6.5.2),

g =

(
R v

0 1

)
. (6.5.18)

A side calculation yields

g−1

(
D 0

k 0

)
g =

(
R−1(D − vk)R ∗

kR ∗

)
, (6.5.19)

in which the entries at positions ∗ are immaterial, since taking the
trace with the last factor in the pairing above will eliminate them.
One may also make the upper left part of this matrix traceless, by
subtracting the product of its trace times half the 2 × 2 identity, 1l.
This is allowed, since the trace of this product with the traceless
matrix A will not contribute in the pairing.

Hence, one arrives at the matrix representation of the Ad∗ action,

Ad∗(R,v)(D, k) =

(
R−1(D − vk)R+ 1

2(v · k)1l 0

kR 0

)
, (6.5.20)

in which Tr(R−1DR) = 0, so the trace of the 2×2 upper left subma-
trix vanishes. The corresponding result for (R, v)−1 is

Ad∗(R,v)−1(D, k) =

(
RDR−1 + (vk)R−1 − 1

2Tr((vk)R
−1) 0

kR−1 0

)
.
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The next step is to compute ad∗ from
〈
ad∗(A,h)(D, k), (Ã, h̃)

〉
=
〈
(D, k), ad(A,h)(Ã, h̃)

〉
(6.5.21)

=
1

2
Tr

((
D 0

k 0

)[(
A h

0 0

)
,

(
Ã h̃

0 0

)])
.

This leads to

ad∗(A,h)

(
D 0

k 0

)
=

(
[D,A]− hk + 1

2(h · k)1l 0

kA 0

)
. (6.5.22)

The commutator [D, A] in this equation may be computed in the
2 × 2 matrix basis (X,Y, Z) for sl(2,R), since in that basis we have
A = xX + yY + zZ and D = aX + bY − cZ, the latter because
(XT , Y T , ZT ) = (X,Y,−Z).

Summary. The adjoint and coadjoint actions for SL(2,R)sR2 are

AD(R̃,ṽ)(R, v) =
(
R̃RR̃−1, −R̃RR̃−1ṽ + R̃v + ṽ

)
,

Ad(R̃,ṽ)(A, h) =
(
R̃AR̃−1, −R̃AR̃−1ṽ + R̃h

)
,

ad(Ã,h̃)(A, h) =
(
[Ã, A], Ãh−Ah̃

)
,

Ad∗(R,v)(D, k) =
(
R−1(D − vk)R+ 1

2(v · k)1l, kR
)
,

ad∗(A,h)(D, k) =
(
[D,A]− hk + 1

2(h · k)1l, kA
)
.

6.5.4 Coadjoint motion relation

According to Proposition 4.2.2, the coadjoint motion relation
arises from differentiating the coadjoint orbit relation. Let g(t) =
(R(t), v(t)) be a path in the Lie group G = SL(2,R)sR2 and let
µ(t) = (D(t), l(t)) be a path in the dual Lie algebra g∗. Then Propo-
sition 4.2.2 supplies the coadjoint motion relation

d

dt

(
Ad∗g(t)−1µ

)
= Ad∗g(t)−1

[
dµ

dt
− ad∗ξ(t)µ(t)

]
, (6.5.23)

where ξ(t) = g(t)−1ġ(t) = (A(t), h(t)).
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Corollary 4.2.11 provides the differential equation for the coad-
joint orbit relation

µ(t) = Ad∗g(t)µ(0) .

The desired differential equation is the coadjoint motion equation

dµ

dt
= ad∗ξ(t)µ(t) .

This equation is expressed for the Lie group G = SL(2,R)sR2 as

d

dt
(D, k) =

([
D,A

]
− hk + 1

2
(h · k)1l, kA

)
, (6.5.24)

with (D, k) ∈ g∗ defined in (6.5.17) and (A, h) ∈ g defined in (6.5.6).
When (A, h) is known as a smooth invertible function of (D, k), e.g.,
(A, h) = (∂H/∂D, ∂H/∂k) for a Hamiltonian H(D, k), then this
equation becomes a Lie–Poisson Hamiltonian system for the dy-
namics of a rotating, stretching, circulating and translating ellipse,
whose area is preserved by the motion. See [Ho1991] for the corre-
sponding discussion of coadjoint motion on GL(2,R).

Exercise. Recompute the ad action and ad∗ action for the
semidirect-product group SL(2,R)sR2 after introducing
the polar decomposition R = O1SO2, in which S is a di-
agonal matrix and O1 and O2 are SO(2) rotations. Identify
two types of centrifugal terms in the coadjoint orbit equa-
tions. ⋆

Exercise. Compare the ad and ad∗ actions for the semi-
direct-product groups SL(2,R)sR2 and Sp(2)sR2. ⋆

Exercise. Compute the ad action and ad∗ action for the
Galilean group SE(3)sR4. ⋆
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Exercise. Write the semidirect-product action SU(n)s
Hn of n-dimensional unitary transformations on the vector
space of n × n Hermitian matrices. Compute its ad action
and ad∗ action.

How is this related to O(n)sSn, the semidirect-product
group of n-dimensional orthogonal transformations O(n)
acting on the vector space of n× n symmetric matrices Sn?

⋆

6.6 Galilean group

6.6.1 Definitions for G(3)

As discussed in Chapter 1, the Galiliean group in three dimensions
G(3) has ten parameters,

(O ∈ SO(3) , r0 ∈ R
3 , v0 ∈ R

3 , t0 ∈ R ).

The Galilean group is a semidirect-product Lie group, which may
be written as

G(3) = SE(3)sR
4 =

(
SO(3)sR

3
)
sR

4 . (6.6.1)

That is, the subgroup of Euclidean motions, which comprises rota-
tions and Galilean velocity boosts (O,v0) ∈ SE(3), acts homoge-
neously on the subgroups of space and time translations (r0, t0) ∈
R4 which commute with each other.
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Matrix representation of G(3)

The formula for group composition G(3) × G(3) → G(3) may be
represented by matrix multiplication as in Equation (1.5.3),

g̃g =




Õ ṽ r̃

0 1 t̃

0 0 1







O v r

0 1 t

0 0 1


 (6.6.2)

=




ÕO Õv + ṽ Õr+ ṽt+ r̃

0 1 t̃+ t

0 0 1


 .

This may also be expressed succinctly in row notation as

g̃g = (Õ, ṽ, r̃, t̃)(O,v, r, t) (6.6.3)

= (ÕO, Õv + ṽ, Õr+ ṽt+ r̃, t̃+ t).

The inverse operation is given in matrix form as

g̃−1 =




Õ−1 − Õ−1ṽ − Õ−1(r̃− t̃ṽ)
0 1 − t̃
0 0 1




= (Õ−1, − Õ−1ṽ, − Õ−1(r̃− t̃ṽ), − t̃ ). (6.6.4)

6.6.2 AD, Ad, and ad actions of G(3)

A matrix calculation represents the AD action G(3) × G(3) → G(3)
as

ADg̃ g = AD
(Õ,ṽ,̃r,t̃ )

(O,v, r, t)

= (Õ, ṽ, r̃, t̃ )(O,v, r, t)(Õ−1, − Õ−1ṽ, − Õ−1(r̃− t̃ ṽ), − t̃ )
=

(
AD

Õ
O, −(AD

Õ
O)ṽ + Õv + ṽ,

− (AD
Õ
O)(r− vt)− (Õv + ṽ)t̃+ Õr+ ṽt+ r̃, t

)
.

Next, the Ad action G(3) × g(3) → g(3) may be computed. By tak-
ing derivatives of the matrix representation (1.5.3) for the Galilean
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group G(3) at the identity, one finds

Ξ := g−1(s)g′(s)|s=0 =




Ξ̂ v r− vt

0 0 t

0 0 0


 =:

(
Ξ̂, v, r− vt, t

)
,

in terms of the 3 × 3 skew-symmetric matrix Ξ̂ = O−1(s)O ′(s)|s=0

and the Galilean shift parameters v, r, t. Consequently, one finds
the Ad action in matrix form,

Adg̃Ξ = Ad
(Õ,ṽ,̃r,t̃ )

( Ξ̂,v, r− vt, t) (6.6.5)

=




AdÕΞ̂ −(AdÕΞ̂)ṽ + Õv −(AdÕΞ̂)(r̃− ṽt̃ )− Õvt̃+ Õ(r− vt) + ṽt

0 0 t

0 0 0


.

Taking the derivative of the tilde variables and evaluating at the
identity recovers the commutation relation asserted in Section 1.7,

ad
Ξ̃
Ξ =

[
(
˜̂
Ξ, ṽ, r̃− ṽt̃, t̃ ), (Ξ̂, v, r− vt, t)

]

=
([˜̂

Ξ, Ξ̂
]
,
˜̂
Ξv − Ξ̂ṽ,

˜̂
Ξ(r,v, t)− Ξ̂(r̃, ṽ, t̃ ), 0

)
,

where

˜̂
Ξ(r,v, t)− Ξ̂(r̃, ṽ, t̃ )

:=
( ˜̂
Ξ(r− vt) + ṽt

)
−
(
Ξ̂(r̃− ṽt̃ ) + vt̃

)
.

The Galilean group’s Ad∗ and ad∗ actions may now be obtained by
using the matrix transpose pairing to define the dual Lie algebra.

Exercise. Compute the coadjoint actions of G(3), the
Galilean group in three dimensions. ⋆
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6.7 Iterated semidirect products

ad action

Let G be a Lie group with Lie algebra g. Consider the Lie group
obtained by iterating the semidirect-product action of G on itself n
times,

G1s (. . . (Gn−2s (Gn−1sGn)) . . . ) . (6.7.1)

Its Lie algebra elements are denoted as

(u1, u2, . . . , un) ∈ g×n := g1 × (. . . (gn−2 × (gn−1 × gn)) . . . ) .

These possess the iterated semidirect product Lie algebra action

(u1, u2, . . . , un) ∈ gsn := g1s (. . . (gn−2s(gn−1sgn)) . . . )

given by

ad(u1,u2,...,un)(v1, v2, . . . , vn)

=

(
adu1

v1, adu1+u2
v2 + adu2

v1, adu1+u2+u3
v3 + adu3

(v1 + v2),

. . . ,
n∑

k=1

aduk
vn +

n−1∑

k=1

adunvk

)
(6.7.2)

in which the level n = 1 and n = 2 formulas are already familiar.

Exercise. Prove formula (6.7.2) by induction, in which the
m-th step is given by

. . . , adumvm+adum

(
m−1∑

k=1

vk

)
− advm

(
m−1∑

k=1

uk

)
, . . .

This is how infinitesimal transformations compose under
iteration of semidirect-product Lie algebra action. ⋆
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ad∗ action

One calculates ad∗ for the iterated semidirect product by using
(6.7.2) in the pairing 〈 · , · 〉 : (gsn)∗ × gsn → R

〈
(µ1, µ2, . . . , µn), ad(u1,u2,...,un)(v1, v2, . . . , vn)

〉

=
〈
ad∗(u1,u2,...,un)(µ1, µ2, . . . , µn), (v1, v2, . . . , vn)

〉

to find the coadjoint action

ad∗(u1,u2,...,un)(µ1, µ2, . . . , µn) (6.7.3)

=

( n∑

k=1

ad∗uk
µk , . . . ,

m∑

k=1

ad∗uk
µm +

n∑

k=m+1

ad∗uk
µk , . . . ,

n∑

k=1

ad∗uk
µn

)
.

Exercise. Derive the system of Euler–Poincaré equations
for coadjoint motion on (gsn)∗.

Show that its Lie–Poisson structure may be diagonalised
by taking a linear combination of the variables. ⋆

Exercise. Use the hat map to write the system of Euler–
Poincaré equations for coadjoint motion on (so(3)sn)∗ in
R3 vector form.

Also write its diagonal Lie–Poisson structure. ⋆
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7.1 Euler–Poincaré equations for leftinvariant
Lagrangians under SE(3)

The matrix Euler–Poincaré equation for left-invariant Lagrangians
was introduced in Proposition 2.4.3, in the context of Manakov’s
[Man1976] commutator formulation of the Euler rigid-body equa-
tions. As we shall see, Euler–Poincaré evolution is naturally ex-
pressed as coadjoint motion.

The variational derivatives of a given left-invariant Lagrangian
ℓ(ξ, α) : se(3)→ R are expressed as

(
µ , β

)
=
( δℓ
δξ
,
δℓ

δα

)
∈ se(3)∗. (7.1.1)

The commutator form of the matrix Euler–Poincaré Equation
(2.4.27) is

dM

dt
= [M , Ω ] with M =

δl

δΩ
, (7.1.2)

for any Lagrangian l(Ω), where Ω = g−1ġ ∈ g and g is the left-
invariant matrix Lie algebra of any matrix Lie group G. Recall that
M = δl/δΩ ∈ g∗, where the dual g∗ is defined in terms of the matrix
trace pairing. Hence, we may rewrite the Euler–Poincaré Equation
(7.1.2) in terms of the left action of the Lie algebra on its dual. This
happens by the ad∗ action; so the Euler–Poincaré equation becomes

dM

dt
= ad∗ΩM with M =

δl

δΩ
. (7.1.3)

Proposition 7.1.1 The corresponding Euler–Poincaré equation for the
special Euclidean group in three dimensions, SE(3), describes coadjoint
motion on se(3)∗. Namely,

〈(
dµ

dt
,
dβ

dt

)
, (ξ̃ , α̃)

〉
= 〈ad∗(ξ , α)(µ , β) , (ξ̃ , α̃)〉 (7.1.4)

= 〈(ad∗ξ µ+ β ⋄ α , −ξβ) , (ξ̃ , α̃)〉 .
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Proof. The proof follows immediately from the definition of the
Euler–Poincaré equation for SE(3).

Definition 7.1.1 (Euler–Poincaré equation for SE(3)) The Euler–
Poincaré equation for the special Euclidean group in three dimensions,
SE(3), is

(
dµ

dt
,
dβ

dt

)
= ad∗(ξ , α)(µ , β) . (7.1.5)

In the so(3)∗ and R3 components of se(3)∗ this is

dµ

dt
= ad∗ξ µ+ β ⋄ α and

dβ

dt
= − ξβ , (7.1.6)

or in terms of variational quantities,

d

dt

δl

δξ
= ad∗ξ

δl

δξ
+
δl

δα
⋄ α and

d

dt

δl

δα
= − ξ δl

δα
. (7.1.7)

Remark 7.1.1 (Vector Euler–Poincaré equation forSE(3)) In vector
form, the EP equations become, cf. the vector form of ad∗ for se(3)
in (6.3.3),

µ̇ = µ × ξ − α × β and β̇ = − ξ × β . (7.1.8)

That is, in terms of vector variational quantities,

d

dt

δl

δξ
=
δl

δξ
×ξ − α×

δl

δα
and

d

dt

δl

δα
= − ξ × δl

δα
. (7.1.9)

These vector EP equations on se(3)∗ are readily seen to conserve the
quantities C1 = µ · β and C2 = |β|2, corresponding to a reference
direction β(0) and the projection of the angular momentum vector µ
in this direction at any time. The quantities C1 and C2 will turn out
to be Casimirs for the heavy top. Level surfaces of the quantities C1

and C2 define the coadjoint orbits on which the motion takes place
for any choice of Lagrangian. ✷
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Exercise. What are the corresponding vector EP equations
on se(2)∗? ⋆

7.1.1 Legendre transform from se(3) to se(3)∗

We Legendre-transform the reduced Lagrangian ℓ(ξ,α) :se(3) → R

to the Hamiltonian

h(µ,β) = µ · ξ + β ·α− ℓ(ξ,α) ,

whose variations are given by

δh(µ,β) =
∂h

∂µ
· δµ+

∂h

∂β
· δβ

= ξ · δµ+α · δβ +
(
µ− ∂ℓ

∂ξ

)
· δξ +

(
β − ∂ℓ

∂α

)
· δα .

Consequently, the Hamiltonian has derivatives ∂h/∂µ = ξ and
∂h/∂β = α.

Exercise. What is the Legendre transform from se(2) to
se(2)∗? ⋆

7.1.2 Lie–Poisson bracket on se(3)∗

Rearranging the time derivative of a smooth function f yields

df

dt
(µ, β) =

∂f

∂µ
· µ̇+

∂f

∂β
· β̇

=
∂f

∂µ
·
(
µ× ∂h

∂µ
+ β × ∂h

∂β

)
+
∂f

∂β
· β × ∂h

∂µ
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= −µ · ∂f
∂µ
× ∂h

∂µ
− β ·

(∂f
∂β
× ∂h

∂µ
− ∂h

∂β
× ∂f

∂µ

)

=: { f , h } .

This is the Lie–Poisson bracket defined on se(3)∗ and expressed in
terms of vectors (µ, β) ∈ R3 × R3. By construction, it returns the
equations of motion in Hamiltonian form. The Lie–Poisson bracket
may be written in matrix form as

{ f , h } = ∂(µ, β)f
T
J ∂(µ, β)h

=

[
∂f/∂µ

∂f/∂β

]T [
µ× β×
β× 0

][
∂h/∂µ

∂h/∂β

]
. (7.1.10)

The Hamiltonian matrix J has null eigenvectors

[0,β]T = ∂(µ, β)|β|2 and [β, µ]T = ∂(µ, β)(β · µ) .

Consequently the distinguished functions C1 = |β|2 and C2 = µ · β
whose derivatives are the null eigenvectors of the Hamiltonian ma-
trix J will Poisson-commute with any smooth function f(µ, β).
Such distinguished functions are called the Casimirs of the Lie–
Poisson bracket in (7.1.10).

Exercise. What is the Lie–Poisson Hamiltonian formula-
tion on se(2)∗? ⋆

7.1.3 Coadjoint motion on se(3)∗

Theorem 7.1.1 (Conservation of se(3)∗ momentum) The Euler–Poin-
caré Equation (7.1.5) for SE(3) conserves the momentum Ad∗(R(t) , v(t))−1

(µ(t), β(t)). That is,

d

dt

(
Ad∗(R(t) , v(t))−1

(
µ(t), β(t)

))
= 0 . (7.1.11)
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Proof. By Equation (4.2.9) in Proposition 4.2.2 one may rewrite the
Euler–Poincaré Equation (7.1.5) for SE(3) equivalently as

d

dt

(
Ad∗(R(t) , v(t))−1

(
µ(t), β(t)

))
(7.1.12)

= Ad∗(R(t) , v(t))−1

[(
dµ

dt
,
dβ

dt

)
− ad∗(ξ , α)(µ(t) , β(t))

]
= 0 ,

where the left-invariant tangent vectors
(
ξ(t), α(t)) = (R−1Ṙ(t), R−1v̇(t)

)

to (R, v) at the identity are given in Equation (6.3.8) and the oper-
ation Ad∗(R(t) , v(t))−1 is given for se(3)∗ explicitly in formula (6.2.5).

Remark 7.1.2 (First integral) The evolution Equation (7.1.11) con-
serves the first integral

Ad∗(R(t) , v(t))−1

(
µ(t), β(t)

)
=
(
µ(0), β(0)

)
. (7.1.13)

This is the analogue for coadjoint motion on se(3)∗ of spatial an-
gular momentum conservation for so(3)∗. By Equation (6.2.5) the
independently conserved so(3)∗ and R3 components of the se(3)∗

momentum are
(
R(t)µ(t)R(t)−1 + skew(v(t)⊗R(t)β(t)) , R(t)β(t)

)

=
(
µ(0), β(0)

)
. (7.1.14)

This formula is particularly convenient, because β(t) = R(t)−1β(0)
implies that β(t) simply states how the spatial vector β(0) looks in
the rotating frame. ✷

Corollary 7.1.1 The solution of the EP Equation (7.1.5) for SE(3)
evolves by coadjoint motion on the dual Lie algebra se(3)∗.

Proof. The first integral of the evolution Equation (7.1.11) yields

(µ(t) , β(t)) = Ad∗(R(t) , v(t))(µ(0) , β(0)) . (7.1.15)

This expresses the solution as coadjoint motion on se(3)∗.
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Remark 7.1.3 Equation (7.1.12) for conservation of se(3)∗ momen-
tum is written in vector notation as

(
µ(0) , β(0)

)
= Ad∗(R(t) ,v(t))−1

(
µ(t) , β(t)

)
(7.1.16)

=
(
R(t)µ(t) + v(t)×R(t)β(t) , R(t)β(t)

)
,

which may be rearranged into the evolution operator,
(
µ(t) , β(t)

)
= Ad∗(R(t) ,v(t))

(
µ(0) , β(0)

)
(7.1.17)

=
(
R−1(t)

(
µ(0)− v(t)× β(0)

)
, R−1(t)β(0)

)
.

This is the vector form of coadjoint motion on se(3)∗. It is also the
solution of the Hamiltonian system of equations defined by the Lie–
Poisson bracket (7.1.10). ✷

Exercise. Verify directly that this solution satisfies the vec-
tor EP equations on se(3)∗ in (7.1.8) and conserves the
quantities C1 = µ · β and C2 = |β|2. ⋆

Exercise. Compute the coadjoint solution of the vector EP
equations on se(2)∗ that corresponds to (7.1.17) on se(3)∗.
What quantities are conserved in this case? ⋆

Remark 7.1.4 Completing the solution requires the group parame-
ters R(t) and v(t) to be reconstructed from ξ(t) and α(t) according
to Ṙ = Rξ and v̇ = Rα in Equation (6.3.9). In vector notation, the
latter equations become Ṙ = Rξ and v̇ = Rα, where v is linear
displacement of a moving body, α is its linear velocity and ξ is its
angular velocity. ✷
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Theorem 7.1.2 (Kelvin–Noether) The Euler–Poincaré Equation
(7.1.5) for SE(3) preserves the natural pairing

d

dt

〈(
µ(t), β(t)

)
, Ad(R(t) , v(t))−1(η, γ)

〉
= 0 , (7.1.18)

for any fixed (η, γ) ∈ se(3).

Proof. Verifying directly,

d

dt

〈(
µ(t), β(t)

)
, Ad(R(t) , v(t))−1η

〉
(7.1.19)

=

〈
d

dt

(
Ad∗(R(t) , v(t))−1

(
µ(t), β(t)

))
, η

〉
= 0 ,

by Equation (7.1.12).

Remark 7.1.5 Theorem 7.1.2 is associated with Kelvin and Noether
because it arises from symmetry (Noether) and it happens to coin-
cide with the Kelvin circulation theorem in the Euler–Poincaré for-
mulation of ideal fluid motion [HoMaRa1998]. ✷

7.2 Kirchhoff equations on se(3)∗

Suppose the Lagrangian is chosen to be the sum of the kinetic ener-
gies of rotational and translational motion of an ellipsoidal under-
water vehicle with coincident centres of gravity and buoyancy. In
this case, the Lagrangian is given by the sum of the rotational and
translational kinetic energies as [HoJeLe1998]

l(ξ, α) =
1

2
〈ξ , Iξ 〉+ 1

2
〈α , Mα〉 = 1

2
ξ · Iξ +

1

2
α · Mα . (7.2.1)

The two 3 × 3 symmetric matrices (metrics) represent the moment
of inertia (I) and the body mass matrix (M) of the ellipsoidal under-
water vehicle. The corresponding angular and linear momenta are
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given as the pair of vectors

(µ, β) =
( δℓ
δξ
,
δℓ

δα

)
= (Iξ, Mα) .

Consequently, the evolution of an ellipsoidal underwater vehicle is
governed by a vector Euler–Poincaré equation on se(3)∗ of the form
(7.1.8),

(Iξ)˙ = − ξ × Iξ −α×Mα ,

(Mα)˙ = − ξ ×Mα . (7.2.2)

Remark 7.2.1 Of these vectors, β = Mα is linear momentum and
µ = Mξ is angular momentum. The Lagrangian l(ξ, α) in (7.2.1)
is the kinetic energy for the motion of an ellipsoidal underwater
vehicle. ✷

The Hamiltonian for the ellipsoidal underwater vehicle is the
quadratic form

h(µ,β) =
1

2
µ · I−1µ+

1

2
β ·M−1β . (7.2.3)

The Lie–Poisson equations corresponding to (7.1.8) are
[
µ̇

β̇

]
=

[
µ× β×
β× 0

][
∂h/∂µ

∂h/∂β

]
=

[
µ× β×
β× 0

][
I−1µ

M−1β

]
. (7.2.4)

These are the Lie–Poisson equations for geodesic motion on se(3)∗

with respect to the metric given by the Hamiltonian in (7.2.5).

Remark 7.2.2 The stability of the equilibrium solutions of (7.2.2)
for ellipsoidal underwater vehicles may be investigated within
the present Euler–Poincaré framework. See [HoJeLe1998] and
[GaMi1995]. ✷

Exercise. Compute the Lie–Poisson equations for geodesic
motion on se(2)∗ with respect to a quadratic Hamiltonian
metric. ⋆
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7.2.1 Looks can be deceiving: The heavy top

The Hamiltonian for the heavy top is the sum of its kinetic and po-
tential energies,

h(µ,β) =
1

2
µ · I−1µ

︸ ︷︷ ︸
kinetic

+ mgχ · β︸ ︷︷ ︸
potential

, (7.2.5)

in which µ is the body angular momentum, χ is the distance in the
body from its point of support to its centre of mass, mg is its weight
and β = O−1(t)ẑ is the vertical direction, as seen from the body. The
derivatives of this Hamiltonian are

∂h

∂µ
= ξ and

∂h

∂β
= mgχ .

The correct equations of motion for the heavy-top emerge from
this Hamiltonian and the Lie–Poisson bracket on se(3)∗:

µ̇ = {µ , h } = µ× ∂h

∂µ
+ β × ∂h

∂β

= µ× ξ + β ×mgχ , (7.2.6)

β̇ = {β , h } = β × ∂h

∂µ
= β × ξ . (7.2.7)

It may seem surprising that the heavy-top dynamics would emerge
from the SE(3) Lie–Poisson bracket, because the heavy top has no
linear velocity or linear momentum. There is a story behind how
this happened, which will be discussed in the next chapter.

Exercise. Does the Hamiltonian in (7.2.5) follow from the
Legendre transformation of a Lagrangian ℓ(ξ, α)? If so,
prove it. If not, what goes wrong? ⋆
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Exercise. What are the equations corresponding to (7.2.6)
and (7.2.7) for se(2)∗? To what physical system do these
equations correspond? ⋆

Exercise. Is the dynamical system governing (M, S) in
Equations (2.5.25) and (2.5.26) Hamiltonian? Prove it.

How is that system analogous to a heavy top? ⋆

Exercise. Write the Lie–Poisson Hamiltonian formulations
for motion on the dual of each of the Lie algebras for

the Heisenberg Lie group; and

the semidirect-product Lie group SL(2,R)sR2.
⋆
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8.1 Introduction and definitions

A top is a rigid body of mass m rotating with a fixed point of sup-
port in a constant gravitational field of acceleration −gẑ pointing
vertically downward. The orientation of the body relative to the
vertical axis ẑ is defined by the unit vector Γ = R−1(t)ẑ for a curve
R(t) ∈ SO(3). According to its definition, the unit vector Γ repre-
sents the motion of the vertical direction as seen from the rotating
body. Consequently, it satisfies the auxiliary motion equation,

Γ̇ = −R−1Ṙ(t)Γ = − Ω̂(t)Γ = Γ×Ω . (8.1.1)

Here the rotation matrix R(t) ∈ SO(3), the skew matrix Ω̂ =
R−1Ṙ ∈ so(3) and the body angular frequency vector Ω ∈ R3 are
related by the hat map, Ω =

(
R−1Ṙ

)
,̂ where

hat map, ̂ : (so(3), [·, ·])→ (R3,×) ,

with Ω̂v = Ω× v for any v ∈ R3.

The motion of a top is determined from Euler’s equations in vec-
tor form,

IΩ̇ = IΩ×Ω+mgΓ× χ , (8.1.2)

Γ̇ = Γ×Ω , (8.1.3)

where Ω, Γ, χ ∈ R3 are vectors in the rotating body frame. Here

Ω = (Ω1,Ω2,Ω3) is the body angular velocity vector.

I = diag(I1, I2, I3) is the moment of inertia tensor, diago-
nalised in the body principal axes.

Γ = R−1(t)ẑ represents the motion of the unit vector along the
vertical axis, as seen from the body.

χ is the constant vector in the body from the point of support
to the body’s centre of mass.

m is the total mass of the body and g is the constant accelera-
tion of gravity.
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8.2 Heavytop action principle

Proposition 8.2.1 The heavy-top motion equation (8.1.2) is equivalent to
the heavy-top action principle δSred = 0 for a reduced action,

Sred =

∫ b

a
l(Ω,Γ) dt =

∫ b

a

1

2

〈
IΩ , Ω

〉
−
〈
mgχ , Γ

〉
dt , (8.2.1)

where variations of vectors Ω and Γ are restricted to be of the form

δΩ = Σ̇+Ω×Σ and δΓ = Γ×Σ , (8.2.2)

arising from variations of the corresponding definitions Ω̂ = R−1Ṙ and

Γ = R−1(t)ẑ in which Σ̂(t) = R−1δR is a curve in R3 that vanishes at
the endpoints in time.

Proof. Since I is symmetric and χ is constant, one finds the varia-
tion,

δ

∫ b

a
l(Ω,Γ) dt =

∫ b

a

〈
IΩ , δΩ

〉
−
〈
mgχ , δΓ

〉
dt

=

∫ b

a

〈
IΩ , Σ̇+Ω×Σ

〉
−
〈
mgχ , Γ×Σ

〉
dt

=

∫ b

a

〈
− d

dt
IΩ , Σ

〉
+
〈
IΩ , Ω×Σ

〉
−
〈
mgχ , Γ×Σ

〉
dt

=

∫ b

a

〈
− d

dt
IΩ+ IΩ×Ω+mgΓ× χ , Σ

〉
dt,

upon integrating by parts and using the endpoint conditions,
Σ(b) = Σ(a) = 0. Since Σ is otherwise arbitrary, (8.2.1) is equivalent
to

− d

dt
IΩ+ IΩ×Ω+mgΓ× χ = 0 ,

which is Euler’s motion equation for the heavy top (8.1.2). This mo-
tion equation is completed by the auxiliary equation Γ̇ = Γ ×Ω in
(8.1.3) arising from the definition of Γ.
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The Legendre transformation for l(Ω,Γ) gives the body angular
momentum

Π =
∂l

∂Ω
= IΩ .

The well-known energy Hamiltonian for the heavy top then
emerges as

h(Π,Γ) = Π ·Ω− l(Ω,Γ) = 1

2
〈Π , I−1Π〉+ 〈mgχ , Γ 〉 , (8.2.3)

which is the sum of the kinetic and potential energies of the top.

The Lie–Poisson equations

Let f, h : g∗ → R be real-valued functions on the dual space g∗.
Denoting elements of g∗ by µ, the functional derivative of f at µ is
defined as the unique element δf/δµ of g defined by

lim
ε→0

1

ε
[f(µ+ εδµ)− f(µ)] =

〈
δµ,

δf

δµ

〉
, (8.2.4)

for all δµ ∈ g∗, where 〈· , ·〉 denotes the pairing between g∗ and g.

8.3 Lie–Poisson brackets

Definition 8.3.1 (Lie–Poisson equations) The (±) Lie–Poisson
brackets are defined by

{f, h}±(µ) = ±
〈
µ,

[
δf

δµ
,
δh

δµ

]〉
= ∓

〈
µ, adδh/δµ

δf

δµ

〉
. (8.3.1)

The corresponding Lie–Poisson equations, determined by ḟ =
{f, h} , read

µ̇ = {µ, h} = ∓ ad∗δh/δµ µ , (8.3.2)
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where one defines the ad∗ operation in terms of the pairing 〈· , ·〉, by

{f, h} =
〈
µ, adδh/δµ

δf

δµ

〉
=

〈
ad∗δh/δµ µ,

δf

δµ

〉
.

Remark 8.3.1 The Lie–Poisson setting of mechanics is a special
case of the general theory of systems on Poisson manifolds,
for which there is now extensive theoretical development. (See
[MaRa1994] for a start on this literature.) ✷

8.3.1 Lie–Poisson brackets and momentum maps

An important feature of the rigid-body bracket carries over to gen-
eral Lie algebras. Namely, Lie–Poisson brackets on g∗ arise from canon-
ical brackets on the cotangent bundle (phase space) T ∗G associated with
a Lie group G which has g as its associated Lie algebra. Thus, the
process by which the Lie–Poisson brackets arise is the momentum
map

T ∗G 7→ g∗ .

For example, a rigid body is free to rotate about its centre of
mass andG is the (proper) rotation group SO(3). The choice of T ∗G
as the primitive phase space is made according to the classical pro-
cedures of mechanics described earlier. For the description using
Lagrangian mechanics, one forms the velocity phase space TG. The
Hamiltonian description on T ∗G is then obtained by standard pro-
cedures: Legendre transforms, etc.

The passage from T ∗G to the space of Π’s (body angular mo-
mentum space) is determined by left translation on the group. This
mapping is an example of a momentum map; that is, a mapping
whose components are the “Noether quantities” associated with a
symmetry group. That the map from T ∗G to g∗ is a Poisson map is
a general fact about momentum maps. The Hamiltonian point of view
of all this is a standard subject reviewed in Chapter 11.

Remark 8.3.2 (Lie–Poisson description of the heavy top) As it turns
out, the underlying Lie algebra for the Lie–Poisson description of
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the heavy top consists of the Lie algebra se(3,R) of infinitesimal
Euclidean motions in R3. This is a bit surprising, because heavy-top
motion itself does not actually arise through spatial translations by
the Euclidean group; in fact, the body has a fixed point! Instead,
the Lie algebra se(3,R) arises for another reason associated with the
breaking of the SO(3) isotropy by the presence of the gravitational
field. This symmetry breaking introduces a semidirect-product Lie–
Poisson structure which happens to coincide with the dual of the
Lie algebra se(3,R) in the case of the heavy top. ✷

8.3.2 Lie–Poisson brackets for the heavy top

The Lie algebra of the special Euclidean group in three dimensions
is se(3) = R3 × R3 with the Lie bracket

[(ξ,u), (η,v)] = (ξ × η, ξ × v − η × u) . (8.3.3)

We identify the dual space with pairs (Π,Γ); the corresponding (−)
Lie–Poisson bracket called the heavy-top bracket is

{f , h}(Π,Γ) = −Π · ∂f
∂Π
× ∂h

∂Π
− Γ ·

( ∂f
∂Π
× ∂h

∂Γ
− ∂h

∂Π
× ∂f

∂Γ

)
.

This Lie–Poisson bracket and the Hamiltonian (8.2.3) recover Equa-
tions (8.1.2) and (8.1.3) for the heavy top, as

Π̇ = {Π , h} = Π× ∂h

∂Π
+ Γ× ∂h

∂Γ
= Π× I

−1Π+ Γ×mgχ ,

Γ̇ = {Γ , h} = Γ× ∂h

∂Π
= Γ× I

−1Π .

Remark 8.3.3 (Semidirect products and symmetry breaking) The
Lie algebra of the Euclidean group has a structure which is a special
case of what is called a semidirect product. Here, it is the semidirect-
product action so(3)sR3 of the Lie algebra of rotations so(3) acting
on the infinitesimal translations R3, which happens to coincide with
se(3,R).
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In general, the Lie bracket for semidirect-product action gsV of
a Lie algebra g on a vector space V is given by, cf. Equation (6.3.1),

[
(X, a), (X, a)

]
=
(
[X,X ], X(a)−X(a)

)
,

in which X,X ∈ g and a, a ∈ V . Here, the action of the Lie algebra
on the vector space is denoted, e.g.,X(a). Usually, this action would
be the Lie derivative. ✷

Lie–Poisson brackets defined on the dual spaces of semidirect-
product Lie algebras tend to occur under rather general circum-
stances when the symmetry in T ∗G is broken, e.g., reduced to an
isotropy subgroup of a set of parameters. In particular, there are
similarities in structure between the Poisson bracket for compress-
ible flow and that for the heavy top. In the latter case, the vertical
direction of gravity breaks the isotropy of R3 from SO(3) to SO(2).
The general theory for semidirect products is reviewed in a variety
of places, including [MaRaWe1984a, MaRaWe1984b].

Many interesting examples of Lie–Poisson brackets on semidi-
rect products exist for fluid dynamics. These semidirect-product
Lie–Poisson Hamiltonian theories range from simple fluids, to
charged fluid plasmas, to magnetised fluids, to multiphase flu-
ids, to super fluids, to Yang–Mills fluids, relativistic or not, and
to liquid crystals. Many of these theories are discussed from the
Euler–Poincaré viewpoint in [HoMaRa1998] and [Ho2002].

8.4 Clebsch action principle

Proposition 8.4.1 (Clebsch heavy-top action principle) The heavy-
top Equations (8.1.2) and (8.1.3) follow from a Clebsch constrained action
principle, δS = 0, with

S =

∫ b

a

1

2

〈
IΩ , Ω

〉
−
〈
mgχ , Γ

〉
+
〈
Ξ , Γ̇+Ω× Γ

〉
dt . (8.4.1)

Remark 8.4.1 The last term in this action is the Clebsch constraint
for the auxiliary equation satisfied by the unit vector Γ. From its
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definition Γ = R−1(t)ẑ and the definition of the body angular ve-
locity Ω = R−1(t)Ṙ, this unit vector must satisfy

Γ̇ = −R−1Ṙ(t)Γ = − Ω̂(t)Γ = −Ω× Γ .

(The third equality invokes the hat map.) According to the Cleb-
sch construction, the Lagrange multiplier Ξ enforcing the auxiliary
Equation (8.4.1) will become the momentum canonically conjugate
to the auxiliary variable Γ. ✷

Proof. The stationary variations of the constrained action (8.4.1)
yield the following three Clebsch relations, cf. Equations (2.5.22) for
the rigid body,

δΩ : IΩ+ Γ×Ξ = 0 ,

δΞ : Γ̇+Ω× Γ = 0 ,

δΓ : Ξ̇+Ω×Ξ+mgχ = 0 .

As we shall see in Chapter 11, the first Clebsch relation defines the
momentum map T ∗R3 → so(3)∗ for the body angular momentum
IΩ. From the other two Clebsch relations, the equation of motion
for the body angular momentum may be computed as

IΩ̇ = − Γ̇×Ξ− Γ× Ξ̇

= (Ω× Γ)×Ξ+ Γ× (Ω×Ξ+mgχ)

= Ω× (Γ×Ξ) + Γ×mgχ
= −Ω× (IΩ) +mgΓ× χ ,

which recovers Euler’s motion Equation (8.1.2) for the heavy top.

8.5 Kaluza–Klein construction

The Lagrangian in the heavy-top action principle (8.2.1) may be
transformed into quadratic form. This is accomplished by sus-
pending the system in a higher-dimensional space via the Kaluza–
Klein construction. This construction proceeds for the heavy top as
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a slight modification of the well-known Kaluza–Klein construction
for a charged particle in a prescribed magnetic field.

Let QKK be the manifold SO(3) × R3 with variables (R,q). On
QKK introduce the Kaluza–Klein Lagrangian

LKK : TQKK ≃ TSO(3)× TR3 7→ R ,

as

LKK(R,q, Ṙ, q̇; ẑ) = LKK(Ω,Γ,q, q̇)

=
1

2
〈 IΩ , Ω 〉+ 1

2
|Γ+ q̇|2 , (8.5.1)

with Ω =
(
R−1Ṙ

)
̂and Γ = R−1ẑ. The Lagrangian LKK is positive-

definite in (Ω,Γ, q̇); so it may be regarded as a kinetic energy which
defines a metric, the Kaluza–Klein metric on TQKK .

The Legendre transformation for LKK gives the momenta

Π = IΩ and p = Γ+ q̇ . (8.5.2)

Since LKK does not depend on q, the Euler–Lagrange equation

d

dt

∂LKK

∂q̇
=
∂LKK

∂q
= 0

shows that p = ∂LKK/∂q̇ is conserved. The constant vector p is
now identified as the vector in the body,

p = Γ+ q̇ = −mgχ .

After this identification, the heavy-top action principle in Proposi-
tion 8.2.1 with the Kaluza–Klein Lagrangian returns Euler’s motion
equation for the heavy top (8.1.2).

The Hamiltonian HKK associated with LKK by the Legendre
transformation (8.5.2) is

HKK(Π,Γ,q,p) = Π ·Ω+ p · q̇− LKK(Ω,Γ,q, q̇)

=
1

2
Π · I−1Π− p · Γ+

1

2
|p|2

=
1

2
Π · I−1Π+

1

2
|p− Γ|2 − 1

2
|Γ|2 .
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Recall that Γ is a unit vector. On the constant level set |Γ|2 = 1,
the Kaluza–Klein Hamiltonian HKK is a positive quadratic func-
tion, shifted by a constant. Likewise, on the constant level set
p = −mgχ, the Kaluza–Klein Hamiltonian HKK is a function of
only the variables (Π,Γ) and is equal to the Hamiltonian (8.2.3) for
the heavy top up to an additive constant. As a result we have the
following.

Proposition 8.5.1 The Lie–Poisson equations for the Kaluza–Klein Ha-
miltonian HKK recover Euler’s equations for the heavy top, (8.1.2) and
(8.1.3).

Proof. The Lie–Poisson bracket may be written in matrix form ex-
plicitly as

{ f , h } =




∂f/∂Π

∂f/∂Γ

∂f/∂q

∂f/∂p




T 


Π× Γ× 0 0

Γ× 0 0 0

0 0 0 Id

0 0 − Id 0







∂h/∂Π

∂h/∂Γ

∂h/∂q

∂h/∂p


 . (8.5.3)

Consequently, one obtains the following Hamiltonian equations for
h = HKK(Π,Γ,q,p),




Π̇

Γ̇

q̇

ṗ


 =




Π× Γ× 0 0

Γ× 0 0 0

0 0 0 Id

0 0 − Id 0







Ω

−p

0

p− Γ


 . (8.5.4)

These recover the heavy-top Equations (8.1.2) and (8.1.3) upon eval-
uating p = −mgχ.

Exercise. In an attempt to mimic Manakov’s beautiful idea
for showing the integrability of the rigid body on SO(n),
one might imagine writing the three-dimensional heavy-
top Equations (8.1.2) and (8.1.3) by inserting a spectral pa-
rameter λ as

d

dt

(
Γ+ λΠ+ λ2J

)
=
(
Γ+ λΠ+ λ2J

)
×
(
Ω+ λK

)
,
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with constant vectors J and K in R3. Does this formula-
tion provide enough constants of motion to show the in-
tegrability of the heavy-top equations for some values of
χ and I? If so, which types of tops may be shown to be
integrable this way? ⋆

Answer. The polynomial equation above implies the fol-
lowing relations, at various powers of λ:

λ3 : J × K = 0 =⇒ J ‖ K, =⇒ J = αK, α = const.

λ2 : J̇ = 0 = Π × K + J × Ω, =⇒ (IΩ− αΩ) × K = 0.

λ1 : Π̇ = Π × Ω+ Γ × K, =⇒ K = mgχ .

λ0 : Γ̇ = Γ × Ω.

These relationships hold, provided the moment of iner-
tia I is either proportional to the identity (Euler top), or
has two equal entries that make it cylindrically symmet-
ric about the vector χ (Lagrange top).

This system conserves each of the coefficients of the
powers of λ in |Γ + λΠ + λ2J |2. That is, besides the
kinematic constant |J |2, it conserves

|Γ|2, Γ ·Π ,
1

2α
|Π|2 +mgΓ · χ , Π · χ .

The first two are the Casimirs of the Lie–Poisson bracket
in (8.3.4), the third is the Hamiltonian and the last is
the χ-component of the angular momentum, which is
conserved when the moment of inertia I is cylindrically
symmetric about the vector χ. This symmetry holds
for the Euler top and the Lagrange top, which are in-
deed known to be integrable. For in-depth discussions
of this approach to heavy-top dynamics, see [Ra1982,
RaVM1982]. N
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Exercise. Manakov’s approach for the heavy top in the vec-
tor notation of the previous exercise suggests a similar ap-
plication to the n× n matrix commutator equation

d

dt

(
Γ + λΠ+ λ2J

)
=
[
Γ + λΠ+ λ2J, Ω+ λK

]

with skew-symmetric (Γ,Π,Ω, J,K) with constant (J,K).
Determine whether this approach could be used to extend
Manakov’s treatment of the rigid body in n dimensions to
the n-dimensional versions of the Euler top and the La-
grange top. ⋆

Exercise. Extend the Manakov approach even further by
computing the system of n× n matrix equations for

d

dt

(
Γ + λM + λ2N + λ3J

)

=
[
Γ + λM + λ2N + λ3J, Ω+ λω + λ2K

]
.

Is this extended matrix system Hamiltonian? If so, what is
its Lie–Poisson bracket? ⋆
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9.1 Action principles on Lie algebras

Hamilton’s principle for stationary action was explained earlier for
deriving Euler’s equations for rigid-body rotations in either their
vector or quaternion forms. In the notation for the AD, Ad and ad
actions of Lie groups and Lie algebras, Hamilton’s principle (that
the equations of motion arise from stationarity of the action) for La-
grangians defined on Lie algebras may be expressed as follows. This
is the Euler–Poincaré theorem [Po1901].

Theorem 9.1.1 (Euler–Poincaré theorem) Stationarity

δS(ξ) = δ

∫ b

a
l(ξ) dt = 0 (9.1.1)

of an action

S(ξ) =

∫ b

a
l(ξ) dt ,

whose Lagrangian is defined on the (left-invariant) Lie algebra g of a Lie
group G by l(ξ) : g 7→ R, yields the Euler–Poincaré equation on g∗,

d

dt

δl

δξ
= ad∗ξ

δl

δξ
, (9.1.2)

for variations of the left-invariant Lie algebra element

ξ = g−1ġ(t) ∈ g

that are restricted to the form

δξ = η̇ + adξ η , (9.1.3)

in which η(t) ∈ g is a curve in the Lie algebra g that vanishes at the
endpoints in time.
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Exercise. What is the solution to the Euler–Poincaré Equa-
tion (9.1.2) in terms of Ad∗g(t)?

Hint: Take a look at the earlier equation (4.2.10). ⋆

Remark 9.1.1 The earlier forms (4.1.21) and (4.1.23) of the varia-
tional formula for vectors and quaternions are now seen to apply
more generally. Namely, such variations are defined for any Lie al-
gebra. ✷

Proof. A direct computation proves Theorem 9.1.1. Later, we will
explain the source of the constraint (9.1.3) on the form of the varia-
tions on the Lie algebra. One verifies the statement of the theorem
by computing with a nondegenerate pairing 〈 · , · 〉 : g∗ × g→ R,

0 = δ

∫ b

a
l(ξ) dt =

∫ b

a

〈 δl
δξ
, δξ
〉
dt

=

∫ b

a

〈 δl
δξ
, η̇ + adξ η

〉
dt

=

∫ b

a

〈
− d

dt

δl

δξ
+ ad∗ξ

δl

δξ
, η
〉
dt+

〈 δl
δξ
, η
〉∣∣∣∣

b

a

,

upon integrating by parts. The last term vanishes, by the endpoint
conditions, η(b) = η(a) = 0.

Since η(t) ∈ g is otherwise arbitrary, (9.1.1) is equivalent to

− d

dt

δl

δξ
+ ad∗ξ

δl

δξ
= 0 ,

which recovers the Euler–Poincaré Equation (9.1.2) in the statement
of the theorem.

Corollary 9.1.1 (Noether’s theorem for Euler–Poincaré) If η is an in-
finitesimal symmetry of the Lagrangian, then 〈 δlδξ , η〉 is its associated con-
stant of the Euler–Poincaré motion.
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Proof. Consider the endpoint terms 〈 δlδξ , η〉|ba arising in the variation
δS in (9.1.1) and note that this implies for any time t ∈ [a, b] that

〈 δl

δξ(t)
, η(t)

〉
= constant,

when the Euler–Poincaré Equations (9.1.2) are satisfied.

Corollary 9.1.2 (Interpretation of Noether’s theorem) Noether’s theo-
rem for the Euler–Poincaré stationary principle may be interpreted as con-
servation of the spatial momentum quantity

(
Ad∗g−1(t)

δl

δξ(t)

)
= constant,

as a consequence of the Euler–Poincaré Equation (9.1.2).

Proof. Invoke left-invariance of the Lagrangian l(ξ) under g → hǫg
with hǫ ∈ G. For this symmetry transformation, one has δg = ζg
with ζ = d

dǫ

∣∣
ǫ=0

hǫ, so that

η = g−1δg = Adg−1ζ ∈ g .

In particular, along a curve η(t) we have

η(t) = Adg−1(t)η(0) on setting ζ = η(0),

at any initial time t = 0 (assuming of course that [0, t] ∈ [a, b]). Con-
sequently,

〈 δl

δξ(t)
, η(t)

〉
=
〈 δl

δξ(0)
, η(0)

〉
=
〈 δl

δξ(t)
, Adg−1(t)η(0)

〉
.

For the nondegenerate pairing 〈 · , · 〉, this means that

δl

δξ(0)
=

(
Ad∗g−1(t)

δl

δξ(t)

)
= constant.

The constancy of this quantity under the Euler–Poincaré dynamics
in (9.1.2) is verified, upon taking the time derivative and using the
coadjoint motion relation (4.2.9) in Proposition 4.2.2.
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Remark 9.1.2 The form of the variation in (9.1.3) arises directly by

(i) computing the variations of the left-invariant Lie algebra el-
ement ξ = g−1ġ ∈ g induced by taking variations δg in the
group;

(ii) taking the time derivative of the variation η = g−1g ′ ∈ g ; and

(iii) using the equality of cross derivatives (g ˙ ′ = d2g/dtds = g ′ )̇.

Namely, one computes, cf. Proposition (2.4.1) for the rigid body,

ξ ′ = (g−1ġ) ′ = − g−1g ′g−1ġ + g−1g ˙ ′ = − ηξ + g−1g ˙ ′ ,

η̇ = (g−1g ′) ˙ = − g−1ġg−1g ′ + g−1g ′ ˙ = − ξη + g−1g ′ ˙ .

On taking the difference, the terms with cross derivatives cancel and
one finds the variational formula (9.1.3),

ξ ′ − η̇ = [ ξ , η ] with [ ξ , η ] := ξ η − η ξ = adξ η . (9.1.4)

Thus, the same formal calculations as for vectors and quaternions
also apply to Hamilton’s principle on (matrix) Lie algebras. ✷

Example 9.1.1 (Euler–Poincaré equation forSE(3)) The Euler–Poin-
caré Equation (9.1.2) for SE(3) is equivalent to

(
d

dt

δl

δξ
,
d

dt

δl

δα

)
= ad∗(ξ , α)

(
δl

δξ
,
δl

δα

)
. (9.1.5)

This formula recovers the Euler–Poincaré Equation (7.1.7) for SE(3) upon
using the definition of the ad∗ operation for se(3) in Equation (6.3.2).

Remark 9.1.3 Corollary 9.1.2 is again the Kelvin–Noether Theorem
7.1.2, seen earlier for SE(3) and now proven for the Euler–Poincaré
equations on an arbitrary Lie group. ✷
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9.2 Hamilton–Pontryagin principle

Formula (9.1.4) for the variation of the vector ξ = g−1ġ ∈ g may
be imposed as a constraint in Hamilton’s principle and thereby
provide an immediate derivation of the Euler–Poincaré Equation
(9.1.2). This constraint is incorporated into the following theorem
[BoMa2009].

Theorem 9.2.1 (Hamilton–Pontryagin principle) The Euler–Poin-
caré equation

d

dt

δl

δξ
= ad∗ξ

δl

δξ
(9.2.1)

on the dual Lie algebra g∗ is equivalent to the following implicit varia-
tional principle,

δS(ξ, g, ġ) = δ

∫ b

a
l(ξ, g, ġ) dt = 0, (9.2.2)

for a constrained action

S(ξ, g, ġ) =

∫ b

a
l(ξ, g, ġ) dt

=

∫ b

a

[
l(ξ) + 〈µ , (g−1ġ − ξ) 〉

]
dt . (9.2.3)

Proof. The variations of S in formula (9.2.3) are given by

δS =

∫ b

a

〈 δl
δξ
− µ , δξ

〉
+
〈
δµ , (g−1ġ − ξ)

〉
+
〈
µ , δ(g−1ġ)

〉
dt .

Substituting δ(g−1ġ) from (9.1.4) into the last term produces
∫ b

a

〈
µ , δ(g−1ġ)

〉
dt =

∫ b

a

〈
µ , η̇ + adξ η

〉
dt

=

∫ b

a

〈
− µ̇+ ad∗ξ µ , η

〉
dt+

〈
µ , η

〉∣∣∣
b

a
,
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where η = g−1δg vanishes at the endpoints in time. Thus, stationar-
ity δS = 0 of the Hamilton–Pontryagin variational principle yields
the following set of equations:

δl

δξ
= µ , g−1ġ = ξ , µ̇ = ad∗ξ µ . (9.2.4)

Remark 9.2.1 (Interpreting variational formulas (9.2.4)) The first
formula in (9.2.4) is the fibre derivative needed in the Legendre
transformation g 7→ g∗, for passing to the Hamiltonian formula-
tion. The second is the reconstruction formula for obtaining the
solution curve g(t) ∈ G on the Lie group G given the solution
ξ(t) = g−1ġ ∈ g. The third formula in (9.2.4) is the Euler–Poincaré
equation on g∗. The interpretation of Noether’s theorem in Corol-
lary 9.1.2 transfers to the Hamilton–Pontryagin variational principle
as preservation of the quantity

(
Ad∗g−1(t)µ(t)

)
= µ(0) = constant,

under the Euler–Poincaré dynamics.

This Hamilton’s principle is said to be implicit because the def-
initions of the quantities describing the motion emerge only after
the variations have been taken. See [YoMa2006] for discussions of
recent developments in the theory of implicit variational principles.

✷

Exercise. Compute the Euler–Poincaré equation on g∗

when ξ(t) = ġg−1 ∈ g is right-invariant. ⋆

9.3 Clebsch approach to Euler–Poincaré

The Hamilton–Pontryagin (HP) Theorem 9.2.1 elegantly delivers
the three key formulas in (9.2.4) needed for deriving the Lie–Poisson
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Hamiltonian formulation of the Euler–Poincaré equation. Perhaps
surprisingly, the HP theorem accomplishes this without invoking
any properties of how the invariance group of the Lagrangian G
acts on the configuration space M .

An alternative derivation of these formulas exists that uses the
Clebsch approach and does invoke the actionG×M →M of the Lie
group on the configuration space,M , which is assumed to be a man-
ifold. This alternative derivation is a bit more elaborate than the HP
theorem. However, invoking the Lie group action on the configura-
tion space provides additional valuable information. In particular,
the alternative approach will yield information about the momen-
tum map T ∗M 7→ g∗ which explains precisely how the canonical
phase space T ∗M maps to the Poisson manifold of the dual Lie al-
gebra g∗.

Proposition 9.3.1 (Clebsch Euler–Poincaré principle) The Euler–
Poincaré equation

d

dt

δl

δξ
= ad∗ξ

δl

δξ
(9.3.1)

on the dual Lie algebra g∗ is equivalent to the following implicit variational
principle,

δS(ξ, q, q̇, p) = δ

∫ b

a
l(ξ, q, q̇, p) dt = 0, (9.3.2)

for an action constrained by the reconstruction formula

S(ξ, q, q̇, p) =

∫ b

a
l(ξ, q, q̇, p) dt

=

∫ b

a

[
l(ξ) +

〈〈
p , q̇ +£ξq

〉〉]
dt , (9.3.3)

in which the pairing 〈〈 · , · 〉〉 : T ∗M × TM 7→ R maps an element of the
cotangent space (a momentum covector) and an element from the tangent
space (a velocity vector) to a real number. This is the natural pairing for
an action integrand and it also occurs in the Legendre transformation.

Remark 9.3.1 The Lagrange multiplier p in the second term of
(9.3.3) imposes the constraint

q̇ +£ξq = 0 . (9.3.4)
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This is the formula for the evolution of the quantity q(t) =
g−1(t)q(0) under the left action of the Lie algebra element ξ ∈ g

on it by the Lie derivative £ξ along ξ. (For right action by g so that
q(t) = q(0)g(t), the formula is q̇ −£ξq = 0.) ✷

9.3.1 Defining the Lie derivative

One assumes the motion follows a trajectory q(t) ∈ M in the con-
figuration space M given by q(t) = g(t)q(0), where g(t) ∈ G is a
time-dependent curve in the Lie groupGwhich operates on the con-
figuration space M by a flow φt : G ×M 7→ M . The flow property
of the map φt ◦ φs = φs+t is guaranteed by the group composition
law.

Just as for the free rotations, one defines the left-invariant and
right-invariant velocity vectors. Namely, as for the body angular
velocity,

ξL(t) = g−1ġ(t) is left-invariant under g(t)→ hg(t),

and as for the spatial angular velocity,

ξR(t) = ġg−1(t) is right-invariant under g(t)→ g(t)h,

for any choice of matrix h ∈ G. This means neither of these veloci-
ties depends on the initial configuration.

Rightinvariant velocity vector

The Lie derivative £ξ appearing in the reconstruction relation q̇ =
−£ξq in (9.3.4) is defined via the Lie group operation on the configu-
ration space exactly as for free rotation. For example, one computes
the tangent vectors to the motion induced by the group operation
acting from the left as q(t) = g(t)q(0) by differentiating with respect
to time t,

q̇(t) = ġ(t)q(0) = ġg−1(t)q(t) =: £ξRq(t) ,

where ξR = ġg−1(t) is right-invariant. This is the analogue of the
spatial angular velocity of a freely rotating rigid body.
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Leftinvariant velocity vector

Likewise, differentiating the right action q(t) = q(0)g(t) of the group
on the configuration manifold yields

q̇(t) = q(t)g−1ġ(t) =: £ξLq(t) ,

in which the quantity

ξL(t) = g−1ġ(t) = Adg−1(t)ξR(t)

is the left-invariant tangent vector.

This analogy with free rotation dynamics should be a good
guide for understanding the following manipulations, at least un-
til we have a chance to illustrate the ideas with further examples.

Exercise. Compute the time derivatives and thus the
forms of the right- and left-invariant velocity vectors for
the group operations by the inverse q(t) = q(0)g−1(t) and
q(t) = g−1(t)q(0). Observe the equivalence (up to a sign)
of these velocity vectors with the vectors ξR and ξL, respec-
tively. Note that the reconstruction formula (9.3.4) arises
from the latter choice. ⋆

9.3.2 Clebsch Euler–Poincaré principle

Let us first define the concepts and notation that will arise in the
course of the proof of Proposition 9.3.1.

Definition 9.3.1 (The diamond operation ⋄) The diamond opera-
tion (⋄) in Equation (9.3.8) is defined as minus the dual of the Lie
derivative with respect to the pairing induced by the variational deriva-
tive in q, namely,

〈
p ⋄ q , ξ

〉
=
〈〈
p , −£ξq

〉〉
. (9.3.5)
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Definition 9.3.2 (Transpose of the Lie derivative) The transpose
of the Lie derivative £

T
ξ p is defined via the pairing 〈〈 · , · 〉〉 between

(q, p) ∈ T ∗M and (q, q̇) ∈ TM as

〈〈
£

T
ξ p , q

〉〉
=
〈〈
p , £ξq

〉〉
. (9.3.6)

Proof. The variations of the action integral

S(ξ, q, q̇, p) =

∫ b

a

[
l(ξ) +

〈〈
p , q̇ +£ξq

〉〉]
dt (9.3.7)

from formula (9.3.3) are given by

δS =

∫ b

a

〈 δl
δξ
, δξ

〉
+
〈〈 δl
δp
, δp

〉〉
+
〈〈 δl
δq
, δq

〉〉
+
〈〈
p , £δξq

〉〉
dt

=

∫ b

a

〈 δl
δξ
− p ⋄ q , δξ

〉
+
〈〈
δp , q̇ +£ξq

〉〉
−
〈〈
ṗ−£

T
ξ p , δq

〉〉
dt .

Thus, stationarity of this implicit variational principle implies the
following set of equations:

δl

δξ
= p ⋄ q , q̇ = −£ξq , ṗ = £

T
ξ p . (9.3.8)

In these formulas, the notation distinguishes between the two types
of pairings,

〈 · , · 〉 : g∗ × g 7→ R and 〈〈 · , · 〉〉 : T ∗M × TM 7→ R . (9.3.9)

(The third pairing in the formula for δS is not distinguished because
it is equivalent to the second one under integration by parts in time.)

The Euler–Poincaré equation emerges from elimination of (q, p)
using these formulas and the properties of the diamond operation
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that arise from its definition, as follows, for any vector η ∈ g:
〈 d

dt

δl

δξ
, η
〉

=
d

dt

〈 δl
δξ
, η
〉
,

[Definition of ⋄ ] =
d

dt

〈
p ⋄ q , η

〉
=

d

dt

〈〈
p , −£ηq

〉〉
,

[Equations (9.3.8)] =
〈〈
£

T
ξ p , −£ηq

〉〉
+
〈〈
p , £η£ξq

〉〉
,

[Transpose, ⋄ and ad ] =
〈〈
p , −£[ξ, η]q

〉〉
=
〈
p ⋄ q , adξη

〉
,

[Definition of ad∗ ] =
〈
ad∗ξ

δl

δξ
, η
〉
.

This is the Euler–Poincaré Equation (9.3.1).

Exercise. Show that the diamond operation defined in
Equation (9.3.5) is antisymmetric,

〈
p ⋄ q , ξ

〉
= −

〈
q ⋄ p , ξ

〉
. (9.3.10)

⋆

Exercise. (Euler–Poincaré equation for right action) Com-
pute the Euler–Poincaré equation for the Lie group action
G×M 7→M : q(t) = q(0)g(t) in which the group acts from
the right on a point q(0) in the configuration manifold M
along a time-dependent curve g(t) ∈ G. Explain why the
result differs in sign from the case of left G-action on man-
ifold M . ⋆

Exercise. (Clebsch approach for motion on T ∗(G×V )) Of-
ten the Lagrangian will contain a parameter taking values
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in a vector space V that represents a feature of the potential
energy of the motion. We have encountered this situation
already with the heavy top, in which the parameter is the
vector in the body pointing from the contact point to the
centre of mass. Since the potential energy will affect the
motion we assume an action G × V → V of the Lie group
G on the vector space V . The Lagrangian then takes the
form L : TG× V → R.

Compute the variations of the action integral

S(ξ, q, q̇, p) =

∫ b

a

[
l̃(ξ, q) +

〈〈
p , q̇ +£ξq

〉〉]
dt

and determine the effects in the Euler–Poincaré equation of
having q ∈ V appear in the Lagrangian l̃(ξ, q).

Show first that stationarity of S implies the following set of
equations:

δl̃

δξ
= p ⋄ q , q̇ = −£ξq , ṗ = £

T
ξ p+

δl̃

δq
.

Then transform to the variable δl/δξ to find the associated
Euler–Poincaré equations on the space g∗ × V ,

d

dt

δl̃

δξ
= ad∗ξ

δl̃

δξ
+
δl̃

δq
⋄ q ,

dq

dt
= −£ξq .

Perform the Legendre transformation to derive the Lie–
Poisson Hamiltonian formulation corresponding to l̃(ξ, q).

⋆
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9.4 Lie–Poisson Hamiltonian formulation

The Clebsch variational principle for the Euler–Poincaré equation
provides a natural path to its canonical and Lie–Poisson Hamilto-
nian formulations. The Legendre transform takes the Lagrangian

l(p, q, q̇, ξ) = l(ξ) +
〈〈
p , q̇ +£ξq

〉〉

in the action (9.3.7) to the Hamiltonian,

H(p, q) =
〈〈
p , q̇

〉〉
− l(p, q, q̇, ξ) =

〈〈
p , −£ξq

〉〉
− l(ξ) ,

whose variations are given by

δH(p, q) =
〈〈
δp , −£ξq

〉〉
+
〈〈
p , −£ξδq

〉〉

+
〈〈
p , −£δξq

〉〉
−
〈 δl
δξ
, δξ

〉

=
〈〈
δp , −£ξq

〉〉
+
〈〈
−£

T
ξ p , δq

〉〉
+
〈
p ⋄ q − δl

δξ
, δξ

〉
.

These variational derivatives recover Equations (9.3.8) in canonical
Hamiltonian form,

q̇ = δH/δp = −£ξq and ṗ = −δH/δq = £
T
ξ p .

Moreover, independence of H from ξ yields the momentum rela-
tion,

δl

δξ
= p ⋄ q . (9.4.1)

The Legendre transformation of the Euler–Poincaré equations
using the Clebsch canonical variables leads to the Lie–Poisson
Hamiltonian form of these equations,

dµ

dt
= {µ, h} = ad∗δh/δµ µ , (9.4.2)
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with

µ = p ⋄ q = δl

δξ
, h(µ) = 〈µ, ξ〉 − l(ξ) , ξ =

δh

δµ
. (9.4.3)

By Equation (9.4.3), the evolution of a smooth real function f :
g∗ → R is governed by

df

dt
=

〈
δf

δµ
,
dµ

dt

〉

=

〈
δf

δµ
, ad∗δh/δµ µ

〉

=

〈
adδh/δµ

δf

δµ
, µ

〉

= −
〈
µ ,

[
δf

δµ
,
δh

δµ

]〉

=:
{
f, h
}
. (9.4.4)

The last equality defines the Lie–Poisson bracket {f, h} for
smooth real functions f and h on the dual Lie algebra g∗. One
may check directly that this bracket operation is a bilinear, skew-
symmetric derivation that satisfies the Jacobi identity. Thus, it
defines a proper Poisson bracket on g∗.

9.4.1 Cotangentlift momentum maps

Although it is more elaborate than the Hamilton–Pontryagin prin-
ciple and it requires input about the action of a Lie algebra on the
configuration space, the Clebsch variational principle for the Euler–
Poincaré equation reveals useful information.

As we shall see, the Clebsch approach provides a direct means
of computing the momentum map for the specified Lie algebra ac-
tion on a given configuration manifold M . In fact, the first equation
in (9.4.3) is the standard example of the momentum map obtained
by the cotangent lift of a Lie algebra action on a configuration man-
ifold.
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Momentum maps will be discussed later, in Chapter 11. For
now, the reader may wish to notice that the formulas (9.4.3) and
(11.2.1) involving the diamond operation have remarkable similar-
ities. In particular, the term q ⋄ p in these formulas has the same
meaning. Consequently, we may state the following proposition.

Proposition 9.4.1 (Momentum maps) The Lie–Poisson form (9.4.2)
of the Euler–Poincaré Equation (9.3.1) governs the evolution of the mo-
mentum map derived from the cotangent lift of the Lie algebra action on
the configuration manifold.

The remainder of the present text should provide the means to
fully understand this statement.
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In this chapter we will begin thinking in terms of Hamiltonian
partial differential equations in the specific example of G-strands,
which are evolutionary maps into a Lie group g(t, x) : R × R →
G that follow from Hamilton’s principle for a certain class of G-
invariant Lagrangians. The case when G = SO(3) may be regarded
physically as a smooth distribution of so(3)-valued spins attached
to a one-dimensional straight strand lying along the x-axis. We will
investigate its three-dimensional orientation dynamics at each point
along the strand. For no additional cost, we may begin with the
Euler–Poincaré theorem for a left-invariant Lagrangian defined on
the tangent space of an arbitrary Lie group G and later specialise to
the case where G is the rotation group SO(3).

The Lie–Poisson Hamiltonian formulation of the Euler–Poincaré
Equation (9.3.1) for this problem will be derived via the Legendre
Transformation by following calculations similar to those done pre-
viously for the rigid body in Section 2.5. To emphasise the system-
atic nature of the Legendre transformation from the Euler–Poincaré
picture to the Lie–Poisson picture, we will lay out the procedure in
well-defined steps.

10.1 Formulating continuum spin chain equations

We shall consider Hamilton’s principle δS = 0 for a left-invariant
Lagrangian,

S =

∫ b

a

∫ ∞

−∞
ℓ(Ω,Ξ) dx dt , (10.1.1)

with the following definitions of the tangent vectors Ω and Ξ,

Ω(t, x) = g−1∂tg(t, x) and Ξ(t, x) = g−1∂xg(t, x) , (10.1.2)

where g(t, x) ∈ G is a real-valued map g : R × R → G for a Lie
groupG. Later, we shall specialise to the case whereG is the rotation
group SO(3). We shall apply the by now standard Euler–Poincaré
procedure, modulo the partial spatial derivative in the definition of
Ξ(t, x) = g−1∂xg(t, x) ∈ g. This procedure takes the following steps:
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(i) Write the auxiliary equation for the evolution of Ξ :
R × R → g, obtained by differentiating its definition
with respect to time and invoking equality of cross
derivatives.

(ii) Use the Euler–Poincaré theorem for left-invariant La-
grangians to obtain the equation of motion for the mo-
mentum variable ∂ℓ/∂Ω : R × R → g∗, where g∗ is
the dual Lie algebra. Use the L2 pairing defined by the
spatial integration.

(These will be partial differential equations. Assume
homogeneous boundary conditions on Ω(t, x), Ξ(t, x)
and vanishing endpoint conditions on the variation
η = g−1δg(t, x) ∈ g when integrating by parts.)

(iii) Legendre-transform this Lagrangian to obtain the cor-
responding Hamiltonian. Differentiate the Hamilto-
nian and determine its partial derivatives. Write the
Euler–Poincaré equation in terms of the new momen-
tum variable Π = δℓ/δΩ ∈ g∗.

(iv) Determine the Lie–Poisson bracket implied by the
Euler–Poincaré equation in terms of the Legendre-
transformed quantities Π = δℓ/δΩ, by rearranging the
time derivative of a smooth function f(Π,Ξ) : g∗×g→
R.

(v) Specialise to G = SO(3) and write the Lie–Poisson
Hamiltonian form in terms of vector operations in R3.

(vi) For G = SO(3) choose the Lagrangian

ℓ =
1

2

∫ ∞

−∞
Tr
([
g−1∂tg, g

−1∂xg
]2)

dx

=
1

2

∫ ∞

−∞
Tr
([

Ω, Ξ
]2)

dx , (10.1.3)
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where [Ω, Ξ] = ΩΞ − ΞΩ is the commutator in the
Lie algebra g. Use the hat map to write the Euler–
Poincaré equation and its Lie–Poisson Hamiltonian
form in terms of vector operations in R3.

10.2 Euler–Poincaré equations

The Euler–Poincaré procedure systematically produces the follow-
ing results.

Auxiliary equations By definition, Ω(t, x) = g−1∂tg(t, x) and
Ξ(t, x) = g−1∂xg(t, x) are Lie-algebra-valued functions over R × R.
The evolution of Ξ is obtained from these definitions by taking the
difference of the two equations for the partial derivatives

∂tΞ(t, x) = −
(
g−1∂tg

)(
g−1∂xg

)
+ g−1∂t∂xg(t, x) ,

∂xΩ(t, x) = −
(
g−1∂xg

)(
g−1∂tg

)
+ g−1∂x∂tg(t, x) ,

and invoking equality of cross derivatives. Hence, Ξ evolves by
the adjoint operation, much like in the derivation of the variational
derivative of Ω,

∂tΞ(t, x)− ∂xΩ(t, x) = ΞΩ− ΩΞ = [Ξ, Ω] =: − adΩΞ . (10.2.1)

This is the auxiliary equation for Ξ(t, x). In differential geometry,
this relation is called a zero curvature relation, because it implies
that the curvature vanishes for the Lie-algebra-valued connection
one-form A = Ωdt+ Ξdx [doCa1976].

Hamilton’s principle For η = g−1δg(t, x) ∈ g, Hamilton’s princi-
ple δS = 0 for S =

∫ b
a ℓ(Ω,Ξ) dt leads to

δS =

∫ b

a

〈 δℓ
δΩ

, δΩ
〉
+
〈 δℓ
δΞ

, δΞ
〉
dt
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=

∫ b

a

〈 δℓ
δΩ

, ∂tη + adΩη
〉
+
〈 δℓ
δΞ

, ∂xη + adΞη
〉
dt

=

∫ b

a

〈
− ∂t

δℓ

δΩ
+ ad∗Ω

δℓ

δΩ
, η
〉
+
〈
− ∂x

δℓ

δΞ
+ ad∗Ξ

δℓ

δΞ
, η
〉
dt

=

∫ b

a

〈
− ∂

∂t

δℓ

δΩ
+ ad∗Ω

δℓ

δΩ
− ∂

∂x

δℓ

δΞ
+ ad∗Ξ

δℓ

δΞ
, η
〉
dt ,

where the formulas for the variations δΩ and δΞ are obtained by
essentially the same calculation as in part (i). Hence, δS = 0 yields

∂

∂t

δℓ

δΩ
= ad∗Ω

δℓ

δΩ
− ∂

∂x

δℓ

δΞ
+ ad∗Ξ

δℓ

δΞ
. (10.2.2)

This is the Euler–Poincaré equation for δℓ/δΩ ∈ g∗.

Exercise. Use Equation (4.2.9) in Proposition 4.2.2 to show
that the Euler–Poincaré Equation (10.2.2) is a conservation
law for spin angular momentum Π = δℓ/δΩ,

∂

∂t

(
Ad∗g(t,x)−1

δl

δΩ

)
= − ∂

∂x

(
Ad∗g(t,x)−1

δl

δΞ

)
. (10.2.3)

⋆

10.3 Hamiltonian formulation

Legendre transform Legendre-transforming the Lagrangian ℓ(Ω,Ξ):
g× V → R yields the Hamiltonian h(Π,Ξ) : g∗ × V → R,

h(Π,Ξ) =
〈
Π , Ω

〉
− ℓ(Ω,Ξ) . (10.3.1)
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Differentiating the Hamiltonian determines its partial derivatives:

δh =
〈
δΠ ,

δh

δΠ

〉
+
〈 δh
δΞ

, δΞ
〉

=
〈
δΠ , Ω

〉
+
〈
Π− δl

δΩ
, δΩ

〉
−
〈 δℓ

δΞ
, δΞ

〉

⇒ δl

δΩ
= Π ,

δh

δΠ
= Ω and

δh

δΞ
= − δℓ

δΞ
.

The middle term vanishes because Π − δl/δΩ = 0 defines Π. These
derivatives allow one to rewrite the Euler–Poincaré equation solely
in terms of momentum Π as

∂tΠ = ad∗δh/δΠΠ+ ∂x
δh

δΞ
− ad∗Ξ

δh

δΞ
,

∂tΞ = ∂x
δh

δΠ
− adδh/δΠ Ξ . (10.3.2)

Hamiltonian equations The corresponding Hamiltonian equation
for any functional of f(Π,Ξ) is then

∂

∂t
f(Π,Ξ) =

〈
∂tΠ ,

δf

δΠ

〉
+
〈
∂tΞ ,

δf

δΞ

〉

=
〈
ad∗δh/δΠΠ+ ∂x

δh

δΞ
− ad∗Ξ

δh

δΞ
,
δf

δΠ

〉

+
〈
∂x
δh

δΠ
− adδh/δΠΞ ,

δf

δΞ

〉

= −
〈
Π ,

[
δf

δΠ
,
δh

δΠ

]〉

+
〈
∂x
δh

δΞ
,
δf

δΠ

〉
−
〈
∂x
δf

δΞ
,
δh

δΠ

〉

+
〈
Ξ , ad∗δf/δΠ

δh

δΞ
− ad∗δh/δΠ

δf

δΞ

〉

=: {f , h}(Π,Ξ) .

Assembling these equations into Hamiltonian form gives, symboli-
cally,

∂

∂t

[
Π

Ξ

]
=

[
ad∗�Π (div − ad∗Ξ)�

(grad− ad�)Ξ 0

][
δh/δΠ

δh/δΞ

]
(10.3.3)
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The boxes � in Equation (10.3.3) indicate how the ad and ad∗ oper-
ations are applied in the matrix multiplication. For example,

ad∗�Π(δh/δΠ) = ad∗δh/δΠΠ ,

so each matrix entry acts on its corresponding vector component.1

Higher dimensions Although it is beyond the scope of the present
text, we shall make a few short comments about the meaning of the
terms appearing in the Hamiltonian matrix (10.3.3). First, the nota-
tion indicates that the natural jump to higher dimensions has been
made. This is done by using the spatial gradient to define the left-
invariant auxiliary variable Ξ ≡ g−1∇g in higher dimensions. The
lower left entry of the matrix (10.3.3) defines the covariant spatial
gradient, and its upper right entry defines the adjoint operator, the
covariant spatial divergence. More explicitly, in terms of indices
and partial differential operators, this Hamiltonian matrix becomes,

∂

∂t

[
Πα

Ξα
i

]
= Bαβ

[
δh/δΠβ

δh/δΞβ
j

]
, (10.3.4)

where the Hamiltonian structure matrix Bαβ is given explicitly as

Bαβ =

[
−Πκ t

κ
αβ δ βα ∂j + tβακΞκ

j

δαβ∂i − tαβκΞκ
i 0

]
. (10.3.5)

Here, the summation convention is enforced on repeated indices.
Superscript Greek indices refer to the Lie algebraic basis set, sub-
script Greek indices refer to the dual basis and Latin indices refer to
the spatial reference frame. The partial derivative ∂j = ∂/∂xj , say,
acts to the right on all terms in a product by the chain rule.

1This is the lower right corner of the Hamiltonian matrix for a perfect complex
fluid [Ho2002, GBRa2008]. It also appears in the Lie–Poisson brackets for Yang–
Mills fluids [GiHoKu1982] and for spin glasses [HoKu1988].
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Lie–Poisson bracket For the case that tαβκ are structure constants
for the Lie algebra so(3), then tαβκ = ǫαβκ with ǫ123 = +1. By using
the hat map (2.1.11), the Lie–Poisson Hamiltonian matrix in (10.3.5)
may be rewritten for the so(3) case in R3 vector form as

∂

∂t

[
Π

Ξi

]
=

[
Π× ∂j +Ξj×

∂i +Ξi× 0

][
δh/δΠ

δh/δΞj

]
. (10.3.6)

Returning to one dimension, stationary solutions ∂t → 0 and
spatially independent solutions ∂x → 0 both satisfy equations of
the same se(3) form as the heavy top. For example, the time-
independent solutions satisfy, with Ω = δh/δΠ and Λ = δh/δΞ,

d

dx
Λ = −Ξ × Λ − Π × Ω and

d

dx
Ω = −Ξ × Ω .

That the equations have the same form is to be expected because
of the exchange symmetry under t ↔ x and Ω ↔ Ξ. Perhaps less
expected is that the heavy-top form reappears.

For G = SO(3) and the Lagrangian R3 × R3 → R in one spa-
tial dimension ℓ(Ω, Ξ) the Euler–Poincaré equation and its Hamil-
tonian form are given in terms of vector operations in R3, as follows.
First, the Euler–Poincaré Equation (10.2.2) becomes

∂

∂t

δℓ

δΩ
= −Ω× δℓ

δΩ
− ∂

∂x

δℓ

δΞ
− Ξ× δℓ

δΞ
. (10.3.7)

Choices for the Lagrangian

Interesting choices for the Lagrangian include those symmet-
ric under exchange of Ω and Ξ, such as

ℓ⊥ = |Ω × Ξ|2/2 and ℓ‖ = (Ω · Ξ)2/2 ,

for which the variational derivatives are, respectively,

δℓ⊥
δΩ

= Ξ × (Ω × Ξ) =: |Ξ|2Ω⊥ ,

δℓ⊥
δΞ

= Ω × (Ξ × Ω) =: |Ω|2Ξ⊥ ,
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for ℓ⊥ and the complementary quantities,

δℓ‖

δΩ
= (Ω · Ξ)Ξ =: |Ξ|2Ω‖ ,

δℓ‖

δΞ
= (Ω · Ξ)Ω =: |Ω|2Ξ‖ ,

for ℓ‖. With either of these choices, ℓ⊥ or ℓ‖, Equation (10.3.7)
becomes a local conservation law for spin angular momentum

∂

∂t

δℓ

δΩ
= − ∂

∂x

δℓ

δΞ
.

The case ℓ⊥ is reminiscent of the Skyrme model [Sk1961], a
nonlinear topological model of pions in nuclear physics.

Another interesting choice for G = SO(3) and the Lagrangian
R3 × R3 → R in one spatial dimension is

ℓ(Ω, Ξ) =
1

2

∫ ∞

−∞
Ω · AΩ+Ξ · BΞ dx ,

for symmetric matrices A and B, which may also be L2-
symmetric differential operators. In this case the variational
derivatives are given by

δℓ(Ω, Ξ) =

∫ ∞

−∞
δΩ · AΩ+ δΞ · BΞ dx ,

and the Euler–Poincaré Equation (10.2.2) becomes

∂

∂t
AΩ+ Ω× AΩ+

∂

∂x
BΞ+ Ξ× BΞ = 0 . (10.3.8)

This is the sum of two coupled rotors, one in space and one in
time, again suggesting the one-dimensional spin glass, or spin
chain. When A and B are taken to be the identity, Equation
(10.3.8) recovers the chiral model, or sigma model, which is
completely integrable, cf. [Wi1984, ZaMi1980].
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Hamiltonian structures The Hamiltonian structures of these equa-
tions on so(3)∗ are obtained from the Legendre-transform relations

δℓ

δΩ
= Π ,

δh

δΠ
= Ω and

δh

δΞ
= − δℓ

δΞ
.

Hence, the Euler–Poincaré Equation (10.2.2) becomes

∂

∂t
Π = Π× δh

δΠ
+

∂

∂x

δh

δΞ
+ Ξ× δh

δΞ
, (10.3.9)

and the auxiliary Equation (10.3.10) becomes

∂

∂t
Ξ =

∂

∂x

δh

δΠ
+Ξ× δh

δΠ
, (10.3.10)

which recovers the Lie–Poisson structure in Equation (10.3.6).

Finally, the reconstruction equations may be expressed using the
hat map as

∂tO(t, x) = O(t, x)Ω̂(t, x) and

∂xO(t, x) = O(t, x)Ξ̂(t, x) . (10.3.11)

Remark 10.3.1 The Euler–Poincaré equations for the continuum
spin chain discussed here and their Lie–Poisson Hamiltonian for-
mulation provide a framework for systematically investigating
three-dimensional orientation dynamics along a one-dimensional
strand. These partial differential equations are interesting in their
own right and they have many possible applications. For an idea
of where the applications of these equations could lead, consult
[SiMaKr1988,EGHPR2010].

✷

Exercise. Write the Euler–Poincaré equations of the con-
tinuum spin chain for SE(3), in which each point is both
rotating and translating. Recall that

(
d

dt

δl

δξ
,
d

dt

δl

δα

)
= ad∗(ξ , α)

(
δl

δξ
,
δl

δα

)
, (10.3.12)
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where the ad∗ operation of the Lie algebra se(3) on its dual
se(3)∗ is given in Equations (6.3.2) and (6.3.3).

Apply formula (10.3.12) to express the space-time Euler–
Poincaré Equation (10.2.2) for SE(3) in vector form.

Complete the computation of the Lie–Poisson Hamiltonian
form for the continuum spin chain on SE(3). ⋆

Exercise. Let the set of 2 × 2 matrices Mi with i = 1, 2, 3
satisfy the defining relation for the symplectic Lie group
Sp(2),

MiJM
T
i = J with J =

(
0 −1
1 0

)
. (10.3.13)

The corresponding elements of its Lie algebra mi =
ṀiM

−1
i ∈ sp(2) satisfy (Jmi)

T = Jmi for each i = 1, 2, 3.
Thus, Xi = Jmi satisfying XT

i = Xi is a set of three symmet-
ric 2×2 matrices. Define X = JṀM−1 with time derivative
Ṁ = ∂M(t, x)/∂t and Y = JM ′M−1 with space derivative
M ′ = ∂M(t, x)/∂x. Then show that

X′ = Ẏ + [X,Y]J , (10.3.14)

for the J-bracket defined by

[X,Y]J := XJY − YJX =: 2sym(XJY) =: adJ
X
Y .

In terms of the J-bracket, compute the continuum Euler–
Poincaré equations for a Lagrangian ℓ(X,Y) defined on the
symplectic Lie algebra sp(2).

Compute the Lie–Poisson Hamiltonian form of the system
comprising the continuum Euler–Poincaré equations on
sp(2)∗ and the compatibility equation (10.3.14) on sp(2). ⋆
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11.1 The momentum map

A momentum map J : M 7→ g∗ arises when the smooth Lie group
action of G on a manifold M preserves either the symplectic struc-
ture, or the Poisson structure on M . Here g is the Lie algebra of
G and g∗ is its dual. We concentrate on the situation in which
M = T ∗Q is the cotangent bundle of a configuration manifold Q
on which the Lie group G acts smoothly.

Example 11.1.1 An example of a momentum map J : M 7→ g∗ is the
quantity J(p, q) defined by

Jξ(p, q) :=
〈
J(p, q), ξ

〉
g∗×g

=
〈〈
(p, q), ξQ(q)

〉〉
T ∗Q×TQ

=
〈〈
p, £ξq

〉〉
T ∗Q×TQ

. (11.1.1)

In this formula, the infinitesimal action of a Lie group G by an element
ξ ∈ g of its Lie algebra is expressed as a Lie derivative £ξq = ξQ(q)
on the configuration space Q. The momentum map lifts this expression
into phase space M = T ∗Q by expressing it as a Hamiltonian vector field
XJξ(p,q) = { · , Jξ(p, q)} on T ∗Q.

Denote the action of the Lie group G on the configuration manifold
Q as q(s) = g(s)q(0) for g(s) ∈ G, s ∈ R and q ∈ Q. As usual, a
vector field ξQ(q) ∈ TQ at a point q ∈ Q is obtained by differentiat-
ing q(s) = g(s)q(0) with respect to s in the direction ξ at the identity
s = 0, where g(0) = e. That is,

ξQ(q) = q ′(s)
∣∣
s=0

= g ′(s)q(0)
∣∣
s=0

= (g ′g−1)
∣∣
s=0

q(0) =: ξq ,

for q = q(0). In other notation, the vector field ξQ(q) ∈ TQ may be
expressed as a Lie derivative,

ξQ(q) =
d

ds

[
exp(sξ)q

]∣∣∣
s=0

=: £ξq = ξq ∈ TQ . (11.1.2)
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Remark 11.1.1 The formula for ξQ(q) ∈ TQ is the tangent lift of
the action of G on Q at q ∈ Q. The tangent lift action of G on TQ
induces an action of G on T ∗Q by the cotangent lift (the inverse
transpose of the tangent lift). The cotangent lift action ofG on T ∗Q is
always symplectic; so it may be written using canonical coordinates
(p, q) ∈ T ∗Q as a Hamiltonian vector field XJξ = { · , Jξ(p, q) }. ✷

For the case when the symplectic manifold M is the cotangent bun-
dle T ∗Q of a configuration manifold Q, the quantity

Jξ(p, q) :=
〈
J(p, q), ξ

〉
g∗×g

is the Hamiltonian on T ∗Q. The canonical Poisson bracket

XJξ =
{
· , Jξ(p, q)

}

is the Hamiltonian vector field XJξ for the infinitesimal action of
the Lie group G on Q (configuration space), lifted to the cotangent
bundle T ∗Q (phase space) with symplectic form ω = dq ∧ dp. Equi-
valently,

dJξ(p, q) = XJξ ω = ω(XJξ , · ) .
This property defines the standard momentum map.

Definition 11.1.1 (Standard momentum map) The standard momen-
tum map J : T ∗Q 7→ g∗ is defined by requiring

XJξ(p,q) = ξ(p,q) for each ξ ∈ g . (11.1.3)

That is, the infinitesimal generator ξ(p,q) of the cotangent lift action of G
for each element ξ ∈ g is equal to the Hamiltonian vector field

XJξ(p,q) = { · , Jξ(p, q) } , (11.1.4)

of the function Jξ : T ∗Q 7→ R. The momentum map J : T ∗Q 7→ g∗ is
defined as J(p, q), satisfying

Jξ(p, q) := 〈J(p, q), ξ〉 for each ξ ∈ g and any (p, q) ∈ T ∗Q;

〈 · , · 〉 is the natural pairing g∗ × g 7→ R; and

{ · , · } : F(p, q) × F(p, q) 7→ F(p, q) is the canonical Poisson
bracket on T ∗Q.
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11.2 Cotangent lift

Theorem 11.2.1 (Cotangent-lift momentum map) The cotangent-
lift momentum map J : T ∗Q 7→ g∗ satisfies

Jξ(p, q) :=
〈
J(p, q), ξ

〉

=
〈〈
(p, q), ξQ(q)

〉〉

=
〈〈
p, £ξq

〉〉

=:
〈
q ⋄ p, ξ

〉
. (11.2.1)

Proof. The first equality repeats the definition of Jξ(p, q). The
second equality inserts the definition of the infinitesimal action
ξQ(q) ∈ TQ of the Lie group G on Q at the point q ∈ Q. The pair-
ing 〈〈 · , · 〉〉 : T ∗Q × TQ 7→ R in this equality is between the tan-
gent and cotangent spaces of the configuration Q. The third equal-
ity inserts the definition of the infinitesimal action ξQ(q) = £ξq in
terms of the Lie derivative. The last equality provides the required
Hamiltonian Jξ(p, q) = 〈q ⋄ p, ξ〉 for the Hamiltonian vector field
XJξ = { · , Jξ(p, q) } in the cotangent lift action of G on T ∗Q by
defining the diamond operation (⋄) in terms of the two pairings and
the Lie derivative.

Remark 11.2.1 The diamond operation was introduced in (6.2.9)
and in the Clebsch Equation (9.3.8), where it was defined using
the dual of the Lie derivative with respect to the T ∗Q×TQ pairing
induced by the variational derivative in q, namely,

〈
q ⋄ p , ξ

〉
g∗×g

=
〈〈
p , £ξq

〉〉
T ∗Q×TQ

. (11.2.2)

Thus, as discussed in Section 9.3.2, the variational relation in
the Clebsch procedure associated with the dynamical Clebsch
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constraint, or reconstruction Equation (9.3.4), defines the corre-
sponding cotangent-lift momentum map in Equation (9.4.3). (The
sign is correct because (⋄) is antisymmetric.) ✷

Theorem 11.2.2 (Hamiltonian Noether’s theorem) If the Hamilto-
nian H(p, q) on T ∗Q is invariant under the action of the Lie group G,
then Jξ(p, q) is conserved on trajectories of the corresponding Hamilto-
nian vector field,

XH = { · , H(p, q)} .

Proof. Differentiating the invariance condition H(gp, gq) = H(p, q)
with respect to g for fixed (p, q) ∈ T ∗Q yields

£ξH(p, q) = dH(p, q) · ξ(p,q) = 0 = XJξ(p,q)H(p, q)

= −{Jξ , H}(p, q) = −XH(p,q)J
ξ(p, q) .

Consequently, the momentum map Jξ(p, q) is conserved on trajec-
tories of the Hamiltonian vector field XH = { · , H(p, q)} for a G-
invariant Hamiltonian.

Proposition 11.2.1 (Equivariant group actions)

A group action Φg : G× T ∗Q 7→ T ∗Q is said to be equivariant if
it satisfies

J ◦ Φg = Ad∗g−1 ◦ J .
This means the following diagram commutes:

✲P P
Φg(t)

❄

J

✲
Ad∗g(t)−1❄

g∗ g∗

J
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Equivariance implies infinitesimal equivariance. Namely,

d

dt

∣∣∣∣
t=0

J
(
Φg(t)(z)

)
=

d

dt

∣∣∣∣
t=0

Ad∗g−1 ◦ J(z)

implies

dJ(z) · ξP (z) = −ad∗ξJ(z) ,

with z = (p, q). Setting dJ(z) · ξP (z) = XJξJ and pairing with a
fixed Lie algebra element η yields the η-component:

〈
dJ(z) · ξP (z) , η

〉
=

〈
− ad∗ξJ(z) , η

〉
,

XJξJη =
〈
J(z) , −adξη

〉
, (11.2.3)

{
Jη(z) , Jξ(z)

}
=

〈
J(z) ,

[
η , ξ

]〉
.

Consequently, infinitesimal equivariance implies
{〈

J(p, q), η
〉
,
〈
J(p, q), ξ

〉}
=
〈
J(p, q),

[
η , ξ

]〉
. (11.2.4)

This means that the map (g, [ · , · ] → (C∞(T ∗Q), { · , · }) defined
by ξ 7→ Jξ, ξ ∈ g is a Lie algebra homomorphism (i.e., it pre-
serves bracket relations).

Infinitesimal equivariance implies that the momentum map

J : T ∗Q 7→ g∗ is a Poisson map.

That is, J corresponding to left (resp., right) group action produces
a + (resp., −) Lie–Poisson bracket on g∗.

11.3 Examples of momentum maps

Example 11.3.1 (Momentum map for SO(3) acting on R3) For Q =
R3 and g = so(3) one finds ξQ(q) = £ξq = ξ × q by the hat map and

〈〈
p, £ξq

〉〉
= p · ξ × q = (q × p) · ξ =

〈
J(p, q), ξ

〉
= Jξ(p, q) ,
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which is the Hamiltonian for an infinitesimal rotation around ξ in R3. In
the case that g = so(3), the pairings 〈 · , · 〉 and 〈〈 · , · 〉〉 may both be taken
as dot products of vectors in R3, the momentum map J(p, q) = q ⋄ p =
q × p ∈ R3 is the phase-space expression for angular momentum and the
⋄ operation is ×, the cross product of vectors in R3. This is an example of
a cotangent-lift momentum map.

Example 11.3.2 (Momentum map for SU(2) acting on C2 ) The Lie
group SU(2) of complex 2 × 2 unitary matrices U(s) with unit determi-
nant acts on a ∈ C2 by matrix multiplication as

a(s) = U(s)a(0) = exp(isξ)a(0) ,

in which iξ = U ′U−1|s=0 is a 2 × 2 traceless skew-Hermitian matrix, as
seen from the following:

UU † = Id implies U ′U † + UU ′ † = 0 = U ′U † + (U ′U †)† .

Likewise, ξ alone (that is, not multiplied by i) is a 2×2 traceless Hermitian
matrix.

The infinitesimal generator ξ(a) ∈ C2 may be expressed as a linear
transformation,

ξ(a) =
d

ds

[
exp(isξ)a

]∣∣∣
s=0

= iξa ,

in which the product (ξa) of the Hermitian matrix (ξ) and the two-
component complex vector (a) has components ξklal, with k, l = 1, 2.

To be a momentum map, J : C2 7→ su(2)∗ must satisfy the defining
relation (11.2.1),

Jξ(a) :=
〈
J(a), ξ

〉
su(2)∗×su(2)

=
〈〈
a, ξ(a)

〉〉
C2

=
〈〈
a, iξa

〉〉
C2

= Im(a∗k(iξ)klal) = a∗kξklal = tr
(
(a⊗ a∗)ξ

)
= tr

(
Q†ξ

)
.

Being traceless, ξ has zero pairing with any multiple of the identity; so
one may subtract the trace of Q = a ⊗ a∗. Thus, the traceless Hermitian
quantity

J(a) = Q− 1

2
(tr Q) Id = a⊗ a∗ − 1

2
Id |a|2 ∈ su(2)∗ (11.3.1)
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defines a momentum map J : C2 7→ su(2)∗. That is, J maps a ∈ C2 to
the traceless Hermitian matrix J(a), which is an element of su(2)∗, the
dual space to su(2) under the pairing 〈 · , · 〉 : su(2)∗ × su(2) 7→ R given
by the trace of the matrix product,

〈
J, ξ

〉
su(2)∗×su(2)

= tr
(
J(a)†ξ

)
, (11.3.2)

for J(a) = J(a)† ∈ su(2)∗ and iξ ∈ su(2) . (11.3.3)

Proposition 11.3.1 (Momentum map equivariance) Let U ∈ SU
(2) and a ∈ C2. The momentum map for SU(2) acting on C2 defined
by 〈

J(a), ξ
〉
su(2)∗×su(2)

=
〈〈
a, iξa

〉〉
C2

(11.3.4)

is equivariant. That is,

J(Ua) = Ad∗U−1J(a).

Proof. Substitute AdU−1ξ into the momentum map definition,
〈
Ad∗U−1J(a) , ξ

〉
su(2)∗×su(2)

=
〈
J(a) , AdU−1ξ

〉
su(2)∗×su(2)

=
〈〈
a, U †iξUa

〉〉
C2

=
〈〈
(Ua) , iξ(Ua)

〉〉
C2

=
〈
J(Ua) , ξ

〉
su(2)∗×su(2)

.

Therefore, J(Ua) = Ad∗U−1J(a), as claimed.

Remark 11.3.1 (Poincaré sphere momentum map) Looking at Equa-
tion (3.2.16) reveals that the momentum map C2 7→ su(2)∗ for the
action of SU(2) acting on C2 in Equation (11.3.1) is a component of
the map C2 7→ S2 to the Poincaré sphere, which defines the Hopf
fibration S3 ≃ S2 × S1. To see this, one simply replaces ξ ∈ su(2)
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with the vector of Pauli matrices σ in Equation (3.2.18) to find

J(a) =
1

2
n · σ in which n = trQσ = a∗kσklal . (11.3.5)

Thus, the quadratic S1-invariant quantities comprising the compo-
nents of the unit vector n = (n1, n2, n3) given by

n1 + i n2 = 2a1a
∗
2, n3 = |a1|2 − |a2|2 (11.3.6)

on the Poincaré sphere |n|2 = n20 in (3.2.20) are precisely the compo-
nents of the momentum map in Equation (11.3.1). ✷

Exercise. Compute the Lie–Poisson brackets among the
components of the unit vector n = (n1, n2, n3) by using
their definitions in terms of a ∈ C2 and applying the canon-
ical Poisson brackets {a∗k, al} = 2iδkl. ⋆

Answer.

{ni, nj} = 4ǫijknk .

N

Remark 11.3.2 (Cotangent-lift momentum maps) The formula de-
termining the momentum map for the cotangent lift action of a Lie
group G on a smooth manifold Q may be expressed in terms of the
pairings

〈 · , · 〉 : g∗ × g 7→ R and 〈〈 · , · 〉〉 : T ∗M × TM 7→ R ,

as
〈
J(p, q) , ξ

〉
g∗×g

=
〈
q ⋄ p, ξ

〉
g∗×g

=
〈〈
p , £ξq

〉〉
T ∗M×TM

, (11.3.7)

where (q, p) ∈ T ∗
qM and £ξq ∈ TqM is the infinitesimal generator of

the action of the Lie algebra element ξ on the coordinate q. ✷
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Proposition 11.3.2 (Equivariance of cotangent lifts) Cotangent-
lift momentum maps (11.3.7) are equivariant. That is,

J(g · p, g · q) = Ad∗g−1J(p, q) , (11.3.8)

where (g · p, g · q) denotes the cotangent lift to T ∗M of the action of G
on manifold M .

Proof. The proof follows from Remark 4.2.2, that Ad∗g−1 is a repre-
sentation of the coAdjoint action Φ∗

g of the group G on its dual Lie
algebra g∗. This means that Ad∗g−1(q ⋄ p) = (g · q ⋄ g · p), and we have

〈
Ad∗g−1J(p, q) , ξ

〉
g∗×g

=
〈
Ad∗g−1(q ⋄ p) , ξ

〉
g∗×g

=
〈
g · q ⋄ g · p , ξ

〉
g∗×g

=
〈
J(g · p, g · q) , ξ

〉
g∗×g

. (11.3.9)

Thus, Equation (11.3.8) holds and cotangent-lift momentum maps
are equivariant.

Importance of equivariance

Equivariance of a momentum map is important, because Poisson
brackets among the components of an equivariant momentum map
close among themselves and satisfy the Jacobi identity. That is, the
following theorem holds.

Theorem 11.3.1 Equivariant momentum maps are Poisson.

Proof. As we know, a momentum map J : P → g∗ is equivariant, if

J ◦ Φg(t) = Ad∗g(t)−1 ◦ J ,
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for any curve g(t) ∈ G. As discussed earlier, the time derivative
of the equivariance relation leads to the infinitesimal equivariance
relation,

{〈J , ξ〉 , 〈J , η〉} =
〈
J , [ξ, η]

〉
, (11.3.10)

where ξ, η ∈ g and { · , · } denotes the Poisson bracket on the man-
ifold P . This in turn implies that the momentum map preserves
Poisson brackets in the sense that

{F1 ◦ J , F2 ◦ J} = {F1 , F2}LP ◦ J , (11.3.11)

for all F1, F2 ∈ F(g∗), where {F1 , F2}LP denotes the Lie–Poisson
bracket for the appropriate left or right action of g on P . That is,
equivariance implies infinitesimal equivariance, which is sufficient
for the momentum map to be Poisson.

Exercise. (Compute N -dimensional momentum maps)

Define appropriate pairings and determine the momentum
maps explicitly for the following actions:

(i) £ξq = ξ × q for R3 × R3 7→ R3.

(ii) £ξq = adξq for adjoint action ad : g×g 7→ g in a Lie
algebra g.

(iii) AqA−1 for A ∈ GL(3, R) acting on q ∈ GL(3, R) by
matrix conjugation.

(iv) Aq for left action of A ∈ SO(3) on q ∈ SO(3).

(v) AqAT for A ∈ GL(3, R) acting on q ∈ Sym(3), that
is q = qT .

(vi) Adjoint action of the Lie algebra of the semidirect-
product group SL(2,R)sR2 on itself. See Section
6.5 for notation and coadjoint actions.

⋆
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Answer.

(i) For the pairing by scalar product of vectors, one
writes

〈〈
p , £ξq

〉〉
T ∗M×TM

= p · ξ × q = q × p · ξ ,

so that the momentum map for the spatial rotation
(2.1.13) is

J = q × p . (11.3.12)

(ii) Similarly, for the pairing 〈 · , · 〉 : g∗ × g 7→ R,

〈 p , adξq 〉 = −〈 ad∗q p , ξ 〉 ⇒ J = − ad∗q p .

(iii) Compute the ad action for GL(3, R) conjugation as

Te(AqA
−1) = ξq − qξ = [ξ, q] ,

for ξ = A′(0) ∈ gl(3, R) acting on q ∈ GL(3, R) by
matrix Lie bracket [· , ·]. For the matrix pairing

〈A , B 〉 = tr(ATB) ,

one finds the momentum map,

tr(pT [ξ, q]) = tr
((
pqT−qT p

)T
ξ
)
⇒ J = pqT−qT p .

(iv) Compute Te(Aq) = ξq for ξ = A′(0) ∈ so(3) acting
on q ∈ SO(3) by left matrix multiplication. For the
matrix pairing 〈A , B 〉 = trace(ATB), one finds the
following expression for the momentum map,

trace(pT ξq) = trace((pqT )T ξ) ⇒ J =
1

2
(pqT−qpT ) ,

upon using antisymmetry of the matrix ξ ∈ so(3).
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(v) Compute
Te(AqA

T ) = ξq + qξT

for ξ = A′(0) ∈ gl(3, R) acting on q ∈ Sym(3). For
the matrix pairing

〈A , B 〉 = tr(ATB), one finds

tr(pT (ξq + qξT )) = tr(q(pT + p)ξ)

= tr(2qp)T ξ)⇒ J = 2qp

upon using symmetry of the matrix ξq + qξT to
choose p = pT . (The momentum canonical to the
symmetric matrix q = qT should be symmetric, in
order to have the correct number of components.)

(vi) For the pairing 〈 · , · 〉 : g∗ × g 7→ R,

〈 p , adξq 〉 = −〈 ad∗q p , ξ 〉 ⇒ J = − ad∗q p .

From Equation (6.5.22), this is

J = − ad∗(A,h)

(
D

k

)
= −

(
[D,A]− hk + 1

2(h · k)1l
kA

)

for (A, h) ∈ g and (D, k) ∈ g∗. N

Exercise.(Unitary transformations of Hermitian matrices)

Consider the manifold Q of n × n Hermitian matrices, so
that Q† = Q for Q ∈ Q. The Poisson (symplectic) mani-
fold is T ∗Q, whose elements are pairs (Q,P ) of Hermitian
matrices. The corresponding Poisson bracket is

{F,H} = tr

(
∂F

∂Q

∂H

∂P
− ∂H

∂Q

∂F

∂P

)
.

Let G be the group U(n) of n × n unitary matrices. The
group G acts on T ∗Q through

(Q,P ) 7→ (UQU †, UPU †) , UU † = Id .
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(i) What is the linearisation of this group action?

(ii) What is its momentum map?

(iii) Is this momentum map equivariant?

(iv) Is this momentum map conserved by the Hamilto-
nian H = 1

2trP
2? Prove it.

(v) What changes occur in the solution for orthogonal
transformations of the manifold of n× n symmetric
matrices, instead?

⋆

Answer. (Unitary transformations of Hermitian matrices)

(i) The linearisation of this group action with U =
exp(tξ), with skew-Hermitian ξ† = −ξ, yields the
vector field with (Q,P ) components,

Xξ =
(
[ξ,Q], [ξ, P ]

)
.

(ii) This is the Hamiltonian vector field for

Hξ = tr
(
[Q,P ]ξ

)
,

thus yielding the momentum map J(Q,P ) =
[Q,P ].

That is, the momentum map for the lifted action
of the unitary transformations on the phase space
(Q,P ) ∈ T ∗Q of the Hermitian matrices is the ma-
trix commutator [Q, P ].

This is entirely natural from the viewpoint of quan-
tum mechanics, in which the commutator [Q, P ] is
responsible for the uncertainty principle.

(iii) Being defined by a cotangent lift, this momentum
map is equivariant.
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(iv) For H = 1
2trP

2,

{
[Q,P ], H

}
= tr

(
∂[Q,P ]

∂Q

∂H

∂P

)
= tr

(
P 2−P 2

)
= 0 ,

so the momentum map J(Q,P ) = [Q,P ] is con-
served by this Hamiltonian.

Alternatively, one may simply observe that the map

(Q,P ) 7→ (UQU †, UPU †) , UU † = Id ,

preserves tr(P 2), since it takes

tr(P 2) 7→ tr(UPU †UPU †) = tr(P 2) .

(v) The computation for orthogonal transformations of
the manifold of n×n symmetric matrices is entirely
analogous, except for minor changes in interpreta-
tion. N

Example 11.3.3 (The 1:1 resonance [Ku1978]) This example extends
the C2 7→ su(2)∗ momentum map (11.3.1) to C2 7→ u(2)∗ and thereby
completes the relation of the momentum map to the Poincaré sphere and
Hopf fibration.

A unitary 2× 2 matrix U(s) acts on a complex two-vector a ∈ C2 by
matrix multiplication as

a(s) = U(s)a(0) = exp(isξ)a(0) ,

in which iξ = U ′U−1|s=0 is a 2 × 2 skew-Hermitian matrix. Therefore,
the infinitesimal generator ξ(a) ∈ C2 may be expressed as a linear trans-
formation,

ξ(a) =
d

ds

[
exp(isξ)a

]∣∣∣
s=0

= iξa ,

in which the matrix ξ† = ξ is Hermitian.
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Definition 11.3.1 (Momentum map J : C2 7→ u(2)∗) The momen-
tum map J(a) : C2 7→ u(2)∗ for the matrix action of U(2) on C2 is
defined by

Jξ(a) :=
〈
J(a), ξ

〉
u(2)

=
i

2

〈〈
a, ξ(a)

〉〉
C2

=
1

2
ω(a, ξ(a)) with ξ(a) = iξa, (11.3.13)

and ξ† = ξ. The C2 pairing 〈〈 · , · 〉〉C2 in this map is the Hermitian pairing,
which for skew-Hermitian ξ(a)† = − ξ(a) is also the canonical symplectic
form, ω(a,b) = Im(a∗ · b) on C2, as discussed in [MaRa1994]. Thus,

2Jξ(a) := ω(a, ξ(a)) = ω(a, iξa)

= Im(a∗k(iξ)klal)

= a∗kξklal

= tr
(
(a⊗ a∗) ξ

)

= tr
(
J†(a∗,a) ξ

)
. (11.3.14)

Consequently, the momentum map J : C2 7→ u(2)∗ is given by the Her-
mitian expression

J(a) =
1

2
a⊗ a∗. (11.3.15)

This conclusion may be checked by computing the differen-
tial of the Hamiltonian dJξ(a) for the momentum map, which
should be canonically related to its Hamiltonian vector field
XJξ(a) = { · , Jξ(a)}. As the infinitesimal generator ξ(a) = iξa is
linear, we have

dJξ(a) = d
〈
J(a), ξ

〉
u(2)

=
i

2

〈〈
a, ξ(da)

〉〉
C2 +

i

2

〈〈
da, ξ(a)

〉〉
C2

= ℑ
〈〈
ξ(a), da

〉〉
C2 = ω(ξ(a), · ) = XJξ(a) ω,

which is the desired canonical relation.
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11.3.1 The Poincaré sphere S2 ∈ S3

We expand the Hermitian matrix J = 1
2a⊗ a∗ in (11.3.15) in a basis

of four 2× 2 unit Hermitian matrices (σ0 ,σ), with σ = (σ1, σ2, σ3)
given by

σ0 =

[
1 0

0 1

]
, σ1 =

[
0 1

1 0

]
,

σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
. (11.3.16)

The result is the decomposition

J =
1

4

(
Rσ0 +Y · σ

)
. (11.3.17)

Here we denote R := tr(J σ0) = |a1|2 + |a2|2 and

Y = tr(J σ) = a∗kσklal , (11.3.18)

with vector notation σ = (σ1, σ2, σ3). In components, one finds

J =
1

2

[
a∗1a1 a∗1a2
a∗2a1 a∗2a2

]
=

1

4

[
R+ Y3 Y1 − iY2
Y1 + iY2 R− Y3

]
, (11.3.19)

with trace tr J = R. Thus, the decomposition (11.3.17) splits the
momentum map into its trace part R ∈ R and its traceless part Y ∈
R3, given by

Y = J − 1

2
(tr J) Id ∈ su(2)∗ ∼= R

3 . (11.3.20)

This formula recovers the SU(2) momentum map in Equation
(11.3.5) found earlier for the Poincaré sphere.

Definition 11.3.2 (Poincaré sphere) The coefficients R ∈ R and Y ∈
R3 in the expansion of the matrix J in (11.3.17) comprise the four real
quadratic quantities,

R =
1

2

(
|a1|2 + |a2|2

)
,

Y3 =
1

2

(
|a1|2 − |a2|2

)
and

Y1 − i Y2 = a∗1a2 . (11.3.21)
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These quantities are all invariant under the action a→ eiφa of φ ∈ S1 on
a ∈ C2. The S1-invariant coefficients in the expansion of the momentum
map J = a ⊗ a∗ (11.3.15) in the basis of sigma matrices (11.3.16) satisfy
the relation

4 det J = R2 − |Y|2 = 0 , with |Y|2 ≡ Y 2
1 + Y 2

2 + Y 2
3 . (11.3.22)

This relation defines the Poincaré sphere S2 ∈ S3 of radius R which, in
turn, is related to the Hopf fibration C2/S1 ≃ S3. For more information
about the Poincaré sphere and the Hopf fibration, consult, e.g., [Ho2008]
and references therein.

The U(2) Lie group structure

The Lie group U(2) = S1 × SU(2) is the direct product of its centre,

Z(U(2)) = {zI with |z| = 1} ≡ S1,

and the special unitary group in two dimensions,

SU(2) =

{[
α β

−β ∗ α∗

]
with |α|2 + |β|2 = 1

}
.

As a consequence, the momentum map J(a) = 1
2a ⊗ a∗ in

(11.3.15) for the action U(2) × C2 → C2 decomposes into two mo-
mentum maps obtained by separating J into its trace part JS1 =
R ∈ R and its traceless part JSU(2) = Y ∈ R3. This decomposition
may be sketched, as follows.

C2

JSU(2) = Y JS1 = R

su(2)∗ R

�
�

�
�✠

❅
❅
❅
❅❘

The target spaces su(2)∗ and R of the left and right legs of this
pair of momentum maps are each Poisson manifolds, with coordi-
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nates Y ∈ su(2)∗ and R ∈ R, respectively. The corresponding Pois-
son brackets are given in tabular form as

{ · , · } Y1 Y2 Y3 R

Y1
Y2
Y3
R

0 Y3 −Y2 0

−Y3 0 Y1 0

Y2 −Y1 0 0

0 0 0 0

. (11.3.23)

In index notation, these Poisson brackets are given as

{Yk , Yl} = ǫklmYm and {Yk , R} = 0 . (11.3.24)

The last Poisson bracket relation means that the spaces with co-
ordinates Y ∈ su(2)∗ and R ∈ R are symplectically orthogonal in
u(2)∗ = su(2)∗ × R.

Equations (11.3.24) prove the following.

Theorem 11.3.2 (Momentum map (11.3.15) is Poisson) The direct-
product structure of U(2) = S1×SU(2) decomposes the momentum map
J in Equation (11.3.15) into two other momentum maps, JSU(2) : C2 7→
su(2)∗ and JS1 : C2 7→ R. These other momentum maps are also Poisson
maps. That is, they each satisfy the Poisson property for smooth functions
F and H ,

{
F ◦ J , H ◦ J

}
=
{
F , H

}
◦ J . (11.3.25)

This relation defines a Lie–Poisson bracket on su(2)∗ that inherits the
defining properties of a Poisson bracket from the canonical relations

{ak, a∗l } = −2iδkl ,

for the canonical symplectic form, ω = ℑ (daj ∧ da∗j ).

Remark 11.3.3 The Poisson bracket table in (11.3.23) is the so(3)∗

Lie–Poisson bracket table for angular momentum in the spatial
frame. It differs by an overall sign from the so(3)∗ Lie–Poisson
bracket table for angular momentum in the body frame, see (2.5.13).

✷
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Definition 11.3.3 (Dual pairs) Let (M,ω) be a symplectic manifold and
let P1, P2 be two Poisson manifolds. A pair of Poisson mappings

P1
J1←− (M,ω)

J2−→ P2

is called a dual pair [We1983b] if kerTJ1 and kerTJ2 are symplectic
orthogonal complements of one another, that is,

(kerTJ1)
ω = kerTJ2. (11.3.26)

A systematic treatment of dual pairs can be found in Chapter 11 of
[OrRa2004]. The infinite-dimensional case is treated in [GaVi2010].

Remark 11.3.4 (Summary) In the pair of momentum maps

su(2)∗ ≡ R
3 Y←− (C2, ω)

R−→ R, (11.3.27)

Y maps the fibres of R, which are three-spheres, into two-spheres,
that are coadjoint orbits of SU(2). The restriction of Y to these three-
spheres is the Hopf fibration. Further pursuit of the theory of dual
pairs is beyond our present scope. See [HoVi2010] for a recent dis-
cussion of dual pairs for resonant oscillators from the present view-
point. ✷

Example 11.3.4 (An infinite-dimensional momentum map) Let F :
T ∗M 7→ R be the space of real-valued functions on phase space defined by
the cotangent bundle T ∗M with coordinates (q, p) of a manifoldM with
coordinates q. The dual of the phase-space functions comprises the phase-
space densities, denoted F∗. The pairing 〈 · , · 〉 : F∗ ×F 7→ R between a
phase-space function g ∈ F and a phase-space density f dp ∧ dq ∈ F∗ is
defined by the integral over phase space,

〈 f , g 〉 :=
∫

T ∗M
f g dq ∧ dp .

We identify the space F∗ ×F ≃ T ∗F as the cotangent bundle of the space
of phase-space functions F .

Let Xh = { · , h } be the Hamiltonian vector field defined by apply-
ing the canonical Poisson bracket on T ∗M using the phase-space function
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h ∈ F . The momentum map for the action of canonical (symplectic) trans-
formations on phase-space functions is given by

Jh(f, g) = 〈f,Xhg〉 = 〈f, {g, h}〉 = 〈h, {f, g}〉 ,
where we have integrated by parts and invoked homogeneous boundary
conditions in the third step. This discussion reveals the following.

Lemma 11.3.1 The Poisson bracket {f, g}(q, p) is the momentum map
for the action of canonical transformations on phase-space functions.

Remark 11.3.5 The preservation of this momentum map (i.e., the
Poisson bracket) under canonical transformations on phase-space
functions is no surprise; this preservation is part of the definition of
a canonical transformation. ✷

Equivalently, one may write this momentum map as a pairing be-
tween the Lie algebra g of Hamiltonian vector fields and its dual,
g∗, the one-form densities on phase space. The following lemma
provides this representation.

Lemma 11.3.2 The Poisson one-form density fdg ⊗ dq ∧ dp is the mo-
mentum map dual to the action of Hamiltonian vector fields on phase-space
functions f and g.

Proof. The momentum map for this action is defined in terms of the
pairing,

JXh
(f, g) = 〈J(f, g) , Xh〉g∗×g = −〈f ⋄ g,Xh〉g∗×g

= 〈f,Xhg〉

=

∫

T ∗M
f(gqhp − hqgp) dq ∧ dp

=

∫

T ∗M
(Xh fdg) dq ∧ dp

= 〈f dg , Xh〉g∗×g , (11.3.28)

where Xh fdg denotes substitution of the Hamiltonian vector
field Xh = { · , h} into the differential one-form on phase space

f dg(q, p) = f(gqdq + gpdp) .
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Remark 11.3.6 The computation in (11.3.28) shows that the exterior
differential ( d ) on phase space is minus the diamond operation for
the action of Hamiltonian vector fields on phase-space functions. ✷

11.3.2 Overview

Looking back on Section 2.5.5 which discussed the Clebsch varia-
tional principle for the rigid body, we notice that the first of Equa-
tions (2.5.22) is exactly the momentum map for body angular mo-
mentum. Likewise, the momentum map (q⋄p) emerged in Equation
(9.3.8) in the Clebsch variational approach to the Euler–Poincaré
equation in Chapter 9.

This observation affirms the main message of the book: Lie sym-
metry reduction on the Lagrangian side produces the Euler–
Poincaré equation, as discussed in Chapter 9. Its formulation
on the Hamiltonian side as a Lie–Poisson equation in Section 9.4
governs the dynamics of the momentum map defined in Equa-
tion (11.2.1), which derives from the cotangent lift of the Lie alge-
bra action of the original Lie symmetry on the configuration man-
ifold defined in (11.1.2). This is the relation between the results of
reduction by Lie symmetry on the Lagrangian and Hamiltonian
sides.

The primary purpose of this book has been to explain that
statement, so that it is understood by undergraduate students in
mathematics, physics and engineering.

Remark 11.3.7 Looking forward, the reader may wish to pursue
these ideas further, and go beyond the cotangent-lift momentum
maps discussed here. At that point, the reader will need to consult
the books [OrRa2004, MaMiOrPeRa2007] for discussions of momen-
tum maps obtained by singular reduction techniques and reduction
by stages. For discussions of the use of momentum maps derived
from Hamilton–Pontryagin and Clebsch variational principles, re-
spectively, in designing geometric integrators for discrete dynami-
cal systems, see [BoMa2009] and [CoHo2007]. ✷
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Exercise. The canonical Poisson bracket {g, h} between
two phase-space functions g and h induces a Lie–Poisson
bracket { · , · }LP between linear functionals of phase-space
functions defined by

JXh
(f, g) =

〈
f, {g, h}

〉
=
{
〈f, g〉, 〈f, h〉

}
LP

.

Show that this Lie–Poisson bracket { · , · }LP satisfies the
properties that define a Poisson bracket, including the Ja-
cobi identity. ⋆

Exercise. Let the components of the angular momentum
vector L ∈ R3 be defined by

Li :=

∫
(p× q)i f(q, p)dq ∧ dp =

〈
f (p× q)i

〉
,

where i = 1, 2, 3 and (×) denotes vector product in R3.
Compute the Lie–Poisson bracket

{
Li, Lj

}
LP

. ⋆

Exercise. Compute the Lie–Poisson bracket relation

{JXh
(f, g), JXH

(f,G)}LP = JX{G,H}

(
f, {g, h}

)

for phase-space functions g, h,G,H . ⋆
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This chapter deals with round rigid bodies rolling on a flat sur-
face, by applying the Hamilton–Pontryagin and Euler–Poincaré ap-
proaches to Lagrangian reduction for variational principles with
symmetries. These approaches were introduced for the heavy top
in Chapter 8. To the potential energy and rotational energy of
the heavy top, one now adds translational energy for its centre of
mass motion and imposes the nonholonomic constraint that the
rigid body is rolling. We focus on the constrained rocking, rolling,
but not sliding motion of a rigid body on a perfectly rough hori-
zontal plane in two examples. These examples are the Chaplygin
ball (a rolling spherical ball with an off-centre mass distribution, as
sketched in Figure 12.1) and the Euler disk (modelling a gyrating
coin, as sketched in Figure 12.2). The chapter closes by showing that
the Hamilton–Pontryagin and Euler–Poincaré approaches to La-
grangian reduction yield the same equations as those obtained from
the standard Lagrange–d’Alembert variational approach [Bl2004].

We hope the examples of geometric mechanics problems treated
in this chapter will inspire confidence in interested readers. Having
mastered the material so far, they should find themselves ready and
completely equipped with the tools needed to model nonholonomic
dynamics of rolling without sliding.

12.1 Introduction

12.1.1 Holonomic versus nonholonomic

Constraints which restrict the possible configurations for a mechan-
ical system are called holonomic. Examples are restriction of a pen-
dulum to have constant length, or restriction of a particle in three
dimensions to move on the surface of a sphere. Constraints on
the velocities which cannot be reduced to holonomic constraints are
termed nonholonomic.

Nonholonomic systems typically arise when constraints on ve-
locity are imposed, such as the constraint that the bodies roll with-
out slipping on a surface. Cars, bicycles, unicycles – anything with
rolling wheels – are all examples of nonholonomic systems.



September 24, 2011 11:41am Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

12.1 INTRODUCTION 247

Nonholonomic mechanics has a rich history that dates back to
the time of Euler, Lagrange and d’Alembert. The classical work in
this subject is summarised in Routh [Ro1860], Jellett [Je1872] and
has been discussed more recently in the context of control theory in
Neimark and Fufaev [NeFu1972]. The geometry of nonholonomic
systems shares its mathematical foundations with geometric control
theory. An introduction to nonholonomic constraints in geometric
control applications (such as feedback laws that stabilise or generate
locomotion) is given in [Bl2004]. A branch of mathematics known
as sub-Riemannian geometry has developed for dealing with non-
holonomic geometric control systems [Mo2002]. Control problems
and sub-Riemannian geometry are beyond the scope of the present
text.

Definition 12.1.1 A constrained dynamical system consists of

a smooth manifold Q, which is the configuration space;

a smooth function L : TQ→ R, which is the Lagrangian (typically
taken to be the difference between the kinetic energy and potential
energy); and

a smooth distribution D ⊂ TQ, which determines the constraints.

Definition 12.1.2 A distribution is a collection of linear subspaces of
the tangent spaces of Q such that Dq ⊂ TqQ for q ∈ Q.

Remark 12.1.1 The Dq tangent spaces of Q parameterise the allow-
able directions for the system at a given point q of the configura-
tion space. A curve q(t) ∈ Q satisfies the constraints, provided
q̇(t) ∈ Dq(t) for all t. (This implies that the constraints are linear in
the velocities.) The distribution D ⊂ TQ will in general not be the
differential of a function on Q. That is, in general, the constraints
will be nonholonomic. ✷

This chapter applies the same ideas of symmetry reduction un-
derlying the Hamilton–Pontryagin and Euler–Poincaré approaches
that were explained earlier in studying Hamilton’s principle for the
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heavy top in Chapter 8. In addition, it introduces nonholonomic
constraints into the variational principle by using Lagrange multi-
pliers. The approach is illustrated by deriving the dynamical equa-
tions for the rocking, rolling, but not sliding motion of two classical
nonholonomic problems. The first problem involves a spherical ball
whose mass distribution is off-centre, and is rolling without slip-
ping on a horizontal plane in the presence of gravity. This problem
is called the Chaplygin ball. The second problem treats a disk that
is simultaneously rolling, spinning and falling. This is the problem
of the Euler disk. Both of these problems have stimulated many
interesting investigations, and they are likely to keep doing so.

12.1.2 The Chaplygin ball

Consider a spherical ball of mass m, radius r and moment of iner-
tia I , whose mass distribution is inhomogeneous, so that its centre
of mass lies anywhere in the ball as it rolls without slipping on a
horizontal plane in the presence of gravity. This problem was first
solved by Chaplygin [Ch1903]. Extensive references for the history
of this problem and the associated problem of the tippe top involv-
ing both rolling and sliding are given in [GrNi2000]. Modern ge-
ometric perspectives of this problem appear in [Cu1998, He1995,
Ze1995, Sc2002, BoMaRo2004, GlPeWo2007, CiLa2007, Ki2011].

Definition 12.1.3 (Geometry for the rolling ball) Let (E1, E2, E3)
denote the reference system of body coordinates, chosen to coincide
with the ball’s principal axes, in which the inertia tensor is diagonal,
I = diag(I1, I2, I3). The coordinate directions in space are denoted
(e1, e2, e3). These spatial unit vectors are chosen so that (e1, e2) are
horizontal and e3 is vertical. The origin of the body coordinate sys-
tem coincides with the centre of mass of the ball, which has coordinates
x(t) = (x1(t), x2(t), x3(t)) in space. In the spatial coordinate system,
the body frame is the moving frame (g(t)E1, g(t)E2, g(t)E3), where
g(t) ∈ SO(3) defines the attitude of the body relative to its reference
configuration.
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Figure 12.1. The Chaplygin ball. The position (x1(t), x2(t), x3(t)) is the

position of the centre of mass, not the centre of the sphere. The spatial vector σ(t)
points from the contact point C to the centre of mass. The projection of the centre

of mass location onto the plane is the point (x1(t), x2(t),−r).

Thus, the motion of the ball is given by a curve in the group of special
Euclidean transformations

(g(t), x(t)) ∈ SE(3) ≃ SO(3)× R
3 ,

where g(t) ∈ SO(3) and x(t) ∈ R3. An element of SE(3) maps a generic
point P in the ball’s reference coordinates to a point in space,

Q(t) = g(t)P + x(t) ,

at time t.

Exercise. Show that the left-invariant and right-invariant
tangent vectors for this motion on SE(3) are, respectively,

(Ω, Y ) := (g−1ġ, g−1ẋ) ,

and
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(ω, ζ) := (ġg−1, −ġg−1x+ ẋ) .

See Equations (6.3.10) and (6.3.11). ⋆

Definition 12.1.4 (Spatial moment vector) Let ℓχ denote the vector in
the body frame that points from the geometric centre of the ball to its centre
of mass, where

ℓ is the fixed distance between these two points; and

χ is a unit vector in the body, not necessarily aligned with a principal
axis.

At any instant, the vector in space pointing from the contact point C to
the centre of mass at x(t) is the spatial moment vector,

σ(t) = re3 + ℓg(t)χ .

Definition 12.1.5 (Rolling constraint) Physically, rolling of the body
means that the velocity of its centre of mass ẋ(t) in the spatial frame at
any instant t must be obtained by a rotation with angular frequency

ω̂ = ġg−1 ∈ so(3) ,

around the fixed contact point. Consequently, the rolling constraint is
imposed by requiring

ẋ(t) = ġg−1σ(t) = ω̂ σ(t) = ω × σ(t) , (12.1.1)

where we have used the hat map in the last step for the (right-invariant)
spatial angular velocity. Equivalently, one may rewrite this rolling con-
straint as

ẋ(t) = ġ(t)
(
rg−1(t)e3 + ℓχ

)
. (12.1.2)

This formula defines the spatial nonholonomic constraint distribu-
tion D for the Chaplygin ball.
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Exercise. What is the velocity ẋ(t) in the body coordinate
system? ⋆

The Hamilton–Pontryagin approach for the Chaplygin ball

The Hamilton–Pontryagin method proceeds after assembling the
following ingredients:

Potential energy: The potential energy due to gravity for the
Chaplygin ball is mγx3(t), where

x3(t) = 〈e3, g(t)ℓχ〉 = 〈g−1(t)e3, ℓχ〉 (12.1.3)

is the vertical displacement of the centre of mass relative to the
centre of the ball and γ is the constant acceleration of gravity.

Kinetic energy: The kinetic energy of the Chaplygin ball is the
sum of the energy of translation of its centre of mass and the
energy of rotation about the centre of mass.

Lagrangian: The Lagrangian is defined to be the difference be-
tween the total kinetic energy and the gravitational potential
energy,

L =
1

2
〈Ω, IΩ〉+ m

2
|ẋ|2 −mγℓ

〈
g−1e3, χ

〉
,

where Ω = g−1ġ is the (left-invariant) body angular velocity.

Rolling constraint in the body: The spatial distribution (12.1.2)
for the rolling constraint transforms into body coordinates
upon setting

Y = g−1ẋ , Γ = g−1e3 , s = g−1σ = rΓ + ℓχ , (12.1.4)

with vectors Y, Γ, s each in R3. The rolling constraint in body
coordinates then simplifies to

Y = Ωs . (12.1.5)
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The hat map expresses this rolling constraint equivalently in
vector form as Y = Ω× s.

Reduced Lagrangian in body coordinates: The reduced La-
grangian is defined in body coordinates by using the defini-
tions in (12.1.5), as

l(Ω, Y,Γ) =
1

2

〈
Ω, IΩ

〉
+
m

2
|Y |2 −mγℓ

〈
Γ, χ

〉
. (12.1.6)

These considerations have expressed a spatial Lagrangian L :
TG × TV × V → R in its body form as l : g × TV × V → R,
plus the various constraint relations.

12.2 Nonholonomic Hamilton–Pontryagin
variational principle

We shall write Hamilton’s principle δS = 0 for a class of nonholo-
nomically constrained action principles that includes the Chaplygin
ball, by simply using Lagrange multipliers to impose the constraints
on the reduced Lagrangian, as in the Hamilton–Pontryagin princi-
ple for the matrix Euler equations in Section 2.4.1. In particular, we
apply the Hamilton–Pontryagin approach to the following class of
constrained action integrals,

S =

∫
L(g, ġ, ẋ, e3) dt

=

∫ {
l(Ω, Y,Γ) +

〈
Π , g−1ġ − Ω

〉
(12.2.1)

+
〈
κ , g−1e3 − Γ

〉
+
〈
λ , g−1ẋ− Y

〉}
dt ,

where
l(Ω, Y,Γ) = L(e, g−1ġ, g−1ẋ, g−1e3) . (12.2.2)

This class of action integrals produces constrained equations of mo-
tion determined from the Hamilton–Pontryagin principle.
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Theorem 12.2.1 (Hamilton–Pontryagin principle) The station-
arity condition for the nonholonomically constrained Hamilton–
Pontryagin principle defined in Equations (12.2.1) and (12.2.2) under
the rolling constraint in body coordinates (12.1.5) implies the following
equation of motion,

( d
dt
− ad∗Ω

)(
Π− λ ⋄ s) = κ ⋄ Γ− λ ⋄ ṡ , (12.2.3)

where Π = δl/δΩ, κ = δl/δΓ, λ = δl/δY and s = s(Γ) defines the
vector in the body directed from the point of rolling contact to the centre
of mass.

Remark 12.2.1 (The ad∗ and ⋄ operations) The ubiquitous coad-
joint action ad ∗ : g∗ × g → g∗ and the diamond operation
⋄ : V ∗ × V → g∗ in Equation (12.2.3) are defined as the duals
of the Lie algebra adjoint action ad : g×g→ g and of its (left) action
g × V → V on a vector representation space V , respectively, with
respect to the corresponding pairings as

〈
ad∗ΩΠ , η

〉
g∗×g

=
〈
Π , adΩη

〉
g∗×g

, (12.2.4)

with Ω, η ∈ g and Π ∈ g∗ for ad ∗ and

〈
κ ⋄ Γ , η

〉
g∗×g

=
〈
κ , − ηΓ

〉
V ∗×V

, (12.2.5)

with η ∈ g, κ ∈ V ∗ and Γ ∈ V for ⋄. The ad ∗ and ⋄ operations
first appeared in the dual actions of SE(3) in (6.2.9). They arose
again in the Clebsch Equation (9.3.8) and in the proof of the Clebsch
variational principle for the Euler–Poincaré equation in Proposition
9.3.1. They featured in the definition of the cotangent-lift momen-
tum map (11.2.1) and now they have emerged again in the nonholo-
nomic Hamilton–Pontryagin Equation (12.2.3) ✷
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Proof. One evaluates the variational derivatives in this constrained
Hamilton’s principle from the definitions of the variables as

δΩ = δ(g−1ġ) =
dη

dt
+ adΩη ,

δΓ = δ(g−1e3) = − η(g−1e3) = − ηΓ , (12.2.6)

δY = δ(g−1ẋ) =
d

dt
(ηs) + (adΩη)s .

Here η := g−1δg and the last equation is computed from

δ(g−1ẋ) = −ηg−1ẋ+ g−1δẋ

= − ηΩs+ d

dt
(g−1δx) + Ωηs . (12.2.7)

Remark 12.2.2 In computing formulas (12.2.6), one must first
take variations of the definitions, and only then evaluate the re-
sult on the constraint distribution defined by Y = g−1ẋ = Ωs
and

g−1δx = (g−1δg)(rg−1e3 + ℓχ) = ηs,

which is the analogue of Equation (12.1.2). This type of subtlety
in taking variations of Hamilton’s principle in deriving Euler–
Lagrange equations for nonholonomic systems is also discussed
in [Ru2000]. ✷

Expanding the variations of the Hamilton–Pontryagin action in-
tegral (12.2.1) using relations (12.2.6) and then integrating by parts
yields

δS =

∫ {〈
δl

δΩ
−Π , δΩ

〉
+

〈
δl

δΓ
− κ , δΓ

〉
+

〈
δl

δY
− λ , δY

〉

−
〈( d

dt
− ad∗Ω

)(
Π− λ ⋄ s)− κ ⋄ Γ + λ ⋄ ṡ , η

〉 }
dt

+
〈
Π+ s ⋄ λ, η

〉∣∣∣
b

a
. (12.2.8)
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The last entry in the integrand arises from varying in the group el-
ement g using formulas (12.2.6) obtained from relation (12.2.7). Sta-
tionarity (δS = 0) for the class of action integrals S in Equations
(12.2.1) and (12.2.2) for variations η that vanish at the endpoints now
defines the Lagrange multipliers, Π = δl/δΩ, κ = δl/δΓ, λ = δl/δY ,
in terms of variational derivatives of the Lagrangian and thereby
proves the formula for the constrained equation of motion (12.2.3)
in the statement of the theorem.

Remark 12.2.3 (Preparation for Noether’s theorem) The endpoint
term that arises from integration by parts in (12.2.8) will be dis-
cussed later in Remark 12.2.13 about the Jellett and Routh inte-
grals for the cylindrically symmetric Chaplygin ball, and in Re-
mark 12.3.5, about Noether’s theorem for the nonholonomic Euler–
Poincaré equations. As usual, this endpoint term is the source of
Noether’s theorem for the system. However, in nonholonomic sys-
tems the variations must respect the constraints, so Noether symme-
tries have more than just their geometric meaning. They also have
a dynamical meaning. ✷

Remark 12.2.4 (Vector notation) For g ∈ SO(3) the equation of
constrained motion (12.2.3) arising from stationarity (δS = 0) of
the action in (12.2.8) may be expressed in R3 vector notation via the
hat map as

( d
dt

+Ω×
)(

Π − λ × s) = κ × Γ − λ × ṡ . (12.2.9)

These equations are completed by the formulas

κ = δl/δΓ , λ = δl/δY , Γ̇ = −Ω × Γ ,

and ṡ with s = s(Γ). This vector version of Theorem 12.2.1 will
yield equations of motion for two classic nonholonomic problems,
the Chaplygin ball and the Euler disk. ✷
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Exercise. Set M = Π − λ × s and compute d(M · Ω)/dt.
How does this simplify when ℓ = 0, so that the centre of
mass coincides with the centre of the sphere? ⋆

12.2.1 HP principle for the Chaplygin ball

In vector notation, the reduced Lagrangian in Equation (12.1.6) for
the Chaplygin ball in body coordinates is

l(Ω, Y,Γ) =
1

2
Ω· IΩ+

m

2
|Y |2 −mγℓΓ · χ . (12.2.10)

This is the sum of the kinetic energies due to rotation and transla-
tion, minus the potential energy of gravity. One evaluates its vector-
valued variational relations as

Π =
δl

δΩ
= IΩ , κ =

δl

δΓ
= −mγℓχ ,

λ =
δl

δY
= mY = mΩ × s , (12.2.11)

in which the last step is to substitute the rolling constraint.

From their definitions for the Chaplygin ball

Γ(t) = g−1(t)e3 and s = rΓ(t) + ℓχ , (12.2.12)

one also finds the auxiliary equations,

Γ̇ = −Ω × Γ and ṡ = −Ω × (s− ℓχ) . (12.2.13)

As always, the auxiliary equation for the unit vector Γ preserves
|Γ|2 = 1.
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Substituting these two auxiliary equations into the stationar-
ity condition (12.2.9) and rearranging yields the vector motion
equation for the Chaplygin ball,

( d
dt

+Ω×
)
M = mγℓΓ × χ︸ ︷︷ ︸

gravity

− mr (Ω × Γ) × (Ω× ℓχ)︸ ︷︷ ︸
rolling constraint torque

= mℓ
[
γ Γ × χ+ rΩ

(
Ω· χ × Γ

)]
(12.2.14)

with M = IΩ+ms × (Ω × s). (12.2.15)

Exercise. (Energy conservation) Show that the Chaplygin
ball in rolling motion without sliding conserves the follow-
ing energy in body coordinates,

E(Ω, Γ) =
1

2
Ω· IΩ+

m

2

∣∣Ω× s
∣∣2

+mγℓΓ · χ . (12.2.16)

This is the sum of the kinetic energies due to rotation
and translation, plus the potential energy of gravity. (The
rolling constraint does no work.) ⋆

Exercise. (Constrained reduced Lagrangian) Determine
whether the motion Equation (12.2.14) for the Chaplygin
ball also results from the constrained reduced Lagrangian,

lc(Ω,Γ) =
1

2
Ω· IΩ+

m

2
|Ω × s|2−mγℓΓ · χ , (12.2.17)

in which the rolling constraint is applied before varying. ⋆
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Remark 12.2.5 The distinction between the motion equations that
result from the reduced Lagrangian (12.2.10) when the rolling con-
straint is applied after the variations and those that result from
the constrained reduced Lagrangian (12.2.17) on applying the rolling
constraint before the variations will be discussed in Section 12.3.3.

✷

Remark 12.2.6 (The issue of sliding) The rolling constraint exerts
the torque on the body that keeps it rolling. This torque appears
in the motion Equation (12.2.14) directed along the angular velocity
vector Ω and proportional to the square of its magnitude. For suffi-
ciently rapid rotation, one could expect that friction might no longer
be able to sustain the constraint torque. In this situation, additional
modelling steps to include sliding would be required. However,
considerations of sliding seriously affect the solution procedure, be-
cause they change the nature of the problem.

For pure rolling, one integrates the motion Equation (12.2.14) for
angular momentum and solves for the body angular velocity and
orientation of the vertical in the body. One then reconstructs the
path on the rotation group g(t). Finally, one applies g(t) in Equation
(12.1.2) for the rolling constraint to obtain the position of the centre
of mass x(t).

The ball is sliding, to the extent that its slip velocity is nonzero.
The slip velocity of the contact point is the velocity of the contact
point on the rigid body relative to the centre of mass. This is

vS(t) = ẋ(t)− ġ(t)
(
rg−1(t)e3 + ℓχ

)
. (12.2.18)

Sliding introduces frictional effects that differ considerably from
pure rolling. In particular, sliding introduces an additional friction
force in Newton’s law for the acceleration of the centre of mass,

mẍ(t) = FS .

Sometimes, the sliding force FS is taken as being proportional to
the slip velocity vS(t) and of opposite sign. The torque FS × s as-
sociated with the sliding force also enters the angular momentum
equation. Moreover, a normal reaction force and its torque must
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be determined to ensure that the sphere stays in contact with the
plane. In some applications, such as the tippe top, sliding is essen-
tial. However, we shall forgo the opportunity to discuss sliding in
the present text. See [GrNi2000, CiLa2007] for discussions of fric-
tional effects for the Chaplygin ball, in the context of the tippe top
phenomenon. ✷

Remark 12.2.7 (The Chaplygin ball vs the heavy top) The motion
Equation (12.2.14) for the Chaplygin ball is reminiscent of the
heavy-top motion Equation (8.1.2) and it has the same auxiliary
Equation (8.1.3) for Γ. However, it also has two important differ-
ences. First, the translational kinetic energy associated with rolling
of the Chaplygin ball enters effectively as an angular momentum.
Second, an additional torque due to the rolling constraint appears
on the right-hand side of the motion equation.

Hamilton–Pontryagin principle for the heavy top

The heavy-top equations also arise from the Hamilton–Pontryagin
principle (12.2.1) with the following reduced Lagrangian in vector
body coordinates, obtained by simply ignoring the kinetic energy of
translation in (12.2.10) for the Chaplygin ball:

l(Ω,Γ) =
1

2
Ω· IΩ−mγℓΓ · χ . (12.2.19)

This is just the difference between the kinetic energy of rotation and
the potential energy of gravity. Substituting the vector-valued vari-
ational relations in Equation (12.2.11) and the auxiliary equation,

Γ̇ = −Ω × Γ , (12.2.20)

into the stationarity condition (12.2.9) and rearranging recovers the
vector motion Equation (8.1.2) for the heavy top,

( d
dt

+Ω×
)
IΩ = mγℓΓ × χ ,

which we see now is rather simpler than Equation (12.2.14) for the
motion of the Chaplygin ball. For example, one easily sees that the
heavy-top equations conserve |Γ|2 and Γ·IΩ. ✷
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Exercise. Show that the vector Equation (12.2.9) for non-
holonomic motion in body coordinates and the auxiliary
Equations (12.2.11)–(12.2.13) imply an evolution equation,

d

dt

(
M · Γ

)
= mrℓ(Ω · Γ)(Ω · χ × Γ) , (12.2.21)

for the projection M · Γ of the total body angular momen-
tum M onto the vertical direction as seen from the body
Γ = g−1(t)e3, with

M = Π− λ × s with λ = δl/δY = mY = mΩ × s

and the vector Γ = g−1(t)e3, which represents the vertical
direction as seen from the body. ⋆

Answer. The required evolution Equation (12.2.21) fol-
lows from a direct calculation,

d

dt

(
M · Γ

)
= −mr(Ω × Γ) · (Y × Γ)

= mr(Ω · Γ)(Y · Γ)

= mr(Ω · Γ)
(
(Ω × s) · Γ

)

= mrℓ(Ω · Γ)(Ω · χ × Γ) ,

as obtained by using Equations (12.2.11)–(12.2.13). N

Remark 12.2.8 The corresponding spatial quantity is the vertical
component of the spatial angular momentum about the point of
contact, given by

M · Γ = m · e3 = m3 . (12.2.22)

Here the spatial vector m is defined by m = g(t)M for motion
along the curve g(t) ∈ SO(3). Relation (12.2.21) implies that the
vertical component of spatial angular momentum m3 in (12.2.22) is
not conserved, even for a cylindrical body. ✷
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Remark 12.2.9 The curve g(t) may be reconstructed from the so-
lution of the motion Equation (12.2.14) for the body angular mo-
mentum Π(t) := IΩ(t) by inverting the Legendre transformation
and then solving the linear differential equation ġ(t) = g(t)Ω(t) ob-
tained from the definition of body angular velocity. ✷

Exercise. (Jellett’s relation for the Chaplygin ball) Show
that the vector Equation (12.2.9) for nonholonomic motion
in body coordinates implies the following evolution equa-
tion for the projection of the angular momentum Π onto
the vector s directed from the point of contact to the centre
of mass:

d

dt

(
Π · s

)
=
(
− Ω ×

(
Π − λ × s) + κ × Γ

)
· s

+ Π · ṡ . (12.2.23)

For the Chaplygin ball, Equations (12.2.11)–(12.2.13) imply
Jellett’s relation,

d

dt

(
Π · s

)
= ℓχ · Π × Ω . (12.2.24)

⋆

Remark 12.2.10 (Jellett’s integral for cylindrical symmetry) The
mass distribution of Chaplygin’s ball is usually assumed to be cylin-
drically symmetric about χ. For this case, treated for example
in [LyBu2009], the unit vector χ points along one of the princi-
pal axes and the right-hand side of (12.2.24) vanishes. Thus, rota-
tional symmetry about χ produces an additional constant of mo-
tion, Π · s, called Jellett’s integral [Je1872]. See, e.g., [Cu1998,
GrNi2000, BoMaRo2004, LyBu2009] for references to the original lit-
erature and further discussions of the relation of cylindrical symme-
try to the conservation of Jellett’s integral.
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As emphasised in [LyBu2009], the concept of cylindrical sym-
metry has two aspects:

(i) a principal axis passes through the geometric centre;

(ii) the moments of inertia about all axes perpendicular to this axis
are equal.

Either of these conditions may be satisfied without the other one
holding. The rock’n’roller treated in [LyBu2009] satisfies condition
(i) but not condition (ii). Chaplygin’s ball satisfies both. An example
of a body for which (ii) holds but not (i) is a light polystyrene sphere
into which an arbitrarily oriented ellipsoid of heavy metal has been
embedded off-centre.

✷

Exercise. Prove that the right-hand side of (12.2.24) van-
ishes when both conditions (i) and (ii) of cylindrical sym-
metry are satisfied for an axis along χ. ⋆

Answer. Let χ = −E3, so that the centre of mass lies
along the E3 principal axis. Then

ℓχ · Π × Ω = −ℓ(I1Ω1Ω2− I2Ω2Ω1) = −ℓ(I1− I2)Ω1Ω2 .

For cylindrical symmetry about E3, we have I1 = I2.
Consequently, the right-hand side vanishes and Jellett’s
integral Π · s is conserved. N

Remark 12.2.11 (Equivalent form of Jellett’s integral) Jellett’s in-
tegral J = Π · s may also be written as a linear expression in the
total angular momentum, M , defined as

M = Π+m s × (Ω × s) .
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The equivalent form of Jellett’s integral is

J = M · s = rM · Γ+ ℓM · χ = rm3 − ℓM3 (12.2.25)

for χ = −E3. Thus, Jellett’s integral is a weighted difference be-
tween the geometric spatial and body angular momentum compo-
nents in the corresponding three directions. Separately, m3 and M3

are not conserved. ✷

Remark 12.2.12 (Routh’s integral) An additional integral of mo-
tion for the cylindrically symmetric Chaplygin ball was found by
Routh [Ro1860],

R = Ω3

√
I1I3 +m(s · Is) .

The Routh integral R may also be written equivalently as a linear
expression in the total angular momentum [KiPuHo2011]. Namely,

R =
M ·
(
I1χ+m(s · χ)s

)
√
I1I3 +m(s · Is)

. (12.2.26)

✷

Exercise. (Endpoint term in vector notation) Express the
endpoint term in (12.2.8) for the Hamilton–Pontryagin
principle for the Chaplygin ball in vector notation. Discuss
its relation to Jellett’s integral J . ⋆

Answer. In vector notation, this endpoint term becomes

〈Π+ s ⋄ λ, η〉 =
(
Π+m s × (Ω × s)

)
· η = M · η .

Thus, the endpoint term in (12.2.8) recovers Jellett’s in-
tegral J when η = s. N

Remark 12.2.13 (Relation of J, R to Noether’s theorem) Both Jel-
lett’s integral J in (12.2.25) and Routh’s integral R in (12.2.26) arise
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via Noether’s theorem from symmetries of the Lagrangian (12.2.10)
for the Chaplygin ball.

In vector notation, the reduced Lagrangian in Equation (12.2.10)
for the Chaplygin ball in body coordinates has variations

δl(Ω, Y,Γ) = δ Ω·
δl

δΩ
+ δY · δl

δY
+ δ Γ·

δl

δΓ
(12.2.27)

= δ Ω· IΩ+ δY ·mY + δ Γ·
(
−mγℓχ

)
.

The vector variations (δΩ, δΓ, δY ) here may be expressed in terms
of a single vector η by rewriting (12.2.6) equivalently as

δΩ = η̇ +Ω × η ,

δΓ = −η × Γ , (12.2.28)

δY =
d

dt
(η × s) + (Ω × η) × s .

When η = s, these expressions become

δΩ = ṡ+Ω × s = ℓΩ × χ ,

δΓ = − s × Γ = − ℓχ × Γ , (12.2.29)

δY = (Ω × s) × s = Y × s ,

where we have used ṡ = −Ω × (s− ℓχ) and Y = Ω × s.

Substituting Equations (12.2.29) for the variations when η = s

into the variation of the Lagrangian in (12.2.27) yields

δl(Ω, Y,Γ) = ℓΩ × χ · Π . (12.2.30)

Perhaps not unexpectedly, this variation vanishes and, thus, the re-
duced Lagrangian is invariant, for η = s when cylindrical symme-
try (I1 = I2) is imposed and the centre of mass lies along the axis of
symmetry. Hence, Jellett’s integral J in (12.2.25) arises via Noether’s
theorem from this cylindrical symmetry of the Lagrangian (12.2.10)
for the Chaplygin ball.

Routh’s integral R in (12.2.26) also arises via Noether’s theorem
from a symmetry of the Lagrangian (12.2.10) for the Chaplygin ball,
but the calculation is more involved [Ki2011]. ✷
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Exercise. (Routh’s integral and symmetry) Show that
Routh’s integral for the Chaplygin ball R in (12.2.26) arises
via Noether’s theorem from a symmetry of the Lagrangian
(12.2.10). ⋆

Remark 12.2.14 (Chaplygin’s concentric sphere, for ℓ→ 0) When
the centre of mass coincides with the centre of symmetry, then ℓ = 0,
the right-hand side of Equation (12.2.14) vanishes and one recovers
the equations of motion for Chaplygin’s concentric sphere:

dΠtot

dt
+Ω × Πtot = 0 ,

dΓ

dt
+Ω × Γ = 0 , (12.2.31)

Πtot = IΩ+mr2 Γ × (Ω × Γ) . (12.2.32)

The equations for Chaplygin’s concentric sphere preserve |Πtot|2,
|Γ|2, IΩ·Γ and the corresponding sum of kinetic energies in (12.2.16)
when ℓ → 0. For the solution behaviour of Chaplygin’s concentric
sphere, see, e.g., [Ki2001]. ✷

12.2.2 Circular disk rocking in a vertical plane

Consider an inhomogeneous circular disk that is rocking and rolling
in a vertical plane, as its contact point moves backward and forward
along a straight line. At the initial moment, the centre of mass is
assumed to lie a distance ℓ directly beneath the geometric centre of
the disk. That is, in the initial configuration,

e1 =

(
1

0

)
, e2 =

(
0

1

)
, χ =

(
0

−1

)
, (12.2.33)

where e1 and e2 are spatial unit vectors in the vertical plane. The
moment of inertia is I = I3 for rotations about the third axis,
e3, which is horizontal. The orientation of the disk is given by
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A(θ) ∈ SO(2) for rotations about e3 by an angle variable θ(t) and its
corresponding body angular velocity Ω̂ = A−1Ȧ is given by

A(θ) =

[
cos θ − sin θ

sin θ cos θ

]
, Ω̂ = A−1Ȧ =

[
0 −1
1 0

]
θ̇ ,

so that in vector notation the body angular velocity is

Ω = θ̇ e3 .

The remaining body vector variables for this problem are

the vertical unit vector, e2, as seen from the body,

Γ(θ) = A−1(θ)e2 =

(
sin θ

cos θ

)
;

the vector s(θ) pointing from the contact point C to the centre
of mass location in the body,

s(θ) = rΓ(θ) + ℓχ =

(
r sin θ

r cos θ − ℓ

)
;

the rolling constraint in body coordinates (12.1.5),

Y = Ω × s = θ̇ e3×s = θ̇

(
−r cos θ + ℓ

r sin θ

)
;

the angular momentum in the body,

Π = IΩ = I3θ̇ e3 ;

the total angular momentum,

M = Π−mY × s

=
(
I3θ̇ +m|s(θ)|2θ̇

)
e3

so that Ω × M = 0.
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The constrained motion equation in vector form (12.2.9) with
variational derivatives (12.2.11) for so(2)∗ in this problem becomes

(
d

dt
+Ω×

)
M = −mγℓχ × Γ−mY × ṡ . (12.2.34)

The problem of the motion of a rolling disk in a vertical plane is
considerably simpler than the fully three-dimensional problem, be-
cause each term has only a horizontal (e3) component, which im-
plies that the vector cross product Ω × M vanishes. The horizontal
e3-component of each of the remaining terms on the right-hand side
of the Euler–Poincaré Equation (12.2.34) may be calculated as

Γ×mγℓχ = −mγℓ
(

sin θ

cos θ

)
×
(

0

1

)

= −mγℓ sin θ e3 ,

ṡ×mY = −(Ω×r Γ)×mY

= mrθ̇2

(
cos θ

− sin θ

)
×
(
−r cos θ + ℓ

r sin θ

)

= mrℓθ̇2 sin θ e3 .

The right-hand side of the motion Equation (12.2.14), or equiva-
lently Equation (12.2.34), for the Chaplygin disk then becomes

mℓ
[
γ Γ × χ+ rΩ

(
Ω· χ × Γ

)]
=
[
mℓ
(
− γ + rθ̇2

)
sin θ

]
e3 .

Remark 12.2.15 The Jellett and Routh integrals both vanish for the
Chaplygin disk. ✷

Assembling the terms in the motion Equation (12.2.34) for the
Chaplygin disk yields

d

dt

[(
I3 +m|s(θ)|2

)
θ̇
]
= mℓ

(
− γ + rθ̇2

)
sin θ , (12.2.35)

with
|s(θ)|2 = r2 + ℓ2 − 2rℓ cos θ . (12.2.36)
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Remark 12.2.16 (Chaplygin disk vs simple pendulum) Compared
to the simple pendulum equation,

mℓ2θ̈ = −mℓγ sin θ ,

the rocking and rolling motion Equation (12.2.35) for the Chaply-
gin disk has two additional terms. These terms represent the rate
of change of angular momentum due to translation and the torque
arising from the rolling constraint. ✷

Remark 12.2.17 (Conservation of Chaplygin disk energy) Although
the constraint torque is time-dependent, it does no work. There-
fore, it preserves the total energy. Energy conservation is seen by
expanding the motion Equation (12.2.35), multiplying it by θ̇ and
rearranging to find

d

dt

[
1

2
I3θ̇

2 +
1

2
m|s(θ)|2θ̇2 +mγℓ(1− cos θ)

]
= 0 , (12.2.37)

which expresses the conserved energy for the constrained motion of
the Chaplygin disk rocking and rolling, backward and forward, in
a vertical plane. The middle term is the translational kinetic energy.

✷

Remark 12.2.18 (Euler–Lagrange equation) The constrained re-
duced Lagrangian in Equation (12.2.10) for the Chaplygin ball in
body coordinates may be expressed as

lc(θ, θ̇) =
1

2
I3θ̇

2 +
1

2
m|s(θ)|2θ̇2 +mγℓ cos θ . (12.2.38)

Remarkably, in this case, the equation of motion for the two-
dimensional rocking Chaplygin disk is also the Euler–Lagrange
equation for the constrained reduced Lagrangian (12.2.38). ✷

12.2.3 Euler’s rolling and spinning disk

One of the best-known examples of a nonholonomically constrained
rigid body is the rolling circular disk. Ignoring dissipation, the
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equations of motion for the rolling disk were formulated by Slesser
[Sl1861] and shown to be integrable by Chaplygin [Ch1897], Ap-
pel [Ap1900] and Korteweg [Ko1900], by a transformation of vari-
ables that takes the dynamics miraculously to Legendre’s equation.
Nearly a century later these results were used by Cushman et al.
[CuHeKe1995] and O’Reilly [Or1996] to examine, among other mat-
ters, the stability and bifurcations of the steady motions of flat (in-
finitely thin) circular disks. For additional historical accounts, see
[BoMa2002, BoMaKi2002].

Recently, a toy called the Euler disk appeared, whose inventors
[BeShWy1999] optimised the choice of disk weight, finite thickness,
shape, material and surface so that the disk will spin and gyrate for
well over a minute before coming to rest. In the last few tens of
seconds before it comes to rest, it also shows a fascinating increase
in its oscillation frequency which has caught the imagination of
many people. See, e.g., [McDMcD2000, PeHuGr2002, LeLeGl2005].
Batista [Ba2006] found the transformation which solves the Euler
disk in terms of hypergeometric functions.

Here we will use the Hamilton–Pontryagin variational princi-
ple to formulate the equations for the dynamics of the rolling and
spinning flat circular disk that were originally solved by Chaplygin
[Ch1897], Appel [Ap1900] and Korteweg [Ko1900] using the trans-
formation to Legendre’s equation.

Consider a flat circular disk with homogeneous mass distribu-
tion which rolls without slipping on a horizontal plane, and whose
orientation is allowed to tilt away from the vertical plane. Denote
its mass and radius by m and r, respectively. Let I = I3 be its mo-
ment of inertia about its axis of circular symmetry and I1 = J = I2
be its moment of inertia about any diameter. Because its mass dis-
tribution is homogeneous, the disk’s centre of mass coincides with
its centre of circular symmetry.

Remark 12.2.19 The case in which the mass distribution of the disk
is unbalanced; that is, when its centre of mass does not coincide
with the geometric centre of the disk, is investigated in [Ja2011].
This non-integrable, nonholonomic system combines the motion of
a symmetric disk with the rolling of an unbalanced spherical ball. ✷
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Figure 12.2. The geometry of the Euler disk is essentially the same as that of

a rolling coin.

Geometry of the Euler disk

Let (E1, E2, E3) denote an orthonormal frame of unit vectors in the
reference system whose origin is attached to the disk at its centre of
symmetry, so that the disk lies in the (E1, E2) plane in body coor-
dinates (Figure 12.2). Let (e1, e2, e3) be an orthonormal coordinate
frame in the inertial (spatial) system. Choose (e1, e2) to lie in a fixed
horizontal plane and let e3 be a vertical unit vector. The motion
is given by a curve (A(t), x(t)) ∈ SE(3) where A(t) ∈ SO(3) and
x(t) ∈ R3. The origin of the reference system lies at the disk’s centre
of mass, so that x(t) gives the location of its centre of mass in space.

An element of SE(3) maps a generic point P in the body to a
pointA(t)P+x(t) in space at time t. The height of the centre of mass
at a given time is z = 〈x(t), e3〉. The matrixA(t) ∈ SO(3) defines the
attitude of the body relative to its reference configuration. The vec-
tor in the spatial frame, A(t)E3, will be normal to the disk. Conse-
quently, the vector e3×A(t)E3 will be tangent to the edge of the disk
at the point of contact with the plane. (One assumes A(t)E3 6= ±e3,
so that the disk keeps rolling. The case 〈e3, A(t)E3〉2 = 1 will turn
out to be a singular situation.)
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Definition 12.2.1 (Vector to the centre of mass) Let s(t) ∈ R3 denote
the vector in the body frame directed at time t from the point of contact C
to the geometric centre of the disk. The corresponding vector in the spatial
frame,

σ(t) = A(t)s(t) ,

is normal both to A(t)E3 and to the tangent direction e3 × A(t)E3. Con-
sequently, σ(t) lies along u(t) := A(t)E3 × (e3 × A(t)E3) in the spatial
frame and because it points from the edge to the centre, its magnitude is
equal to the radius of the disk, r. Thus,

σ(t) = A(t)s(t) = r
u(t)

|u(t)| (12.2.39)

with
u(t) := A(t)E3 × (e3 ×A(t)E3) . (12.2.40)

The vector u has squared magnitude

|u|2 = 1− 〈e3, A(t)E3〉2 = 1− 〈A−1(t)e3, E3〉2 6= 0 .

The height of the centre of mass at a given time is

z(t) = 〈A(t)s(t), e3〉 = r|u(t)| , (12.2.41)

so the disk is lying flat (z = 0) in the case where 〈e3, A(t)E3〉2 = 1.

Definition 12.2.2 (Rolling constraint) Physically, rolling of the disk
means that the velocity of its centre of mass ẋ(t) in the spatial frame at
any instant t must be obtained by a rotation of the spatial vector A(t)s
at angular frequency ω̂(t) = ȦA−1(t) ∈ so(3) around the fixed contact
point C. Consequently, the rolling constraint is imposed by requiring

ẋ(t) = ȦA−1σ(t) = ω̂σ(t) = ω × r u(t)|u(t)| , (12.2.42)

where the hat map ̂ : R3 → so(3) was used in the last step for the
(right-invariant) spatial angular velocity. Equivalently, one may rewrite
this rolling constraint using Equation (12.2.39) as

ẋ(t) = rȦA−1 u(t)

|u(t)| . (12.2.43)

This formula defines the spatial nonholonomic constraint distribu-
tion D for this problem.
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The Hamilton–Pontryagin approach for the Euler disk

As before, the Hamilton–Pontryagin method proceeds by first as-
sembling the following ingredients:

Potential energy: The potential energy due to gravity for the
disk is mgz(t), where

z(t) =
〈
σ(t), e3

〉
=
〈
As, e3

〉
=
〈
s(Γ), Γ(t)

〉
(12.2.44)

is the height of the centre of mass above the horizontal plane
and g is the constant acceleration of gravity.

Kinetic energy: The kinetic energy of the disk is the sum of the
energy of translation of its centre of mass and the energy of its
rotation about the centre of mass.

Lagrangian: The Lagrangian is defined as the difference be-
tween the total kinetic energy and the gravitational potential
energy,

L =
1

2
〈Ω, IΩ〉+ m

2
|ẋ|2 −mg

〈
s, A−1e3

〉
,

where Ω = A−1Ȧ is the (left-invariant) body angular velocity.

Rolling constraint in the body: The spatial constraint distri-
bution (12.2.43) transforms into body coordinates upon using
Equation (12.2.39) and setting

Y = A−1ẋ , Γ = A−1e3 , (12.2.45)

s(Γ) = r
A−1(t)u(t)

|u(t)| = r
E3 × (Γ(t)× E3)√
1− 〈Γ(t), E3〉2

, (12.2.46)

with vectors Y, Γ, s(Γ) each in R3. Note that

s(Γ) · Γ(t) = r|u(t)| = z(t)

yields the height of the centre of mass and |s(Γ)|2 = r2.

In this notation, the rolling constraint in body coordinates
(12.2.43) simplifies to an algebraic expression,

Y = Ω× s(Γ) . (12.2.47)
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Reduced Lagrangian in body coordinates: The reduced La-
grangian is defined in body coordinates by

l(Ω, Y,Γ) =
1

2

〈
Ω, IΩ

〉
+
m

2
|Y |2 −mg

〈
s(Γ),Γ

〉
. (12.2.48)

These considerations have expressed a spatial Lagrangian

L : TG× TV × V → R

in body form as l : g× TV × V → R, plus the various constraint
relations.

Vector equation for the Euler disk

One may now apply the results of the nonholonomic Hamilton–
Pontryagin Theorem 12.2.1 to obtain the motion equation for the
Euler disk, in the vector form (12.2.9),

( d
dt

+Ω×
)(

Π − λ × s) = κ × Γ − λ × ṡ . (12.2.49)

This equation arises from the Lagrangian equivalent to (12.2.48) in
terms of vector quantities,

L =
1

2
Ω· IΩ+

m

2
|Y |2 −mg s(Γ) · Γ , (12.2.50)

and its vector-valued variational relations,

Π =
δl

δΩ
= IΩ , κ =

δl

δΓ
= −mgs(Γ) , (12.2.51)

λ =
δl

δY
= mY = mΩ × s(Γ) . (12.2.52)

Recall the definitions,

Γ(t) = A−1(t)e3 and s(Γ) = r
E3 ×(Γ×E3)√
1− (Γ(t) ·E3)2

, (12.2.53)
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so that

Γ · s = e3·σ = r
√
1− (Γ(t) ·E3)2 . (12.2.54)

In vector notation, the two vectors Γ and s satisfy the auxiliary
equations,

Γ̇ = −Ω × Γ (12.2.55)

and

ṡ =
r√

1− (Γ·E3)2

(
(E3 ×Γ) · (Ω × Γ)

)
Γ×E3 , (12.2.56)

so that

Γ · ṡ = 0 .

A similar formula holds for the variational derivative, namely

Γ · δs = 0 ,

which immediately implies the variational derivative

δl/δΓ = −mgs(Γ)

in Equations (12.2.52). The auxiliary equations preserve |Γ|2 = 1
and |s|2 = r2.

On substituting these vector relations into (12.2.49) one obtains
the motion equation for the Euler disk,

( d
dt

+Ω×
)(
IΩ+ms(Γ) ×

(
Ω × s(Γ)

))
(12.2.57)

= mgΓ × s(Γ)︸ ︷︷ ︸
gravity

+ mṡ ×
(
Ω × s(Γ)

)
.︸ ︷︷ ︸

rolling constraint torque

Thus, the motion equation for the Euler disk has the same form as
Equation (12.2.14) for the Chaplygin ball. However, the rolling con-
straint torque is considerably more intricate for the Euler disk, be-
cause of the complexity of expression (12.2.56) for ṡ(Γ, Ω).
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Exercise. (Energy) Show that the Euler disk in rolling mo-
tion without sliding conserves the following energy in
body coordinates:

E(Ω, Γ) =
1

2

〈
Ω, IΩ

〉
+
m

2

∣∣Ω× s
∣∣2 +mg

〈
Γ, s(Γ)

〉
.

This is the sum of the kinetic energies of rotation and trans-
lation, plus the potential energy of gravity. (Recall that the
rolling constraint does no work.) ⋆

Exercise. (Jellett’s integral for the Euler disk) Show that
the Euler disk admits Jellett’s integral (Π · s) as an addi-
tional constant of motion because of the cylindrical sym-
metry of its mass distribution.

Hint: Compute the analogue for the Euler disk of Equation
(12.2.24) for the Chaplygin ball. ⋆

12.3 Nonholonomic Euler–Poincaré reduction

The treatments of the Chaplygin ball and the Euler disk in the pre-
vious section are consistent with an Euler–Poincaré version of the
standard Lagrange–d’Alembert principle [Sc2002, Bl2004]. As in the
cases of the Chaplygin ball and the Euler disk, the configuration
space will be taken to be a semidirect-product space S = GsV
such as the special Euclidean group SE(3) ≃ SO(3)sR3 of orienta-
tions and positions, whose various adjoint and coadjoint (AD, Ad,
ad, Ad∗ and ad∗) actions needed for Euler–Poincaré theory are dis-
cussed in Chapter 7.
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12.3.1 Semidirectproduct structure

A semidirect-product structure involves a Lie group G and a rep-
resentation vector space V for the action of G, which we choose to
be a left action. Let S denote the semidirect product GsV . Topo-
logically, S is the direct product of spaces G × V . The left group
action on S is given as in (6.1.1) for the special Euclidean group of
rotations and translations, SE(3),

(g1, y1) · (g2, y2) = (g1g2, g1y2 + y1) , (12.3.1)

where for g ∈ G and y ∈ V , the left action of G on V is denoted as
gy. The formulas for the right action of G on V may be derived by
making the appropriate adjustments, as discussed in Section 6.3.3.
The induced left action of S on its tangent space Φ : S× TS→ TS
is given by

(h, y) · (g, x) = (hg, hġ, hx+ y, hẋ) , (12.3.2)

where dot ( ˙ ) in (ġ(t), ẋ(t)) denotes the time derivative along a
curve (g(t), x(t)) in S. Let g denote the Lie algebra of the Lie group
G and s the Lie algebra of S. (As a vector space, the Lie algebra s is
g× V .)

The semidirect-product Lie bracket on s is of the form in Equa-
tion (6.3.1),

[(ξ1, Y1) , (ξ2, Y2)] = ( [ξ1, ξ2] , ξ1Y2 − ξ2Y1 ) , (12.3.3)

where the left induced action from g × V → V is denoted by con-
catenation from the left, as in ξ1Y2. The dual action V ∗ × V → g∗

for fixed b ∈ V ∗ and v ∈ V is defined for a symmetric real pairing
〈 · , · 〉 : V ∗ × V → R by the diamond operation:

〈
b, − ξv

〉
=
〈
b ⋄ v, ξ

〉
. (12.3.4)

Definition 12.3.1 The left- and right-invariant angular velocities
ξ, ω ∈ g are defined by

ξ = g−1ġ and ω = ġg−1 . (12.3.5)
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Definition 12.3.2 (Linear constraints in space and body) Linear
constraints in spatial form are expressed as

ẋ(t) = ω(k a0 + g(t)ℓχ) , (12.3.6)

and are defined by left Lie algebra and Lie group actions of ω ∈ g and
g ∈ G on fixed elements a0 and χ of V , with constant k. In terms of the
body variables defined by

Γ = g−1a0, Y = g−1ẋ , (12.3.7)

the linear constraint in body form corresponding to (12.3.6) may be
expressed in its body form as

Y = g−1ẋ = g−1ġg−1(k a0 + g(t)ℓχ)

= (g−1ġ)(k g−1a0 + ℓχ) = ξ s(Γ) , (12.3.8)

where s(Γ) = kΓ + ℓχ.

Remark 12.3.1 (Auxiliary equation for Γ) By its definition, the
quantity Γ(t) = g−1(t)a0 satisfies the auxiliary equation,

dΓ

dt
= − ξ(t)Γ(t) . (12.3.9)

Hence, the linear combination s(Γ) = kΓ + ℓχ satisfies

ṡ(Γ) = − kξ(t)Γ(t) . (12.3.10)

✷

Definition 12.3.3 (Lagrangians on semidirect products) Denote the
Lagrangian by

L0 : TS→ R .

Introduce parameter dependence into the Lagrangian L0(g, ġ, x, ẋ) by set-
ting it equal to the Lagrangian L(g, ġ, x, ẋ, a0),

L : TS× V → R ,

with a fixed parameter a0 for the last factor of V .
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Remark 12.3.2 In what follows, we shall assume that Lagrangians
L0 and L are independent of the position x. (This corresponds, for
example, to rolling on a horizontal plane.) ✷

Definition 12.3.4 (Reduced and constrained Lagrangians) The re-
duced Lagrangian is defined in terms of the x-independent Lagrangian
L as

l : g× V, l(ξ, Y,Γ) = L(g, gξ, gY, gΓ) = L(g, ġ, ẋ, a0) . (12.3.11)

The constrained reduced Lagrangian is defined by evaluating the re-
duced Lagrangian on the constraint distribution, as

lc : g× V, lc(ξ, ξs(Γ),Γ) = l(ξ, Y,Γ)
∣∣
Y=ξs(Γ)

. (12.3.12)

Thus, the reduced Lagrangian l is found by transforming from spatial to
body variables in the Lagrangian L. Then the constrained reduced La-
grangian lc is defined by evaluating the reduced Lagrangian l on the con-
straint distribution.

12.3.2 Euler–Poincaré theorem

The definitions and assumptions for the constraints of the previ-
ous section form the semidirect-product framework that leads to the
nonholonomic Euler–Poincaré theorem found in [Sc2002].

Theorem 12.3.1 (Nonholonomic Euler–Poincaré theorem) The fol-
lowing three statements are equivalent.

The curve (g(t), x(t)) ∈ S satisfies the Lagrange–d’Alembert prin-
ciple for the Lagrangian L. That is, (ġ(t), ẋ(t)) ∈ S satisfies the
constraint (12.3.6) and

δ

∫
L(g(t), ġ(t), ẋ(t), a0)dt = 0,

where δg is an independent variation vanishing at the endpoints,
and the variation δx satisfies the constraint condition,

δx = (δgg−1)(ka0 + gℓχ) . (12.3.13)
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The reduced Lagrangian l defined on s × V satisfies a constrained
variational principle

δ

∫
l(ξ(t), Y (t),Γ(t)) = 0, (12.3.14)

where the variations take the form

δξ = η̇ + adξη ,

δΓ = −ηΓ , (12.3.15)

δY = η̇s(Γ) + (adξη)s(Γ) + ηṡ(Γ) ,

and η(t) = g−1δg ∈ g is an independent variation vanishing at the
endpoints.

The following nonholonomic Euler–Poincaré equations hold on g∗×
V ∗:

d

dt

∂lc
∂ξ
− ad∗ξ

∂lc
∂ξ

=
∂l

∂Γ
⋄ Γ + ṡ ⋄ ∂l

∂Y
, (12.3.16)

and
dΓ

dt
+ ξ Γ = 0 , (12.3.17)

where the constrained Lagrangian lc is obtained by evaluating the
reduced Lagrangian l on the constraint distribution.

Remark 12.3.3 The theorem states that the Lagrange–d’Alembert
principle on TS and equations of motion on T ∗S is equivalent to a
constrained variational principle on s×V and Euler–Poincaré equa-
tions on g∗ × V ∗. ✷

Definition 12.3.5 (Lagrange–d’Alembert principle) The Lagrange–
d’Alembert principle on TS for L in Theorem 12.3.1 is the stationary
principle,

δ

∫
L(g(t), ġ(t), ẋ(t))dt = 0 ,

where δg(t) is an independent variation vanishing at the endpoints, and
the variations δx of coordinates x(t) ∈ V must be consistent with the ve-
locity constraint (12.3.6), rewritten now as a relation between one-forms,

dx = (dg g−1)(ka0 + gℓχ) =: A(g, a0) dg .
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Correspondingly, the variations of L0 in x must satisfy

δx(t) = (δgg−1)(ka0 + gℓχ) =: A(g, a0) δg . (12.3.18)

Stationarity under these variations of
∫
L0 dt produces

d

dt

∂L0 c

∂ġ
− ∂L0 c

∂g
=
∂L0

∂ẋ
B ġ ,

where the constrained Lagrangian L0 c is obtained by evaluating L0 on the
velocity constraint ẋ = A(g, a0) ġ as

L0 c(g(t), ġ(t)) = L0(g(t), ġ(t), ẋ(t))
∣∣
ẋ=A(g,a0) ġ(t)

. (12.3.19)

The quantity B appearing in this equation is viewed geometrically as the
curvature associated with the connection A that defines the constraint
distribution. The curvature two-form is defined by applying the exterior
derivative to the connection one-form as

d(A(g, a0)dg) = Bdg ∧ dg so that B = skew

(
∂A

∂g

)
.

Of course, the variations of L0 were taken before rewriting the result using
derivatives of L0 c. Details of the computations leading to these formulas
and more discussions of their meaning are provided in [BlKrMaMu1996].

Proof. By comparing definitions, one finds that the integrand for the
Lagrange–d’Alembert principle for L on S in the stationary princi-
ple is equal to the integrand l on s× V . We must compute what the
variations on the group S imply on the reduced space s×V . Define
η = g−1δg. As for the pure Euler–Poincaré theory with left-invariant
Lagrangians, the proof of the variational formula expressing δξ in
terms of η proceeds by direct computation.

δξ = δ(g−1ġ) = η̇ + adξη .

For the δΓ variation, one calculates

δΓ = δ(g−1)a0 = − g−1δg g−1a0 = − ηΓ.
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The δY variation is computed as follows:

δY = δ(g−1)ẋ+ g−1δẋ

= −g−1 δg g−1ẋ+
d

dt
(g−1δx)− (g−1)˙δx .

Upon substituting the constraint δx = δg g−1(ka0 + gℓχ) and ex-
panding terms, one finds g−1δx = ηs and g−1ẋ = ξs so that

δY = −η ξs+ d

dt
(η s) + ξηs

= (η̇ + adξη)s+ ηṡ .

After this preparation, the nonholonomic EP equation finally
emerges from a direct computation of the variation, δS, of the action
S =

∫
l(ξ, Y,Γ) dt:

δS =

∫ 〈
∂l

∂ξ
, δξ

〉
+

〈
∂l

∂Y
, δY

〉
+

〈
∂l

∂Γ
, δΓ

〉
dt (12.3.20)

=

∫ 〈
∂l

∂ξ
, η̇ + adξη

〉
+

〈
∂l

∂Y
, η̇s+ (adξη)s+ ηṡ

〉

+

〈
∂l

∂Γ
,−ηΓ

〉
dt

=

∫ 〈
− d

dt

∂l

∂ξ
+ ad∗ξ

∂l

∂ξ
− d

dt

(
s ⋄ ∂l

∂Y

)

+ ad∗ξ

(
s ⋄ ∂l

∂Y

)
+ ṡ ⋄ ∂l

∂Y
+
∂l

∂Γ
⋄ Γ , η

〉
dt

+

〈(
∂l

∂ξ
+ s ⋄ ∂l

∂Y

)
, η

〉 ∣∣∣
b

a
. (12.3.21)

Setting the variation δS equal to zero for any choice of η that
vanishes at the endpoints in time, η(a) = 0 = η(b), yields the non-
holonomic Euler–Poincaré equation on s× V ,

d

dt

(
∂l

∂ξ
+s⋄ ∂l

∂Y

)
−ad∗ξ

(
∂l

∂ξ
+s⋄ ∂l

∂Y

)
= ṡ⋄ ∂l

∂Y
+
∂l

∂Γ
⋄Γ . (12.3.22)
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Remark 12.3.4 (Equivalence theorem) On comparison, one sees
that the nonholonomic Euler–Poincaré Equation (12.3.22) coincides
with the motion Equation (12.2.3) derived in Theorem 12.2.1 using
the Hamilton–Pontryagin method. ✷

Remark 12.3.5 (Noether’s theorem) If the variation of the action δS
vanishes because of a Lie symmetry of the Lagrangian, so that its
first line in (12.3.20) vanishes,

〈 ∂l
∂ξ
, δξ
〉
+
〈 ∂l
∂Γ

, δΓ
〉
+
〈 ∂l
∂Y

, δY
〉
= 0 , (12.3.23)

with variations δξ, δΓ and the modified variation δY given in
(12.3.15) in terms of the symmetry generator η, then according
to Noether’s theorem the endpoint term in (12.3.21)

〈
M,η

〉
with M :=

∂l

∂ξ
+ s ⋄ ∂l

∂Y

must be a constant of the motion governed by the constrained
Euler–Poincaré Equation (12.3.22).

Notice that the Noether constant of motion 〈M,η〉 is linear in the
total angular momentum, M , just as for the Jellett and Routh inte-
grals (12.2.25) and (12.2.26), respectively, for the cylindrically sym-
metric Chaplygin ball whose centre of mass lies on the axis of sym-
metry. The corresponding Lie algebra actions by η for those two
constants of motion are symmetries of their Lagrangian (12.2.10).
However, as shown in [Ki2011] and [KiPuHo2011], these symme-
tries should be understood in the sense of infinitesimal invariance
of the Lagrangian in (12.3.23) under variations (12.3.15) that re-
spect the nonholonomic rolling constraint (12.3.8) and the dynami-
cal Equations (12.3.9) and (12.3.10) that govern the auxiliary quan-
tities Γ and s(Γ). See Remark 12.2.13 for the explicit calculations in
the example of Jellett’s integral for the Chaplygin ball. ✷

12.3.3 Constrained reduced Lagrangian

The nonholonomic EP equation may also be written in terms of the
constrained reduced Lagrangian. It is defined in (12.3.12) as

lc(ξ,Γ) := l(ξ, Y,Γ)
∣∣
Y=ξs(Γ)

.
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Its differential is given by

dlc =
〈∂lc
∂ξ

, dξ
〉
+
〈∂lc
∂Γ

, dΓ
〉

=
〈 ∂l
∂ξ

, dξ
〉
+
〈 ∂l
∂Y

, dξs(Γ) + ξds(Γ)
〉
+
〈 ∂l
∂Γ

, dΓ
〉

=
〈 ∂l
∂ξ
− ∂l

∂Y
⋄ s(Γ) , dξ

〉
+
〈 ∂l
∂Γ

+
(
ξ
∂s

∂Γ

)T ∂

∂Y
, dΓ

〉
.

This calculation implies the following relations among the deriva-
tives of the reduced Lagrangian l evaluated on the constraint, and
the derivatives of the constrained reduced Lagrangian lc:

∂c
∂ξ

=

(
∂

∂ξ
+ s ⋄ ∂

∂Y

)
and

∂c
∂Γ

=
∂l

∂Γ
+
(
ξ
∂s

∂Γ

)T ∂

∂Y
. (12.3.24)

Substituting the first relation into (12.3.22) and recalling the ad-
vection equation for Γ yields the expression (12.3.17) in the state-
ment of the theorem for the nonholonomic Euler–Poincaré equa-
tions, namely,

d

dt

∂lc
∂ξ
− ad∗ξ

∂lc
∂ξ

=
∂l

∂Γ
⋄ Γ− ∂l

∂Y
⋄ ṡ , (12.3.25)

and
dΓ

dt
+ ξ Γ = 0 . (12.3.26)

This completes the proof of the nonholonomic Euler–Poincaré
Theorem 12.3.1.

Corollary 12.3.1 (Energy conservation) The nonholonomic Euler–Poin-
caré motion Equation (12.3.25) conserves the following energy in body
coordinates:

E(ξ,Γ) =
〈∂lc
∂ξ

, ξ
〉
− lc(ξ,Γ) . (12.3.27)

This is the Legendre transform of the constrained reduced Lagrangian.
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Proof. Conservation of the energy E(ξ,Γ) in (12.3.27) may be veri-
fied directly by differentiating it with respect to time and following
a sequence of steps that use the auxiliary equation dΓ/dt = −ξΓ, the
equation of nonholonomic motion (12.3.25), the relations (12.3.24)
and the antisymmetry of the adjoint (ad) and diamond (⋄) opera-
tions:

dE

dt
=

〈 d
dt

∂lc
∂ξ

, ξ
〉
−
〈∂lc
∂Γ

,
dΓ

dt

〉

by (12.3.25) =
〈
ad∗ξ

∂lc
∂ξ

+
∂l

∂Γ
⋄ Γ + ṡ ⋄ ∂l

∂Y
, ξ
〉
+
〈∂lc
∂Γ

, ξ Γ
〉

by ad, ad∗ and ⋄ =
〈
ṡ ⋄ ∂l

∂Y
, ξ
〉
+
〈∂lc
∂Γ
− ∂l

∂Γ
, ξ Γ

〉
.

By the second relation in (12.3.24) and the auxiliary equation
dΓ/dt = −ξΓ, one finds

〈∂lc
∂Γ
− ∂l

∂Γ
, ξ Γ

〉
= −

〈(
ξ
∂s

∂Γ

)T ∂

∂Y
,
dΓ

dt

〉

= −
〈 ∂

∂Y
, ξ
∂s

∂Γ

dΓ

dt

〉
= −

〈 ∂

∂Y
, ξṡ(Γ)

〉
.

Thus,

dE

dt
=
〈
ṡ ⋄ ∂l

∂Y
+

∂

∂Y
⋄ ṡ , ξ

〉
= 0 ,

in which the last step invokes the antisymmetry of the diamond op-
eration when paired with a vector field, η, which holds because
0 = £η〈λ, s〉 = 〈λ, ηs〉 + 〈ηλ, s〉 = −〈λ ⋄ s, η〉 − 〈s ⋄ λ, η〉. As a con-
sequence, dE/dt = 0 and the nonholonomic equations of motion
(12.3.25) conserve the energy in Equation (12.3.27).

Exercise. Use Noether’s theorem to derive conservation
of energy (12.3.27) for the nonholonomic Euler–Poincaré
Equation (12.3.22). ⋆
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Remark 12.3.6 (More general formulations) It is possible to formu-
late this nonholonomic reduction procedure more generally in the
Euler–Poincaré context. For example, one may allow the constraints
and Lagrangian to depend on two or more different parameters, say,
(a0, b0) ∈ V × V , and take an arbitrary linear combination for the
constraints, as explained, for example, in [Sc2002]. This is useful for
nonspherical bodies, whose constraints and potential energy may
depend on the other two (nonvertical) directions, as seen from the
body. ✷

Exercise. Show that this generalisation adds other terms
and their corresponding auxiliary equations of the same
form as those involving Γ to the right-hand side of the non-
holonomic Euler–Poincaré Equations (12.3.25). ⋆

Exercise. What opportunities does this generalisation im-
ply for the rocking and rolling of a nonspherical body?
How about the case of a triaxial ellipsoid? ⋆

Exercise. Derive the Euler–Poincaré equations and discuss
the properties of their solutions for the rolling motion of
a circular disk whose centre of mass is displaced from its
centre of symmetry.

This problem is a combination of the standard Euler disk,
in which the centre of mass lies at the centre of symmetry,
and the Chaplygin ball, in which it does not. ⋆
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Exercise. Formulate the Clebsch method for dynami-
cal systems with nonholonomic contraints. What role is
played by the momentum map in this formulation? ⋆
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A.1 Manifolds

The main text refers to definitions and examples of smooth mani-
folds that are collected in this appendix for ready reference. We fol-
low [AbMa1978, MaRa1994, Le2003, Ol2000, Wa1983], which should
be consulted for further discussions as needed.

Definition A.1.1 A smooth (i.e., differentiable) manifold M is a set of
points together with a finite (or perhaps countable) set of subsets Uα ⊂M
and one-to-one mappings φα : Uα → Rn such that

⋃
α Uα =M ;

for every nonempty intersection Uα∩Uβ , the set φα (Uα ∩ Uβ) is an
open subset of Rn and the one-to-one mapping φβ ◦ φ−1

α is a smooth
function on φα (Uα ∩ Uβ) .

Remark A.1.1 The sets Uα in the definition are called coordinate
charts. The mappings φα are called coordinate functions or lo-
cal coordinates. A collection of charts satisfying both conditions
is called an atlas. ✷

Remark A.1.2 Refinements in the definition of a smooth manifold
such as maximality conditions and equivalence classes of charts are
ignored. (See [Wa1983, Le2003] for excellent discussions of these
matters.) ✷

Example A.1.1 Manifolds often arise as level sets

M =
{
x
∣∣fi(x) = 0, i = 1, . . . , k

}
,

for a given set of smooth functions fi : R
n → R, i = 1, . . . , k.

If the gradients ∇fi are linearly independent, or more generally if the
rank of {∇f(x)} is a constant r for all x, then M is a smooth manifold of
dimension n− r. The proof uses the implicit function theorem to show that
an (n−r)-dimensional coordinate chart may be defined in a neighbourhood
of each point on M . In this situation, the set M is called an implicit
submanifold of Rn (see [Le2003, Ol2000]).
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Definition A.1.2 (Submersion) If r = k = dimM , then the map
{fi} : Rn → M is a submersion. (A submersion is a smooth map be-
tween smooth manifolds whose derivative is everywhere surjective.)

Example A.1.2 (Stereographic projection of S2 → R2) The unit
sphere

S2 = {(x, y, z) : x2 + y2 + z2 = 1}
is a smooth two-dimensional manifold realised as a submersion in R3. Let

UN = S2\{0, 0, 1} and US = S2\{0, 0,−1}

be the subsets obtained by deleting the north and south poles of S2, respec-
tively. Let

χN : UN → (ξN , ηN ) ∈ R
2 and χS : US → (ξS , ηS) ∈ R

2

be stereographic projections from the north and south poles onto the equa-
torial plane, z = 0.

N

S

z

Figure A.1. Two Riemann projections from the north pole of the unit sphere

onto the z = 0 plane with coordinates (ξN , ηN ).

Thus, one may place two different coordinate patches in S2 intersecting
everywhere except at the points along the z-axis at z = 1 (north pole) and
z = −1 (south pole).
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N

s

z

O r

Figure A.2. Riemann projection in the ξN − z plane at fixed azimuth φ = 0.

The projection through ẑ = (sin θ, cos θ) strikes the ξN axis at distance r =
cot(θ/2).

In the equatorial plane z = 0, one may define two sets of (right-handed)
coordinates,

φα : Uα → R
2\{0} , α = N,S ,

obtained by the following two stereographic projections from the north and
south poles:

(valid everywhere except z = 1)

φN (x, y, z) = (ξN , ηN ) =

(
x

1− z ,
y

1− z

)
,

(valid everywhere except z = −1)

φS(x, y, z) = (ξS , ηS) =

(
x

1 + z
,
− y
1 + z

)
.

(The two complex planes are identified differently with the plane
z = 0. An orientation-reversal is necessary to maintain consistent
coordinates on the sphere.)
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One may check directly that on the overlap UN ∩ US , the map

φN ◦ φ−1
S : R2\{0} → R

2\{0}

is a smooth diffeomorphism, given by the inversion

φN ◦ φ−1
S (x, y) =

( x

x2 + y2
,

y

x2 + y2

)
.

Exercise. Construct the mapping from (ξN , ηN ) → (ξS , ηS)
and verify that it is a diffeomorphism in R2\{0}.
Hint: (1 + z)(1− z) = 1− z2 = x2 + y2. ⋆

Answer.

(ξS ,− ηS) =
1− z
1 + z

(ξN , ηN ) =
1

ξ2N + η2N
(ξN , ηN ) .

The map (ξN , ηN ) → (ξS , ηS) is smooth and invertible
except at (ξN , ηN ) = (0, 0). N

Exercise. Show that the circle of points on the sphere
with polar angle (colatitude) θ from the north pole project
stereographically to another circle given in the complex
plane by ζN = ξN + iηN = cot(θ/2)eiφ. ⋆

Answer. At a fixed azimuth φ = 0 (in the ξN , z-plane as
in Figure A.2) a point on the sphere at colatitude θ from
the north pole has coordinates

ξN = sin θ, z = cos θ .
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Its projection strikes the (ξN , ηN )-plane at distance r and
angle ψ, given by

cotψ = r =
r − sin θ

cos θ
.

Thus ψ = θ/2, since

cotψ = r =
sin θ

1− cos θ
= cot(θ/2) .

The stereographic projection of the sphere from its north
pole at polar angle θ thus describes a circle in the com-
plex plane at

ζN = ξN + iηN =
x+ iy

1− z = cot(θ/2)eiφ .

The corresponding stereographic projection of the
sphere from its south pole describes the circle,

ζS = ξS + iηS =
x− iy
1 + z

= tan(θ/2)e−iφ ,

so that ζS and ζN are related by inversion,

ζS =
1

ζN
and ζN =

1

ζS
.

N

Exercise. Invert the previous relations to find the spheri-
cal polar coordinates (θ, φ) in terms of the planar variables
ζN = ξN + iηN . ⋆

Answer. The stereographic formulas give

ζN = ξN + iηN =
x+ iy

1− z = cot(θ/2)eiφ ,
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with magnitude

|ζN |2 = ξ2N + η2N =
1 + z

1− z = cot2(θ/2) ,

so that
1− z = 2

|ζN |2 + 1
.

Consequently,

x+ iy =
2ζN

|ζN |2 + 1
=

2(ξN + iηN )

|ζN |2 + 1
= sin(θ)eiφ ,

and

z =
|ζN |2 − 1

|ζN |2 + 1
= cos(θ) .

These are the usual invertible polar coordinate relations
on the unit sphere. N

Example A.1.3 (Torus T 2) If we start with two identical circles in the
xz-plane, of radius r and centred at x = ±2r, then rotate them round the
z-axis in R3, the result is a torus, written T 2. It is a manifold.

Exercise. If we begin with a figure eight in the xz-plane,
along the x-axis and centred at the origin, and spin it round
the z-axis in R3, we get a pinched surface that looks like a
sphere that has been pinched so that the north and south
poles touch. Is this a manifold? Prove it. ⋆

Answer. The origin has a neighbourhood diffeomorphic
to a double cone. This is not diffeomorphic to R2. A
proof of this is that if the origin of the cone is removed,
two components remain; while if the origin of R2 is re-
moved, only one component remains. N



September 24, 2011 11:41am Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

294 A : GEOMETRICAL STRUCTURE

Exercise. A sphere with unit radius is projected onto a
plane, then projected back to a second sphere of different
radius. Both projections are stereographic. Show that the
polar angle (colatitude) θ of the unit sphere is re-projected
to the colatitude θ′ of the second sphere by

tan
(
θ ′/2

)
= R−1 tan

(
θ/2
)
,

where R is the radius of the second sphere. ⋆

Definition A.1.3 (Immersed submanifolds) An immersed subman-
ifold of a manifold M is a subset S together with a topology and differen-
tial structure such that S is a manifold and the inclusion map i : S →֒M
is an injective immersion; that is, a smooth map between smooth mani-
folds whose derivative is everywhere injective. Hence, immersed submani-
folds are the images of injective immersions.

Remark A.1.3 Given any injective immersion f : N →M the image
of N in M uniquely defines an immersed submanifold so that f :
N → f(N) is a diffeomorphism; that is, a smooth invertible map
with a smooth inverse. ✷

Definition A.1.4 (Lie group and Lie subgroup manifolds) A Lie
group is a group that is also a manifold. A Lie subgroup is a submani-
fold that is invariant under group operations. That is, Lie subgroups are
injective immersions.

Definition A.1.5 (Tangent space to level sets) Let the submersion de-
fined by

M =
{
x
∣∣fi(x) = 0, i = 1, . . . , k

}

be a submanifold of Rn. The tangent space at each x ∈M is defined by

TxM =

{
v ∈ R

n
∣∣ ∂fi
∂xa

(x)va = 0, i = 1, . . . , k

}
.
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Note: We use the summation convention, i.e., repeated indices are
summed over their range.

Definition A.1.6 (Tangent vector) The tangent space TxM at a point x
of a manifold M is a vector space. The elements of this space are called
tangent vectors (Figure A.3).

Figure A.3. A tangent vector at a point on a manifold.

Example A.1.4 (Tangent space to the sphere in R3) The sphere S2 is
the set of points (x, y, z) ∈ R3 solving x2 + y2 + z2 = 1. The tangent
space to the sphere at such a point (x, y, z) is the plane containing vectors
(u, v, w) satisfying xu+ yv + zw = 0.

Definition A.1.7 (Tangent bundle) The tangent bundle of a manifold
M , denoted by TM , is the smooth manifold whose underlying set is the
disjoint union of the tangent spaces to M at the points x ∈ M (Figure
A.4); that is,

TM =
⋃

x∈M

TxM .

Thus, a single point of TM is (x, v) where x ∈M and v ∈ TxM .

Remark A.1.4 (Dimension of tangent bundle TS2) Defining TS2

requires two independent conditions each of codimension 5 in R6;
so dimTS2 = 5 + 5− 6 = 4. ✷
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M

TM

Figure A.4. The tangent bundle TM of a manifold M is the disjoint union of

tangent spaces over all points in M .

Exercise. Define the sphere Sn−1 in Rn. What is the dimen-
sion of its tangent space TSn−1? ⋆

A.2 Motion: Tangent vectors and flows

Envisioning our later considerations of dynamical systems, we shall
consider motion along curves c(t) parameterised by time t on a
smooth manifold M. Suppose these curves are trajectories of a flow
φt along the tangent vectors of the manifold. We anticipate this
means φt (c(0)) = c(t) and φt ◦ φs = φt+s (flow property). The flow
will be tangent to M along the curve. To deal with such flows, we
will need to know more about tangent vectors.

Recall from Definition A.1.7 that the tangent bundle of M is

TM =
⋃

x∈M

TxM .
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We will now add a bit more to that definition. The tangent bundle
is an example of a more general structure than a manifold.

Definition A.2.1 (Bundle) A bundle consists of a manifold E, another
manifold B called the base space and a projection between them, Π : E →
B. The inverse images of the projection Π exist and are called the fibres of
the bundle. Thus, subsets of the bundle E locally have the structure of a
Cartesian product space B × F , of the base space B with the fibre space
F . An example is (E,B,Π) consisting of (R2,R1,Π : R2 → R1). In this
case, Π : (x, y) ∈ R2 → x ∈ R1. Likewise, the tangent bundle consists of
M,TM and a map τM : TM →M .

Let x =
(
x1, . . . , xn

)
be local coordinates on M , and let v =(

v1, . . . , vn
)

be components of a tangent vector.

TxM =

{
v ∈ R

n
∣∣ ∂fi
∂x
· v = 0, i = 1, . . . ,m

}
,

for
M =

{
x ∈ R

n
∣∣ fi(x) = 0, i = 1, . . . ,m

}
.

These 2n numbers (x, v) give local coordinates on TM , whose di-
mension is dimTM = 2dimM . The tangent bundle projection is
a map τM : TM → M which takes a tangent vector v to a point
x ∈ M where the tangent vector v is attached (that is, v ∈ TxM ).
The inverse of this projection τ−1

M (x) is called the fibre over x in the
tangent bundle.

A.2.1 Vector fields, integral curves and flows

Definition A.2.2 A vector field on a manifold M is a map X : M →
TM that assigns a vector X(x) at each point x ∈ M. This implies that
τM ◦X = Id.

Definition A.2.3 An integral curve of X with initial conditions x0 at
t = 0 is a differentiable map c : ]a, b[→M, where ]a, b[ is an open interval
containing 0, such that c(0) = x0 and c ′(t) = X (c(t)) for all t ∈ ]a, b[.
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Remark A.2.1 A standard result from the theory of ordinary dif-
ferential equations states that X being Lipschitz is sufficient for its
integral curves to be unique andC1 [CoLe1984]. The integral curves
c(t) are differentiable for smooth X . ✷

Definition A.2.4 The flow of X is the collection of maps

φt :M →M ,

where t→ φt(x) is the integral curve ofX with initial condition x (Figure
A.5).

Figure A.5. A collection of maps φt :M →M shows the flow of a vector field

X acting on a manifold M .

Remark A.2.2

Existence and uniqueness results for solutions of c ′(t) =
X(c(t)) guarantee that flow φ of X is smooth in (x, t), for
smooth X .

Uniqueness implies the flow property

φt+s = φt ◦ φs, (FP)

for initial condition φ0 = Id.
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The flow property (FP) generalises to the nonlinear case the
familiar linear situation whereM is a vector space,X(x) = Ax
is a linear vector field for a bounded linear operator A, and
φt(x) = eAtx (exponentiation).

✷

Definition A.2.5 (Equivariance) A map between two spaces is equiv-
ariant when it respects group actions on these spaces.

A.2.2 Differentials of functions: The cotangent bundle

We are now ready to define differentials of smooth functions and
the cotangent bundle.

Let f : M → R be a smooth function. We differentiate f at
x ∈ M to obtain Txf : TxM → Tf(x)R. As is standard, we identify
Tf(x)R with R itself, thereby obtaining a linear map df(x) : TxM →
R. The result df(x) is an element of the cotangent space T ∗

xM , the
dual space of the tangent space TxM . The natural pairing between
elements of the tangent space and the cotangent space is denoted as
〈· , ·〉 : T ∗

xM × TxM 7→ R.

In coordinates, the linear map df(x) : TxM → R may be written
as the directional derivative,

〈df(x) , v〉 = df(x) · v =
∂f

∂xi
· vi ,

for all v ∈ TxM .

(Reminder: The summation convention is applied over repeated
indices.) Hence, elements df(x) ∈ T ∗

xM are dual to vectors v ∈ TxM
with respect to the pairing 〈· , ·〉.

Definition A.2.6 df is the differential of the function f .

Definition A.2.7 The dual space of the tangent bundle TM is the cotan-
gent bundle T ∗M . That is,

(TxM)∗ = T ∗
xM and T ∗M =

⋃

x

T ∗
xM .
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Thus, replacing v ∈ TxM with df ∈ T ∗
xM, for all x ∈ M and for all

smooth functions f :M → R, yields the cotangent bundle T ∗M.

Differential bases

When the basis of vector fields is denoted as ∂
∂xi for i = 1, . . . , n, its

dual basis is often denoted as dxi. In this notation, the differential
of a function at a point x ∈M is expressed as

df(x) =
∂f

∂xi
dxi .

The corresponding pairing 〈· , ·〉 of bases is written in this nota-
tion as 〈

dxj ,
∂

∂xi

〉
= δji .

Here δji is the Kronecker delta, which equals unity for i = j and
vanishes otherwise. That is, defining T ∗M requires a pairing 〈· , ·〉 :
T ∗M × TM → R.

A.3 Tangent and cotangent lifts

We next define derivatives of differentiable maps between mani-
folds (tangent lifts).

We expect that a smooth map f : U → V from a chart U ⊂ M
to a chart V ⊂ N will lift to a map between the tangent bundles
TM and TN so as to make sense from the viewpoint of ordinary
calculus,

U × R
m ⊂ TM −→ V × R

n ⊂ TN
(
q1, . . . , qm;X1, . . . , Xm

)
7−→

(
Q1, . . . , Qn;Y 1, . . . , Y n

)
.

Namely, the relations between the vector field components should
be obtained from the differential of the map f : U → V . Perhaps not
unexpectedly, these vector field components will be related by

Y i ∂

∂Qi
= Xj ∂

∂qj
, so Y i =

∂Qi

∂qj
Xj ,
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in which the quantity called the tangent lift

Tf =
∂Q

∂q
(A.3.1)

of the function f arises from the chain rule and is equal to the Jaco-
bian for the transformation Tf : TM 7→ TN .

The dual of the tangent lift is the cotangent lift, which plays
a major role in the definition of momentum maps in Chapter 11.
Roughly speaking, the cotangent lift of the function f ,

T ∗f =
∂q

∂Q
, (A.3.2)

arises from

βidQ
i = αjdq

j , so βi = αj
∂qj

∂Qi
,

and T ∗f : T ∗N 7→ T ∗M . Note the directions of these maps.

Tf : q ,X ∈ TM 7→ Q, Y ∈ TN ,

f : q ∈M 7→ Q ∈ N ,

T ∗f : Q , β ∈ T ∗N 7→ q , α ∈ T ∗M .

A.3.1 Summary of derivatives on manifolds

Definition A.3.1 (Differentiable map) A map f : M → N from
manifold M to manifold N is said to be differentiable (resp. Ck) if it is
represented in local coordinates on M and N by differentiable (resp. Ck)
functions.

Definition A.3.2 (Derivative of a differentiable map) The deriva-
tive of a differentiable map

f : M → N

at a point x ∈M is defined to be the linear map

Txf : TxM → TxN ,
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constructed as follows. For v ∈ TxM , choose a curve that maps an open
interval (−ǫ, ǫ ) around the point t = 0 to the manifold M ,

c : (−ǫ, ǫ ) −→M ,

with c(0) = x ,

and velocity vector
dc

dt

∣∣∣
t=0

= v .

Then Txf · v is the velocity vector at t = 0 of the curve f ◦ c : R → N .
That is,

Txf · v =
d

dt
f(c(t))

∣∣∣
t=0

. (A.3.3)

Definition A.3.3 The union Tf =
⋃

x Txf of the derivatives Txf :
TxM → TxN over points x ∈ M is called the tangent lift of the map
f : M → N .

Remark A.3.1 The chain-rule definition of the derivative Txf of a
differentiable map at a point x depends on the function f and the
vector v. Other degrees of differentiability are possible. For exam-
ple, if M and N are manifolds and f : M → N is of class Ck+1, then
the tangent lift (Jacobian) Txf : TxM → TxN is Ck. ✷

Exercise. Let φt : S2 → S2 rotate points on S2 about a fixed
axis through an angle ψ(t). Show that φt is the flow of a
certain vector field on S2. ⋆

Exercise. Let f : S2 → R be defined by f(x, y, z) = z.
Compute df using spherical coordinates (θ, φ). ⋆
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Exercise. Compute the tangent lifts for the two stereo-
graphic projections of S2 → R2 in Example A.1.2. That
is, assuming (x, y, z) depend smoothly on t, find

How (ξ̇N , η̇N ) depend on (ẋ, ẏ, ż). Likewise, for
(ξ̇S , η̇S).

How (ξ̇N , η̇N ) depend on (ξ̇S , η̇S).

Hint: Recall (1 + z)(1 − z) = 1 − z2 = x2 + y2 and use
xẋ+ yẏ + zż = 0 when (ẋ, ẏ, ż) is tangent to S2 at (x, y, z).

⋆
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B.1 Matrix Lie groups

The main text refers to definitions and examples of Lie group prop-
erties that are collected in this appendix for ready reference. We
follow [AbMa1978, MaRa1994, Ol2000], which should be consulted
for further discussions as needed by the reader. See also [Ho2008]
for another introductory discussion along similar lines.

Definition B.1.1 (Group) A group G is a set of elements possessing

A binary product (multiplication), G × G → G, such that the fol-
lowing properties hold:

– The product of g and h is written gh.

– The product is associative, (gh)k = g(hk).

Identity element e : eg = g and ge = g, for all g ∈ G.

Inverse operation G→ G, so that gg−1 = g−1g = e.

Definition B.1.2 (Lie group) A Lie group is a smooth manifold G
which is also a group and for which the group operations of multi-
plication, (g, h) → gh for g, h ∈ G, and inversion, g → g−1 with
gg−1 = g−1g = e, are smooth functions.

Definition B.1.3 A matrix Lie group is a set of invertible n×nmatrices
which is closed under matrix multiplication and which is a submanifold of
Rn×n.

Remark B.1.1 The conditions showing that a matrix Lie group is a
Lie group are easily checked:

A matrix Lie group is a manifold, because it is a submanifold
of Rn×n.

Its group operations are smooth, since they are algebraic op-
erations on the matrix entries.

✷
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Example B.1.1 (The general linear group GL(n,R)) The matrix Lie
group GL(n,R) is the group of linear isomorphisms of Rn to itself. The
dimension of the n × n matrices in GL(n,R) is n2, the number of inde-
pendent elements.

Remark B.1.2 Definition A.1.4 of Lie groups in terms of manifolds
also defines Lie subgroups in terms of invariant submanifolds. This
definition suggests a strategy for characterising Lie subgroups of
GL(n,R) by imposing submanifold invariance conditions. ✷

Proposition B.1.1 (Isotropy subgroup) Let K ∈ GL(n,R) be a sym-
metric matrix, KT = K. The mapping

S = {U ∈ GL(n,R)|UTKU = K}

defines the subgroup S of GL(n,R). Moreover, this subgroup is a sub-
manifold of Rn×n of dimension n(n− 1)/2.

Proof. Is the mapping S in Proposition B.1.1 a subgroup? We check
the following three defining properties:

Identity: I ∈ S because ITKI = K.

Inverse: U ∈ S =⇒ U−1 ∈ S because

K = U−T (UTKU)U−1 = U−T (K)U−1.

Closed under multiplication: U, V ∈ S =⇒ UV ∈ S because

(UV )TKUV = V T (UTKU)V = V T (K)V = K.

Hence, S is a subgroup of GL(n,R).

Is S a submanifold of Rn×n of dimension n(n − 1)/2? Indeed,
S is the zero locus of the mapping UKUT −K. Its non-redundant
entries, i.e., those on or above the diagonal, define a submersion and
thus make S a submanifold.

For a submersion, the dimension of the level set is the dimension
of the domain minus the dimension of the range space. In this case,
this dimension is n2 − n(n+ 1)/2 = n(n− 1)/2.
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Exercise. Explain why one can conclude that the zero lo-
cus map for S is a submersion. In particular, pay close at-
tention to establishing the constant rank condition for the
linearisation of this map. ⋆

Answer. Here is the strategy for proving that S is a sub-
manifold of Rn×n.

(i) The mapping S is the zero locus of

U → UTKU −K (locus map) .

(ii) Let U ∈ S, and let δU be an arbitrary element of
Rn×n. Linearise the locus map to find

(U + δU)TK(U + δU)−K (B.1.1)

= UTKU −K + δUTKU + UTKδU +O(δU)2 .

(iii) We may conclude that S is a submanifold of Rn×n

provided we can show that the linearisation of the
locus map, namely the linear mapping defined by

L ≡ δU → δUTKU + UTKδU , Rn×n 7→ Rn×n ,
(B.1.2)

has constant rank for all U ∈ S.

N

To apply this strategy, one needs a lemma.

Lemma B.1.1 The linearisation map L in (B.1.2) is onto the space of
n× n symmetric matrices. Hence the original map is a submersion.

Proof. Both the original locus map and the image of L lie in the
subspace of n× n symmetric matrices. Indeed, given U and any
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symmetric matrix A we can find δU such that

δUTKU + UTKδU = A .

Namely
δU = K−1U−TA/2 .

Thus, the linearisation map L is onto the space of n× n symmetric
matrices and the original locus map U → UKUT −K to the space
of symmetric matrices is a submersion.

Remark B.1.3 The subgroup S leaves invariant a certain symmetric
quadratic form under linear transformations, S × Rn → Rn given
by x→ Ux, since

xTKx = xTUTKUx .

So the matrices U ∈ S change the basis for this quadratic form,
but they leave its value unchanged. This means S is the isotropy
subgroup of the quadratic form associated with K. ✷

Corollary B.1.1 (S is a matrix Lie group) S is both a subgroup and a
submanifold of the general linear group GL(n,R). Thus, by Definition
B.1.3, the subgroup S is a matrix Lie group.

Exercise. What is the tangent space to S at the identity,
TIS? ⋆

Proposition B.1.2 The linear space of matrices A satisfying

ATK +KA = 0

defines TIS, the tangent space at the identity of the matrix Lie group S
defined in Proposition B.1.1.

Proof. Near the identity the defining condition for S expands to

(I + ǫAT +O(ǫ2))K(I + ǫA+O(ǫ2)) = K , for ǫ≪ 1 .
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At linear order O(ǫ) one finds

ATK +KA = 0 .

This relation defines the linear space of matrices A ∈ TIS.

Exercise. If A,B ∈ TIS, does it follow that [A,B] ∈ TIS?
This is closure. ⋆

Proposition B.1.3 (Closure) For any pair of matrices A,B ∈ TIS, the
matrix commutator [A,B] ≡ AB −BA ∈ TIS.

Proof. Using [A,B]T = [BT , AT ], we may check closure by a direct
computation,

[BT , AT ]K +K[A,B]

= BTATK −ATBTK +KAB −KBA
= BTATK −ATBTK −ATKB +BTKA = 0 .

Hence, the tangent space of S at the identity TIS is closed under the
matrix commutator [ · , · ].

Remark B.1.4 In a moment, we will show that the matrix commu-
tator for TIS also satisfies the Jacobi identity. This will imply that
the condition ATK +KA = 0 defines a matrix Lie algebra. ✷

B.2 Defining matrix Lie algebras

We are ready to prove the following, in preparation for defining
matrix Lie algebras.

Proposition B.2.1 Let S be a matrix Lie group, and let A,B ∈ TIS (the
tangent space to S at the identity element). Then AB −BA ∈ TIS.
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The proof makes use of a lemma.

Lemma B.2.1 Let R be an arbitrary element of a matrix Lie group S, and
let B ∈ TIS. Then RBR−1 ∈ TIS.

Proof. LetRB(t) be a curve in S such thatRB(0) = I andR′(0) = B.
Define S(t) = RRB(t)R

−1 ∈ S for all t. Then S(0) = I and S′(0) =
RBR−1. Hence, S′(0) ∈ TIS, thereby proving the lemma.

Proof of Proposition B.2.1. Let RA(s) be a curve in S such that
RA(0) = I and R′

A(0) = A. Define S(t) = RA(t)BRA(t)
−1 ∈ TIS.

Then the lemma implies that S(t) ∈ TIS for every t. Hence, S′(t) ∈
TIS, and in particular, S′(0) = AB −BA ∈ TIS.

Definition B.2.1 (Matrix commutator) For any pair of n× n matrices
A,B, the matrix commutator is defined as

[A,B] = AB −BA .

Proposition B.2.2 (Properties of the matrix commutator) The matrix
commutator has the following two properties:

Any two n× n matrices A and B satisfy

[B,A] = −[A,B] .

(This is the property of skew-symmetry.)

Any three n× n matrices A, B and C satisfy
[
[A,B], C

]
+
[
[B,C], A

]
+
[
[C,A], B

]
= 0 .

(This is known as the Jacobi identity.)

Definition B.2.2 (Matrix Lie algebra) A matrix Lie algebra g is a set of
n×n matrices which is a vector space with respect to the usual operations
of matrix addition and multiplication by real numbers (scalars) and which
is closed under the matrix commutator [ · , · ].

Proposition B.2.3 For any matrix Lie group S, the tangent space at the
identity TIS is a matrix Lie algebra.
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Proof. This follows by Proposition B.2.1 and because TIS is a vec-
tor space.

B.3 Examples of matrix Lie groups

Example B.3.1 (The orthogonal group O(n)) The mapping condi-
tion UTKU = K in Proposition B.1.1 specialises for K = I to UTU = I ,
which defines the orthogonal group. Thus, in this case, S specialises to
O(n), the group of n× n orthogonal matrices. The orthogonal group is of
special interest in mechanics.

Corollary B.3.1 (O(n) is a matrix Lie group) By Proposition B.1.1 the
orthogonal groupO(n) is both a subgroup and a submanifold of the general
linear group GL(n,R). Thus, by Definition B.1.3, the orthogonal group
O(n) is a matrix Lie group.

Example B.3.2 (The special linear groupSL(n,R)) The subgroup of
GL(n,R) with det(U) = 1 is called SL(n,R).

Example B.3.3 (The special orthogonal group SO(n)) The special
case of S with det(U) = 1 and K = I is called SO(n). In this case, the
mapping condition UTKU = K specialises to UTU = I with the extra
condition det(U) = 1.

Example B.3.4 (Tangent space of SO(n) at the identity) The special
case with K = I of TISO(n) yields

AT +A = 0 .

These are antisymmetric matrices. Lying in the tangent space at the iden-
tity of a matrix Lie group, this linear vector space forms the matrix Lie
algebra so(n).

Example B.3.5 (The special unitary group SU(n)) The Lie group
SU(n) comprises complex n × n unitary matrices U with U †U = I and



September 24, 2011 11:41am Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

B.3 EXAMPLES OF MATRIX LIE GROUPS 313

unit determinant detU = 1. An element A in its tangent space at the
identity satisfies

A+A† = 0 for A ∈ TISU(n) ,

so that A ∈ su(n) is an n× n traceless skew-Hermitian matrix.

Example B.3.6 (The symplectic group Sp(l)) Suppose n = 2l (that
is, let n be even) and consider the nonsingular skew-symmetric matrix

J =

[
0 I

−I 0

]
,

where I is the l × l identity matrix. One may verify that

Sp(l) = {U ∈ GL(2l,R)|UTJU = J}
is a group. This is called the symplectic group. Reasoning as before, the
matrix algebra TISp(l) is defined as the set of n× n matrices A satisfying

JAT +AJ = 0 .

This matrix Lie algebra is denoted as sp(l).

Example B.3.7 (The special Euclidean group SE(3)) Consider the
Lie group of 4× 4 matrices of the form

E(R, v) =

[
R v

0 1

]
,

where R ∈ SO(3) and v ∈ R3. This is the special Euclidean group,
denoted SE(3). The special Euclidean group is of central interest in me-
chanics since it describes the set of rigid motions and coordinate transfor-
mations of three-dimensional space.

Exercise. A point P in R3 undergoes a rigid motion associ-
ated with E(R1, v1) followed by a rigid motion associated
withE(R2, v2). What matrix element of SE(3) is associated
with the composition of these motions in the given order?

⋆
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Exercise. Multiply the special Euclidean matrices of SE(3).
Investigate their matrix commutators in their tangent
space at the identity. (This is an example of a semidirect-
product Lie group.) ⋆

Exercise. (Tripos question) When does a stone at the equa-
tor of the Earth weigh the most?

Two hints: (i) Assume the Earth’s orbit is a circle around
the Sun and ignore the declination of the Earth’s axis of
rotation. (ii) This is an exercise in using SE(2). ⋆

Exercise. Suppose the n× n matrices A and M satisfy

AM +MAT = 0 .

Show that exp(At)M exp(AT t) =M for all t.

Hint: AnM = M(−AT )n. This direct calculation shows
that for A ∈ so(n) or A ∈ sp(l), we have exp(At) ∈ SO(n)
or exp(At) ∈ Sp(l), respectively. ⋆

B.4 Lie group actions

The action of a Lie group G on a manifold M is a group of trans-
formations of M associated with elements of the group G, whose
composition acting on M corresponds to group multiplication in G.
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Definition B.4.1 (Left action of a Lie group) LetM be a manifold and
let G be a Lie group. A left action of a Lie group G on M is a smooth
mapping Φ : G×M →M such that

(i) Φ(e, x) = x for all x ∈M ;

(ii) Φ(g,Φ(h, x)) = Φ(gh, x) for all g, h ∈ G and x ∈M ; and

(iii) Φ(g, ·) is a diffeomorphism on M for each g ∈ G.

We often use the convenient notation gx for Φ(g, x) and think of the group
element g acting on the point x ∈M . The associativity condition (ii) then
simply reads (gh)x = g(hx).

Similarly, one can define a right action, which is a map Ψ :M×G→
M satisfying Ψ(x, e) = x and Ψ(Ψ(x, g), h) = Ψ(x, gh). The conve-
nient notation for right action is xg for Ψ(x, g), the right action of a
group element g on the point x ∈ M . Associativity Ψ(Ψ(x, g), h) =
Ψ(x, gh) may then be expressed conveniently as (xg)h = x(gh).

Example B.4.1 (Properties of Lie group actions) The action Φ : G ×
M →M of a group G on a manifold M is said to be

transitive, if for every x, y ∈ M there exists a g ∈ G, such that
gx = y;

free, if it has no fixed points, that is, Φg(x) = x implies g = e; and

proper, if whenever a convergent subsequence {xn} in M exists,
and the mapping gnxn converges in M , then {gn} has a convergent
subsequence in G.

Definition B.4.2 (Group orbits) Given a Lie group action of G on M ,
for a given point x ∈M , the subset

Orbx = {gx| g ∈ G} ⊂M

is called the group orbit through x.
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Remark B.4.1 In finite dimensions, it can be shown that group or-
bits are always smooth (possibly immersed) manifolds. Group or-
bits generalise the notion of orbits of a dynamical system. ✷

Exercise. The flow of a vector field on M can be thought of
as an action of R on M . Show that in this case the general
notion of group orbit reduces to the familiar notion of orbit
used in dynamical systems. ⋆

Theorem B.4.1 Orbits of proper Lie group actions are embedded subman-
ifolds.

This theorem is stated in Chapter 9 of [MaRa1994], who refer to
[AbMa1978] for the proof.

Example B.4.2 (Orbits of SO(3)) A simple example of a group orbit is
the action of SO(3) on R3 given by matrix multiplication: The action of
A ∈ SO(3) on a point x ∈ R3 is simply the product Ax. In this case, the
orbit of the origin is a single point (the origin itself), while the orbit of any
other point is the sphere through that point.

Example B.4.3 (Orbits of a Lie group acting on itself) The action of
a group G on itself from either the left or the right also produces group
orbits. This action sets the stage for discussing the tangent-lifted action of
a Lie group on its tangent bundle.

B.4.1 Left and right translations on a Lie group

Left and right translations on the group are denoted Lg and Rg, respec-
tively. For example, Lg : G → G is the map given by h → gh, while
Rg : G→ G is the map given by h→ hg, for g, h ∈ G.

Left translation Lg : G→ G; h→ gh defines a transitive and free
action of G on itself. Right multiplication Rg : G → G; h → hg



September 24, 2011 11:41am Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

B.5 TANGENT AND COTANGENT LIFT ACTIONS 317

defines a right action, while h → hg−1 defines a left action of G on
itself.

G acts on G by conjugation, g → Ig = Rg−1 ◦ Lg. The map
Ig : G → G given by h → ghg−1 is the inner automorphism as-
sociated with g. Orbits of this action are called conjugacy classes.

Differentiating conjugation at the identity e gives the adjoint ac-
tion of G on g:

Adg := TeIg : TeG = g→ TeG = g .

Explicitly, the adjoint action of G on g is given by

Ad : G× g→ g , Adg(ξ) = Te(Rg−1 ◦ Lg)ξ .

We have already seen an example of adjoint action for matrix Lie
groups acting on matrix Lie algebras, when we defined S(t) =
RA(t)BRA(t)

−1 ∈ TIS as a key step in the proof of Proposition
B.2.1.

The coadjoint action of G on g∗, the dual of the Lie algebra g of G,
is defined as follows. Let Ad∗g : g∗ → g∗ be the dual of Adg, defined
by

〈Ad∗gα, ξ〉 = 〈α,Adgξ〉
for α ∈ g∗, ξ ∈ g and pairing 〈· , ·〉 : g∗ × g→ R. Then the map

Φ∗ : G× g∗ → g∗ given by (g, α) 7→ Ad∗g−1α

is the coadjoint action of G on g∗.

B.5 Tangent and cotangent lift actions

Definition B.5.1 (Tangent lift action) Let Φ : G ×M → M be a left
action, and write Φg(m) = Φ(g,m). The tangent lift action of G on the
tangent bundle TM is defined by

gv = TxΦg(v) , (B.5.1)

for every v ∈ TxM .
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Definition B.5.2 (Cotangent lift action) The cotangent lift action of
G on T ∗M is defined by

gα = (TmΦg−1)(α) , (B.5.2)

for every α ∈ T ∗M .

Remark B.5.1 In standard calculus notation, the expression for tan-
gent lift may be written as

TxΦ · v =
d

dt
Φ(c(t))

∣∣∣
t=0

=
∂Φ

∂c
c ′(t)

∣∣∣
t=0

=: DΦ(x) · v , (B.5.3)

with c(0) = x and c ′(0) = v. ✷

Definition B.5.3 If X is a vector field on M and φ is a differentiable map
from M to itself, then the push-forward of X by φ is the vector field φ∗X
defined by

(φ∗X) (φ(x)) = Txφ (X(x)) = Dφ(x) ·X(x) .

That is, the following diagram commutes:

✲TM TM
Tφ

✻

φ∗X

✲
φ

✻

M M

X

If φ is a diffeomorphism then the pull-back φ∗X is also defined:

(φ∗X)(x) = Tφ(x)φ
−1(X(φ(x)) = Dφ−1(φ(x)) ·X(φ(x)) .

This denotes the standard calculus operation of computing the Jacobian of
the inverse map φ−1 acting on a vector field.

Definition B.5.4 (Group action on vector fields) Let Φ : G ×M →
M be a left action, and write Φg(m) = Φ(g,m). Then G has a left action
on X(M) (the set of vector fields onM ) by push-forwards: gX = (Φg)∗X.
(The definition for right actions is the same, but writtenXg instead of gX.)
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Definition B.5.5 (Group-invariant vector fields) Let G act on M on
the left. A vector fieldX onM is invariant with respect to this action (we
often say “G-invariant” if the action is understood) if gX = X for all g ∈
G; equivalently (using all of the above definitions!) g (X(x)) = X(gx)
for all g ∈ G and all x ∈ X. (Similarly for right actions.)

Definition B.5.6 (Left-invariant vector fields) Consider the left action
of G on itself by left multiplication,

Φg(h) = Lg(h) = gh .

A vector field on G that is invariant with respect to this action is called
left-invariant. From Definition B.5.5, we see that X is left-invariant if
and only if g (X(h)) = X(gh), which in less compact notation means
ThLgX(h) = X(gh). The set of all such vector fields is written XL(G).

Theorem B.5.1 Given a ξ ∈ TeG, define XL
ξ (g) = gξ (recall gξ ≡

TeLgξ). Then XL
ξ is the unique left-invariant vector field such that

XL
ξ (e) = ξ.

Proof. To show that XL
ξ is left-invariant, we need to show that

g
(
XL

ξ (h)
)
= XL

ξ (gh) for every g, h ∈ G. This follows from the defi-

nition of XL
ξ and the associativity property of Lie group actions,

g
(
XL

ξ (h)
)
= g (hξ) = (gh) ξ = XL

ξ (gh) .

We repeat the last line in less compact notation,

ThLg

(
XL

ξ (h)
)
= ThLg (hξ) = TeLghξ = XL

ξ (gh) .

For uniqueness, suppose X is left-invariant and X(e) = ξ. Then for
any g ∈ G, we have X(g) = g (X(e)) = gξ = XL

ξ (g).

The proof also yields the following.

Corollary B.5.1 The map ξ 7→ XL
ξ is a vector space isomorphism from

TeG to XL(G).
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Remark B.5.2 Because of this vector space isomorphism, the left-
invariant vector fields could have been used to define the Lie alge-
bra of a Lie group. See [Ol2000] for an example of this approach
using the corresponding isomorphism for the right-invariant vector
fields. ✷

All of the above definitions and theorems have analogues for right
actions. The definitions of right-invariant, XR(G) and XR

ξ , use the
right action of G on itself defined by Ψ(g, h) = Rg(h) = hg. For
example, the tangent lift for right action of G on the tangent bundle
TM is defined by vg = TxΨg(v) for every v ∈ TxM .

Exercise. Show that Φg(h) = hg−1 defines a left action of G
on itself. ⋆

The map ξ 7→ XL
ξ may be used to relate the Lie bracket on g,

defined as [ξ, η] = adξη,with the Jacobi–Lie bracket on vector fields.

B.6 Jacobi–Lie bracket

Definition B.6.1 (Jacobi–Lie bracket) The Jacobi–Lie bracket on X

(M) is defined in local coordinates by

[X,Y ]J−L ≡ (DX) · Y − (DY ) ·X ,

which, in finite dimensions, is equivalent to

[X,Y ]J−L ≡ − (X · ∇)Y + (Y · ∇)X ≡ − [X,Y ] .

Theorem B.6.1 (Properties of the Jacobi–Lie bracket)

The Jacobi–Lie bracket satisfies

[X,Y ]J−L = LXY ≡
d

dt

∣∣∣∣
t=0

Φ∗
tY,
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where Φt is the flow of X. (This is coordinate-free, and can be
used as an alternative definition.)

This bracket makes XL(M) a Lie algebra with [X,Y ]J−L =
− [X,Y ], where [X,Y ] is the Lie algebra bracket on X(M).

φ∗[X,Y ] = [φ∗X,φ∗Y ] for any differentiable φ :M →M.

Remark B.6.1 The first property of the Jacobi–Lie bracket is proved
for matrices in Section B.7. The other two properties are proved
below for the case that M is the Lie group G. ✷

Theorem B.6.2 XL(G) is a subalgebra of X(G).

Proof. Let X,Y ∈ XL(G). Using the last item of the previous theo-
rem, and then the G-invariance of X and Y , gives the push-forward
relations

(Lg)∗ [X,Y ]J−L = [(Lg)∗X, (Lg)∗ Y ]J−L ,

for all g ∈ G. Hence [X,Y ]J−L ∈ XL(G). This is the second property
in Theorem B.6.1.

Theorem B.6.3

[XL
ξ , X

L
η ]J−L(e) = [ξ, η] ,

for every ξ, η ∈ g, where the bracket on the right is the Jacobi–Lie bracket.
(That is, the Lie bracket on g is the pull-back of the Jacobi–Lie bracket by
the map ξ 7→ XL

ξ .)

Proof. The proof of this theorem for matrix Lie algebras is relatively
easy: we have already seen that adAB = AB − BA. On the other
hand, since XL

A(C) = CA for all C, and this is linear in C, we have
DXL

B(I) ·A = AB, so

[A,B] = [XL
A, X

L
B]J−L(I)

= DXL
B(I) ·XL

A(I)−DXL
A(I) ·XL

B(I)

= DXL
B(I) ·A−DXL

A(I) ·B
= AB −BA .
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This is the third property of the Jacobi–Lie bracket listed in Theorem
B.6.1. For the general proof, see [MaRa1994], Proposition 9.14.

Remark B.6.2 This theorem, together with the second property in
Theorem B.6.1, proves that the Jacobi–Lie bracket makes g into a Lie
algebra. ✷

Remark B.6.3 By Theorem B.6.2, the vector field [XL
ξ , X

L
η ] is left-

invariant. Since [XL
ξ , X

L
η ]J−L(e) = [ξ, η], it follows that

[XL
ξ , X

L
η ] = XL

[ξ,η] .

✷

Definition B.6.2 (Infinitesimal generator) Let Φ : G ×M → M
be a left action, and let ξ ∈ g. Let g(t) be a path inG such that g(0) = e
and g′(0) = ξ. Then the infinitesimal generator of the action in the ξ
direction is the vector field ξM on M defined by

ξM (x) =
d

dt

∣∣∣∣
t=0

Φg(t)(x) .

Remark B.6.4 Note: This definition does not depend on the choice
of g(t). For example, the choice in [MaRa1994] is exp(tξ), where exp
denotes the exponentiation on Lie groups (not defined here). ✷

Exercise. Consider the action of SO(3) on the unit sphere
S2 around the origin, and let ξ = (0, 0, 1). Sketch the vector
field ξM .

Hint: The vectors all point eastward. ⋆
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Theorem B.6.4 For any left action of G, the Jacobi–Lie bracket of in-
finitesimal generators is related to the Lie bracket on g as follows (note
the minus sign):

[ξM , ηM ] = − [ξ, η]M .

For a proof, see [MaRa1994], Proposition 9.3.6.

Exercise. Express the statements and formulas of this
appendix for the case of SO(3) action on its Lie algebra
so(3). (Hint: Look at the previous section.) Wherever
possible, translate these formulas to R3 by using the hat
map ̂ : so(3)→ R3.

Write the Lie algebra for so(3) using the Jacobi–Lie bracket
in terms of linear vector fields on R3. What are the charac-
teristic curves of these linear vector fields? ⋆

B.7 Lie derivative and Jacobi–Lie bracket

B.7.1 Lie derivative of a vector field

Definition B.7.1 (Lie derivative) Let X and Y be two vector fields on
the same manifold M . The Lie derivative of Y with respect to X is

LXY ≡
d

dt
Φ∗
tY

∣∣∣∣
t=0

,

where Φ is the flow of X.

Remark B.7.1 The Lie derivative LXY is the derivative of Y in the
direction given by X. Its definition is coordinate-independent. In
contrast, DY · X is also the derivative of Y in the X direction, but
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its value depends on the coordinate system, and in particular does
not usually equal LXY in a given coordinate system. ✷

Theorem B.7.1

LXY = [X,Y ] ,

where the bracket on the right is the Jacobi–Lie bracket.

Proof. Assume that M is finite-dimensional and work in local coor-
dinates. That is, consider everything as matrices, which allows the
use of the product rule and the identities

(
M−1

)′
= −M−1M ′M−1

and d
dt (DΦt(x)) = D

(
d
dtΦt

)
(x).

LXY (x) =
d

dt
Φ∗
tY (x)

∣∣∣∣
t=0

=
d

dt
(DΦt(x))

−1 Y (Φt(x))

∣∣∣∣
t=0

=

[(
d

dt
(DΦt(x))

−1

)
Y (Φt(x))

+ (DΦt(x))
−1 d

dt
Y (Φt(x))

]

t=0

=

[
− (DΦt(x))

−1

(
d

dt
DΦt(x)

)
(DΦt(x))

−1 Y (Φt(x))

+ (DΦt(x))
−1 d

dt
Y (Φt(x))

]

t=0

.

Regrouping yields

LXY (x) =

[
−
(
d

dt
DΦt(x)

)
Y (x) +

d

dt
Y (Φt(x))

]

t=0

= −D
(
d

dt
Φt(x)

∣∣∣∣
t=0

)
Y (x) +DY (x)

(
d

dt
Φt(x)

∣∣∣∣
t=0

)

= −DX(x) · Y (x) +DY (x) ·X(x)

= [X,Y ]J−L(x) .

Therefore LXY = [X,Y ]J−L.
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B.7.2 Vector fields in ideal fluid dynamics

The Lie derivative formula for vector fields also applies in infinite
dimensions, although the proof is more elaborate. For example, the
equation for the vorticity dynamics of an Euler fluid with velocity
u (with divu = 0) and vorticity ω = curlu may be written as a Lie
derivative formula,

∂tω = −u · ∇ω + ω · ∇u
= − [u, ω]J−L

= aduω

= −Luω .

These equations each express the invariance of the vorticity vector
field ω under the flow of its corresponding divergenceless velocity
vector field u. This invariance is also encapsulated in the language
of fluid dynamics as

d

dt

(
ω · ∂

∂x

)
= 0 , along

dx

dt
= u(x, t) = curl−1ω .

Here, the curl-inverse operator is defined by the Biot–Savart law,

u = curl−1ω = curl(−∆)−1ω ,

which follows from the identity

curl curlu = −∆u+∇divu .

Thus, in coordinates,

dx

dt
= u(x, t) =⇒ x(t,x0) with x(0,x0) = x0 at t = 0 ,

and ωj(x(t,x0), t)
∂

∂xj(t,x0)
= ωA(x0)

∂

∂xA0
,

in which one sums over repeated indices. Consequently, one may
write

ωj(x(t,x0), t) = ωA(x0)
∂xj(t,x0)

∂xA0
. (B.7.1)
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This is Cauchy’s (1859) solution of Euler’s equation for vorticity,

∂tω = − [curl−1ω, ω]J−L = aduω with u = curl−1ω .

This type of Lie derivative equation often appears in the text. In it,
the vorticity ω evolves by the ad action of the right-invariant vector
field u = curl−1ω. The Cauchy solution is the tangent lift of this
flow.

Exercise. Discuss the cotangent lift of this flow and how it
might be related to the Kelvin circulation theorem,

d

dt

∫

c(u)
u · dx = 0 ,

for a circuit c(u) moving with the flow. ⋆
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C.1 Variations on rigidbody dynamics

C.1.1 Two times

Scenario C.1.1 The Bichrons are an alien life form who use two-
dimensional time u = (s, t) ∈ R2 for time travel. To decide whether
we are an intelligent life form, they require us to define spatial and body
angular velocity for free rigid rotation in their two time dimensions. What
should we tell them?

Answer. (Bichrons) Following the approach to rotating
motion taken in Section 2, let’s define a trajectory of a
moving point x = r(u) ∈ R3 as a smooth invertible map
r : R2 → R3 with "time" u ∈ R2, so that u = (s, t).
Suppose the components of the trajectory are given in
terms of a fixed and a moving orthonormal frame by

r(u) = rA0 (u)eA(0) fixed frame,
= raea(u) moving frame,

with moving orthonormal frame defined by O : R2 →
SO(3), so that

ea(u) = O(u)ea(0) ,

where O(u) is a surface in SO(3) parameterised by the
two times u = (s, t). The exterior derivative1 of the mov-
ing frame relation above yields the infinitesimal spatial
displacement,

dr(u) = radea(u) = radOO−1(u)ea(u) = ω̂(u)r ,

in which ω̂(u) = dOO−1(u) ∈ so(3) is the one-form for
spatial angular displacement. One denotes

dO = O′ ds+ Ȯ dt ,

1This subsection uses the notation of differential forms and wedge products. Read-
ers unfamiliar with it may regard this subsection as cultural background.
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so that the spatial angular displacement is the right-
invariant so(3)-valued one-form

ω̂(u) = dOO−1 = (O′ ds+ Ȯ dt)O−1 .

Likewise, the body angular displacement is the left-
invariant so(3)-valued one-form

Ω̂(u) = O−1ω̂(u)O = O−1dO (C.1.1)

= O−1(O′ ds+ Ȯ dt) =: Ω̂sds+ Ω̂tdt ,

and Ω̂s and Ω̂t are its two body angular velocities.

This is the answer the Bichrons wanted: For them, free
rotation takes place on a space-time surface in SO(3) and
it has two body angular velocities because such a surface
has two independent tangent vectors. N

Scenario C.1.2 What would the Bichrons do with this information?

Answer. To give an idea of what the Bichrons might do
with our answer, let us define the coframe at position
x = r(u) as the infinitesimal displacement in body coordi-
nates,

Ξ = O−1dr . (C.1.2)

Taking its exterior derivative gives the two-form,

dΞ = −O−1dO ∧O−1dr = −Ω̂ ∧Ξ , (C.1.3)

in which the left-invariant so(3)-valued one-form Ω̂ =
O−1dO encodes the exterior derivative of the coframe as
a rotation by the body angular displacement. In differen-
tial geometry, Ω̂ is called the connection form and Equa-
tion (C.1.3) is called Cartan’s first structure equation for
a moving orthonormal frame [Fl1963, Da1994]. Taking
another exterior derivative gives zero (because d2 = 0)
in the form of

0 = d2Ξ = −dΩ̂ ∧Ξ− Ω̂ ∧ dΞ = −(dΩ̂ + Ω̂ ∧ Ω̂) ∧Ξ .
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Hence we have Cartan’s second structure equation,

dΩ̂ + Ω̂ ∧ Ω̂ = 0 . (C.1.4)

The left-hand side of this equation is called the curvature

two-form associated with the connection form Ω̂. The
interpretation of (C.1.4) is that the connection form Ω̂ =
O−1dO has zero curvature. This makes sense because
the rotating motion takes place in Euclidean space, R3,
which is flat.

Of course, one may also prove the zero curvature rela-

tion (C.1.4) directly from the definition Ω̂ = O−1dO by
computing

dΩ̂ = d(O−1dO) = −O−1dO ∧O−1dO = −Ω̂ ∧ Ω̂ .

Expanding this out using the two angular velocities
Ω̂s = O−1O′ and Ω̂t = O−1Ȯ gives (by using antisym-
metry of the wedge product, ds ∧ dt = −dt ∧ ds)

dΩ̂(u) = d(Ω̂sds+ Ω̂tdt)

= −
(
Ω̂sds+ Ω̂tdt

)
∧
(
Ω̂sds+ Ω̂tdt

)

= − Ω̂ ∧ Ω̂

=
∂Ω̂s

∂t
dt ∧ ds+ ∂Ω̂t

∂s
ds ∧ dt

= −Ω̂sΩ̂t ds ∧ dt− Ω̂tΩ̂s dt ∧ ds

=

(
∂Ω̂t

∂s
− ∂Ω̂s

∂t

)
ds ∧ dt

=
(
Ω̂tΩ̂s − Ω̂sΩ̂t

)
ds ∧ dt

=:
[
Ω̂t , Ω̂s

]
ds ∧ dt .

Since ds ∧ dt 6= 0, this equality implies that the coeffi-
cients are equal. In other words, this calculation proves
the following.
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Proposition C.1.1 The zero curvature relation (C.1.4) may
be expressed equivalently as

∂Ω̂t

∂s
− ∂Ω̂s

∂t
= Ω̂tΩ̂s − Ω̂sΩ̂t =

[
Ω̂t , Ω̂s

]
, (C.1.5)

in terms of the two angular velocities, Ω̂s = O−1O′ and Ω̂t =
O−1Ȯ. N

Remark C.1.1 The component form (C.1.5) of the zero curvature re-
lation (C.1.4) arises in Equation (10.3.10) of Chapter 11 in the deriva-
tion of the Euler–Poincaré equations for the dynamics of the classi-
cal spin chain. It also arises in many places in the theory of soliton
solutions of completely integrable Hamiltonian partial differential
equations, see, e.g., [FaTa1987]. ✷

Exercise. Why is Ω̂ called a connection form? ⋆

Answer. Consider the one-form Equation (C.1.2) written
in components as

Ξj = Ξj
α(r)dr

α , (C.1.6)

in which the matrix Ξj
α(r) depends on spatial location,

and it need not be orthogonal. In the basis Ξj(r), a one-
form v may be expanded in components as

v = vjΞ
j . (C.1.7)

Its differential is computed in this basis as

dv = d(vjΞ
j)

= dvj ∧ Ξj + vjdΞ
j .

Substituting Equation (C.1.3) in components as

dΞj = − Ω̂j
k ∧ Ξk (C.1.8)
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then yields the differential two-form,

dv = (dvk − vjΩ̂j
k) ∧ Ξk

=: (dvk − vjΓj
klΞ

l) ∧ Ξk

=: Dvk ∧ Ξk . (C.1.9)

The last equation defines the covariant exterior deriva-
tive operation D in the basis of one-form displacements
Ξ(r). The previous equation introduces the quantities
Γj
kl defined as

Ω̂j
k = Γj

klΞ
l . (C.1.10)

Γj
kl are the Christoffel coefficients in the local coframe

given by Equation (C.1.6). These are the standard con-
nection coefficients for curvilinear geometry. N

Exercise. Prove from their definition in formula (C.1.9)
that the Christoffel coefficients are symmetric under the ex-
change of indices, Γj

kl = Γj
lk. ⋆

Definition C.1.1 (Body covariant derivative) The relation in Equa-
tion (C.1.9)

Dvk := dvk − vjΩ̂j
k = dvk − vjΓj

klΞ
l (C.1.11)

defines the components of the covariant derivative of the one-form v in

the body frame; that is, in the Ξ-basis. Thus, Ω̂ is a connection form in the
standard sense of differential geometry [Fl1963, Da1994].

Remark C.1.2 (Metric tensors) The metric tensors in the two bases
of infinitesimal displacements dr and Ξ are related by requiring that
the element of length measured in either basis must be the same.
That is,

ds2 = gαβ dr
α ⊗ drβ = δjk Ξ

j ⊗ Ξk , (C.1.12)
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where ⊗ is the symmetric tensor product. This implies a relation
between the metrics,

gαβ = δjk Ξ
j
αΞ

k
β , (C.1.13)

which, in turn, implies

Γν
βµ(r) =

1

2
gνα
[
∂gαµ(r)

∂rβ
+
∂gαβ(r)

∂rµ
− ∂gβµ(r)

∂rα

]
. (C.1.14)

This equation identifies Γν
βµ(r) as the Christoffel coefficients in the

spatial basis. Note that the spatial Christoffel coefficients are sym-
metric under the exchange of indices, Γν

βµ(r) = Γν
µβ(r). ✷

Definition C.1.2 (Spatial covariant derivative) For the spatial metric
gαµ, the covariant derivative of the one-form v = vβdr

β in the spa-
tial coordinate basis drβ is defined by the standard formula, cf. Equation
(C.1.11),

Dvβ = dvβ − vνΓν
αβdr

α ,

or, in components,
∇αvβ = ∂αvβ − vνΓν

αβ .

Remark C.1.3 Thus, in differential geometry, the connection one-
form (C.1.10) in the local coframe encodes the Riemannian Christof-
fel coefficients for the spatial coordinates, via the equivalence of
metric length (C.1.13) as measured in either set of coordinates. The
left-invariant so(3)-valued one-form Ω̂ = O−1dO that the Bichrons
need for keeping track of the higher-dimensional time components
of their rotations in body coordinates in (C.1.1) plays the same role
for their time surfaces in SO(3) as the connection one-form does for
taking covariant derivatives in a local coframe. For more discussion
of connection one-forms and their role in differential geometry, see,
e.g., [Fl1963, Da1994]. ✷

Exercise. Write the two-time version of the Euler–Poincaré
equation for a left-invariant Lagrangian defined on so(3).

Hint: Take a look at Chapter 10. ⋆
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C.1.2 Rotations in complex space

Scenario C.1.3 The Bers are another alien life form who use one-
dimensional time t ∈ R (thankfully), but their spatial coordinates are
complex z ∈ C3, while ours are real x ∈ R3. They test us to deter-
mine whether we are an intelligent life form by requiring us to write the
equations for rigid-body motion for body angular momentum coordinates
L ∈ C3.

Their definition of a rigid body requires its moment of inertia I, rota-
tional kinetic energy 1

2L·I−1L and magnitude of body angular momentum√
L · L all to be real. They also tell us these rigid-body equations must be

invariant under the operations of parity P z → −z∗ and time reversal
T : t → −t. What equations should we give them? Are these equations
the same as ours in real body angular momentum coordinates? Keep your
approach general for as long as you like, but if you wish to simplify, work
out your results with the simple example in which I = diag(1, 2, 3).

Answer. Euler’s equations for free rotational motion of
a rigid body about its centre of mass may be expressed
in real vector coordinates L ∈ R3 (L is the body angular
momentum vector) as

L̇ =
∂C

∂L
× ∂E

∂L
, (C.1.15)

where C and E are conserved quadratic functions de-
fined by

C(L) =
1

2
L · L , E(L) =

1

2
L · I−1L . (C.1.16)

Here, I−1 = diag (I−1
1 , I−1

2 , I−1
3 ) is the inverse of the

(real) moment of inertia tensor in principal axis coordi-
nates. These equations are PT -symmetric; they are in-
variant under spatial reflections of the angular momen-
tum components in the body P : L → L composed
with time reversal T : L → −L. The simplifying choice
I−1 = diag(1, 2, 3) reduces the dynamics (C.1.15) to

L̇1 = L2L3 , L̇2 = − 2L1L3 , L̇3 = L1L2 , (C.1.17)



September 24, 2011 11:41am Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

C.1 VARIATIONS ON RIGIDBODY DYNAMICS 335

which may also be written equivalently as

L̇ = L× KL , (C.1.18)

with K = diag(−1, 0, 1).
Since L is complex, we set L = x + iy and obtain four
conservation laws, namely the real and imaginary parts
of C(L) = 1

2L · L and H(L) = 1
2L · KL, expressed as

C(L) =
1

2
x · x− 1

2
y · y + ix · y , (C.1.19)

H(L) =
1

2
x · Kx− 1

2
y · Ky + ix · Ky . (C.1.20)

The solutions to Euler’s equations that have been stud-
ied in the past are the real solutions to (C.1.17), that is,
the solutions for which y = 0. For this case the phase
space is three-dimensional and the two conserved quan-
tities are

C =
1

2

(
x21 + x22 + x23

)
, H = −1

2
x21 +

1

2
x23 . (C.1.21)

If we take C = 1
2 , then the phase-space trajectories are

constrained to a sphere of radius 1. There are six criti-
cal points located at (±1, 0, 0), (0,±1, 0) and (0, 0,±1).
These are the conventional trajectories that are dis-
cussed in standard textbooks on dynamical systems
[MaRa1994].

Exercise. When H = 0, show that the resulting equation is a
first integral of the simple pendulum problem. ⋆

Let us now examine the complex PT -symmetric solu-
tions to Euler’s equations. The equation set (C.1.16) is
six-dimensional. However, a reduction in dimension oc-
curs because the requirement of PT symmetry requires
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the constants of motion C and H in (C.1.20) to be real.
The vanishing of the imaginary parts of C and H gives
the two equations

x · y = 0, x · Ky = 0 . (C.1.22)

These two bilinear constraints may be used to eliminate
the y terms in the complex Equations (C.1.17). When
this elimination is performed using the definition K =
diag(−1, 0, 1), one obtains the following real equations
for x on the PT constraint manifolds (C.1.22):

ẋ = x× Kx+M(x)x . (C.1.23)

Here, the scalar function M = PN/D, where the func-
tions P , N and D are given by

P (x) = 2x1x2x3 , N(x) = x21 + x22 + x23 − 1 , (C.1.24)

D(x) =

∣∣∣∣Re
(
∂C

∂L
× ∂H

∂L

)∣∣∣∣
2

= x21x
2
2 + x22x

2
3 + 4x21x

2
3 .

The system (C.1.23) has nonzero divergence, so it cannot
be Hamiltonian even though it arises from constraining
a Hamiltonian system. Nonetheless, the system has two
additional real conservation laws, and it reduces to the
integrable form

ẋ1 = x2x3
(
1 + 2x21N/D

)
, (C.1.25)

ẋ2 = −2x1x3
(
1− x22N/D

)
,

ẋ3 = x1x2
(
1 + 2x23N/D

)
, (C.1.26)

on level sets of two conserved quantities:

A =
(N + 1)2N

D
, (C.1.27)

B =
x21 − x23
D

(
2x22x

2
3 + 4x21x

2
3 + x42 + 2x21x

2
2 − x22

)
.

Hence, the motion takes place in R3 on the intersection
of the level sets of these two conserved quantities. These
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quantities vanish when either N = 0 (the unit sphere)
or x23 − x21 = 0 (the degenerate hyperbolic cylinder). On
these level sets of the conserved quantities the motion
Equations (C.1.23) restrict to Equations (C.1.17) for the
original real rigid body. N

Remark C.1.4 We are dealing with rotations of the group of com-
plex 3×3 orthogonal matrices with unit determinant acting on com-
plex three-vectors. These are the linear maps, SO(3,C)× C3 7→ C3.

Euler’s Equations (C.1.15) for complex body angular momen-
tum describe geodesic motion on SO(3,C) with respect to the metric
given by the trace norm g(Ω,Ω) = 1

2trace (Ω
T IΩ) for the real sym-

metric moment of inertia tensor I and left-invariant Lie algebra ele-
ment Ω(t) = g−1(t)ġ(t) ∈ so(3,C). Because SO(3,C) is orthogonal,
Ω ∈ so(3,C) is a 3× 3 complex skew-symmetric matrix, which may
be identified with complex vectors Ω̂ ∈ C3 by (Ω)jk = −Ω̂iǫijk. Eu-
ler’s Equations (C.1.15) follow from Hamilton’s principle in Euler–
Poincaré or Lie–Poisson form:

µ̇ = ad∗Ω µ = {µ, H} , (C.1.28)

where
δl

δΩ
= µ , g−1ġ = Ω , Ω =

∂H

∂µ
. (C.1.29)

These are Hamiltonian with the standard Lie–Poisson bracket de-
fined on the dual Lie algebra so(3,C3)∗. Because of the properties
of the trace norm, we may take µ = skew IΩ. (Alternatively, we
may set the preserved symmetric part of µ initially to zero.) Hence,
µ may be taken as a skew-symmetric complex matrix, which again
may be identified with the components of a complex three-vector z
as (µ)jk = −ziǫijk. On making this identification, Euler’s Equations
(C.1.15) emerge for z ∈ C3, with real I. The PT -symmetric initial
conditions on the real level sets of the preserved complex quantities
C and H form an invariant manifold of this system of three com-
plex ordinary differential equations. On this invariant manifold, the
complex angular motion is completely integrable. By following the
approach established by Manakov [Man1976] this reasoning may
also extend to the rigid body on SO(n,C). ✷
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Exercise. The Bers left behind a toy monopole. This is a
rigid body that rotates by complex angles and whose three
moments of inertia are the complex cube roots of unity.
What are the equations of motion for this toy monopole?
For a hint, take a look at [Iv2006]. ⋆

C.1.3 Rotations in four dimensions: SO(4)

Scenario C.1.4 The Tets are yet another alien life form who also use one-
dimensional time t ∈ R (we sigh with relief), but their spatial coordinates
are X ∈ R4, while ours are x ∈ R3. They test us to determine whether
we are an intelligent life form by requiring us to write the equations for
rigid-body motion for four-dimensional rotations.

Hint: The angular velocity of rotation Ψ̂ = O−1Ȯ(t) for rotations O(t) ∈
SO(4) in four dimensions will be represented by a 4 × 4 skew-symmetric
matrix. Write a basis for the 4 × 4 skew-symmetric matrices by adding a
row and column to the 3× 3 basis.

Answer. Any 4× 4 skew-symmetric matrix may be rep-
resented as a linear combination of 4 × 4 basis matrices
with three-dimensional vector coefficients Ω, Λ ∈ R3 in
the form

Ψ̂ =




0 −Ω3 Ω2 −Λ1

Ω3 0 −Ω1 −Λ2

−Ω2 Ω1 0 −Λ3

Λ1 Λ2 Λ3 0




= Ω · Ĵ + Λ · K̂
= ΩaĴa + ΛbK̂b .

This is the formula for the angular velocity of rotation in
four dimensions.
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The 4 × 4 basis set Ĵ = (J1, J2, J3)
T and K̂ = (K1, K2,

K3)
T consists of the following six linearly independent

4×4 skew-symmetric matrices, Ĵa, K̂b with a, b = 1, 2, 3:

Ĵ1 =




0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0


 , K̂1 =




0 0 0 −1
0 0 0 0

0 0 0 0

1 0 0 0


 ,

Ĵ2 =




0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0


 , K̂2 =




0 0 0 0

0 0 0 −1
0 0 0 0

0 1 0 0


 ,

Ĵ3 =




0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


 , K̂3 =




0 0 0 0

0 0 0 0

0 0 0 −1
0 0 1 0


 .

The matrices Ĵa with a = 1, 2, 3 embed the basis for 3 ×
3 skew-symmetric matrices into the 4 × 4 matrices by
adding a row and column of zeros. The skew matrices
K̂a with a = 1, 2, 3 then extend the 3× 3 basis to 4× 4.

Commutation relations

The skew matrix basis Ĵa, K̂b with a, b = 1, 2, 3 satisfies
the commutation relations,

[
Ĵa, Ĵb

]
= ĴaĴb − ĴbĴa = ǫabcĴc ,[

Ĵa, K̂b

]
= ĴaK̂b − K̂bĴa = ǫabcK̂c ,[

K̂a, K̂b

]
= K̂aK̂b − K̂bK̂a = ǫabcĴc .

These commutation relations may be verified by a series
of direct calculations, as [ Ĵ1, Ĵ2 ] = Ĵ3, etc.
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Hat map for 4 × 4 skew matrices

The map above for the 4×4 skew matrix Ψ̂ may be writ-
ten as

Ψ̂ = Ω · Ĵ +Λ · K̂ = ΩaĴa +ΛbK̂b , sum on a, b = 1, 2, 3 .

This map provides the 4×4 version of the hat map, writ-
ten now as ( · )̂ : R3 ×R3 7→ so(4). Here so(4) is the Lie
algebra of the 4 × 4 special orthogonal matrices, which
consists of the 4 × 4 skew matrices represented in the
six-dimensional basis of Ĵ ’s and K̂’s.

Commutator as intertwined vector product

The commutator of 4 × 4 skew matrices corresponds to
an intertwined vector product, as follows. For any vec-
tors Ω, Λ, ω, λ ∈ R3, one has

[
Ω · Ĵ + Λ · K̂ , ω · Ĵ + λ · K̂

]

=
(
Ω× ω + Λ× λ

)
· Ĵ +

(
Ω× λ− Λ× ω

)
· K̂ .

Likewise, the matrix pairing 〈A,B 〉 = tr(ATB) is re-
lated to the vector dot-product pairing in R3 by

〈
Ω · Ĵ + Λ · K̂ , ω · Ĵ + λ · K̂

〉
= Ω · ω + Λ · λ .

That is,
〈
Ĵa , Ĵb

〉
= δab =

〈
K̂a , K̂b

〉
and

〈
Ĵa , K̂b

〉
= 0 .

Euler–Poincaré equation on so(4)∗

For
Φ = O−1δO(t) = ξ · Ĵ + η · K̂ ∈ so(4) ,
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Hamilton’s principle δS = 0 for S =
∫ b
a ℓ(Ψ) dt with

Ψ = O−1Ȯ(t) = Ω · Ĵ + Λ · K̂ ∈ so(4)

leads to

δS =

∫ b

a

〈 δℓ
δΨ

, δΨ
〉
dt =

∫ b

a

〈 δℓ
δΨ

, Φ̇ + adΨΦ
〉
dt ,

where

adΨΦ = [Ψ, Φ] =
[
Ω · Ĵ + Λ · K̂, ξ · Ĵ + η · K̂

]

=
(
Ω× ξ + Λ× η

)
· Ĵ +

(
Ω× η − Λ× ξ

)
· K̂ .

Thus,

δS =

∫ b

a

〈
− d

dt

δℓ

δΨ
, Φ
〉
+
〈 δℓ
δΨ

, adΨΦ
〉
dt

=

∫ b

a

〈
− d

dt

δℓ

δΩ
· Ĵ − d

dt

δℓ

δΛ
· K̂ , ξ · Ĵ + η · K̂

〉
dt

+

∫ b

a

〈
δℓ

δΩ
· Ĵ +

δℓ

δΛ
· K̂ ,

(
Ω× ξ + Λ× η

)
· Ĵ +

(
Ω× η − Λ× ξ

)
· K̂
〉
dt

=

∫ b

a

(
− d

dt

δℓ

δΩ
+
δℓ

δΩ
× Ω− δℓ

δΛ
× Λ

)
· ξ

+
(
− d

dt

δℓ

δΛ
+
δℓ

δΛ
× Ω+

δℓ

δΩ
× Λ

)
· η dt .

Hence, δS = 0 yields

d

dt

δℓ

δΩ
=

δℓ

δΩ
× Ω− δℓ

δΛ
× Λ

and
d

dt

δℓ

δΛ
=

δℓ

δΛ
× Ω+

δℓ

δΩ
× Λ . (C.1.30)
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These are the Ĵ , K̂ basis components of the Euler–
Poincaré equation on so(4)∗,

d

dt

δℓ

δΨ
= ad∗Ψ

δℓ

δΨ
,

written with Ψ = Ω · Ĵ + Λ · K̂ in this basis.

Hamiltonian form on so(4)∗

Legendre-transforming yields the pairs

Π =
δℓ

δΩ
, Ω =

δh

δΠ
, and Ξ =

δℓ

δΛ
, Λ =

δh

δΞ
.

Hence, these equations may be expressed in Hamilto-
nian form as

d

dt

[
Π

Ξ

]
=

[
Π× Ξ×
Ξ× Π×

][
δh/δΠ

δh/δΞ

]
. (C.1.31)

The corresponding Lie–Poisson bracket is given by

{f, h} = −Π ·
(
δf

δΠ
× δh

δΠ
+
δf

δΞ
× δh

δΞ

)

−Ξ ·
(
δf

δΠ
× δh

δΞ
− δh

δΠ
× δf

δΞ

)
.

This Lie–Poisson bracket has an extra term proportional
to Π, relative to the se(3)∗ bracket (7.1.10) for the heavy
top. Its Hamiltonian matrix has two null eigenvectors
for the variational derivatives of C1 = |Π|2 + |Ξ|2 and
C2 = Π · Ξ. The functions C1, C2 are the Casimirs of
the so(4) Lie–Poisson bracket. That is, {C1, H} = 0 =
{C2, H} for every Hamiltonian H(Π, Ξ).

The Hamiltonian matrix in Equation (C.1.31) is similar
to that for the Lie–Poisson formulation of heavy-top dy-
namics, except for the one extra term {Ξ, Ξ} 6= 0. N
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C.2 C3 oscillators

Scenario C.2.1 For a ∈ C3 one may write the 3 × 3 Hermitian matrix
Q = a ⊗ a∗ as the sum Q = S + iA of a 3 × 3 real symmetric matrix S
plus i times a 3× 3 real antisymmetric matrix A:

Q =




M1 N3 − iL3 N2 + iL2

N3 + iL3 M2 N1 − iL1

N2 − iL2 N1 + iL1 M3




=



M1 N3 N2

N3 M2 N1

N2 N1 M3


+ i




0 −L3 L2

L3 0 −L1

−L2 L1 0


 .

(i) Compute the Poisson brackets of the L’s, M ’s and N ’s among them-
selves, given that {aj , a∗k} = −2iδjk for j, k = 1, 2, 3.

(ii) Transform into a rotating frame in which the real symmetric part of
Q is diagonal. Write the Hamiltonian equations for the L’s,M ’s and
N ’s in that rotating frame for a rotationally invariant Hamiltonian.

Answer. (Oscillator variables in three dimensions) The
nine elements of Q are the S1-invariants

Qjk = aja
∗
k = Sjk + iAjk , j, k = 1, 2, 3.

The Poisson brackets among these variables are evalu-
ated from the canonical relation,

{aj , a∗k} = −2i δjk ,

by using the Leibniz property (product rule) for Poisson
brackets to find

{Qjk , Qlm} = 2i (δklQjm − δjmQkl) , j, k, l,m = 1, 2, 3 .



September 24, 2011 11:41am Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

344 C : ENHANCED COURSEWORK

Remark C.2.1 The quadratic S1-invariant quantities in
C3 Poisson commute among themselves. This property
of closure is to be expected for a simple reason. The
Poisson bracket between two homogeneous polynomi-
als of weights w1 and w2 produces a homogeneous poly-
nomial of weightw = w1+w2−2 and 2+2−2 = 2; so the
quadratic homogeneous polynomials Poisson-commute
among themselves.

The result is also a simple example of Poisson reduc-
tion by symmetry, obtained by transforming to quanti-
ties that are invariant under the action of a Lie group.
The action in this case is the (diagonal) S1 phase shift
aj → aje

iφ for j = 1, 2, 3. ✷

(i) One defines La := − 1
2 ǫajkAjk = (p×q)a and finds

the Poisson bracket relations,

{La , Lb} = Aab −Aba = ǫabcLc ,

{La , Qjk} =
1

2

[
ǫajcQck − ǫakcQjc

]
.

Thus, perhaps not unexpectedly, the Poisson
bracket for quadratic S1-invariant quantities in C3

contains the angular momentum Poisson bracket
among the variables La with a = 1, 2, 3. This could
be expected, because the 3×3 form ofQ contains the
2 × 2 form, which we know admits the Hopf fibra-
tion into quantities which satisfy Poisson bracket
relations dual to the Lie algebra so(3) ≃ su(2).
Moreover, the imaginary part ImQ = L · Ĵ = LaĴa,
where Ĵa with a = 1, 2, 3 is a basis set for so(3)
as represented by the 3 × 3 skew-symmetric real
matrices.

Another interesting set of Poisson bracket relations
among the M ’s, N ’s and L’s may be found. These
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relations are

{Na − iLa , Nb − iLb} = 2i ǫabc(Nc + iLc) ,

{Ma , Mb} = 0 ,

{Ma , Nb − iLb} = 2i sgn(b− a)(−1)a+b

(Nb − iLb) ,

where sgn(b−a) is the sign of the difference (b−a),
which vanishes when b = a.

Additional Poisson bracket relations may also be
read off from the Poisson commutators of the real
and imaginary components of Q = S + iA among
themselves as

{Sjk , Slm}= δjlAmk + δklAmj − δjmAkl − δkmAjl ,

{Sjk , Alm}= δjlSmk + δklSmj − δjmSkl − δkmSjl ,
{Ajk , Alm}= δjlAmk − δklAmj + δjmAkl − δkmAjl .

(C.2.1)

These relations produce the following five tables of
Poisson brackets in addition to {Ma , Mb} = 0:

{ · , · } L1 L2 L3

L1

L2

L3

0 L3 −L2

−L3 0 L1

L2 −L1 0

{ · , · } N1 N2 N3

N1

N2

N3

0 −L3 L2

L3 0 −L1

−L2 L1 0

{ · , · } L1 L2 L3

M1

M2

M3

0 2N2 − 2N3

− 2N1 0 2N3

2N1 − 2N2 0
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{ · , · } N1 N2 N3

M1

M2

M3

0 − 2L2 2L3

2L1 0 −2L3

− 2L1 2L2 0

{ · , · } L1 L2 L3

N1

N2

N3

M2 −M3 −N3 N2

N3 M3 −M1 −N1

−N2 N1 M1 −M2

As expected, the system is closed and it has the an-
gular momentum Poisson bracket table as a closed
subset. Next, we will come to understand that this
is because the Lie algebra su(2) is a subalgebra of
su(3).

(ii) The rotation group SO(3) is a subgroup of SU(3).
An element Q ∈ su(3)∗ transforms under SO(3) by
the coAdjoint action

Ad∗RQ = R−1QR = R−1SR+ iR−1AR .

Choose R ∈ SO(3) so that R−1SR = D = diag
(d1, d2, d3) is diagonal. (That is, rotate into prin-
cipal axis coordinates for S.) The eigenvalues are
unique up to their order, which one may fix as, say,
d1 ≥ d2 ≥ d3. While it diagonalises the symmet-
ric part of Q, the rotation R takes the antisymmet-
ric part from the spatial frame to the body frame,
where S is diagonal. At the same time the spa-
tial angular momentum matrix A is transformed to
B = R−1AR, which is the body angular momen-
tum. Thus,

Ad∗RQ = R−1SR+ iR−1AR =: D + iB .

Define the body angular velocity Ω = R−1Ṙ ∈
so(3), which is left-invariant. The Hamiltonian
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dynamical system obeys

Q̇ = {Q, H(Q)} .

For B = R−1AR, this implies

Ḃ + [Ω, B] = R−1ȦR = R−1{A, H(Q)}R .

However, H(Q) being rotationally symmetric
means the spatial angular momentum A will be
time-independent Ȧ = {A, H(Q)} = 0. Hence,

Ḃ + [Ω, B] = 0 .

Thus, the equation for the body angular momen-
tum B is formally identical to Euler’s equations for
rigid-body motion. Physically, this represents con-
servation of spatial angular momentum, because of
the rotational symmetry of the Hamiltonian.
Likewise, for D = R−1SR, one finds

Ḋ + [Ω, D] = R−1ṠR = R−1{S, H(Q)}R 6= 0 .

The body angular momentum B satisfies Euler’s
rigid-body equations, but this body is not rigid!
While the rotational degrees of freedom satisfy spa-
tial angular momentum conservation, the shape
of the body depends on the value of the Pois-
son bracket R−1{S, H(Q)}R which is likely to be
highly nontrivial! For example, the Hamiltonian
H(Q) may be chosen to be a function of the follow-
ing three rotationally invariant quantities:

tr(ATA) = tr(BTB) ,

tr(ATSA) = tr(BTDB) ,

tr(ATS2A) = tr(BTD2B) .

Dependence of the Hamiltonian on these quantities
will bring the complications of the Poisson bracket
relations in (C.2.1) into the dynamics of the triaxial
ellipsoidal shape represented by D. N



September 24, 2011 11:41am Holm Vol 2 WSPC/Book Trim Size for 9in by 6in

348 C : ENHANCED COURSEWORK

Remark C.2.2 The quantity

Q̃ = a⊗ a∗ − 1

3
Id|a|2 : C3 7→ su(3)∗

corresponds for the action of SU(3) on C3 to the momentum map
J : C2 7→ su(2)∗ in Example 11.3.1 for the action of SU(2) on C2. ✷

C.3 Momentum maps for GL(n,R)

Scenario C.3.1 (GL(n,R) invariance) Begin with the Lagrangian

L =
1

2
tr
(
ṠS−1ṠS−1

)
+

1

2
q̇TS−1q̇ ,

where S = ST is an n × n symmetric matrix and q ∈ Rn is an n-
component column vector.

(i) Legendre-transform to construct the corresponding Hamiltonian
and canonical equations.

(ii) Show that the system is invariant under the group action

q→ Aq and S → ASAT ,

for any constant invertible n× n matrix, A.

(iii) Compute the infinitesimal generator for this group action and con-
struct its corresponding momentum map. Is this momentum map
equivariant?

(iv) Verify directly that this momentum map is a conserved n×nmatrix
quantity by using the equations of motion.

(v) Is this system completely integrable for any value of n > 2?
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Answer. (GL(n,R) invariance)

(i) Legendre-transform

P =
∂L

∂Ṡ
= S−1ṠS−1 and p =

∂L

∂q̇
= S−1q̇ .

Thus, P = P T is also a symmetric matrix. The
Hamiltonian H(Q,P ) and its canonical equations
are

H(q,p, S, P ) =
1

2
tr
(
PS · PS

)
+

1

2
p · Sp ,

Ṡ =
∂H

∂P
= SPS , Ṗ = − ∂H

∂S
= −

(
PSP+

1

2
p⊗p

)
,

q̇ =
∂H

∂p
= Sp , ṗ =

∂H

∂q
= 0 .

(ii) Under the group action q → Gq and S →
GSGT for any constant invertible n × n matrix,
G, one finds

ṠS−1 → GṠS−1G−1 and q̇ · S−1q̇→ q̇ · S−1q̇.

Hence, L→ L. Likewise, P → G−TPG−1 so PS →
G−TPSGT and p → G−Tp so that Sp → GSp.
Hence, H → H , as well; so both L and H for the
system are invariant.

(iii) The infinitesimal actions forG(ǫ) = Id+ǫA+O(ǫ2),
where A ∈ gl(n) are

XAq =
d

dǫ

∣∣∣
ǫ=0

G(ǫ)q = Aq and

XAS =
d

dǫ

∣∣∣
ǫ=0

(
G(ǫ)SG(ǫ)T

)
= AS + SAT .

The defining relation for the corresponding mo-
mentum map yields

〈J,A〉 = 〈(Q,P ), XA〉
= tr(P TXAS) + p ·XAq

= tr
(
P T (AS + SAT )

)
+ p ·Aq .
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Hence,

〈J,A〉 := tr
(
JAT

)
= tr

((
S(P + P T ) + q⊗ p

)
A
)
,

which implies

J = (P T + P )S + p⊗ q = 2PS + p⊗ q .

This momentum map is a cotangent lift, so it is
equivariant.

(iv) Conservation of the momentum map is verified di-
rectly by

J̇ = (2ṖS + 2PṠ + p⊗ q̇)

= − 2PSPS − (p⊗ p)S + 2PSPS + p⊗ Sp = 0 .

(v) Integrability would be a good question for further
study in this problem. N

Scenario C.3.2 (Ellipsoidal motions onGL(3,R)) Choose the Lagran-
gian in three dimensions,

L =
1

2
tr
(
Q̇T Q̇

)
− V

(
tr(QTQ), det(Q)

)
,

whereQ(t) ∈ GL(3,R) is a 3×3 matrix function of time and the potential
energy V is an arbitrary function of tr(QTQ) and det(Q).

(i) Legendre-transform this Lagrangian. That is, find the momenta
Pij canonically conjugate to Qij . Then construct the Hamiltonian
H(Q,P ) and write Hamilton’s canonical equations of motion for
this problem.

(ii) Show that the Hamiltonian is invariant under left action Q → UQ
where U ∈ SO(3). Construct the cotangent lift of this action on P .
Hence, construct the momentum map of left action.

(iii) Show that the Hamiltonian is also invariant under right actionQ→
QU where U ∈ SO(3). Construct the cotangent lift of this action
on P . That is, construct the momentum map of right action.
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(iv) Find the Poisson bracket relations among the various Hamiltonians
for the two types of momentum maps. Explain your results in terms
of the Lie algebra homomorphism that preserves bracket relations for
equivariant momentum maps.

Answer. (Ellipsoidal motions on GL(3,R))

(i) Legendre-transform

Pij =
∂L

∂Q̇T
ij

= Q̇ij .

Thus, the Hamiltonian H(Q,P ) and its canonical
equations are

H(Q,P ) =
1

2
tr(P TP ) + V

(
tr(QTQ), det(Q)

)
,

Q̇ij =
∂H

∂P T
ij

= Pij ,

Ṗij = − ∂H

∂QT
ij

= −
(

∂V

∂tr(QTQ)
2Qij

+
∂V

∂det(Q)
(detQ)(Q−1)ij

)

where one uses the identity d(detQ) = (detQ)tr
(Q−1dQT ). The corresponding canonical Poisson
bracket is

{
F, H

}
=

∂F

∂Qij

∂H

∂Pij
− ∂F

∂Pij

∂H

∂Qij

= tr

(
∂F

∂Q

∂H

∂P T
− ∂F

∂P

∂H

∂QT

)
. (C.3.1)

(ii) Under Q → UQ, Q̇ → UQ̇, one finds P → UP . For
U ∈ SO(3), this means

detQ → detUQ = detU detQ = detQ ,

QTQ → QTUTUQ = QTQ , and

P TP → P TUTUP = P TP .
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Hence, H(Q,P ) is left-invariant underQ→ UQ for
U ∈ SO(3).
The infinitesimal generator of left action XL

A is
found from

XL
AQ =

d

dǫ

∣∣∣
ǫ=0

U(ǫ)Q

=
d

dǫ

∣∣∣
ǫ=0

(Id+ ǫA+O(ǫ2))Q = AQ ,

with A ∈ so(3) a 3 × 3 antisymmetric matrix; that
is, AT = −A.
Likewise, P → UP with U ∈ SO(3) has infinitesi-
mal action XL

AP = AP , A ∈ so(3). The action

XL
AQ = AQ =

∂〈JL, A〉
∂P T

and

XL
AP = AP = − ∂〈JL, A〉

∂QT

is generated canonically by the Hamiltonian

〈JL, A〉 = − tr(JT
LA) = tr(P TAQ)

= tr(QP TA) = −tr(PQTA) .

Hence, the momentum map for left action is

JL =
[
QP T

]
= −

[
PQT

]
,

where the square brackets mean taking the anti-
symmetric part.

(iii) Likewise, H(Q,P ) is right-invariant under (Q,P )
→ (QU,PU) for U ∈ SO(3). The corresponding
infinitesimal generator is found from

XR
AQ = QA =

∂〈JR, A〉
∂P T

and

XR
AP = PA = − ∂〈JR, A〉

∂QT
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which is generated by the Hamiltonian

〈JR, A〉 = − tr(JT
RA) = tr(JRA)

= tr(P TQA) = −tr(QTPA) .

Hence, the momentum map for right action is

JR =
[
P TQ

]
= −

[
QTP

]
.

Note that JR = Q−1JLQ = AdQ−1JL.

(iv) Define Hamiltonians for the momentum maps as
the functions

JA
L (Q,P ) := 〈JL, A〉 , JB

R (Q,P ) := 〈JR, B〉 , etc.

Then by using the canonical Poisson bracket (C.3.1)
on SO(3) and antisymmetry of the matrices A,B ∈
so(3) we find

{
JA
L , J

B
L

}
= J

[A,B]
L ,

{
JA
R , J

B
R

}
= − J [A,B]

R ,
{
JA
L , J

B
R

}
= 0 .

The Poisson brackets for the left (resp., right) ac-
tions give plus (resp., minus) representations of the
Lie algebra, which is so(3) in this case. This result is
expected, because cotangent-lift momentum maps
are equivariant, and thus are infinitesimally equiv-
ariant, which in turn implies the Lie algebra homo-
morphism (11.2.4) that preserves bracket relations.

Likewise, since left and right actions commute, the
two momentum maps commute and their Hamilto-
nians Poisson-commute.

N
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C.4 Motion on the symplectic Lie group Sp(2)

Let the set of 2 × 2 matrices Mi with i = 1, 2, 3 satisfy the defining
relation for the symplectic Lie group Sp(2),

MiJM
T
i = J with J =

(
0 −1
1 0

)
.

The corresponding elements of its Lie algebra mi = ṀiM
−1
i ∈ sp(2)

satisfy (Jmi)
T = Jmi for each i = 1, 2, 3. Thus, Xi = Jmi satisfying

XT
i = Xi is a set of three symmetric 2× 2 matrices. For definiteness,

we may choose a basis given by

X1 = Jm1 =

(
2 0

0 0

)
, X2 = Jm2 =

(
0 0

0 2

)
, X3 = Jm3 =

(
0 1

1 0

)
.

This basis corresponds to the momentum map R6 → sp(2)∗ of
quadratic phase-space functions X = (|q|2, |p|2,q · p)T . One sees
this by using the symmetric matrices X1,X2,X3 above to compute
the following three quadratic forms defined using z = (q,p)T :

1

2
zTX1z = |q|2 = X1,

1

2
zTX2z = |p|2 = X2,

1

2
zTX3z = q · p = X3 .

Exercise. (The Lie bracket) For X = Jm and Y = Jn ∈
sym(2) with m,n ∈ sp(2), prove

[X,Y]J := XJY − YJX = −J(mn− nm) = −J [m,n].

Use this equality to show that the J-bracket [X,Y]J satisfies
the Jacobi identity. ⋆

Answer. The first part is a straightforward calculation
using J2 = −Id2×2 with the definitions of X and Y.
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The second part follows from the Jacobi identity for the
symplectic Lie algebra and linearity in the definitions of
X,Y ∈ sym(2) in terms of m,n ∈ sp(2). N

Exercise. (A variational identity) If X = JṀM−1 for deri-
vative Ṁ = ∂M(s, σ)/∂s|σ=0 and Y = JM ′M−1 for varia-
tional derivative δM = M ′ = ∂M(s, σ)/∂σ|σ=0, show that
equality of cross derivatives in s and σ implies the relation

δX = X′ = Ẏ + [X,Y]J . ⋆

Answer. This relation follows from an important stan-
dard calculation in geometric mechanics, performed ear-
lier in deriving Equation (9.1.4). It begins by computing
the time derivative ofMM−1 = Id along the curveM(s)
to find (MM−1) ˙ = 0, so that

(M−1) ˙ = −M−1ṀM−1 .

Next, one defines m = ṀM−1 and n = M ′M−1. Then
the previous relation yields

m′ = Ṁ ′M−1 − ṀM−1M ′M−1

ṅ = Ṁ ′M−1 −M ′M−1ṀM−1

so that subtraction yields the relation

m′ − ṅ = nm−mn =: −[m,n].

Then, upon substituting the definitions of X and Y, one
finds

X′ = Jm′ = Jṅ− J [m,n]
= Ẏ + [X,Y]J = Ẏ + 2sym(XJY).

N
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Exercise. (Hamilton’s principle for sp(2)) Use the pre-
vious relation to compute the Euler–Poincaré equation for
evolution resulting from Hamilton’s principle,

0 = δS = δ

∫
ℓ(X(s)) ds =

∫
tr

(
∂ℓ

∂X
δX

)
ds.

⋆

Answer. Integrate by parts and rearrange as follows:

0 = δS =

∫
tr

(
∂ℓ

∂X
X′

)
ds

=

∫
tr

(
∂ℓ

∂X
(Ẏ − YJX+ XJY)

)
ds

=

∫
tr

((
− d

ds

∂ℓ

∂X
− JX ∂ℓ

∂X
+
∂ℓ

∂X
XJ
)
Y

)
ds

=

∫
tr

((
− d

ds

∂ℓ

∂X
− 2sym

(
JX

∂ℓ

∂X

))
Y

)
ds ,

upon setting the boundary term tr( ∂ℓ
∂XY )|s1s0 equal to zero.

This results in the Euler–Poincaré equation,

d

ds

∂ℓ

∂X
= −2sym

(
JX

∂ℓ

∂X

)
= 2sym

( ∂ℓ
∂X

XJ
)
. (C.4.1)

N

Exercise. (Geodesic motion on sp(2)∗) Specialise this evo-
lution equation to the case that ℓ(X) = 1

2tr(X
2), where tr

denotes the trace of a matrix. (This is geodesic motion on
the matrix Lie group Sp(2) with respect to the trace norm
of matrices.) ⋆
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Answer. When ℓ(X) = 1
2tr(X

2) we have ∂ℓ/∂X = X, so
the Euler–Poincaré Equation (C.4.1) becomes

Ẋ = −2sym
(
JX2

)
= X2J − JX2 = [X2, J ] . (C.4.2)

This is called a Bloch–Iserles equation [BlIs2006]. N

Exercise. (Lie–Poisson Hamiltonian formulation) Write
the Hamiltonian form of the Euler–Poincaré equation on
SP (2) and identify the associated Lie–Poisson bracket. ⋆

Answer. The Hamiltonian form of the Euler–Poincaré
Equation (C.4.1) is found from the Legendre transform
via the dual relations

µ =
∂ℓ

∂X
and X =

∂h

∂µ
with h(µ) = tr(µX)− ℓ(X) .

Thus,

µ̇ = −2sym
(
J
∂h

∂µ
µ
)
= −J ∂h

∂µ
µ+ µ

∂h

∂µ
J .

The Lie–Poisson bracket is obtained from

d

ds
f(µ) = tr

(
∂f

∂µ

dµ

ds

)

= − 2tr

(
µ sym

(∂f
∂µ
J
∂h

∂µ

))

= − tr

(
µ
[∂f
∂µ

,
∂h

∂µ

]
J

)

=:
{
f , h

}
J
.

The Jacobi identity for this Lie–Poisson bracket follows
from that of the J-bracket discussed earlier.

The geodesic Bloch–Iserles Equation (C.4.2) is recovered
when the Hamiltonian is chosen as h = 1

2tr(µ
2) and one

sets µ→ X. N
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Exercise. (A second Bloch–Iserles Poisson bracket) Show
that the geodesic Bloch–Iserles Equation (C.4.2) may also
be written in Hamiltonian form with Hamiltonian h =
1
3tr(µ

3). ⋆

Answer. Equation (C.4.2) may also be written as

µ̇ = −2sym
(
J
∂h

∂µ
µ
)
= −J ∂h

∂µ
+
∂h

∂µ
J

with Hamiltonian h = 1
3tr(µ

3). The corresponding Pois-
son bracket has constant coefficients,

d

ds
f(µ) = tr

(
∂f

∂µ

dµ

ds

)

= − 2tr

(
sym

(∂f
∂µ
J
∂h

∂µ

))

= − tr

([∂f
∂µ

,
∂h

∂µ

]
J

)

=:
{
f , h

}
J2
.

N

Exercise. (A parallel with the rigid body) The geodesic
Bloch–Iserles Equation (C.4.2) may be written in a form
reminiscent of the rigid body, as

d

dt
X = [X, Ω] with Ω = JX +XJ = −ΩT .

This suggests the Manakov form

d

dt
(X + λJ) = [X + λJ, JX +XJ + λ2J2].
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This seems dual to the Manakov form (2.4.28) for the rigid
body, because the symmetric and antisymmetric matrices
exchange roles.

Verify these equations and explain what the Manakov form
means in determining the conservation laws for this prob-
lem. ⋆

Exercise. (The Bloch–Iserles G-strand) Refer to Chapter
10 and compute the G-strand equations for G = Sp(2). ⋆

C.5 Two coupled rigid bodies

Formulation of the problem

In the centre of mass frame, the Lagrangian for the problem of two
coupled rigid bodies may be written as depending only on the angu-
lar velocities of the two bodies Ω1 = A−1

1 Ȧ1(t), Ω2 = A−1
2 Ȧ2(t) and

the relative angle A = A−1
1 A2 between the bodies [GrKrMa1988],

l(Ω1,Ω2, A) : so(3)× so(3)× SO(3)→ R,

which we write as

l(Ω1,Ω2, A) =
1

2

(
Ω1

Ω2

)T
·M(A)

(
Ω1

Ω2

)
,

where M(A) is a 6×6 block matrix containing both A and the two
inertia tensors of the bodies.

Upon identifying R3 with so(3) = TeSO(3) by the hat map, this
Lagrangian becomes

l = l(Ω̂1, Ω̂2, A)
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and we may identify SO(3) with its dual SO∗(3) through the matrix
pairing SO(3)× SO∗(3)→ R.

The Lagrangian is then a function

l : so(3)× so(3)× SO∗(3)→ R

which may be written as

l(Ω, A) =
1

2

〈
M(A) Ω, Ω

〉
=:

1

2

〈
Π,Ω

〉
,

where a nondegenerate matrix trace pairing is defined in compo-
nents by

〈
Π,Ω

〉
:= Tr



(

Ω̂1

Ω̂2

)T
·
(

Π̃1

Π̃2

)


for all Ω = (Ω̂1, Ω̂2) ∈ so(3)× so(3), Π = (Π̃1, Π̃2) ∈ so∗(3)× so∗(3).

The Euler–Poincaré theory has been developed to treat La-
grangians of the form

l : g× V ∗ → R

where V is a vector space on which the Lie algebra acts. This Ap-
pendix deals with the following.

Problem C.5.1 Formulate the Euler–Poincaré equations for the problem
of two coupled rigid bodies.

Problem Solution

The direct-product Lie algebra

g = so(3)× so(3)

is endowed with the product Lie bracket

adΩΞ =
[
Ω,Ξ

]
=

[(
Ω̂1

Ω̂2

)
,

(
Ξ̂1

Ξ̂2

)]
=

(
[[Ω̂1, Ξ̂1]]

[[Ω̂2, Ξ̂2]]

)
(C.5.1)
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where [[ · , · ]] indicates the standard so(3) matrix commutator.

Formulating the Euler–Poincaré theorem for this problem will
require a Lie algebra action of so(3)× so(3) on SO∗(3), which fortu-
nately is readily available. Indeed, from the definitions of the two
body angular velocities and relative angle A = A−1

1 A2, one finds

dA

dt
= −Ω̂1A+AΩ̂2 , (C.5.2)

which is the Lie algebra action we seek, abbreviated as

dA

dt
= −Ω(A). (C.5.3)

The Euler–Poincaré variational principle is then δS = 0, for

δ

∫ t1

t0

l(Ω, A) dt =

∫ t1

t0

〈
δl

δΩ
, δΩ

〉
+

〈
δl

δA
, δA

〉
dt

=

∫ t1

t0

〈
δl

δΩ
,
dΞ

dt
+ adΩΞ

〉
+

〈
δl

δA
, −Ξ(A)

〉
dt

=

∫ t1

t0

〈
− d

dt

δl

δΩ
+ ad∗Ω

δl

δΩ
+

δl

δA
⋄A, Ξ

〉
dt

with δΩ = Ξ̇ + adΩΞ and δA = −Ξ(A). As a result, the (left-
invariant) Euler–Poincaré equations may be written as

d

dt

δl

δΩ
= ad∗Ω

δl

δΩ
+

δl

δA
⋄A . (C.5.4)

This, of course, is the general form of the Euler–Poincaré equations
with advected quantities.

The Euler–Poincaré equations for the present problem of cou-
pled rigid bodies will take their final form, once we have computed
the diamond operation ( ⋄ ),

⋄ : SO(3)× SO(3)∗ → so(3)∗ . (C.5.5)
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The Lie algebra action (C.5.3) yields the following definition of dia-
mond for our case,

〈
δl

δA
⋄A, Ξ

〉
:= −

〈
A, Ξ

(
δl

δA

)〉

= −
〈
A,

(
Ξ̂1

δl

δA
− δl

δA
Ξ̂2

)〉

= −
〈
A
δl

δA
, Ξ̂1

〉
+

〈
δl

δA
A, Ξ̂2

〉
,

where the last step is justified by the cyclic property of the trace.
Consequently, the components of the diamond operation are given
by

δl

δA
⋄A =

(
−A δl

δA
,
δl

δA
A

)

and substituting them into the general form of the Euler–Poincaré
equations in (C.5.4) gives the equations of motion of our problem:

d

dt
Π̃1 = ad∗

Ω̂1

Π̃1 −A
δl

δA
,

d

dt
Π̃2 = ad∗

Ω̂2

Π̃2 +
δl

δA
A .

These along with the auxiliary Equation (C.5.2) comprise the Euler–
Poincaré form of the Lie–Poisson equations that are derived for the
motion of two coupled rigid bodies in [GrKrMa1988]. The corre-
sponding Lie–Poisson equations in [GrKrMa1988] may be derived
from the Euler–Poincaré equations here by applying a symmetry-
reduced Legendre transform.
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D
POINCARÉ’S 1901 PAPER

H. Poincaré (1901)
Sur une forme nouvelle des équations de la méchanique.1

C.R. Acad. Sci. 132, 369-371.

Having had the opportunity to work on the rotational motion of
hollow solid bodies filled with liquid, I have been led to cast the
equations of mechanics into a new form that could be interesting to
know. Assume there are n degrees of freedom and let {x1, ..., xn} be
the variables describing the state of the system. Let T and U be the
kinetic and potential energy of the system.

Consider any continuous, transitive group (that is, its action cov-
ers the entire manifold). Let Xi(f) be any infinitesimal transforma-
tion of this group such that2

Xi(f) =

n∑

µ=1

Xi(x
µ)
∂f

∂xµ
= X1

i

∂f

∂x1
+X2

i

∂f

∂x2
+ · · ·+Xn

i

∂f

∂xn
.

Since these transformations form a group, we must have

XiXk −XkXi =
r∑

s=1

cik
sXs .

1Translation of [Po1901] into English by D. D. Holm and J. Kirsten
2For the finite dimensional case considered here, the {Xi} may be regarded as a
set of r constant n × n matrices that act linearly on the set of states {x}. Then, for
example, Xi(x

µ) =
∑n

ν=1
[Xi]

µ
νx

ν . (Translator’s note)
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Since the group is transitive we can write

ẋµ(t) =
dxµ

dt
=

r∑

i=1

ηi(t)Xi(x
µ) = η1(t)Xµ

1 +η
2(t)Xµ

2 + · · ·+ηr(t)Xµ
r ,

in such a way that we can go from the state (x1, . . . , xn) of the sys-
tem to a state (x1 + ẋ1dt, . . . , xn + ẋndt) by using the infinitesimal
transformation of the group,

∑r
i=1 η

iXi(f).

T instead of being expressed as a function of the x and ẋ can be
written as a function of the η and x. If we increase the η and x by
virtual displacements δη and δx, respectively, there will be resulting
increases in T and U

δT =
∑ δT

δη
δη +

∑ δT

δx
δx and δU =

∑ δU

δx
δx .

Since the group is transitive I will be able to write

δxµ = ω1Xµ
1 + ω2Xµ

2 + · · ·+ ωrXµ
r ,

in such a way that we can go from the state xµ of the system to the
state xµ+δxµ by using the infinitesimal transformation of the group
δxµ =

∑r
i=1 ω

iXi(x
µ). I will then write3

δT−δU=
r∑

i=1

δT

δηi
δηi+

n∑

µ=1

(
δT

δxµ
− δU

δxµ

)
δxµ=

r∑

i=1

δT

δηi
δηi+

r∑

i=1

Ωiω
i.

Next, let the Hamilton integral be

J =

∫
(T − U) dt ,

so we will have

δJ =

∫ (∑ δT

δηi
δηi +

∑
Ωiω

i

)
dt ,

3Here Poincaré’s formula reveals that Ωi =
∑n

µ,ν=1

δL
δxµ [Xi]

µ
νx

ν with L = T − U ,
or equivalently Ω = ∂L

∂x
⋄ x in the notation of Chapter 6. (Translator’s note)
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and can easily find

δηi =
dωi

dt
+

r∑

s,k=1

csk
i ηkωs .

The principle of stationary action then gives

d

dt

δT

δηs
=
∑

csk
i δT

δηi
ηk +Ωs .

These equations encompass some particular cases:

1. The Lagrange equations, when the group is reduced to the
transformations, all commuting amongst each other, which
each shift one of the variables x by an infinitesimally small
constant.

2. Also, Euler’s equations for solid body rotations emerge, in
which the role of the ηi is played by the components p, q, r of
the rotations and the role of Ω by the coupled external forces.

These equations will be of special interest where the potential U is
zero and the kinetic energy T only depends on the η in which case
Ω vanishes.
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rotation, 96, 112

fibre bundle, 105
fibre derivative, 53
flows, 296
force

noninertial, 29
frame

body, 21
spatial, 22

free rigid rotation, 21

G-strand, 210, 359
Galilean group, 4, 12, 17, 164

adjoint actions, 164
Lie group actions, 164
Lie algebra, 17
Lie group actions, 12

Galilean relativity, 3
Galilean transformations

boosts, 4
definition, 3
invariance, 3
Lie group property, 4
matrix representation, 14, 165
subgroups, 8

geodesic equations, 38
group

action, 8
automorphism, 126
commutator, 125
definition, 4, 306
Euclidean E(3), 8
Galilean G(3), 4
Heisenberg H , 124
matrix, 306
orthogonal O(3), 8, 21
orthogonal O(n), 312
semidirect SL(2,R)sR

2, 157
special Euclidean SE(2), 153
special Euclidean SE(3), 8, 15,

142, 197, 218, 313
special linear SL(n,R), 312
special orthogonal SO(3), 8, 21
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special orthogonal SO(4), 338
special orthogonal SO(n), 312
special unitary SU(2), 101
special unitary SU(n), 313
symplectic Sp(l), 313

group action
homogeneous, 11
vector space, 11

group commutator, 125
group composition law

for SE(3), 9
group orbit, 315

Hamilton’s principle, 37
Hamilton–Pontryagin principle, 252

Euler–Poincaré, 198
heavy top, 259
nonholonomic, 273
rigid body, 50

Hamiltonian form, 62
continuum spin chain, 213
Lie–Poisson, 173, 206

hat map, 25, 132, 137, 323
isomorphism, 25

heavy top, 182
Casimirs, 171
Clebsch action principle, 187
Euler–Poincaré equation, 259
Hamilton–Pontryagin, 259
Kaluza–Klein, 188
Legendre transform, 184
Lie–Poisson bracket, 178, 186
variational principle, 183

Heisenberg group, 124
adjoint actions, 126
coadjoint actions, 127
coadjoint orbits, 130

Hermitian
Pauli matrices, 101, 229

Hopf fibration, 105, 228

immersed submanifold, 294
infinitesimal generator, 134
infinitesimal transformation, 40
injective immersion, 294
inner automorphism, 119

inverse Adjoint motion
identity, 121

isotropy subgroup, 307
iterated action

semidirect product, 167

Jacobi identity, 62, 133
Lie algebra, 311
matrix commutator, 311

Jacobi–Lie bracket, 320
Jellett’s integral

Chaplygin’s ball, 261
Euler’s disk, 275

Kelvin–Noether theorem
for SE(3), 176
for an arbitrary Lie group, 197

Kepler problem
Hamilton’s vector, 91
monopole, 93
quaternionic variables, 90
Runge–Lenz vector, 91

Kirchhoff equations
underwater vehicle, 176

Kustaanheimo–Stiefel map, 101

Lagrange–d’Alembert, 275, 279
Lagrangian

constrained reduced, 257, 278,
282, 283

reduced, 256, 278
Legendre transform, 60

se(3) → se(3)∗, 172
Clebsch variables, 206
constrained reduced, 283
heavy top, 184

Leibniz, 62
Lie algebra

Jacobi identity, 311
matrix, 310

Lie bracket
matrix commutator, 119
semidirect product, 187

Lie derivative, 323
fluid dynamics, 325

Lie group, 4, 306
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action, 314
as manifold, 294
matrix, 118, 306
semidirect product, 12

Lie group action, 314
adjoint, 317
coadjoint, 317
conjugacy classes, 317
cotangent lift, 318
infinitesimal generator, 322
inner automorphism, 317
invariant vector fields, 319
left action, 314
left and right translations, 316
on vector fields, 318
properties, 315
tangent lift, 317

Lie symmetry, 39
Lie symmetry reduction, 242
Lie–Poisson

Hamiltonian form, 206
Lie–Poisson bracket, 64, 184

Casimirs, 173
continuum spin chain, 214
distinguished functions, 173
heavy top, 178, 186
momentum maps, 185
on se(3)∗, 172
spin chain, 210

lower triangular matrices, 128

Manakov
commutator form, 54, 170, 359
heavy top, 190

manifold
coordinate charts, 288
definition, 288
smooth, 287
submersion, 289

matrix commutator
Jacobi identity, 311
properties, 311

matrix Lie algebra, 310
matrix Lie group, 118, 306

GL(n,R), 307
matrix representation

G(3) , 13, 14, 165
SE(3), 9
SE(3) , 10, 142
SL(2,R)sR

2, 157
for quaternions, 80
hat map, 15
Heisenberg group, 124

mechanics on Lie groups, 79
moment of inertia tensor, 27, 32

principal axis frame, 33
momentum map, 71, 236

GL(n,R) invariance, 348
SU(2) action on C

2 , 227
SU(3) action on C

3, 348
C

2 7→ u(2)∗, 236
R

6 → sp(2)∗, 354
1:1 resonance, 236
canonical symplectic form, 236
Clebsch variational principle,

208
cotangent lift, 208, 224, 227
equivariant, 230
examples, 231
Hopf fibration, 229
infinite dimensional, 240
Noether’s theorem, 225
Poincaré sphere, 228, 229
standard, 222

motion equation
coadjoint, 129, 163

Nambu bracket, 65
Nambu form

geometric interpretation, 68
three-wave equations, 68

narrow-hat notation, 23
Noether’s theorem, 39

angular momentum, 45
centre of mass, 46
energy and momentum, 42
Euler–Poincaré motion, 195
Galilean boosts, 46
Hamilton–Pontryagin, 199
nonholonomic, 282
rigid body, 49, 53
space and time translations, 42
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nonholonomic
Chaplygin’s ball, 248
Chaplygin’s circular disk, 265
Chaplygin’s concentric sphere,

265
Euler’s disk, 268
Euler–Poincaré theorem, 278
Hamilton–Pontryagin, 252
Lagrange–d’Alembert, 279
Noether’s theorem, 282
rolling constraint, 250
semidirect product, 276

notation
narrow hat, 23
wide hat, 23

orthogonal group, 21
orthogonal transformation, 4
oscillators

on C
2, 228

on C
3, 343

Poincaré sphere, 236

pairing
on SE(3), 145

Pauli matrices, 80, 101, 229
anticommutator relation, 81
commutator relation, 81
Hermitian, 229
quaternions, 80

Poincaré
1901 paper, 55, 65, 194, 363

Poincaré sphere, 104, 228
Hopf fibration, 105
momentum map, 229
oscillators, 236

Poisson bracket, 62
rigid body, 63

principal axis frame, 33
product rule, 62
prolongation, 41
pull-back, 318
push-forward, 318

quaternion, 78
action on a vector, 112

alignment dynamics, 88
basis, 79
conjugacy class, 95
conjugate, 83
conjugation, 93
dot product, 83
inner product, 83
inverse, 84
magnitude, 84
multiplication rule, 80
Pauli matrices, 80
pure vector, 85
tetrad, 79

reconstruction
formula, 50, 69, 152, 200

reduced Lagrangian, 256, 257, 278
reflection, 4
Riemann sphere, 289
rigid body, 21

Cayley–Klein parameters, 112
Clebsch approach, 69
coadjoint orbit of SO(3), 135
coupled, 359
eigenvalue problem, 56
Euler’s equations, 46
Hamiltonian form, 60
isospectral problem, 56
Lagrangian form, 46
Lie–Poisson bracket, 64
Manakov’s formulation, 54
matrix Euler equations, 51
Newtonian form, 30
Noether’s theorem, 53
Poincaré’s treatment, 365
quaternionic form, 112, 116
spatial and body frames, 138
symmetric equations, 70
variations, 328

Rodrigues formula, 96
rolling constraint, 250
rotating motion

free rigid rotation, 21
in complex space, 334
in two times, 328
kinetic energy, 31
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quaternions, 112
rotation, 4

Cayley–Klein parameters, 97
Euler parameters, 97
Euler–Rodrigues formula, 96,

113
in complex space, 334
in four dimensions, 338

Routh’s integral
Chaplygin ball, 263

semidirect product
Adjoint action, 146
adjoint action, 148
coAdjoint action, 146
coadjoint action, 148
definition, 12
iterated, 167
Lie bracket, 149

vector notation, 149
Lie group, 143

semidirect-product group
G(3), 14
SE(3), 12
definition, 12, 143

semidirect-product structure
nonholonomic, 276

sigma model, 217
simple mechanical system, 37
Skyrme model, 217
sliding, 258
space-time translations, 3
spatial frame, 22, 31
special orthogonal group, 21
spin glass, 215
stereographic projection, 289
strand

so(3)-valued spins, 210
structure constants, 24
subgroup, 8

invariant, 11
isotropy, 307
normal, 11

submanifold, 288
submersion, 289
symplectic Lie group

Sp(2), 354

tangent bundle, 295
tangent lift, 41, 300, 317
tangent space, 294
tangent vector, 295, 296
three-wave equations

Nambu form, 68
tilde map, 102

Hopf fibration, 106
translations

space-time, 3
transpose

of the Lie-derivative, 203
twist, 87

underwater vehicle
Kirchhoff equations, 176
variational principle, 176

uniform rectilinear motion, 3
upper triangular matrices, 124

variational derivative, 36, 47
left-invariant Lagrangian, 170

variational principle, 49
chiral model, 217
Clebsch, 199
Clebsch Euler–Poincaré, 202
constrained, 72, 279
continuum spin chain, 212
Euler–Poincaré, 194, 278
Hamilton–Pontryagin, 198, 252
heavy top, 183
implicit, 70, 200
Lagrange–d’Alembert, 279
Noether’s theorem, 39
rigid body, 47
sigma model, 217
underwater vehicle, 176

vector field, 297
differential basis, 300
fluid dynamics, 325

wide-hat notation, 23

zero curvature relation, 330
continuum spin chain, 212


