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In many real-world applications, collected data are contaminated by noise with heavy-tailed distribution and
might contain outliers of large magnitude. In this situation, it is necessary to apply methods which produce
reliable outcomes even if the input contains corrupted measurements. We describe a general method which
allows one to obtain estimators with tight concentration around the true parameter of interest taking values
in a Banach space. Suggested construction relies on the fact that the geometric median of a collection of
independent “weakly concentrated” estimators satisfies a much stronger deviation bound than each individ-
ual element in the collection. Our approach is illustrated through several examples, including sparse linear
regression and low-rank matrix recovery problems.
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1. Introduction

Given an i.i.d. sample X1, . . . ,Xn ∈ R from a distribution � with Var(X1) < ∞ and t > 0, is it
possible to construct an estimator μ̂ of the mean μ = EX1 which would satisfy

Pr

(
|μ̂ − μ| > C

√
Var(X1)

t

n

)
≤ e−t (1.1)

for some absolute constant C without any extra assumptions on �? What happens if the sample
contains a fixed number of outliers of arbitrary nature? Does the estimator still exist?

A (somewhat surprising) answer is yes, and several ways to construct μ̂ are known. The earliest
reference that we are aware of is the book by Nemirovski and Yudin [34], where related question
was investigated in the context of stochastic optimization. We learned about problem (1.1) and
its solution from the work of Oliveira and Lerasle [28] who used the ideas in spirit of [34] to
develop the theory of “robust empirical mean estimators”. Method described in [28] consists
of the following steps: divide the given sample into V ≈ t blocks, compute the sample mean
within each block and then take the median of these sample means. A relatively simple analysis
shows that the resulting estimator indeed satisfies (1.1). Similar idea was employed earlier in the
work of Alon, Matias and Szegedy [1] to construct randomized algorithms for approximating
the so-called “frequency moments” of a sequence. Recently, the aforementioned “median of the
means” construction appeared in [7] in the context of multi-armed bandit problem under weak
assumptions on the reward distribution. A different approach to the question (1.1) (based on PAC-
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Bayesian truncation) was given in [14]. A closely related independent recent work [18] applies
original ideas of Nemirovski and Yudin to general convex loss minimization.

The main goal of this work is to design a general technique that allows construction of es-
timators satisfying a suitable version of (1.1) for Banach space-valued μ. To achieve this goal,
we show that a collection of independent estimators of a Banach space-valued parameter can be
transformed into a new estimator which preserves the rate and admits much tighter concentration
bounds. The method we propose is based on the properties of a geometric median, which is one
of the possible extensions of a univariate median to higher dimensions.

Many popular estimators (e.g., Lasso [42] in the context of high-dimensional linear regression)
admit strong theoretical guarantees if the distribution of the noise satisfies restrictive assumptions
(such as sub-Gaussian tails). An important question that we attempt to answer is: can one design
algorithms which preserve nice properties of existing techniques and at the same time:

(1) admit strong performance guarantees under weak assumptions on the noise;
(2) are not affected by the presence of a fixed number of outliers of arbitrary nature and size;
(3) can be implemented in parallel for faster computation with large data sets.

Our results imply that in many important applications the answer is positive. In Section 4, we
illustrate this assertion with several classical examples, including principal component analysis,
sparse linear regression and low-rank matrix recovery. In each case, we present non-asymptotic
probabilistic bounds describing performance of proposed methods.

For an overview of classical and modern results in robust statistics, see [19,20], and refer-
ences therein. Existing literature contains several approaches to estimation in the presence of
heavy-tailed noise based on the aforementioned estimators satisfying (1.1). However, most of the
previous work concentrated on one-dimensional versions of (1.1) and used it as a tool to solve
intrinsically high-dimensional problems. For example, in [28] authors develop robust estimator
selection procedures based on the medians of empirical risks with respect to disjoint subsets of
the sample. While this approach admits strong theoretical guarantees, it requires several techni-
cal assumptions that are not always easy to check it practice. Another related work [2] discusses
robust estimation in the context of ridge regression. Proposed method is based on a “min–max”
estimator which has good theoretical properties but can only be evaluated approximately based
on heuristic methods. It is also not immediately clear if this technique can be extended to ro-
bust estimation in other frameworks. An exception is the approach described in [34] and further
explored in [18], where authors use a version of the multidimensional median for estimator se-
lection. However, this method has several weaknesses in statistical applications when compared
to our technique; see Section 3 for more details and discussion. The main results of our work
require minimal assumptions, apply to a wide range of models, and allow to use many existing
algorithms as a subroutine to produce robust estimators which can be evaluated exactly via a
simple iterative scheme.

2. Geometric median

Let X be a Banach space with norm ‖ · ‖, and let μ be a probability measure on (X,‖ · ‖). Define
the geometric median (also called the spatial median, Fermat–Weber point [45] or Haldane’s
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median [17]) of μ as

x∗ = arg min
y∈X

∫
X

(‖y − x‖ − ‖x‖)μ(dx).

For other notions of the multidimensional median and a nice survey of the topic, see [41]. In this
paper, we will only be interested in a special case when μ is the empirical measure corresponding
to a finite collection of points x1, . . . , xk ∈ X, so that

x∗ = med(x1, . . . , xk) := arg min
y∈X

k∑
j=1

‖y − xj‖. (2.1)

Geometric median exists under rather general conditions. For example, it is enough to assume
that X = Y∗, where Y is a separable Banach space and Y∗ is its dual – the space of all contin-
uous linear functionals on Y. This includes the case when X is separable and reflexive, that is,
X = (X∗)∗. Moreover, if the Banach space X is strictly convex (i.e., ‖x1 + x2‖ < ‖x1‖ + ‖x2‖
whenever x1 and x2 are not proportional), then x∗ is unique unless all the points x1, . . . , xn are
on the same line. For proofs of these results, see [22]. Throughout the paper, it will be assumed
that X is separable and reflexive.

In applications, we are often interested in the situation when X is a Hilbert space (in particular,
it is reflexive and strictly convex) and ‖ · ‖ is induced by the inner product 〈·, ·〉. In such cases,
we will denote the ambient Hilbert space by H.

The cornerstone of our subsequent presentation is the following lemma, which states that if a
given point z is “far” from the geometric median x∗ = med(x1, . . . , xk), then it is also “far” from
a constant fraction of the points x1, . . . , xk . We will denote F(y) :=∑k

j=1 ‖y − xj‖.

Lemma 2.1.

(a) Let x1, . . . , xk ∈ H and let x∗ be their geometric median. Fix α ∈ (0, 1
2 ) and assume that

z ∈H is such that ‖x∗ − z‖ > Cαr , where

Cα = (1 − α)

√
1

1 − 2α
(2.2)

and r > 0. Then there exists a subset J ⊆ {1, . . . , k} of cardinality |J | > αk such that for
all j ∈ J , ‖xj − z‖ > r .

(b) For general Banach spaces, the claim holds with a constant Cα = 2(1−α)
1−2α

.

Proof. (a) Assume that the implication is not true. Without loss of generality, it means that
‖xi − z‖ ≤ r , i = 1, . . . , �(1 − α)k� + 1.

Consider the directional derivative

DF(x∗; z − x∗) := lim
t↘0

F(x∗ + t (z − x∗)) − F(x∗)
t
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Figure 1. Geometric illustration.

at the point x∗ in direction z − x∗. Since x∗ minimizes F over H, DF(x∗; z − x∗) ≥ 0. On the
other hand, it is easy to see that

DF(x∗; z − x∗)
‖z − x∗‖ = −

∑
j :xj �=x∗

〈xj − x∗, z − x∗〉
‖xj − x∗‖‖z − x∗‖ +

k∑
j=1

I {xj = x∗}. (2.3)

For j = 1, . . . , �(1 − α)k� + 1 and γj = arccos(
〈xj −x∗,z−x∗〉

‖xj −x∗‖‖z−x∗‖ ), we clearly have (see Figure 1)

〈xj − x∗, z − x∗〉
‖xj − x∗‖‖z − x∗‖ = cos(γj ) >

√
1 − 1

C2
α

,

while
〈xj −x∗,z−x∗〉

‖xj −x∗‖‖z−x∗‖ ≥ −1 for j > �(1 − α)k� + 1. This yields

DF(x∗; z − x∗)
‖z − x∗‖ < −(1 − α)k

√
1 − 1

C2
α

+ αk ≤ 0

whenever Cα ≥ (1 − α)

√
1

1−2α
, which leads to a contradiction.

(b) See Appendix. �

Remark 2.1.

(1) Notice that in a Hilbert space, the geometric median x∗ = med(x1, . . . , xk) always belongs
to the convex hull of {x1, . . . , xk}. Indeed, if x∗ coincides with one of xj ’s, there is nothing
to prove. Otherwise, since for any v ∈H we have DF(x∗;v) ≥ 0 and DF(x∗;−v) ≥ 0, it
follows from (2.3) that

∑k
j=1

xj −x∗
‖xj −x∗‖ = 0, which yields the result.

(2) In general Banach spaces, it might be convenient to consider

x̂∗ := arg min
y∈co(x1,...,xk)

k∑
j=1

‖y − xj‖,

where co(x1, . . . , xk) is the convex hull of {x1, . . . , xk}. The claim of Lemma 2.1 remains
valid for x̂∗ whenever z ∈ co(x1, . . . , xk).
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3. “Boosting the confidence” by taking the geometric median of
independent estimators

A useful property of the geometric median is that it transforms a collection of independent esti-
mators that are “weakly” concentrated around the true parameter of interest into a single estima-
tor which admits significantly tighter deviation bounds. For 0 < p < α < 1

2 , define

ψ(α;p) = (1 − α) log
1 − α

1 − p
+ α log

α

p
.

Theorem 3.1. Assume that μ ∈ X is a parameter of interest, and let μ̂1, . . . , μ̂k ∈ X be a col-
lection of independent estimators of μ. Fix α ∈ (0, 1

2 ). Let 0 < p < α and ε > 0 be such that for
all j , 1 ≤ j ≤ k,

Pr
(‖μ̂j − μ‖ > ε

)≤ p. (3.1)

Set

μ̂ := med(μ̂1, . . . , μ̂k). (3.2)

Then

Pr
(‖μ̂ − μ‖ > Cαε

)≤ e−kψ(α;p), (3.3)

where Cα is a constant defined in Lemma 2.1 above.

Proof. Assume that event E := {‖μ̂ − μ‖ > Cαε} occurs. Lemma 2.1 implies that there exists a
subset J ⊆ {1, . . . , k} of cardinality |J | ≥ αk such that ‖μj − μ‖ > ε for all j ∈ J , hence

Pr(E) ≤ Pr

(
k∑

j=1

I
{‖μ̂j − μ‖ > ε

}
> αk

)
.

If W has Binomial distribution W ∼ B(k,p), then

Pr

(
k∑

j=1

I
{‖μ̂j − μ‖ > ε

}
> αk

)
≤ Pr(W > αk)

(see Lemma 23 in [28] for a rigorous proof of this fact). Chernoff bound (e.g., Proposition A.6.1
in [43]) implies that

Pr(W > αk) ≤ exp
(−kψ(α;p)

)
. �

Remark 3.1.

(a) If (3.1) is replaced by a weaker condition assuming that

Pr
(‖μ̂j − μ‖ > ε

)≤ p < α
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is satisfied only for μ̂j , j ∈ J ⊂ {1, . . . , k}, where |J | = (1 − τ)k for 0 ≤ τ <
α−p
1−p

, then
the previous argument implies

Pr
(‖μ̂ − μ‖ > Cαε

)≤ exp

(
−k(1 − τ)ψ

(
α − τ

1 − τ
,p

))
.

In particular, this version is useful in addressing the situation when the sample contains a
subset of cardinality at most τk consisting of “outliers” of arbitrary nature.

(b) It is also clear that results of Theorem 3.1 can be used to positively answer question (3)
posed in the Introduction. Indeed, if several autonomous computational resources (e.g.,
processors) are available, one can evaluate estimators μ̂j , j = 1, . . . , k in parallel and
combine them via the geometric median as a final step. In many situations, the improve-
ment in computational cost will be significant.

Note that it is often easy to obtain an estimator satisfying (3.1) with the correct rate ε under
minimal assumptions on the underlying distribution. In particular, if μ is the mean and μ̂k is the
sample mean, then (3.1) can be deduced from Chebyshev’s inequality, see Section 4.1 below for
more details.

Next, we describe the method proposed in [34] which is based on a different notion of the
median. Let μ̂1, . . . , μ̂k be a collection of independent estimators of μ and assume that ε > 0 is
chosen to satisfy

Pr
(‖μ̂j − μ‖ > ε

)≤ p < 1
2 , 1 ≤ j ≤ k. (3.4)

Define μ̃ := μ̂j∗ , where

j∗ = j∗(ε) := min

{
j ∈ {1, . . . , k} : ∃I ⊂ {1, . . . , k}

(3.5)

such that |I | > k

2
and ∀i ∈ I,‖μ̂i − μ̂j‖ ≤ 2ε

}
,

and j∗ = 1 if none of μ̂j ’s satisfy the condition in braces. It is not hard to show that

Pr
(‖μ̃ − μ‖ > 3ε

)≤ e−kψ(1/2;p), (3.6)

which is similar to (3.3).
However, it is important to note that μ̃ defined by (3.5) explicitly depends on ε which is

often unknown in practice, while the “geometric median” estimator μ̂ (3.2) does not require any
additional information.

Remark 3.2. It is possible to modify μ̃ by choosing ε∗ to be the smallest ε > 0 for which (3.5)
defines a non-empty set, and setting j∗ := j∗(ε∗). The resulting construction does not assume that
ε satisfying condition (3.4) is known a priori, while (3.6) remains valid. See [18] for discussion
and applications of this method.
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It is important to mention the fact that (3.6) and the inequality (3.3) of Theorem 3.1 have
different constants in front of ε: it is equal to Cα in (3.3) and to 3 in (3.6). Note that in the Hilbert

space case, Cα = (1−α)

√
1

1−2α
→ 1 as α → 0, while for general Banach spaces Cα = 2(1−α)

1−2α
→

2 as α → 0. In particular, Cα < 3 for all sufficiently small α (e.g., for α < −8 + 6
√

2 ≈ 0.485 in
Hilbert space framework). This difference becomes substantial when ε is of the form

ε = approximation error + random error,

where the first term in the sum is a constant and the second term decreases with the growth of
the sample size. This is a typical situation when the model is misspecified, see Section 4.4 below
for a concrete example related to matrix regression. Our method allows to keep the constant in
front of the approximation error term arbitrary close to 1 (and often leads to noticeably better
constants in general).

4. Examples

In this section, we discuss applications of Theorem 3.1 to several classical problems, namely,
estimation of the mean, principal component analysis, sparse linear regression and low-rank
matrix recovery.

Our priority was simplicity and clarity of exposition of the main ideas which could affect
optimality of some constants and generality of obtained results.

4.1. Estimation of the mean in a Hilbert space

Assume that H is a separable Hilbert space with norm ‖ · ‖. Let X,X1, . . . ,Xn ∈ H, n ≥ 2,
be an i.i.d. sample from a distribution � such that EX = μ, E[(X − μ) ⊗ (X − μ)] = �

is the covariance operator, and E‖X − μ‖2 = tr(�) < ∞. We will apply result of The-
orem 3.1 to construct a “robust estimator” of μ. Let us point out that a simple alterna-
tive estimator of μ can be obtained by applying the univariate “median of the means” con-
struction (explained in Section 1) coordinatewise. When dim(H) < ∞, this method leads
to dimension-dependent bounds that can be even better than the result for the geometric
median-based approach (when dim(H) is small). However, when dim(H) is large or infinite,
dimension-dependent estimates become uninformative; see Remark 4.1 below for more de-
tails.

Set α∗ := 7
18 and p∗ := 0.1 (these numerical values allow to optimize the constants in Corol-

lary 4.1 below). Let 0 < δ < 1 be the confidence parameter, and set

k =:
⌊

log(1/δ)

ψ(α∗;p∗)

⌋
+ 1 ≤

⌊
3.5 log

(
1

δ

)⌋
+ 1
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(we will assume that δ is such that k ≤ n
2 ). Divide the sample X1, . . . ,Xn into k disjoint groups

G1, . . . ,Gk of size �n
k
� each, and define

μ̂j := 1

|Gj |
∑
i∈Gj

Xi, j = 1, . . . , k,

(4.1)
μ̂ := med(μ̂1, . . . , μ̂k).

Corollary 4.1. Under the aforementioned assumptions,

Pr

(
‖μ̂ − μ‖ ≥ 11

√
tr(�) log(1.4/δ)

n

)
≤ δ. (4.2)

Proof. We will apply Theorem 3.1 to the independent estimators μ̂1, . . . , μ̂k .
To this end, we need to find ε satisfying (3.1). Since for all 1 ≤ j ≤ k ≤ n

2

E‖μ̂j − μ‖2 ≤ E‖X − μ‖2

|Gj | ≤ 2k

n
tr(�),

Chebyshev’s inequality gives

Pr
(‖μ̂j − μ‖ ≥ ε

)≤ 2k

nε2
tr(�),

which is further bounded by p∗ whenever ε2 ≥ 2k
p∗n tr(�). The claim now follows from Theo-

rem 3.1 and the bounds Cα∗
√

2
p∗ψ(α∗;p∗) ≤ 11 and log(1/δ) + ψ(α∗;p∗) ≤ log( 1.4

δ
). �

Remark 4.1.

(a) It is easy to see that the proof of Corollary 4.1 actually yields a better bound

Pr

(
‖μ̂ − μ‖ ≥ Cα∗√

p∗ψ(α∗;p∗)

√
tr(�)

log(1.4/δ)

n − 3.5 log(1.4/δ)

)
≤ δ, (4.3)

with Cα∗√
p∗ψ(α∗;p∗)

≤ 7.6.

(b) For the estimator μ̃ defined in (3.5), it follows from (3.6) (with p = 0.12) that

Pr

(
‖μ̃ − μ‖ ≥ 13.2

√
tr(�)

log(1.6/δ)

n − 2.4 log(1.6/δ)

)
≤ δ,

which yields a noticeably larger constant (13.2 versus 7.6).
(c) When H is a D-dimensional Euclidean space, it is interesting to compare μ̂ with an-

other natural estimator μ̂∗ obtained by taking the median coordinate-wise, that is, if
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μ̂j = (μ̂
(1)
j , . . . , μ̂

(D)
j ), j = 1, . . . , k, then

μ̂∗ := (
med

(
μ̂

(1)
1 , . . . , μ̂

(1)
k

)
, . . . ,med

(
μ̂

(D)
1 , . . . , μ̂

(D)
k

))
.

It is easy to see that for the univariate median, inequality (3.3) holds with α = 1/2 and
Cα = 1, hence the union bound over i = 1, . . . ,D implies that

Pr

(
‖μ̂∗ − μ‖ ≥ 4.4

√
tr(�)

log(1.6D/δ)

n − 2.4 log(1.6D/δ)

)
≤ δ (4.4)

(here, p was set to be 0.12). This bound should be compared to (4.3) – the latter becomes
better only when D is sufficiently large (e.g., D ≥ 165 for δ = 0.1 and D ≥ 15 806 for
δ = 0.01).1 Note that the constant in (4.4) can be further improved in a situation when
tight upper bounds on the true variances or kurtoses of coordinates of X are known by
using a univariate estimator of [14] to construct μ̂∗.

Our estimation technique naturally extends to the problem of constructing the confidence sets
for the mean. Indeed, when faced with the task of obtaining the non-asymptotic confidence inter-
val, one usually fixes the desired coverage probability in advance, which is exactly how we build
our estimator. To obtain a parameter-free confidence ball from (4.2), one has to estimate tr(�).
To this end, we will apply Theorem 3.1 to a collection of independent statistics T̂1, . . . , T̂k , where

T̂j = 1

|Gj |
∑
i∈Gj

‖Xi − μ̂j‖2, j = 1, . . . , k,

and μ̂j are the sample means defined in (4.1). Let T̂ := med(T̂1, . . . , T̂k) (if k is even, the median
is not unique, so we pick an arbitrary representative).

Proposition 4.1. Assume that

15.2

√
E‖X − μ‖4 − (tr(�))2

(tr(�))2
≤
(

1

2
− 178

log(1.4/δ)

n

)√
n

log(1.4/δ)
. (4.5)

Then

Pr
(
tr(�) ≤ 2T̂

)≥ 1 − δ. (4.6)

Proof. Note that

T̂j = 1

|Gj |
∑
i∈Gj

‖Xi − μ‖2 − ‖μ̂j − μ‖2.

1We want to thank the anonymous reviewer for pointing this out.
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Chebyshev’s inequality gives (assuming that k ≤ n/2)

Pr

(
‖μ̂j − μ‖2 ≥ 4

tr(�) log(1.4/δ)

p∗ψ(α∗;p∗)n︸ ︷︷ ︸
ε1

)
≤ p∗

2
,

Pr

(∣∣∣∣ 1

|Gj |
∑
i∈Gj

‖Xi − μ‖2 − tr(�)

∣∣∣∣≥ 2
√
E‖X − μ‖4 − (

tr(�)
)2

√
log(1.4/δ)

np∗ψ(α∗;p∗)︸ ︷︷ ︸
ε2

)
≤ p∗

2
,

hence Pr(|T̂j − tr(�)| ≥ ε1 + ε2) ≤ p∗. Theorem 3.1 implies that

Pr
(
T̂ ≤ tr(�) − Cα∗(ε1 + ε2)

)≤ Pr
(∣∣T̂ − tr(�)

∣∣≥ Cα∗(ε1 + ε2)
)≤ δ.

Since Pr(T̂ ≤ tr(�)
2 ) ≤ Pr(T̂ ≤ tr(�) − Cα∗(ε1 + ε2)) whenever (4.5) is satisfied, the result fol-

lows. �

Combining (4.6) with Corollary 4.1, we immediately get the following statement.

Corollary 4.2. Let B(h, r) be the ball of radius r centered at h ∈H. Define the random radius

rn := 11
√

2

√
T̂

log(1.4/δ)

n

and let μ̂ be the estimator defined by (4.1). If (4.5) holds, then

Pr
(
B(μ̂, rn) contains μ

)≥ 1 − 2δ.

4.2. Robust Principal Component Analysis

It is well known that classical Principal Component Analysis (PCA) [38] is very sensitive to the
presence of the outliers in a sample. The literature on robust PCA suggests several computa-
tionally efficient and theoretically sound methods to recover the linear structure in the data. For
instance, if part of the observations is contained in a low-dimensional subspace while the rest are
corrupted by noise, the low-dimensional subspace can often be recovered exactly, see [9,48] and
references therein.

However, for the case when no additional geometric structure in the data can be assumed, we
suggest a simple and easy-to-implement alternative which uses the geometric median to obtain
a robust estimator of the covariance matrix. In this section, we study the simplest case when the
geometric median is combined with the sample covariance estimator. However, it is possible to
use various alternatives in place of the sample covariance, such as the shrinkage estimator [27],
banding/tapering estimator [3], hard thresholding estimator [4] or the nuclear norm-penalized
estimator [29], to name a few.
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Let X,X1, . . . ,Xn ∈ RD be i.i.d. random vectors such that EX = μ, E[(X − μ)(X − μ)T ] =
� and E‖X‖4 < ∞, where ‖ · ‖ is the usual Euclidean norm. We are interested in estimating
the covariance matrix � and the linear subspace generated by its eigenvectors associated to
“large” eigenvalues. For simplicity, suppose that all positive eigenvalues of � have algebraic
multiplicity 1. We will enumerate λi := λi(�) in the decreasing order, so that λ1 > λ2 ≥ · · · ≥ 0.

Assume first that the data is centered (so that μ = 0). As before, set α∗ := 7
18 , p∗ := 0.1, divide

the sample X1, . . . ,Xn into k = � log(1/δ)
ψ(α∗;p∗)�+ 1 disjoint groups G1, . . . ,Gk of size �n

k
� each, and

let

�̂j := 1

|Gj |
∑
i∈Gj

XiX
T
i , j = 1, . . . , k,

(4.7)
�̂ := med(�̂1, . . . , �̂k),

where the median is taken with respect to Frobenius norm ‖A‖F :=√
tr(AT A).

Remark 4.2. Note that �̂ is positive semidefinite as a convex combination of positive semidefi-
nite matrices.

Let Projm be the orthogonal projector on a subspace corresponding to the m largest positive

eigenvalues of �. Let P̂rojm be the orthogonal projector of the same rank as Projm corresponding
to the m ≤ �n

k
� largest eigenvalues of �̂. In this case, the following bound holds.

Corollary 4.3. Let �m := λm − λm+1 and assume that

�m > 44

√
(E‖X‖4 − tr(�2)) log(1.4/δ)

n
. (4.8)

Then

Pr

(
‖P̂rojm − Projm ‖F ≥ 22

�m

√
(E‖X‖4 − tr(�2)) log(1.4/δ)

n

)
≤ δ.

Proof. It follows from Davis–Kahan perturbation theorem [16] (see also Theorem 3 in [49]) that,
whenever ‖�̂ − �‖F < 1

4�m,

‖P̂rojm − Projm ‖F ≤ 2‖�̂ − �‖F

�m

. (4.9)

Define Yj := XjX
T
j , j = 1, . . . , n and note that E‖Y − EY‖2

F = E‖X‖4 − tr(�2). Applying
Corollary 4.1 to Yj , j = 1, . . . , n, we get

Pr

(
‖�̂ − �‖F ≥ 11

√
(E‖X‖4 − tr(�2)) log(1.4/δ)

n

)
≤ δ.
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Whenever (4.8) is satisfied, inequality 11
√

(E‖X‖4−tr(�2)) log(1.4/δ)
n

< �m

4 holds, and (4.9) yields
the result. �

Similar bounds can be obtained in a more general situation when X is not necessarily centered.
To this end, let

μ̂j := 1

|Gj |
∑
i∈Gj

Xi, j = 1, . . . , k,

�̂j := 1

|Gj |
∑
i∈Gj

(Xi − μ̂j )(Xi − μ̂j )
T , j = 1, . . . , k, (4.10)

�̂ := med(�̂1, . . . , �̂k).

Note that �̂1, . . . , �̂k are independent. Then, using the fact that for any 1 ≤ j ≤ k

�̂j = 1

|Gj |
∑
i∈Gj

(Xi − μ)(Xi − μ)T − (μ − μ̂j )(μ − μ̂j )
T ,

it is easy to prove the following bound.

Corollary 4.4. Let

εn(δ) := 15.2

√
(E‖X − μ‖4 − tr(�2)) log(1.4/δ)

n
+ 178

tr(�) log(1.4/δ)

n

and assume that �m > 4εn(δ). Then

Pr

(
‖P̂rojm − Projm ‖F ≥ 2εn(δ)

�m

)
≤ δ.

4.3. High-dimensional sparse linear regression

Everywhere in this subsection, ‖ · ‖ stands for the standard Euclidean norm, ‖ · ‖1 denotes the
�1-norm and ‖ · ‖∞ – the sup-norm of a vector.

Let x1, . . . , xn ∈ RD be a fixed collection of vectors and let Yj be noisy linear measurements
of λ0 ∈RD :

Yj = λT
0 xj + ξj , (4.11)

where ξj are independent zero-mean random variables such that Var(ξj ) ≤ σ 2,1 ≤ j ≤ n. Set
X := (x1| . . . |xn)

T .
We are interested in the case when D � n and λ0 is sparse, meaning that

N(λ0) := ∣∣supp(λ0)
∣∣= ∣∣{j : λ0,j �= 0}∣∣= s � D.
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In this situation, a (version of) the famous Lasso estimator [42] of λ0 is obtained as a solution of
the following optimization problem:

λ̂ε := arg min
λ∈RD

[
1

n

n∑
j=1

(
Yj − λT xj

)2 + ε‖λ‖1

]
. (4.12)

The goal of this section is to extend the applicability of some well-known results for this estimator
to the case of a heavy-tailed noise distribution.

Existing literature on high-dimensional linear regression suggests several ways to handle cor-
rupted measurements, for instance, by using a different loss function (e.g., the so-called Huber’s
loss [26]), or by implementing a more flexible penalty term [35,47]. In particular, in [35] authors
study the model

Y = Xλ0 + e∗ + ξ, (4.13)

where X ∈Rn×D , ξ ∈Rn is the additive noise and e∗ ∈ Rn is a sparse error vector with unknown
support and arbitrary large entries. It is shown that if the rows of X are independent Gaussian
random vectors, then is possible to accurately estimate both λ0 and e∗ by adding an extra penalty
term:

(λ̃ε, ẽε) := arg min
λ∈RD,e∈Rn

[
1

n
‖Y − Xλ − e‖2 + ε1‖λ‖1 + ε2‖e‖1

]
.

However, as in the case of the usual Lasso, confidence of estimation depends on the distribution
of ξ . In particular, Gaussian-type concentration holds only if the entries of ξ have sub-Gaussian
tails.

The main result of this subsection (stated in Theorem 4.2) provides strong performance guar-
antees for the robust version of the usual Lasso estimator (4.12) and requires only standard con-
ditions on the degree of sparsity and restricted eigenvalues of the design. Similar method can be
used to improve performance guarantees for the model (4.13) in the case of heavy-tailed noise ξ .

Probabilistic bounds for the error ‖λ̂ε −λ0‖ crucially depend on integrability properties of the
noise variable. We will recall some known bounds for the case when ξj ∼ N(0, σ 2), j = 1, . . . , n

(of course, similar results hold for sub-Gaussian noise as well). For J ⊂ {1, . . . ,D} and u ∈RD ,
define uJ ∈ RD by (uJ )j = uj , j ∈ J and (uJ )j = 0, j ∈ J c (here, J c denotes the complement
of a set J ).

Definition 4.1 (Restricted eigenvalue condition, [5]). Let 1 ≤ s ≤ D and c0 > 0. We will say
that the restricted eigenvalue condition holds if

κ(s, c0) := min
J⊂{1,...,D}

|J |≤s

min
u∈RD,u �=0

‖uJc‖1≤c0‖uJ ‖1

‖Xu‖√
n‖uJ ‖ > 0.

Let � := ‖ 1
n

∑n
j=1 ξj xj‖∞. The following result shows that the amount of regularization ε

sufficient for recovery of λ0 is closely related to the size of �.
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Theorem 4.1. Assume that the diagonal elements of the matrix X
T
X

n
are bounded by 1 and

κ
(
2N(λ0),3

)
> 0.

On the event E = {ε ≥ 4�}, the following inequality holds:

‖λ̂ε − λ0‖2 ≤ 64ε2 N(λ0)

κ4(2N(λ0),3)
.

In particular, when ξj ∼ N(0, σ 2) and ε = 4σ t

√
logD

n
,

Pr(E) ≥ 1 − 2

Dt2−2
.

Proof. This result is similar to the statement of Theorem 7.2 in [5], and its proof can be obtained
along the same lines. See [30] for more details. �

Our next goal is to construct an estimator of λ0 which admits high confidence error bounds
without restrictive assumptions on the noise variable, such as sub-Gaussian tails. Let t > 0 be
fixed, and set k := �3.5t�+ 1, m = �n

k
� (as before, we will assume that k ≤ n

2 ). For 1 ≤ l ≤ k, let
Gl := {(l − 1)m + 1, . . . , lm} and

Xl = (xj1 | . . . |xjm)T , ji = i + (l − 1)m ∈ Gl

be the m×D design matrix corresponding to the lth group of design vectors {xj , j ∈ Gl}. More-
over, let κl(s, c0) be the corresponding restricted eigenvalues.

Define

λ̂l
ε := arg min

λ∈RD

[
1

|Gl |
∑
j∈Gl

(
Yj − λT xj

)2 + ε‖λ‖1

]
and

λ̂∗
ε := med

(
λ̂1

ε, . . . , λ̂
k
ε

)
, (4.14)

where the geometric median is taken with respect to the standard Euclidean norm in RD . The
following result holds.

Theorem 4.2. Assume that ‖xj‖∞ ≤ M,1 ≤ j ≤ n and κ̄(2N(λ0),3) := min1≤l≤k κl(2N(λ0),

3) > 0. Then for any

ε ≥ 95Mσ

√
t + 2/7

n
log(2D),

with probability ≥ 1 − e−t

∥∥λ̂∗
ε − λ0

∥∥2 ≤ 83ε2 N(λ0)

κ̄4(2N(λ0),3)
.
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Proof. We will first obtain a “weak concentration” bound from Theorem 4.1 and then apply
Theorem 3.1 with α = 7

18 to get the result.
To this end, we need to estimate �l := ‖ 1

m

∑
j∈Gl

ξj xj‖∞, l = 1, . . . , k.

Lemma 4.1 (Nemirovski’s inequality, Lemma 5.2.2 in [33] or Lemma 14.24 in [8]). Assume
that D ≥ 3. Then for any l, 1 ≤ l ≤ k,

E�2
l ≤ 8 log(2D)

m

1

m

∑
j∈Gl

‖xj‖2∞Eξ2
j .

By our assumptions, ‖xj‖∞ ≤ M and Eξ2
j ≤ σ 2 for all j , hence Chebyshev’s inequality gives

that for any 1 ≤ l ≤ k,

Pr(�l ≥ t) ≤ 8 log(2D)M2σ 2

mt2
≤ 0.1

whenever t ≥ 4σM

√
k log(2D)

0.1n
. In particular, for ε ≥ 16σM

√
3.5(t+2/7) log(2D)

0.1n
, the bound of The-

orem 4.1 holds for λ̂l
ε with probability ≥ 1 − 0.1; note that 16

√
3.5
0.1 ≤ 95. It remains to apply

Theorem 3.1 to complete the proof. �

Remark 4.3. We stated the bounds only for the Euclidean distance ‖λ̂∗
ε −λ0‖; this formulation is

close to the compressed sensing framework [12]. If, for example, the design vectors x, x1, . . . , xn

are i.i.d. with some known distribution �, one can use the median with respect to ‖ · ‖L2(�)

norm in the definition of λ̂∗
ε and obtain the bounds for the prediction error ‖λ̂∗

ε − λ0‖2
L2(�) :=

E((λ̂∗
ε − λ0)

T x)2.

4.4. Matrix regression with isotropic sub-Gaussian design

In this section, we will extend some results related to recovery of low-rank matrices from noisy
linear measurements to the case of heavy-tailed noise distribution. Assume that the random cou-
ple (X,Y ) ∈ RD×D ×R is generated according to the following matrix regression model:

Y = f∗(X) + ξ, (4.15)

where f∗ is the regression function, X ∈ RD×D is a random symmetric matrix with (unknown)
distribution � and ξ is a zero-mean random variable independent of X with Var(ξ) ≤ σ 2. We
will be mostly interested in a situation when f∗ can be well approximated by a linear functional
〈A, ·〉, where A a symmetric matrix of small rank and 〈A1,A2〉 := tr(AT

1 A2).
The problem of low-rank matrix estimation has attracted a lot of attention during the last

several years, for example, see [11,39] and references therein. Recovery guarantees were later
extended to allow the presence of noise. Results in this direction can be found in [10,24,32,40],
to name a few.
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In this section, we mainly follow the approach of [23] (Chapter 9) which deals with an im-
portant case of sub-Gaussian design (also, see [10,31] for a discussion of related problems), and
use results of this work as a basis for our exposition. Everywhere below, ‖ · ‖F stands for the
Frobenius norm of a matrix, ‖ · ‖Op – for the operator (spectral) norm, and ‖ · ‖1 – for the nuclear
norm of a matrix.

Given A ∈ RD×D , denote ‖A‖2
L2(�) := E(tr(AT X))2. Recall that a random variable ζ is called

sub-Gaussian with parameter γ 2 if for all s ∈ R, Esζ ≤ es2γ 2/2. We will be interested in the
special case when X is sub-Gaussian, meaning that there exists γ = γ (�) > 0 such that for all
symmetric matrices A, 〈A,X〉 is a sub-Gaussian random variable with parameter γ 2‖A‖2

L2(�) (in

particular, this is the case when the entries of X are jointly Gaussian, with γ = 1). Additionally,
we will assume that X is isotropic, so that ‖A‖L2(�) = ‖A‖F for any symmetric matrix A.

In particular, these assumptions hold in the following important cases:

(a) X is symmetric and such that {Xi,j ,1 ≤ i ≤ j ≤ D} are i.i.d. centered normal random
variables with EX2

i,j = 1
2 , i < j and EX2

i,i = 1, i = 1, . . . ,D.

(b) X is symmetric and such that Xi,j = 1√
2
εi,j , i < j , Xi,i = εi,i , 1 ≤ i ≤ D, where εi,j are

i.i.d. Rademacher random variables (i.e., random signs).
(c) In a special case when all involved matrices are diagonal, the problem becomes a version

of sparse linear regression with random design. In this case, isotropic design includes a
situation when X is a random diagonal matrix X = diag(x1, . . . , xD), where xi are i.i.d.
standard normal or Rademacher random variables.

Remark 4.4. In what follows, C1,C2, . . . denote the constants that may depend on parameters
of the underlying distribution (such as γ ).

Given α ≥ 1, define ‖ζ‖ψα := min{r > 0 : E exp((
|ζ |
r

)α) ≤ 2}. We will mainly use ‖ · ‖ψα -
norms for α = 1,2. The following elementary inequality holds: for any random variables ζ1, ζ2,

‖ζ1ζ2‖ψ1 ≤ ‖ζ1‖ψ2‖ζ2‖ψ2 . (4.16)

It is easy to see that ‖ζ‖ψ2 < ∞ for any sub-Gaussian random variable ζ . It follows from Propo-
sition 9.1 in [23] that there exists C(γ ) > 0 such that for any sub-Gaussian isotropic matrix X,∥∥‖X‖Op

∥∥
ψ2

≤ C(γ )
√

D. (4.17)

We will also need the following useful inequality: for any p ≥ 1,

E1/p
∣∣〈A,X〉∣∣p ≤ Cp,γ ‖A‖L2(�). (4.18)

The proofs of the facts mentioned above can be found in [23].
Let (X1, Y1), . . . , (Xn,Yn) be i.i.d. observations with the same distribution as (X,Y ). We are

mainly interested in the case when D < n � D2. In this situation, it is impossible to estimate A0

consistently in general, however, if A0 is low-rank (or approximately low-rank), then the solution
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of the following optimization problem provides a good approximation to A0:

Âε := arg min
A∈L

[
1

n

n∑
j=1

(
Yj − 〈A,Xj 〉

)2 + ε‖A‖1

]
. (4.19)

Here, L is a bounded, closed, convex subset of a set of all D × D symmetric matrices.

Remark 4.5. All results of this subsection extend to the case of unbounded L and non-isotropic
sub-Gaussian design. However, our assumptions still cover important examples and yield less
technical statements; see Theorem 9.3 in [23] for details on the general case. Results for the
arbitrary rectangular matrices follow from the special case discussed here, see the remark on
page 202 of [23].

We proceed by recalling the performance guarantees for Âε . Let RL := supA∈L ‖A‖1, and
define

� := 1

n

n∑
j=1

ξjXj .

Theorem 4.3 (Theorem 9.4 in [23]). There exist constants c, C with the following property: let
κ := log log2(DRL), and assume that t ≥ 1 is such that tn,D ≤ cn, where tn,D := (t + κ) logn +
log(2D). Define the event E := {ε ≥ 2‖�‖Op}. The following bound holds with probability ≥
Pr(E) − e−t :

‖Âε − A0‖2
F ≤ inf

A∈L

[
2‖A − A0‖2

F + C

(
ε2 rank(A) + R2

L

Dtn,D

n
+ 1

n

)]
. (4.20)

Constant 2 in front of ‖A − A0‖2
F can be replaced by (1 + ν) for any ν > 0 if C is replaced by

C/ν.

Assumption 4.1. The noise variable ξ is such that ‖ξ‖ψ2 < ∞.

If Assumption 4.1 is satisfied, then, whenever

ε ≥ C̄(γ )

√
D

n

(
σ
√

t + log(2D) ∨ ‖ξ‖ψ2 log

(
2 ∨ ‖ξ‖ψ2

σ

)
t + log(2D)√

n

)
(4.21)

we have that Pr(E) ≥ 1 − e−t (hence, (4.20) holds with probability 1 − 2e−t ). This follows from
the following variant of the non-commutative Bernstein’s inequality.

Theorem 4.4 (Theorem 2.7 in [23]). Let Y1, . . . , Yn ∈RD×D be symmetric independent random
matrices such that EYj = 0 and

max
1≤j≤n

(∥∥‖Yj‖Op
∥∥

ψ1
∨ 2E1/2‖Yj‖2

Op

)≤ U.



Geometric median and robust estimation 2325

Let

�2 ≥ 1

n

∥∥∥∥∥
n∑

i=1

EY 2
i

∥∥∥∥∥
Op

.

Then, for all t > 0, with probability ≥ 1 − e−t∥∥∥∥∥ 1√
n

n∑
j=1

Yj

∥∥∥∥∥
Op

≤ C̄1 max

(
�
√

t + log(2D),U log

(
U

�

)
t + log(2D)√

n

)
,

where C̄1 > 0 is an absolute constant.

Indeed, recall that � = 1
n

∑n
j=1 ξjXj , and apply Theorem 4.4 to Yj := ξjXj , noting that by

(4.16), (4.17) ∥∥Eξ2X2
∥∥

Op ≤ σ 2E‖X‖2
Op ≤ C2σ

2D,∥∥‖ξX‖Op
∥∥

ψ1
≤ ‖ξ1‖ψ2

∥∥‖X‖Op
∥∥

ψ2
≤ C(γ )‖ξ‖ψ2

√
D.

It implies that with probability ≥ 1 − e−t ,∥∥∥∥∥1

n

n∑
j=1

ξjXj

∥∥∥∥∥
Op

≤ C3

√
D

n

(
σ
√

t + log(2D) ∨ ‖ξ‖ψ2 log

(
2 ∨ ‖ξ‖ψ2

σ

)
t + log(2D)√

n

)
, (4.22)

where C2, C3 depend only on γ , hence giving the result.
As we mentioned above, our goal is to construct the estimator of A0 which admits bounds in

flavor of Theorem 4.3 that hold with high probability under a much weaker assumption on the
tail of the noise variable ξ .

To achieve this goal, we follow the same pattern as before. Let t ≥ 1 be fixed, let k :=
�t� + 1,m = �n

k
�, and assume that k ≤ n

2 . Divide the data {(Xj ,Yj )}nj=1 into k disjoint groups
G1, . . . ,Gk of size m each, and define

Âl
ε := arg min

A∈L

[
1

|Gl |
∑
j∈Gl

(
Yj − 〈A,Xj 〉

)2 + ε‖A‖1

]

and

Â∗
ε = Âε(t) := med

(
Â1

ε, . . . , Â
k
ε

)
,

where the geometric median is evaluated with respect to the Frobenius norm.

Assumption 4.2.

‖ξ‖2,1 :=
∫ ∞

0

√
Pr(|ξ | > x)dx < ∞.
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In particular, ‖ξ‖2,1 < ∞ if E|ξ |2+δ < ∞ for some δ > 0, which is a mild requirement com-
pared to Assumption 4.1. Finally, given α ∈ (0,1/2), it will be convenient to define

p∗ = p∗(α) := max
{
p ∈ (0, α) : ψ(α;p) ≥ 1

}
.

Theorem 4.5. Suppose that Assumption 4.2 is satisfied. For any α ∈ (0,1/2), there exist con-
stants c, C, B with the following properties: let κ := log log2(DRL), sn,t,D := (log(2/p∗(α)) +
κ) log(n/t) + log(2D), and assume that sn,t,D ≤ c(n/t). Then for all

ε ≥ B

p∗(α)
‖ξ‖2,1

√
Dt

n
log(2D),

with probability ≥ 1 − 2e−t

∥∥Â∗
ε − A0

∥∥2
F ≤ Cα inf

A∈L

[
2‖A − A0‖2

F + C

(
ε2 rank(A) + R2

L
sn,t,D

Dt

n
+ t

n

)]
, (4.23)

where Cα is defined by (2.2).

Proof. We will start by deriving a “weak concentration” bound from Theorem 4.3. To this end,
we need to estimate

E‖�l‖Op := E

∥∥∥∥ 1

|Gl |
∑
j∈Gl

ξjXj

∥∥∥∥
Op

, l = 1, . . . , k.

The following result is a direct consequence of the so-called multiplier inequality (Lemma 2.9.1
in [43]).

Lemma 4.2. Let ε1, . . . , εm be i.i.d. Rademacher random variables independent of X1, . . . ,Xm.
Then

E

∥∥∥∥∥ 1

m

m∑
j=1

ξjXj

∥∥∥∥∥
Op

≤ 2
√

2‖ξ‖2,1√
m

max
1≤i≤m

E

∥∥∥∥∥ 1√
i

i∑
j=1

εjXj

∥∥∥∥∥
Op

. (4.24)

To estimate E‖ 1√
i

∑i
j=1 ξjXj‖Op, we use the formula E|η| = ∫∞

0 Pr(|η| ≥ t)dt and the tail

bound of Theorem 4.4, which implies (in a way similar to (4.22)) that with probability ≥ 1 − e−t∥∥∥∥∥ 1√
i

i∑
j=1

εjXj

∥∥∥∥∥
Op

≤ C4
√

D

(√
t + log(2D) ∨ t + log(2D)√

i

)
, (4.25)

hence for any 1 ≤ i ≤ m

E

∥∥∥∥∥ 1√
i

i∑
j=1

εjXj

∥∥∥∥∥
Op

≤ C5
√

D

(√
log(2D) + log(2D)√

i

)
,
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and (4.24) yields

E

∥∥∥∥∥ 1

m

m∑
j=1

ξjXj

∥∥∥∥∥
Op

≤ C6‖ξ‖2,1

√
D

m
log(2D).

Next, it follows from Chebyshev’s inequality that for any 1 ≤ l ≤ k, with probability ≥ 1 − p∗(α)
2

2‖�l‖Op ≤ 4C6

p∗(α)
‖ξ‖2,1

√
D

m
log(2D).

Hence, if α ∈ (0,1/2) and

ε ≥ 4C6

p∗(α)
‖ξ‖2,1

√
D

m
log(2D),

the inequality of Theorem 4.3 (with the confidence parameter equal to log(2/p∗(α))) applied to
the estimator Âl

ε gives that with probability ≥ 1 − p∗(α)

∥∥Â∗
ε − A0

∥∥2
F ≤ inf

A∈L

[
2‖A − A0‖2

F + C

(
ε2 rank(A) + R2

L
sm,D

D

m
+ 1

m

)]
.

The claim (4.23) now follows from Theorem 3.1. �

5. Numerical evaluation of the geometric median and
simulation results

In this section, we briefly discuss computational aspects of our method in RD equipped with the
standard Euclidean norm ‖ · ‖, and present results of numerical simulation.

5.1. Overview of some numerical algorithms

As was mentioned in the introduction, the function F(z) :=∑k
j=1 ‖z− xj‖ is convex, moreover,

its minimum is unique unless {x1, . . . , xk} are on the same line.
One of the computationally efficient ways to approximate arg minz∈RD F (z) is the famous

Weiszfeld’s algorithm [46]: starting from some z0 in the affine hull of {x1, . . . , xk}, iterate

zm+1 =
k∑

j=1

α
(j)

m+1xj , (5.1)

where α
(j)

m+1 = ‖xj −zm‖−1∑k
j=1 ‖xj −zm‖−1

. Kuhn proved [25] that Weiszfeld’s algorithm converges to the

geometric median for all but countably many initial points (additionally, his result states that zm
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converges to the geometric median if none of zm belong to {x1, . . . , xk}). It is straightforward to
check that (5.1) is actually a gradient descent scheme: indeed, it is equivalent to

zm+1 = zm − βm+1gm+1,

where βm+1 = 1∑k
j=1 ‖xj −zm‖−1

and gm+1 = ∑k
j=1

zm−xj

‖zm−xj ‖ is the gradient of F (we assume that

zm /∈ {x1, . . . , xk}).
Ostresh [36] proposed a method which avoids the possibility of hitting one of the vertices

{x1, . . . , xk} by considering the following descent scheme: starting with some z0 in the affine
hull of {x1, . . . , xk}, let

zm+1 = zm − ζ β̃m+1g̃m+1,

where ζ ∈ [1,2], g̃m+1 is the properly defined “generalized” gradient (see [36] for details), and
β̃m+1 = 1∑

j :xj �=zm
‖xj −zm‖−1 . It is shown that zm converges to the geometric median whenever it

is unique. Further improved modifications of original Weiszfeld’s method can be found in [44].
For other approaches to fast numerical evaluation of the geometric median, see [6,13,15,37]

and references therein.

5.2. Simulation results

5.2.1. Principal component analysis

Data points X1, . . . ,X156 were sampled from the distribution on R120 such that X1
d= AY , where

the coordinates of Y are independent random variables with density p(y) = 3y2

2(1+|y|3)2 and A

is a full-rank diagonal matrix with 5 “large” eigenvalues {51/2,61/2,71/2,81/2,91/2} while the
remaining diagonal elements are equal to 1√

120
. Additionally, the data set contained 4 “outliers”

Z1, . . . ,Z4 generated from the uniform distribution on [−20,20]120 and independent of Xi ’s.
In this case, the usual sample covariance matrix does not provide any useful information about

the principal components. However, in most cases our method gave reasonable approximation
to the truth. We used the estimator described in Section 4.2 with the number of groups k =
10 containing 16 observations each. The error was measured by the spectral norm ‖P̂roj5 −
Proj5 ‖Op, where P̂roj5 is a projector on the eigenvectors corresponding to 5 largest eigenvalues
of the estimator. Figures 2, 3 show the histograms of the errors evaluated over 100 runs of the
simulation. Figure 4 shows performance of a “thresholded geometric median” estimator which
is defined in Section 6 below.

5.2.2. High-dimensional sparse linear regression

The following model was used for simulation:

Yj = λT
0 xj + ξj , j = 1, . . . ,300,
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Figure 2. Error of the “geometric median” estimator (4.7).

where λ0 ∈ R1000 is a vector with 10 non-zero entries sampled from the uniform distribution on
[−15,15], and xj ∈ R1000, j = 1, . . . ,300, are generated according to the normal distribution
N(0, I1000). Noise ξj was sampled from the mixture

ξj =
{

ξ1,j with probability 1 − 1/500,
ξ2,j with probability 1/500,

where ξ1,j ∼ N(0,1/8) and ξ2,j takes values ± 250√
2

with probability 1/2 each. All parameters

λ0, xj , ξj , j = 1, . . . ,300, were sampled independently. Error of the estimator λ̂ was measured

by the ratio ‖λ̂−λ0‖‖λ0‖ . Size of the regularization parameter ε was chosen based on 4-fold cross

Figure 3. Error of the sample covariance estimator.
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Figure 4. Error of the “thresholded geometric median” estimator (6.1), ν = 0.5.

validation. On each stage of the simulation, we evaluated the usual Lasso estimator (4.12) and
the “median Lasso” estimator (4.14) based on partitioning the observations into 4 groups of size
75 each. Figures 5 and 6 show the histograms of the errors over 50 runs of the simulation. Note
that the maximal error of the “median Lasso” is 0.055 while the error of the usual Lasso exceeded
0.15 in 18 out of 50 cases.

6. Final remarks

Let α̂1, . . . , α̂k ≥ 0,
∑k

j=1 αj = 1 be the coefficients such that μ̂ =∑k
j=1 α̂kμk is the geometric

median of a collection of estimators {μ1, . . . ,μk}. Our numerical experiments reveal that perfor-

Figure 5. Error of the standard Lasso estimator (4.12).
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Figure 6. Error of the “median Lasso” estimator (4.14).

mance of μ̂ can be significantly improved by setting the coefficients below a certain threshold
level ν to 0, that is,

α̃j := α̂j I {α̂j ≥ ν/k}∑k
i=1 α̂j I {α̂j ≥ ν/k} ,

(6.1)

μ̃ :=
k∑

j=1

α̃jμj .

An interesting problem that we plan to address in subsequent work is the possibility of adaptive
choice of the threshold parameter.

Examples presented above cover only a small area on the map of possible applications. For
instance, it would be interesting to obtain an estimator in the low-rank matrix completion frame-
work [11,24] that admits strong performance guarantees for the heavy-tailed noise model. Results
obtained in Section 4.4 for the matrix regression problem do not seem to yield a straightforward
solution in this case. Another promising direction is related to design of robust techniques for
Bayesian inference and evaluation of the geometric median in the space of probability measures.
We plan to address these questions in the future work.

Appendix: Proof of Lemma 2.1, part (b)

Once again, assume that the claim does not hold and ‖xi − z‖ ≤ r , i = 1, . . . , �(1 − α)k� + 1.
We will need the following general description of the subdifferential of a norm ‖·‖ in a Banach

space X (see, e.g., [21]):

∂‖x‖ =
{{

x∗ ∈X∗ : ∥∥x∗∥∥∗ = 1, x∗(x) = ‖x‖}, x �= 0,{
x∗ ∈X∗ : ∥∥x∗∥∥∗ ≤ 1

}
, x = 0,

where X∗ is the dual space with norm ‖ · ‖∗.
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For x,u ∈X, let

D
(‖x‖;u)= lim

t↘0

‖x + tu‖ − ‖x‖
t

be the directional derivative of ‖ · ‖ at the point x in direction u. We need the following useful
fact from convex analysis:

Lemma A.1. There exists g∗ := g∗
x,u ∈ ∂‖x‖ such that D(‖x‖;u) = 〈g∗, u〉, where 〈g∗, u〉 :=

g∗(u).

Proof. In follows from the results of Chapter 4 in [21] that D(‖x‖;u) is a continuous convex
function of u (for fixed x), hence its subdifferential is non-empty. Let g̃ ∈ ∂D(‖x‖;u). Then for
all s > 0, v ∈ X

sD
(‖x‖;v)= D

(‖x‖; sv)≥ D
(‖x‖;u)+ 〈g̃, sv − u〉.

Letting s → ∞, we get D(‖x‖;v) ≥ 〈g̃, v〉, hence g̃ ∈ ∂‖x‖. Taking s = 0, we get D(‖x‖;u) ≤
〈g̃, u〉, hence g∗ := g̃ satisfies the requirement. �

Using Lemma A.1, it is easy to see that there exist g∗
j ∈ ∂‖xj − x∗‖, j = 1, . . . , k such that

DF

(
x∗; z − x∗

‖z − x∗‖
)

= −
∑

j :xj �=x∗

〈g∗
j , z − x∗〉
‖z − x∗‖ +

k∑
j=1

I {xj = x∗}.

Moreover, for any u, DF(x∗; z − x∗) ≥ 0 by the definition of x∗. Note that for any j

〈g∗
j , z − x∗〉
‖z − x∗‖ = 〈g∗

j , xj − x∗〉 + 〈g∗
j , z − xj 〉

‖z − x∗‖ . (A.1)

By the definition of g∗
j and triangle inequality,〈

g∗
j , xj − x∗

〉= ‖xj − x∗‖ ≥ ‖z − x∗‖ − ‖z − xj‖
and, since ‖g∗

j ‖∗ ≤ 1, 〈
g∗

j , z − xj

〉≥ −‖z − xj‖.
Substituting this in (A.1), we get

〈g∗
j , z − x∗〉
‖z − x∗‖ ≥ 1 − 2

‖z − xj‖
‖z − x∗‖ > 1 − 2

Cα

,

hence

DF

(
x∗; z − x∗

‖z − x∗‖
)

< −(1 − α)k

(
1 − 2

Cα

)
+ αk ≤ 0

whenever Cα ≥ 2(1−α)
1−2α

.
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