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Abstract

In this chapter, we identify fundamental geometric structures that underlie the problems of
sampling, optimisation, inference and adaptive decision-making. Based on this identification,
we derive algorithms that exploit these geometric structures to solve these problems efficiently.
We show that a wide range of geometric theories emerge naturally in these fields, ranging
from measure-preserving processes, information divergences, Poisson geometry, and geometric
integration. Specifically, we explain how (i) leveraging the symplectic geometry of Hamiltonian
systems enable us to construct (accelerated) sampling and optimisation methods, (ii) the theory
of Hilbertian subspaces and Stein operators provides a general methodology to obtain robust
estimators, (iii) preserving the information geometry of decision-making yields adaptive agents
that perform active inference. Throughout, we emphasise the rich connections between these
fields; e.g., inference draws on sampling and optimisation, and adaptive decision-making assesses
decisions by inferring their counterfactual consequences. Our exposition provides a conceptual
overview of underlying ideas, rather than a technical discussion, which can be found in the
references herein.

Keywords: information geometry; Hamiltonian Monte Carlo; Stein’s method; reproducing kernel;
variational inference; accelerated optimisation; dissipative systems; decision theory; active inference.

ar
X

iv
:2

20
3.

10
59

2v
3 

 [
st

at
.M

L
] 

 2
5 

Ju
l 2

02
2



Contents

1 Introduction 2

2 Accelerated optimisation 4
2.1 Principle of geometric integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Conservative flows and symplectic integrators . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Rate-matching integrators for smooth optimisation . . . . . . . . . . . . . . . . . . . 7
2.4 Manifold and constrained optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Gradient flow as a high friction limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Optimisation on the space of probability measures . . . . . . . . . . . . . . . . . . . 12

3 Hamiltonian-based accelerated sampling 13
3.1 Optimising diffusion processes for sampling . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Hamiltonian Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Statistical inference with kernel-based discrepancies 19
4.1 Topological methods for MMDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Smooth measures and KSDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 The canonical Stein operator and Poincaré duality . . . . . . . . . . . . . . . 21
4.2.2 Kernel Stein discrepancies and score matching . . . . . . . . . . . . . . . . . . 23

4.3 Information geometry of MMDs and natural gradient descent . . . . . . . . . . . . . 24
4.3.1 Minimum Stein discrepancy estimators . . . . . . . . . . . . . . . . . . . . . . 24
4.3.2 Likelihood-free inference with generative models . . . . . . . . . . . . . . . . . 25

5 Adaptive agents through active inference 25
5.1 Modelling adaptive decision-making . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1.1 Behaviour, agents and environments . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.2 Decision-making in precise agents . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.3 The information geometry of decision-making . . . . . . . . . . . . . . . . . . 27

5.2 Realising adaptive agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.1 The basic active inference algorithm . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.2 Sequential decision-making under uncertainty . . . . . . . . . . . . . . . . . . 30
5.2.3 World model learning as inference . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.4 Scaling active inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1 Introduction

Differential geometry plays a fundamental role in applied mathematics, statistics, and computer
science, including numerical integration [1–5], optimisation [6–11], sampling [12–16], statistics on
spaces with deep learning [17, 18], medical imaging and shape methods [19, 20], interpolation [21],
and the study of random maps [22], to name a few. Of particular relevance to this chapter is
information geometry, i.e., the differential geometric treatment of smooth statistical manifolds,
whose origin stems from a seminal article by Rao [23] who introduced the Fisher metric tensor on
parametrised statistical models, and thus a natural Riemannian geometry that was later observed to
correspond to an infinitesimal distance with respect to the Kullback–Leibler (KL) divergence [24].
The geometric study of statistical models has had many successes [25–27], ranging from statistical
inference, where it was used to prove the optimality of the maximum likelihood estimator [28], to
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the construction of the category of mathematical statistics, generated by Markov morphisms [29,30].
Our goal in this chapter is to discuss the emergence of natural geometries within a few important
areas of statistics and applied mathematics, namely optimisation, sampling, inference, and adaptive
agents. We provide a conceptual introduction to the underlying ideas rather than a technical
discussion, highlighting connections with various fields of mathematics and physics.

The vast majority of statistics and machine learning applications involve solving optimisation
problems. Accelerated gradient-based methods [31,32], and several variations thereof, have became
workhorses in these fields. Recently, there has been great interest in studying such methods from
a continuous-time limiting perspective; see, e.g., [33–40] and references therein. Such methods can
be seen as 1st order integrators to a classical Hamiltonian system with dissipation. This raises the
question on how to discretise the system such that important properties are preserved, assuming
the system has fast convergence to critical points and desirable stability properties. It has been
known for a long time that the class of symplectic integrators is the preferred choice for simulating
physical systems [1, 2, 41–48]. These discretisation techniques, designed to preserve the underlying
(symplectic) geometry of Hamiltonian systems, also form the basis of Hamiltonian Monte Carlo
(HMC) (or hybrid Monte Carlo) methods [13,49]. Originally, such a theory of geometric integration
was developed with conservative systems in mind while, in optimisation, the associated system is
naturally a dissipative one. Nevertheless, symplectic integrators were exploited in this context [6–8].
More recently, it has been proved that a generalisation of symplectic integrators to dissipative
Hamiltonian systems is indeed able to preserve rates of convergence and stability [9], which are the
main properties of interest for optimisation. Followup work [10] extended this approach, enabling
optimisation on manifolds and problems with constraints. There is also a tight connection between
optimisation on the space of measures and sampling which dates back to [50, 51]; we will revisit
these ideas in relation to dissipative Hamiltonian systems.

Sampling methods are critical to the efficient implementation of many methodologies. Most
modern samplers are based on Markov Chain Monte Carlo methods, which include slice sam-
plers [52, 53], piecewise-deterministic Markov chains, such as bouncy particle and zig-zag sam-
plers [54–59], Langevin algorithms [60–62], interacting particle systems [63] and the class of HMC
methods [12–14, 49, 64, 65]. The original HMC algorithm was introduced in physics to sample dis-
tributions on gauge groups for lattice quantum chromodynamics [13]. It combined two approaches
that emerged in previous decades, namely the Metropolis-Hastings algorithm and the Hamiltonian
formulation of molecular dynamics [66–68]. Modern HMC relies heavily on symplectic integrators
to simulate a deterministic dynamic, responsible for generating distant moves between samples and
thus reduce their correlation, while at the same time preserving important geometric properties.
This deterministic step is then usually combined with a corrective step (originally a Metropolis-
Hastings acceptance step) to ensure preservation of the correct target, and with a stochastic process,
employed to speed up convergence to the target distribution. We will first focus on the geometry
of measure-preserving diffusions, which emerges from ideas formulated by Poincaré and Volterra,
and form the building block of many samplers. In particular, we will discuss ways to “acceler-
ate” sampling using irreversibility and hypoellipticity. We will then introduce HMC focusing on
its underlying Poisson geometry, the important role played by symmetries, and its connection to
geometric integration.

We then discuss the problem of statistical inference, whose practical implementation usually
relies upon sampling and optimisation. Given observations from a target distribution, many esti-
mators belong to the family of the so-calledM and Z estimators [69], which are obtained by finding
the parameters that maximises (or are zeros of) a parametrised set of functions. These include
the maximum likelihood and minimum Hyvärinen score matching estimators [70, 71], which are
also particular instances of the minimum score estimators induced by scoring rules that quantify
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the discrepancy between a sample and a distribution [72]. The Monge–Kantorovich transportation
problem [73] motivates another important class of estimators, namely the minimum Kantorovich
and p-Wasserstein estimators, whose implementation use the Sinkhorn discrepancy [74–76]. Our
discussion of inference builds upon the theory of Hilbertian subspaces and, in particular, reproduc-
ing kernels. These inference schemes rely on the continuity of linear functionals, such as probability
and Schwartz distributions, over a class of functions to geometrise the analysis of integral probabil-
ity metrics which measure the worse case integration error. We shall explain how maximum mean,
kernelised, and score matching discrepancies arise naturally from topological considerations.

Models of adaptive agents are the basis of algorithmic-decision-making under uncertainty. This
is a difficult problem that spans multiple disciplines such as statistical decision theory [77], game
theory [78], control theory [79], reinforcement learning [80], and active inference [81]. To illustrate a
generic use case for the previous methodologies we consider active inference, a unifying formulation
of behaviour—subsuming perception, planning and learning—as a process of inference [81–84]. We
describe decision-making under active inference using information geometry, revealing several special
cases that are established notions in statistics, cognitive science and engineering. We then show how
preserving this information geometry in algorithms enables adaptive algorithmic decision-making,
endowing robots and artificial agents with useful capabilities, including robustness, generalisation
and context-sensitivity [85, 86]. Active inference is an interesting use case because it has yet to be
scaled—to tackle high dimensional problems—to the same extent as established approaches, such
as reinforcement learning [87]; however, numerical analyses generally show that active inference
performs at least as well in simple environments [88–94], and better in environments featuring
volatility, ambiguity and context switches [91,92].

2 Accelerated optimisation

We shall be concerned with the problem of optimisation of a function V : M → R, i.e., finding
a point that maximises V (q), or minimises −V (q), over a smooth manifold M. We will assume
this function is differentiable to construct algorithms that rely on the flows of smooth vector fields
guided by the derivatives of V (q).

Many algorithms in optimisation are given as a sequence of finite differences, represented by
iterations of a mapping Ψδt : M → M, where δt > 0 is a step size. The analysis of such finite
difference iterations is usually challenging, relying on painstaking algebra to obtain theoretical gua-
rantees; such as convergence to a critical point, stability, and rates of convergence to a critical point.
Even when these algorithms are seen as discretisations of a continuum system, whose behaviour is
presumably understood, it is well-known that most discretisations break important properties of
the system.

2.1 Principle of geometric integration

Fortunately, here comes into play one of the most fundamental ideas of geometric integration: many
numerical integrators are very close—exponentially in the step size—to a smooth dynamics gener-
ated by a shadow vector field (a perturbation of the original vector field). This allows us to analyse
the discrete trajectory implemented by the algorithm using powerful tools from dynamical systems
and differential geometry, which are a priori reserved to smooth systems. Crucially, while numer-
ical integrators typically diverge significantly from the dynamics they aim to simulate, geometric
integrators respect the main properties of the system. In the context of optimisation this means re-
specting stability and rates of convergence. This was first demonstrated in [9] and further extended
in [10]; our following discussion will be based on these works.
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The simplest way to construct numerical methods to simulate the flow of a vector field X arises
when it is given by a sum, X = Y + Z, and the flows of the individual vector fields Y and Z
are—analytically or numerically—tractable. In such a case, we can approximate the exact flow
ΦX
δt = eδtX , for step size δt > 0, by composing the individual flows ΦY

δt = eδtY and ΦZ
δt = eδtZ . The

simplest composition is given by ΨX
δt ≡ ΦY

δt ◦ ΦZ
δt. The Baker–Campbell–Hausdorff (BCH) formula

then yields

eδtY ◦ eδtZ = eδtX̃ , X̃ = (Y + Z) +
1

2
[Y, Z]δt+

1

12
([Y, [Y,Z]]− [Z, [Y, Z]]) δt2 + · · · , (1)

where [Y, Z] = Y Z − ZY is the commutator between Y and Z. Thus, the numerical method itself
can be seen as a smooth dynamical system with flow map ΨX

δt = eδtX̃ . The goal of geometric
integration is to construct numerical methods for which X̃ shares with X the critical properties of
interest; this is usually done by requiring preservation of some geometric structure.

Recall that a numerical map ΨX
δt is said to be of order r ≥ 1 if

∣∣ΨX
δt −ΦX

δt

∣∣ = O(δtr+1); we abuse
notation slightly and let | · | denote a well-defined distance over manifolds (see [95] for details).
Thus, the expansion (1) also shows that the error in the approximation is

∣∣ΨX
δt−ΦX

δt

∣∣ = O(δt2), i.e.,
we have an integrator of order r = 1. One can also consider more elaborate compositions, such as

ΨX
δt ≡ ΦY

δt/2 ◦ ΦZ
δt ◦ ΦY

δt/2, (2)

which is more accurate since the first term in (1) cancels out, yielding an integrator of order r = 2.1

2.2 Conservative flows and symplectic integrators

As a stepping stone, we first discuss the construction of suitable conservative flows, namely flows
along which some function f : X → R is constant, where X is the phase space manifold of the
system, i.e., the space in which the dynamics evolves. Such flows, which are amongst the most
well-studied due to their importance in physics, will enable us to obtain our desired “rate-matching”
optimisation methods and will also be central in our construction of geometric samplers.

To construct vector fields along the derivative of f we shall need brackets. Geometrically, these
are morphisms X ∗ → X , also known as contravariant tensors of rank 2 in physics, where X ∗ is the
dual space of X . Note that on Riemannian manifolds (e.g., X = Rn) both spaces are isomorphic. In
Euclidean space, x ∈ X = Rn, we define such B-vector fields in terms of a state-dependent matrix
B = B(x) as2

XB
f (x) ≡ Bij(x)∂if(x)∂j . (3)

Any vector field that depends linearly and locally on f may be written in this manner. Notice that a
decomposition f =

∑
a fa induces a decomposition XB

f =
∑

aX
B
fa

that is amenable to the splitting
integrators previously mentioned. Importantly, vector fields that preserve f correspond to bracket
vector fields in which B is antisymmetric [96]. Constructing conservative flows is thus straightfor-
ward. Unfortunately, it is a rather more challenging task to construct efficient discretisations that
retain this property; most well-known procedures, namely discrete-gradient and projection meth-
ods, only give rise to integrators that require solving implicit equations at every step, and they may
break other important properties of the system.

1Higher-order methods are constructed by looking for appropriate compositions that cancel first terms in the BCH
formula [43]. However, methods for r > 2 tend to be expensive numerically, with not so many benefits (if any) over
methods of order r = 2.

2We denote by xi the ith component of x and ∂i ≡ ∂/∂xi . We also use Einstein’s summation convention, i.e.,
repeated upper and lower indices are summed over.
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For a particular class of conservative flows, it is possible to construct splitting integrators that—
exactly—preserve another function f̃ that remains close to f . Indeed, going back to the BCH
formula (1), we see that if we were to approximate a conservative flow of XB

f = XB
f1

+ XB
f2

by
composing the flows of XB

f1
and XB

f2
, and, crucially, if we had a bracket for which the commutators

can be written as [
XB
f1
, XB

f2

]
= XB

f3
,

for some function f3, and so on for all commutators in (1), then the right-hand side of the BCH
formula would itself be an expansion in terms of a vector field XB

f̃
for some shadow function f̃ =

f + f3δt+ f4δt
2 + · · · . In particular, f̃ would inherit all the properties of f , i.e., properties common

to B-vector fields. This is precisely the case for Poisson brackets, written B ≡ Π, which are
antisymmetric brackets for which the Jacobi identity holds:[

XΠ
f , X

Π
g

]
= XΠ

{f,g}, {f, g} ≡ ∂ifΠij∂jg, (4)

where {f, g} is the Poisson bracket between functions f and g. The BCH formula then implies

f̃ = (f1 + f2) +
1

2
{f1, f2}δt+

1

12
({f1, {f1, f2}}+ {f2, {f2, f1}}) δt2 + · · · . (5)

Such an integrator can thus be seen as a Poisson system itself, generated by the above asymptotic
shadow f̃ , which is exactly preserved.

Poisson brackets and their dynamics are the most important class of conservative dynamical
systems, describing many physical systems, including all of fluid and classical mechanics. The
two main classes of Poisson brackets are constant antisymmetric matrices on Euclidean space,
and symplectic brackets for which Πij(x) is invertible at every point x. Its inverse is denoted
by Ωij =

(
Π−1

)
ij
and called a symplectic form. In this case, the function f is called a Hamiltonian,

denoted f = H. The invertibility of the Poisson tensor Πij implies that such a bracket exists only
on even-dimensional spaces. Darboux theorem then ensures the existence of local coordinates x ≡
(q1, . . . , qd, p1, . . . , pd) in which the symplectic form can be represented as Ω =

(
0 I
−I 0

)
. Dynamically,

this corresponds to the fact that these are 2nd order differential equations, requiring not only a
position q ∈ M but also a momentum p ∈ T ∗qM.3 Note that if H = pi then XH = ∂/∂qi ,
and conversely if H = qi then XH = −∂/∂pi . Thus, a change in coordinate qi is generated by
its conjugate momentum pi, and vice-versa. Thus, the only way to generate dynamics on M in
this case is by introducing a Hamiltonian depending on both position and momentum. From a
numerical viewpoint, the extended phase space introduces extra degrees of freedom that allow us to
incorporate “symmetries” in the Hamiltonian, which facilitate integration. Indeed, in practice, the
Hamiltonian usually decomposes into a potential energy, associated to position and independent of
momentum, and a kinetic energy, associated to momentum and invariant under position changes,
both generating tractable flows. Thanks to this decomposition, we are able to construct numerical
methods through splitting the vector field. Note also that, for symplectic brackets, the existence of
a shadow Hamiltonian can be guaranteed beyond the case of splitting methods, e.g., for variational
integrators—which use a discrete version of Hamilton’s principle of least action—and more generally
for most symplectic integrators in which the symplectic bracket is preserved up to topological
considerations described by the 1st de Rham cohomology of phase space.

3More precisely, the dynamics evolve on the cotangent bundle X = T ∗M, with coordinates x = (q, p); momentum
p ∈ T ∗qM and velocity v = dq/dt ∈ TqM are equivalent on the Riemannian manifolds that are used in practice. M
is called the configuration manifold with coordinates q.
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2.3 Rate-matching integrators for smooth optimisation

Having obtained a vast family of smooth dynamics and integrators that closely preserve f , we can
now apply these ideas to optimisation. Vector fields for which a Hamiltonian function f = H
dissipates can be written as a bracket vector field XB

H for some negative semi-definite matrix B [96].
Let us consider a concrete example in X = R2d in the form of a (generalised) conformal Hamiltonian
system [8, 9, 97]. Consider thus the Hamiltonian

H(q, p) =
1

2
pig

ijpj + V (q), (6)

where gij is a constant symmetric positive definite matrix with inverse gij . The associated vector
field is XB

H = gijpj∂qi −
[
∂qiV + γ(t)pi

]
∂pi , with γ(t) > 0 being a “damping coefficient.” This is

associated to the negative definite matrix

B ≡
(

0 −I
I 0

)
︸ ︷︷ ︸
conservative

− γ(t)

(
0 0
0 I

)
︸ ︷︷ ︸

dissipative

. (7)

The equations of motion are

dqi

dt
= gijpj ,

dpi
dt

= −∂V
∂qi
− γ(t)pi, (8)

and obey
dH

dt
= −γ(t)pig

ijpj ≤ 0, (9)

so the system is dissipative. Suppose V (q) has a minimizer q? ≡ arg minq V (q) in some region of
interest and, without loss of generality, has value V ? ≡ V (q?) ≡ 0. Then H > 0 and dH/dt < 0
outside such a critical point, implying that H is also a (strict) Lyapunov function; the existence of
such a Lyapunov function implies that trajectories starting in the neighborhood of q? will converge
to q?. In other words, the above system provably solves the optimisation problem

min
q∈Rd

V (q). (10)

Two common choices for the damping are the constant case, γ(t) = γ, and the asymptotic
vanishing case, γ(t) = r/t for some constant r ≥ 3 (other choices are also possible). When V (q) is
a convex function (resp. strongly convex function with parameter µ > 0) it is possible to show the
following convergence rates [37]:

convex µ-strongly convex damping

V (q(t))− V ?
O
(
t−1
)

O
(

exp
{
−
√
µ/λ2

1(g)t
})

γ(t) = const.

O
(
λ2

1(g)t−2
)
O
(
t−2r/3

)
γ(t) = r/t

(11)

where λ1(g) is the largest eigenvalue of the metric g. The convergence rates of this system are
therefore known under such convexity assumptions. Ideally, we want to design optimisation methods
that preserve these rates, i.e., are “rate-matching”, and are also numerically stable. As we will see,
such geometric integrators can be constructed by leveraging the shadow Hamiltonian property of
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symplectic methods on higher-dimensional conservative Hamiltonian systems [9] (see also [98, 99]).
This holds not only on R2d but on general settings, namely on arbitrary smooth manifolds [9, 10].

In the conformal Hamiltonian case, the dissipation appears explicitly in the equations of motion.
It is however theoretically convenient to consider an equivalent explicit time-dependent Hamiltonian
formulation. Consider the following coordinate transformation into system (8):

p 7→ e−η(t)p, H(q, p) 7→ eη(t)H
(
q, e−η(t)p

)
, η(t) ≡

∫
γ(t)dt. (12)

It is easy to see that (8) is equivalent to standard Hamilton’s equations,

dqi

dt
=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

,

with the explicit time-dependent Hamiltonian

H(t, q, p) =
1

2
e−η(t)pig

ijpj + eη(t)V (q). (13)

The rate of change of H along the flow now satisfies

dH

dt
=
∂H

∂t
6= 0, (14)

so the system is nonconservative; this equation is equivalent to (9).
Going one step further, let us now promote t to a new coordinate and introduce its (conjugate)

momentum u. Consider thus the higher-dimensional Hamiltonian

K(t, q, u, p) ≡ 1

2
e−η(t)pig

ijpj + eη(t)V (q) + u. (15)

Note that t and u are two arbitrary canonical coordinates. Denoting the time parameter of this
system by s, Hamilton’s equations read

dt

ds
= 1,

du

ds
= −∂K

∂t
,

dqi

ds
= e−η(t)gijpj ,

dpi
ds

= −eη(t)∂V

∂qi
. (16)

This system is conservative since dK/ds = 0. Now, if we fix coordinates as

t = s, u(s) = −H(s, q(s), p(s)), (17)

the conservative system (16) reduces precisely the original dissipative system (13); the 2nd equation
in (16) reproduces (14), and the remaining equations are equivalent to the equations of motion
associated to (13), which in turn are equivalent to (8) as previously noted. Formally, what we have
done is to embed the original dissipative system with phase space R2d into a higher-dimensional
conservative system with phase space R2d+2. The dissipative dynamics thus lies on a hypersurface
of constant energy, K = 0, in high dimensions; see [9] for details. The reason for doing this
procedure, called symplectification, is purely theoretical: since the theory of symplectic integrators
only accounts for conservative systems, we can now extend this theory to dissipative settings by
applying a symplectic integrator to (13) and then fixing the relevant coordinates (17) in the resulting
method. Geometrically, this corresponds to integrating the time flow exactly [9, 98]. In [9] such a
procedure was defined under the name of presymplectic integrators, and these connections hold not
only for the specific example above but also for general non-conservative Hamiltonian systems.
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We are now ready to explain why this approach is suitable to construct practical optimisation
methods. Let Ψδs : R2d+2 → R2d+2 be a symplectic integrator of order r ≥ 1 applied to system
(15). Denote by (tk, qk, uk, pk) the numerical state, obtained by k = 0, 1, . . . iterations of Ψδs. Time
is simulated over the grid sk = (δs)k, with step size δt > 0. Because a symplectic integrator has a
shadow Hamiltonian we have

K̃(tk, qk, uk, pk) = K(t(sk), q(sk), u(sk), p(sk)) +O
(
δsr
)
.

Enforcing (17), the coordinate tk becomes simply the time discretization sk, which is exact, and so
is uk = u(tk) since it is a function of time alone; importantly, u does not couple to any of the other
degrees of freedom so it is irrelevant whether we have access to u(s) or not. Replacing (15) into the
above equation we conclude:

H̃(tk, qk, pk) = H(tk, q(tk), p(tk)) +O(δtr), (18)

where we now denote tk = (δt)k, for k = 0, 1, . . . . Hence, the time-dependent Hamiltonian also has
a shadow, thanks to the cancellation of the variable u. In particular, if we replace the explicit form
of the Hamiltonian (13) we obtain4

V (qk)− V ?︸ ︷︷ ︸
numerical rate

= V (q(tk))− V ?︸ ︷︷ ︸
continuum rate

+O
(
e−η(tk)δtr

)︸ ︷︷ ︸
small error

. (19)

Therefore, the known rates (11) for the continuum system are nearly preserved—and so would be any
rates of more general time-dependent (dissipative) Hamiltonian systems. Moreover, as a consequence
of (18), the original time-independent Hamiltonian (6) of the conformal formulation is also closely
preserved, i.e., within the same bounded error in δt—recall transformation (12). However, this
is also a Lyapunov function, hence the numerical method respects the stability properties of the
original system as well.5

In short, as a consequence of having a shadow Hamiltonian, such geometric integrators are able
to reproduce all the relevant properties of the continuum system. These arguments are completely
general; namely, they ultimately rely on the BCH formula, the existence of bracket vector fields
and the symplectification procedure. Under these basic principles, no discrete-time analyses were
necessary to obtain guarantees for the numerical method; which may not be particularly enlightening
from a dynamical systems viewpoint and are only applicable on a (painful) case-by-case basis.

Let us now present an explict algorithm to solve the optimisation problem (10). Consider a
generic (conservative) Hamiltonian H(q, p), evolving in time s. The well-known leapfrog or Störmer-
Verlet method, the most used symplectic integrator in the literature, is based on the composition
(2) and reads [2]

pk+1/2 = pk − (δs/2)∂qH(qk, pk+1/2),

qk+1 = qk − (δs/2)
[
∂pH(qk, pk+1/2) + ∂pH(qk+1, pk+1/2)

]
,

pk+1 = pk+1/2 − (δs/2)∂qH(qk+1, pk+1/2).

4The kinetic part only contributes to the small error since g is positive definite and |pk − p(tk)| = O(δtr). There
are several technical details we are omitting, such as Lipschitz conditions on the Hamiltonian and on the numerical
method, which we refer to [9] for details.

5Naturally, all these results hold for suitable choices of step size, which can be determined by a linear stability
analysis of the particular numerical method under consideration.
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According to our prescription, replacing the higher-dimensional Hamiltonian (15), imposing the
gauge fixing conditions (17), and recalling that u cancels out, we obtain the following method:6

pk+1/2 = pk − (δt/2)eη(tk)∂qV (qk),

qk+1 = qk − (δt/2)
[
e−η(tk) + e−η(tk+1)

]
g−1pk+1/2,

pk+1 = pk+1/2 − (δt/2)eη(tk+1)∂qV (qk+1),

(20)

where we recall that δt > 0 is the step size and tk = (δt)k, for iterations k = 0, 1, . . . . This
method, which is a dissipative generalisation of the leapfrog, was proposed in [9] and has very good
performance when solving unconstrained problems (10). In a similar fashion, one can extend any
(known) symplectic integrator to a dissipative setting; the above method is just one such example.

2.4 Manifold and constrained optimisation

Following [10], we briefly mention how the previous approach can be extended in great generality,
i.e., to an optimisation problem

min
q∈M

V (q), (21)

whereM is an arbitrary Riemannian manifold. There are essentially two ways to solve this problem
through a (dissipative) Hamiltonian approach. One is to is to simulate a Hamiltonian dynamics
on T ∗M by incorporating the metric of M in the kinetic part of the Hamiltonian. Another is to
consider a Hamiltonian dynamics on Rn and embedM into Rn by imposing several constraints,7

ψa(q) = 0, a = 1, . . . ,m. (22)

This constrained case turns out to be particularly useful since we typically are unable to compute
the geodesic flow onM, but are able to construct robust constrained symplectic integrators for it.

As an example of the first approach, considerM = G being a Lie group, with Lie algebra g and
generators {Ti}. The analogous of Hamiltonian (13) is given by H = − 1

4ge
−η(t) Tr(P 2) + eη(t)V (Q),

where g > 0 is a constant, Q ∈ G and P ∈ g (they can be seen as matrices). The method (20) can
be adapted to this setting, resulting in the following algorithm [10] (recall footnote 6):

Pk+1/2 = e−∆ηk {Pk − (δt/2) Tr [∂QV (Qk) ·Qk · Pk]Pk} ,
Qk+1 = Qk exp

[
δt cosh(∆ηk)g

−1Pk+1/2

]
,

Pk+1 = e−∆ηkPk+1/2 − (δt/2) Tr
[
∂QV (Qk+1) ·Qk+1 · Pk+1/2

]
Pk,

(23)

6 In a practical implementation, it is convenient to make the change of variables pk 7→ eη(tk)pk into (20); recall
the transformations (12). In this case the method reads

pk+1/2 = e−∆ηk [pk − (δt/2)∂qV (qk)] ,

qk+1 = qk − δt cosh(∆ηk)g−1pk+1/2,

pk+1 = e−∆ηkpk+1/2 − (δt/2)∂qV (qk+1),

where ∆ηk ≡ η(tk+1/2)−η(tk) =
∫ tk+1/2

tk
γ(t)dt. Note that only a half-step difference of η(t) appears in these updates.

The algorithm is thus written in the same variables as the conformal representation (8). The advantage is that we do
not have large or small exponentials, which can be problematic numerically. Furthermore, when solving optimisation
problems, it is convenient to set the matrix g = (δt)I; this was noted in [8] but can also be understood from the rates
(11) since then the step size δt disappears from some of these formulas.

7Theoretically, there is no loss of generality since Nash or Whitney embedding theorems tells us that any smooth
manifoldM can be embedded into Rn for sufficiently large n.
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where
(
∂QV (Q)

)
ij

= ∂V/∂Qji is a matrix.
As an example of the second approach, one can constrain the integrator on Rn to define a

symplectic integrator on M via the discrete constrained variational approach [5] by introducing
Lagrange multipliers, i.e., by considering the Hamiltonian H + eη(t)

∑
a λ

aψa(q), where H is the
Hamiltonian (13). In particular, the method (20) can be constrained to yield [10]

pk+1/2 = e−∆ηkΛg(qk) [pk − (δt/2)∂qV (qk)] ,

p̄k+1/2 = pk+1/2 − (δt/2)e−∆ηk [∂qψ(qk)]
>λ,

qk+1 = qk − δt cosh(∆ηk)g
−1p̄k+1/2,

0 = ψa(qk+1) (a = 1, . . . ,m),

pk+1 = Λg(qk+1)
[
e−∆ηk p̄k+1/2 − (δt/2)∂qV (qk+1)

]
,

(24)

where we have the projector Λg(q) ≡ I − R−1
g (q)∂qψ(q)g−1 with Rg(q) ≡ ∂qψ(q)g−1∂qψ(q)>, and

(∂qψ)ij ≡ ∂ψi/∂q
j is the Jacobian matrix of the constraints; λ = (λ1, . . . , λm)> is the vector of

Lagrange multipliers and ∆ηk ≡
∫ tk+1/2

tk
γ(t)dt accounts for the damping. In practice, the Lagrange

multipliers are determined by solving the (nonlinear) algebraic equations for the constraints, i.e.,
the 2nd to 4th updates above are solved simultaneously. The above method consists in a dissipative
generalisation of the well-known RATTLE integrator from molecular dynamics [100–103].

It is possible to generalise any other (conservative) symplectic method to this (dissipative)
optimisation setting on manifolds. In this general setting, there still exists a shadow Hamiltonian
so that convergence rates and stability are closely preserved numerically [10] (similarly to (18) and
(19)). In particular, one can also consider different types of kinetic energy, beyond the quadratic
case discussed above, which may perform better in specific problems [8]. This approach therefore
allows one to adapt existing symplectic integrators to solve optimisation problems on Lie groups
and other manifolds commonly appearing in machine learning, such as Stiefel, Grassmanians, or to
solve constrained optimisation problems on Rn.

2.5 Gradient flow as a high friction limit

Let us provide some intuition why simulating 2nd order systems is expected to yield faster algo-
rithms. It has been shown that several other accelerated optimisation methods8 are also discretisa-
tions of system (8) [38]. Moreover, in the large friction limit, γ →∞, this system reduces to the 1st
order gradient flow, dq/dt = −∂qV (q) (assuming g ∝ I), which is the continuum limit of standard,
i.e., nonaccelerated methods [38]. The same happens in more general settings; when the damping
is too strong, the second derivative becomes negligible and the dynamics is approximately 1st order.

As an illustration, consider Figure 1 (left) where a particle immersed in a fluid falls under the
influence of a potential force −∂qV (q), that plays the role of “gravity”, and is constrained to move
on a surface. In the underdamped case, the particle is under water, which is not so viscous, so
it has acceleration and moves fast (even oscillate). In the overdamped case, the particle is in a
highly viscous fluid, such as honey, and the drag force −γp is comparable or stronger to −∂qV (q),
thus the particle moves slowly since it cannot accelerate; during the same elapsed time δt, an
accelerated particle would travel a longer distance. We can indeed verify this behaviour numerically.
In Figure 1 (right) we run algorithm (23) in the underdamped and overdamped regimes when solving

8Besides accelerated gradient based methods, accelerated extensions of important proximal-based methods such
as proximal point, proximal-gradient, alternating direction method of multipliers (ADMM), Douglas-Rachford, Tseng
splitting, etc., are implicit discretizations of (8); see [38] for details.
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Figure 1: Why simulating 2nd order systems yields accelerated methods. Left: Constrained particle falling
in fluids of different viscosity. When the drag force is strong the particle cannot accelerate and has a 1st
order dynamics (see text). Right: Simulation of algorithm (23) where V (Q) is the energy of a spherical spin
glass (Lie group SO(n), with n = 500) [10]. In the overdamped regime the method is close to Riemannian
gradient descent [104], which is a 1st order dynamics; (23) is much faster in the underdamped regime.

an optimisation problem on the n-sphere, i.e., on the Lie group SO(n).9 We can see that, in the
overdamped regime, this method has essentially the same dynamics as the Riemannian gradient
descent [104], which is nonaccelerated and corresponds to a 1st order dynamics; all methods use the
same step size, only the damping coefficient is changed.

2.6 Optimisation on the space of probability measures

There is a tight connection between sampling and optimisation on the space of probability measures
which goes back to [50, 51]. Let P2(Rn) be the space of probability measures on Rn with finite
second moments, endowed with a Wasserstein-2 metric W2. The gradient flow of a functional F [µ]
on the space of probability measures is the solution to the partial differential equation ∂tµ(q, t) =
−∇W2F [µ(q, t)], which, under sufficient regularity conditions, is equivalent to [50,51,105]

∂tµ = ∂ ·
(
µ∂
δF [µ]

δµ

)
, (25)

where ∂ ≡ ∂q and ∂ · are the derivative and the divergence operators on Rn, respectively. The
evolution of this system solves the optimisation problem

ρ ≡ arg min
µ∈P2(Rn)

F [µ], (26)

i.e., µ(q, t)→ ρ(q) as t→∞ in the sense of distributions. We can consider the analogous situation
with a dissipative flow induced by the conformal Hamiltonian tensor (7) on the space of probability
measures; we set g = I and γ(t) = γ = const. for simplicity. Thus, instead of (25), we have a
conformal Hamiltonian system in Wasserstein space given by the continuity equation

∂tµ = ∂ ·
(
µB∂

δF [µ]

δµ

)
, (27)

9The details are not important here, but this problem minimises the Hamiltonian of a spherical spin glass (see [10]
for details). The same behaviour is seen with the constrained method (24) as well.
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where now ∂ ≡ (∂q, ∂p) and µ is a measure over P2(R2d). Let F be the free energy defined as

F [µ] ≡ U [µ]− β−1 S[µ], U [µ] ≡ Eµ[H], S[µ] ≡ Eµ[− logµ], (28)

where U is the (internal) energy, H is the Hamiltonian (6), S is the Shannon entropy, and β is the
inverse temperature. The functional derivative of the free energy equals

δF

δµ
= H + β−1 logµ =

1

2
‖p‖2 + V (q) + β−1 logµ. (29)

In particular, the minimiser of F is the stationary density

ρ(q, p) = Z−1
β e−βH(q,p), Zβ ≡ Eµ

[
e−βH(q,p)

]
. (30)

Note also that the free energy (28) is nothing but the KL divergence (up to a constant which is the
partition function):

KL[µ | ρ] ≡ Eµ [log(µ/ρ)] = βF [µ]− logZβ.

Therefore, the evolution of µ as given by the conformal Hamiltonian system (27) minimises the
divergence from the the stationary density (30). Replacing (29) into (27) we obtain

∂tµ = −∂q · [µp] + ∂p · [µ∂qV (q) + γµp] + γβ−1∂2
pµ,

which is nothing but the Fokker-Planck equation associated to the underdamped Langevin diffusion

dqt = ptdt, dpt = −∂qV (qt)dt− γptdt+
√

2γβ−1dwt, (31)

where wt is a standard Wiener process. Thus, the underdamped Langevin can be seen as performing
accelerated optimisation on the space of probability measures. A quantitative study of its speed of
convergence is given by the theory of hypocoercivity [106–108].

The above results provide a tight connection between sampling and optimisation. Interestingly,
by the same argument as used in section 2.5 (see Figure 1), the high friction limit, γ → ∞, of the
underdamped Langevin diffusion (31) yields the overdamped Langevin diffusion [38, 107]

dqt = −∇V (qt)dt+
√

2β−1dwt, (32)

which corresponds precisely to the gradient flow (25) on the free energy functional F [µ] [51, 105],
where now µ = µ(q, t) ∈ P2(Rd). Thus, in the same manner that a 2nd order damped Hamiltonian
system may achieve accelerated optimisation compared to a 1st order gradient flow, the under-
damped Langevin diffusion (31) may achieve accelerated sampling compared to the overdamped
Langevin diffusion (32). Such an acceleration has indeed been demonstrated [109] in continuous-
time and for a particular discretisation.

3 Hamiltonian-based accelerated sampling

The purpose of sampling methods is to efficiently draw samples from a given target distribution ρ
or, more commonly, to calculate expectations with respect to ρ:∫

X
f dρ ≈ 1

n

n−1∑
k=0

f (xk) . (33)
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However, generating i.i.d. samples {xk} is usually practically infeasible, even for finite sample
spaces, as in high dimensions probability mass tends to concentrate in small regions of the sample
space, while regions of high probability mass tend to be separated by large regions of negligible
probability. Moreover, ρ is usually only known up to a normalisation constant [110]. To circumvent
this issue, MCMC methods rely on constructing ergodic Markov chains {xn}n∈N that preserve
the target distribution ρ. If we run the chain long enough (n → ∞), Birkhoff’s ergodic theorem
guarantees that the estimator on the right-hand side of (33) converges to our target integral on
the left-hand side almost surely [111]. An efficient sampling scheme is one that minimises the
variance of the MCMC estimator. In other words, fewer samples will be needed to obtain a good
estimate. Intuitively, good samplers are Markov chains that converge as fast as possible to the
target distribution.

3.1 Optimising diffusion processes for sampling

As many MCMC methods are based on discretising continuous-time stochastic processes, the anal-
ysis of continuous-time processes is informative of the properties of efficient samplers.

Diffusion processes possess a rich geometric theory, extending that of vector fields, and have
been widely studied in the context of sampling. They are Markov processes featuring almost surely
continuous sample paths (i.e., no jumps) and correspond to the solutions of stochastic differential
equations (SDEs). While a deterministic flow is given by a first order differential operator—namely,
a vector field X as used in §2—diffusions require specifying a set of vector fields X,Y1, . . . , YN ,
where X represents the (deterministic) drift and Yi the directions of the (random) Wiener processes
wit, and are characterised by a second order differential operator of the form L ≡ X+Yi ◦Yi, known
as the generator of the process. Equivalently, diffusions can be written as Stratonovich SDEs:
dxt = X(xt)dt+ Yi(xt) ◦ dwit.

For a smooth positive target measure ρ, the complete family of ρ-preserving diffusions is given
by (up to a topological obstruction contribution) [112]

dxt = curlρ(A)dt+
1

2
divρ(Yi)Yidt+ Yi ◦ dwit, (34)

for a choice of antisymmetric bracket A. Here curlρ is a differential operator on multi-vector fields,
generalising the divergence on vector fields divρ of ρ, and is induced via an isomorphism ρ] defined by
ρ which allows to transfer the calculus of twisted differential forms to a measure-informed calculus
on multi-vector fields [112]. The ergodicity of (34) is essentially characterised by Hörmander’s
hypoellipticity condition; i.e., whether the Lie algebra of vector fields generated by {Yi, [X,Yi]}Ni=1

spans the tangent spaces at every point [107,113,114]. On Euclidean space the above complete class
of measure preserving diffusions can be given succinctly by Itô SDEs [115]:

dxt = −(A+ S) (xt) ∂V (xt) dt+ ∂ · (A+ S) (xt) dt+
√

2S (xt)dwt, (35)

where S,A reduce to symmetric and antisymmetric matrix fields and V is the negative Lebesgue
log-density of ρ.

There are two well-studied criteria describing sampling efficiency in Markov processes: 1) the
worst-case asymptotic variance of the MCMC estimator (33) over functions in L2(ρ), and 2) the
spectral gap. The spectral gap is the lowest non-zero eigenvalue of the (negative) generator −L
on L2(ρ). When it exists, it is an exponential convergence rate of the density of the process to
the target density [107, 116, 117]. Together, these criteria yield confidence intervals on the non-
asymptotic variance of the MCMC estimator, which determines sampling performance [118].
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A fundamental criterion for efficient sampling is non-reversibility [116, 119, 120]. A process is
non-reversible if it is statistically distinguishable from its time-reversal when initialised at the target
distribution [107]. Measure-preserving diffusions are non-reversible precisely when A 6≡ 0 [121]. In-
tuitively, non-reversible processes backtrack less often and thus furnish more diverse samples [122].
Furthermore, non-reversibility leads to mixing, which accelerates convergence to the target mea-
sure. It is well known that removing non-reversibility worsens the spectral gap and the asymptotic
variance of the MCMC estimator [116, 119, 120]. In diffusions with linear coefficients, one can con-
struct the optimal non-reversible matrix A to optimise the spectral gap [123,124] or the asymptotic
variance [120]. However, there are no generic guidelines on how to optimise non-reversibility in
arbitrary diffusions. This suggests a two-step strategy to construct efficient samplers: 1) optimise
reversible diffusions, and 2) add a non-reversible perturbation A 6≡ 0 [125].

Diffusions on manifolds are reversible when A ≡ 0, and thus have the form dxt = 1
2
divρ(Yi)Yidt+

Yi ◦ dwit, which on Euclidean space reads

dxt = −S (xt) ∂V (xt) dt+ ∂ · S (xt) dt+
√

2S (xt)dwt. (36)

The spectral gap and the asymptotic variance of the MCMC estimator are the same optimality
criteria in reversible Markov processes [126]. When S is positive definite everywhere, it defines a
Riemannian metric g on the state space. The generator is then the elliptic differential operator

L = ∇g + ∆g, (37)

where ∇g is the Riemannian gradient and ∆g is the Laplace-Beltrami operator, i.e., the Riemannian
counterpart of the Laplace operator. Thus, reversible (elliptic) diffusions (37) are the natural gen-
eralisation of the overdamped Langevin dynamics (32) to Riemannian manifolds [127]. Optimising
S to improve sampling amounts to endowing the state space with a suitable Riemannian geometry
that exploits the structure of the target density. For example, sampling is improved by directing
noise along vector fields that preserve the target density [128]. When the potential V is strongly
convex, the optimal Riemannian geometry is given by g ≡ ∂2V [129, 130]. Sampling can also be
improved in hypoelliptic diffusions with degenerate noise (i.e., when S is not positive definite). In-
tuitively, the absence of noise in some directions of space leads the process to backtrack less often
and thus yield more diverse samples. For instance, in the linear case, the optimal spectral gap is
attained for an irreversible diffusion with degenerate noise [131]. However, degenerate diffusions can
be very slow to start with, as the absence of noise in some directions of space make it more difficult
for the process to explore the state space [131].

Underdamped Langevin dynamics (31) combines all the desirable properties of an efficient sam-
pler: it is irreversible, has degenerate noise, and achieves accelerated convergence to the target
density [132]. We can optimise the reversible part of the dynamics (i.e., the friction γ) to improve
the asymptotic variance of the MCMC estimator [133]. Lastly, we can significantly improve under-
damped Langevin dynamics by adding additional non-reversible perturbations to the drift [134].

One way to obtain MCMC algorithms is to numerically integrate diffusion processes. As vir-
tually all non-linear diffusion processes cannot be simulated exactly, we ultimately need to study
the performance of discrete algorithms instead of their continuous counterparts. Alarmingly, many
properties of diffusions can be lost in numerical integration. For example, numerical integration
can affect ergodicity [135]. An irreversible diffusion may sample more poorly than its reversible
counterpart after integration [136]. This may be because numerical discretisation can introduce, or
otherwise change, the amount of non-reversibility [136]. The invariant measure of the diffusion and
its numerical integration may differ, a feature known as bias. We may observe very large bias even
in the simplest schemes, such as the Euler-Maruyama integration of overdamped Langevin [60].
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Luckily, there are schemes whose bias can be controlled by the integration step size [137]; yet, this
precludes using large step sizes. Alternatively, one can remove bias by supplementing the integra-
tion step with a Metropolis-Hastings corrective step; however, this makes the resulting algorithm
reversible. In conclusion, designing efficient sampling algorithms with strong theoretical guarantees
is a non-trivial problem that needs to be addressed in its own right.

3.2 Hamiltonian Monte Carlo

Constructing measure-preserving processes, in particular diffusions, is relatively straightforward.
A much more challenging task consists of constructing efficient sampling algorithms with strong
theoretical guarantees. We now discuss an important family of well-studied methods, known as
Hamiltonian Monte Carlo (HMC), which can be implemented on any manifold, for any smooth
fully supported target measure that is known up to a normalising constant. Some of these methods
can be seen as an appropriate geometric integration of the underdamped Langevin diffusion, but it
is in general simpler to view them as combining a geometrically integrated deterministic dynamics
with a simple stochastic process that ensures ergodicity.

The conservative Hamiltonian systems previously discussed provide a natural candidate for the
deterministic dynamics. Indeed, given a target measure ρ ∝ e−V µM, with µM a Riemannian
measure (such as the Lebesgue measure dq on M = Rd), if we interpret the negative log-density
V (q) as a potential energy, i.e., a function depending on position q, one can then plug in the potential
within Newton’s equation to obtain a deterministic proposal that is well-defined on any manifold,
as soon as the acceleration and derivative operators have been replaced by their curved analogues

mq̈ = −∂V (q)︸ ︷︷ ︸
flat Newton

−→

acceleration︷︸︸︷
∇q̇
dt

=

direction of
greatest decrease︷ ︸︸ ︷
−∇V (q)︸ ︷︷ ︸

Riemannian Newton

, (38)

with given initial conditions for the position q and velocity v = dq/dt. This is a 2nd order system
which evolves in the tangent bundle, (q, v) ∈ TM, which is TM = Rd × Rd when M = Rd.
The resulting flow is conservative since it corresponds to a Hamiltonian system as discussed in
section §2.2, with Hamiltonian H(q, v) ≡ 1

2‖v‖
2
q + V (q), where ‖v‖2q is the Riemannian squared-

norm, which is vT g(q)v whenM = Rd and g(q) is the Riemannian metric; this is the manifold version
of the Hamiltonian (6). This system preserves the symplectic measure µΩ(q, v) = det g(q)dqdv, and
thus also the canonical distribution µ ∝ e−H(q,v)µΩ, which is the product of the target distribution
over position with the Gaussian measures on velocity (with covariance g). For instance, onM = Rd,

µ(q, v) ∝ ρ(q)×N
(
0, g−1(q)

)
(v) ∝ e−V (q)

√
det g(q)dq ×

√
det g(q)e−

1
2v
T g(q)vdv.

Moreover, the pushforward under the projection Proj : (q, v) 7→ q is precisely the target measure:
Proj∗µ = ρ. Concretely, the samples generated by moving according to Newton’s law, after ignoring
their velocity component, have ρ as their law. The main critical features and advantages in using
Hamiltonian systems arises from their numerical implementation. Indeed, the flow of (38) is only
tractable for the simplest target measures, namely those possessing a high degree of symmetry. In
order to proceed, we must devise suitable numerical approximations which, unfortunately, not only
break such symmetries but may lose key properties of the dynamics such as stationarity (typically
not retained by discretisations). However, as we saw in section §2.2, most symplectic integrators have
a shadow Hamiltonian and thus generate discrete trajectories that are close to the associated bona
fide (shadow) Hamiltonian dynamics, that in particular preserve the shadow canonical distribution.

16



Most integrators used in sampling, such as the leapfrog, are geodesic integrators. These are
splitting methods (see section §2.1) obtained by splitting the HamiltonianH(q, v) = H1(q, v)+H2(q),
where H1(q, v) = 1

2
‖v‖2q and H2(q) = V (q) are to be treated as independent Hamiltonians in their

own right. Both of these Hamiltonians generate dynamics that might be tractable: the Riemannian
component H1, associated to the Riemannian reference measure, induces the geodesic flow, while
the target density component H2 gives rise to a vertical gradient flow, wherein the velocity is shifted
by the direction of maximal density change, i.e., (q, v) 7→ (q, v−δt∇qV (q)). The Jacobi identity and
the BCH formula imply these integrators do possess a shadow Hamiltonian H̃, and reproduce its
dynamics. Such a shadow can in fact be explicitly obtained from (5) by computing iterated Poisson
brackets; e.g., onM = Rd and for H(q, v) = (1/2)vT gv + V (q), the three-stage geodesic integrator
ΦH1
bδt ◦ ΦH2

aδt ◦ ΦH1

(1− 1
2 b)δt
◦ ΦH2

(1−2a)δt ◦ ΦH1

(1− 1
2 b)δt
◦ ΦH2

aδt ◦ ΦH1
bδt, with parameters a, b ∈ R, yields [138]

H̃(q, v) = H(q, v) + δt2
[
c1∂V (q)T g−1∂V (q) + c2v

T∂2V (q)v
]

+O(δt4),

for some constants c1 and c2. As an immediate consequence, these symplectic integrators preserve
the reference symplectic measure µΩ and can be used as a (deterministic) Markov proposal, which
when combined with the Metropolis-Hastings acceptance step that depends only on the target den-
sity, gives rise to a measure-preserving process. Moreover, the existence of the shadow Hamiltonian
ensures that the acceptance rate will remain high for distant proposals, allowing small correlations.
However, since Hamiltonian flows are conservative, they remain stuck within energy level sets, which
prevents ergodicity. It is thus necessary to introduce another measure-preserving process, known
as the heat bath or thermostat, that explores different energy levels; the simplest such process cor-
responds to sampling a velocity from a Gaussian distribution. Bringing these ingredients together,
we thus have the following HMC algorithm: given zn = (q, v), compute zn+1 according to

1. Heat bath: sample a velocity according to a Gaussian, v† ∼ N (0, g−1(q)).

2. Shadow Hamiltonian dynamics: move along the Hamiltonian flow generated by the geodesic
integrator, z∗ = Ψδt(z

†), where z† = (q, v†).

3. Metropolis correction: accept z∗ with probability min
{

1, e−∆H
}
, where ∆H = H(z?)−H(z†).

If accepted then set zn+1 = z∗, otherwise set zn+1 = (q,−v†).

The above rudimentary HMC method (originally known as Hybrid Monte Carlo) was proposed for
simulations in lattice quantum chromodynamics with M being the special unitary group, SU(n),
and used a Hamiltonian dynamics ingeniously constructed from the Maurer-Cartan frame to com-
pute the partition function of discretised gauge theories [13]. This method has later been applied
in molecular dynamics and statistics [12,49,64,139,140].

While the above discussion provides a justification for the use of Hamiltonian mechanics, a more
constructive argument from first principles can also be given. From the family of measure-preserving
dynamics, which as we have seen can be written as curlµ(A) (recall (34)), we want to identify those
suited to practical implementations (here µ could be any distribution on some space F having the
target ρ has a marginal). Only for the simplest distributions µ we can hope to find brackets A for
which the flow of curlµ(A) is tractable. Instead, the standard approach to geometrically integrate
this flow relies as before on splitting methods, which effectively decompose µ ∝ e−

∑
H`µF into

simpler components by decomposing the reference measure from the density and taking advantage
of any product structure of the density, so that curlµ(A) = curlµF (A) +

∑
`X

A
H`

.
There are three critical properties underpinning the success of HMC in practice. The first two

are the preservation of the reference measure and the existence of a conserved shadow Hamiltonian
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for the numerical method. These imply that we remain close to preserving µ along the flow, and
in particular leads to Jacobian-free Metropolis corrections with good acceptance rates for distant
proposals (see [141] for examples of schemes with Jacobian corrections). Achieving these properties
yield strong constraints on the choice of A [142]; the shadow property is essentially exclusive to
Poisson systems, for which the conservation of a common reference measure is equivalent to the
triviality of the modular class in the first Poisson cohomology group [143]. In particular, Poisson
brackets that admit such an invariant measure have been carefully analysed and are known as
unimodular ; the only unimodular Poisson bracket that can be constructed on general manifolds
seems to be precisely the symplectic one.

The third critical property is the existence of splittings methods for which all the composing flows
are either tractable or have adequate approximations, namely the geodesic integrators. Indeed, as we
have seen, the flow ΦH2—induced by the potentialH2(q) = V (q)—is always tractable, independently
of the complexity of the target density; this is possible mainly due to the extra “symmetries” resulting
from implementing the flow on a higher-dimensional space TM rather thanM. On the other hand,
one key consideration for the tractability of the the geodesic flow ΦH1

δt —induced by the kinetic
energy H1(q, v)—is the choice of Riemannian metric; for most cases, it is numerically hard to
implement ΦH1

δt since several implicit equations need to be solved. In general, it is desirable to use
a Riemannian metric that reflects the intrinsic symmetries of the sample space, mathematically
described by a Lie group action. Indeed, by using an invariant Riemannian metric, one greatly
simplifies the equations of motion of the geodesic flow, reducing the usual 2nd order Euler-Langrange
equations to the 1st order Euler-Arnold equations [144–146], with tractable solutions in many cases
of interest, e.g., for naturally reductive homogeneous spaces; including Rd, the space of positive
definite matrices, Stiefel manifolds, Grassmannian manifolds, and many Lie groups. In such cases,
it is possible to find a Riemannian metric whose geodesic flow is known and given by the Lie group
exponential [16, 147, 148]. For the other main class of spaces, namely those given by constraints,
if one chooses the restriction of the Euclidean metric, then the RATTLE scheme discussed in
optimisation (see section §2.4) is a suitable symplectic integrator [103, 149–152] (perhaps up to a
reversiblity check). Occasionally, it may be suitable to use a Riemannian metric associated to the
target distribution rather than the sample space; e.g., when it belongs to a statistical manifold. In
that case, any choice of (information) divergence gives rise to an information tensor that may be
used in the HMC algorithm. Notably, this is the case in Bayesian statistics, wherein attempting
to find a Riemannian metric that locally matches the Hessian of the posterior motivates the use of
the Fisher information tensor summed with the Hessian of the prior, giving rise to the Riemannian
HMC [127, 153]. When a Riemannian metric whose geodesic flow is unknown is chosen, one can
use the trick of increasing the dimension of the phase space to add symmetries to derive explicit
symplectic integrators [154,155].

Once we have an integrator for the geodesic flow, another important consideration is the con-
struction and tuning of the overall integrator, i.e., the specific composition of ΦH1

δt and ΦH2
δt . Tradi-

tional numerical integrators are tuned to provide highly accurate approximations for the trajectories
in the limit δt→ 0; for instance, a forth order Runge-Kutta method. However, samplers aim to have
the largest possible step size δt in order to reduce correlations. One approach consists in tuning the
integrator to obtain good density preservation in the Gaussian case. Another approach consists in
tuning the integrator to ensure the shadow Hamiltonian H̃ agrees with H up to the desired order;
see [156–161]. We note that when the target density contains two components, one computationally
expensive and the other computationally cheap, it may be desirable to further split the potential
H2(q) = V (q) to obtain higher acceptance rates [162–164]. In order to achieve ergodicity in HMC
methods, it is usually sufficient to randomise the trajectory length of the integrator [165–167]. How-
ever, deriving guarantees on the rate of convergence of HMC is difficult, though recent work have
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established sufficient conditions for geometric ergodicity [15,168].
Let us also briefly mention some useful upgrades that have been proposed in recent years. First,

whenever the Metropolis step rejects the proposed sample, the (expensive) computation of the
numerical trajectory is wasted, and several modifications have been proposed to address this issue,
for example by granting the method extra integration steps when the proposal is rejected [169,170],
or using a dynamic integration with a termination criterion that aims to ensure the motion is long
enough to avoid random walks, but short enough that we do not waste computational effort, such
as the No-U-Turn sampler [171].

Second, the Metropolis algorithm gives rise to a reversible method which, as discussed above,
usually has slower convergence properties. Modern HMC methods bypass this issue by replacing
the heat bath by an Ornstein-Uhlenbeck process, which ensures the overall algorithm is irreversible.
In this case, the overall HMC method can be viewed as a geometric integration of the underdamped
Langevin diffusion [106,172,173]. The connection between HMC and Langevin diffusion originates
from the desire to replace the Gaussian heat bath with a partial momentum refreshment, yielding
a more accurate simulation of dynamical properties and higher acceptance rates [174].

Third, many modifications of the rudimentary HMC algorithm only provide improvements when
the acceptance rate is sufficiently high. A third class of upgrades improves the acceptance rate
by using the fact that the shadow Hamiltonian is exactly preserved by the integrator. These
shadow HMC methods sample from a biased target distribution, defined by the (truncated) shadow
Hamiltonian, and correct the bias in the samples via an importance sampler [138,175,176].

Finally, the Metropolis step can be replaced with a multinomial correction that uses the entire
numerical trajectory, accepting a given point along it according to the degree by which it distorts the
target measure [64]. Some methods entirely skip the accept/reject step, in particular those relying
on appproximate gradients and surrogates [177, 178], such as the stochastic HMC methods; such
methods approximate the potential V (q) and its derivative when they are given by a sum over data
points, V (q) =

∑
i Vi(q), by a cheaper sum over a uniformly sampled minibatches [179] (these are

commonly called stochastic gradients in machine learning). However, this may break the shadow
property and reduce the scalable and robust properties of HMC methods [180].

4 Statistical inference with kernel-based discrepancies

The problem of parameter inference consists of estimating an element θ∗ ∈ Θ using a sequence
of random functions (or estimators) θ̂n : Ω → Θ, with θ̂n determined by a set of measurements
{q1, . . . , qn} representing the available experimental data. In the statistical context, we search for
the optimal approximation µθ∗ of the target measure ρ within a statistical model {µθ : θ ∈ Θ}, with
respect to a discrepancy D : P × P → [0,∞] over the set of probability measures P. A common
choice of discrepancy is the KL-divergence, and the resulting inference problem can be implemented
via the asymptotically optimal maximum likelihood estimators [69]. As in many applications we are
interested in computing expectations, a particularly suitable notion of discrepancies are the integral
probability pseudometrics (IPM) [181], which quantify the worse-case integration error with respect
to a family of functions F

dF (ρ, µ) ≡ sup
f∈F

∣∣∣∣∫ fdρ−
∫
fdµ

∣∣∣∣ .
An apparent difficulty arises with IPMs in that we need to compute a supremum, which will be
intractable for most choices of F . Observe, however, that if F were the unit ball of a normed vector
space H, and integration with respect to ρ and µ was a continuous linear functional on H, then
dF (ρ, µ) would correspond to the distance between ρ and µ in the dual norm over the dual H∗,
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i.e., dF (ρ, µ) = ‖ρ − µ‖∗. Conveniently, reproducing kernel Hilbert spaces (RKHS) are precisely
Hilbert spaces over which the Dirac distributions δx : f 7→ f(x) act continuously [182–184], and,
more generally, the probability distributions that act continuously by integration on a RKHS H
are exactly those for which all elements of H are integrable [185]. Denoting by PH the set of such
probability measures, so that by definition δx ∈ PH, we can define the Maximum Mean Discrepancy
(MMD) as

MMD : PH × PH → [0,∞), MMD[ρ | µ] = ‖ρ− µ‖,

where we further used the Riesz representation isomorphism to view ρ, µ ∈ PH ⊂ H∗ ∼= H as
elements of H. The map PH → H is usually referred to as the mean embedding [186, 187]. The
angles between the mean embedding of Dirac distributions play a central role in the study of RKHS,
and indeed characterise them. They define the reproducing kernel

k :M×M→ R, k(x, y) ≡ 〈δx, δy〉 ,

with 〈·, ·〉 denoting the inner product on H, from which we can obtain a practical expression for the
squared MMD:

MMD2[ρ | µ] =

∫∫
k(x, y)(ρ− µ)(dy)(ρ− µ)(dx).

4.1 Topological methods for MMDs

A key feature of RKHS, as identified by Laurent Schwartz, is the fact they are Hilbertian subspaces,
i.e., Hilbert spaces continuously embedded within a topological vector space T , denoted H ↪→
T [188]. In this context, by composing the transpose of the inclusion H ↪→ T with the Riesz
isomorphism, we can define a (generalised) mean embedding as the weakly-continuous positive map

φ : T ∗ ↪→ H∗ → H.

This mapping allows us to transfer structures between H and T ∗, an example of which is the MMD,
which is nothing else than the pullback of the Hilbert space metric from H to T ∗. Some important
examples of T are C0, C∞c and RM (with their canonical topologies), whose duals are the spaces of
finite Radon measures, Schwartz distributions, and measures with finite support, respectively [189].
In particular a RKHS, as defined above, is any Hilbert space satisfying H ↪→ RM. More generally,
when T is continuously embedded in the space of Rn-valued functions onM—as in the examples
above, which have n = 1—then H inherits (and can be characterised in terms of) a reproducing
kernel K :M×M→ Rn×n, defined ∀v, u ∈ Rn by

v>K(x, y)u = δvx
[
φ(δuy )

]
,

where δux : h 7→ u · h(x); but this need not be the case in general, and we will employ Hilbertian
subspaces with no reproducing kernel to construct the score-matching discrepancy.

This geometric description of RKHS and MMD allows us to swiftly apply topological methods
in their analysis. For example, in order for MMD2 to be a valid notion of statistical divergence, it
should accurately discriminate distinct distributions, in the sense that MMD[ρ | µ] = 0 iff ρ = µ.
By construction, MMD will be characteristic to a subset of T ∗, that is be able to distinguish its
elements, iff φ is injective. The Hahn–Banach theorem further shows that this is equivalent to
the denseness of H in T , reducing the matter to a topological question [186, 189, 190]. In many
applications, we typically would like T ∗ to be the set of probability measures, but the latter is
not even a vector space. Instead, just as is commonly done to define (statistical) manifolds, it is
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desirable to embed P within a more structured space, such as the space of finite Radon measures
C∗0 . Characteristicness to C∗0 is also known as universality in learning theory, since such RKHS are
dense in L2(µ) for any µ ∈ P, which enables the method to learn the target function independently
of the data-generating distribution [191]. However, in many important cases, we are interested in
analysing the denseness of H in a space other than C0. For instance, in the case of unbounded
reproducing kernels, we cannot aim to separate all finite distributions, since the RKHS will contain
unbounded functions and the MMD will only be defined on a subset of P. In the particular case
of the KSDs discussed below, which are given by transforming a base RKHS into a Stein RKHS
via a differential operator, the characteristiness of the Stein RKHS to a set of probability measures
is equivalent to the characteristiness of the base RKHS to more general spaces T ∗ of Schwartz
distributions [185].

Moreover, the ability of MMD to discriminate distributions is also useful to ensure it further
metrises, or at least controls, weak convergence, and thus provide a suitable quantification of the dis-
crepancy between unequal distributions. Indeed, on non-compact locally compact Hausdorff spaces
such as Rd, when H ↪→ C0, then MMD will metrise weak convergence (of probability measures) iff
the kernel k is continuous and H is characteristic to the space of finite Radon measures [192]. The
fact that the RKHS must separate all finite measures in order to metrise weak convergence results
from the fact that otherwise MMD cannot in general prevent positive measures from degenerating
into the null measure on non-compact spaces, beyond the family of translation-invariant kernels,
for which characteristicness to the sets of probability measures or that of finite measures are in fact
equivalent [189]. It is also possible to prevent probability mass from escaping to infinity—when the
topology of the sequence of distributions is relatively compact with respect to the weak topology
on the space of distributions—since, in that case, standard topological arguments relate MMD and
weak convergence via characteristicness to P [193]. For example, by Prokhorov’s theorem we may
use the tightness of a sequence of distributions to ensure characteristic MMDs detect any loss of
mass, and thus control weak convergence [194].

4.2 Smooth measures and KSDs

MMD have a computationally tractable expression whenever ρ, µ are discrete measures, or at least
tractable U -statistics when their samples are readily available. Many applications involve distribu-
tions that are smooth and fully supported, but hard to sample from. Recalling the definition of
dF (ρ, µ), it would be useful to construct a MMD for which the set F consists of functions whose
integral under µ is tractable, for example equal to zero; the MMD would then reduce to a double
integration with respect to ρ. To achieve this, we will leverage ideas from Stein’s method [195,196],
and apply Stein operators to a given RKHS so as to construct a Stein RKHS whose elements have
vanishing expectation under a distribution of interest.

4.2.1 The canonical Stein operator and Poincaré duality

To gain intuition on Stein operators, we begin by considering the integral with respect to µ as a
linear operator on test functions, µ : C∞c (M) → R, with µf ≡

∫
fdµ, and we are interested in

generating test functions in the kernel of this operator (i.e., with vanishing expectations). There
are two fundamental theorems that help us understand the integral-differential geometry of the
manifold: de Rham’s theorem and Poincaré duality. The former relates the topology of the manifold
to information on the solutions of differential equations defined over the manifold [197]. The latter
(which contains the fundamental theorem of calculus) describes the properties of the integral pairing
(α, β) 7→

∫
α ∧ β of differential forms, which include the pairing of test functions with smooth
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measures (f, µ) 7→
∫
fdµ. While these results are canonical statements about the manifold, we can

turn them into measure-theoretic statements by means of the isomorphism µ]. In particular, when
M is connected, there is an isomorphism between the top compactly supported twisted de Rham
cohomology group Hn

c (M) (which depends on the topology of M) and R given by integration,
ω 7→

∫
M ω. Applying the transformation µ] to this isomorphism yields the isomorphism of vector

spaces
µ : C∞c (M)/Im(divµ|c)→ R,

where divµ|c : Xc(M) → C∞c (M) is the divergence operator restricted to the set of compactly
supported vector fields Xc(M). Hence, if h, f ∈ C∞c (M), then∫

fdµ =

∫
hdµ ⇐⇒ f = h+ divµ(X) for some X ∈ Xc(M).

Consequently,
µ−1({0}) = {divµ(X) : X ∈ Xc(M)}.

Thus, the test functions that integrate to zero are precisely those that can be written as the diver-
gence of compactly supported vector fields. In particular, on compact manifolds, there is a canonical
Stein operator, divµ, which turns vector fields into functions with vanishing expectations. For other
types of manifolds, one can obtain similar dualities by using other classes of differential forms, such
as the square-integrable ones, or by allowing boundaries. For our purposes, the above is sufficient
to motivate calling

Sµ ≡ divµ|Xµ : Xµ → C∞(M)

the canonical Stein operator, whose domain Xµ, called the Stein class, is any set of vector fields
satisfying the desired property that Eµ[Sµ(X)] ≡

∫
Sµ(X)dµ = 0, for all X ∈ Xµ.

If we have a bracket B onM, we can turn the canonical Stein operator on vector fields into a
2nd order differential operator acting on functions, the B-Stein operator on the Stein class

C∞µ ≡ {f ∈ C∞(M) : XB
f ∈ Xµ},

by
SBµ : C∞µ → C∞(M), SBµ f ≡ divµ(XB

f ).

If µ = e−HµM then we have the following useful decomposition:

dive−HµM(XB
f ) = divµM(XB

f )−XB
f (H).

Let us give some important examples of bracket Stein operators. When B ≡ A is antisymmetric,
the A-Stein operator is simply a 1st order differential operator, namely the µ-preserving curl vector
field SAµ = curlµ(A). When B is Riemannian, and µM is the Riemannian measure, then

Sgµ(f) = ∇ ·Xg
f − 〈∇f,∇H〉 = ∆f − 〈∇f,∇H〉 = ∆f + 〈∇f,∇ log dµ/dµM〉 ,

where ∇,∆,∇·, 〈·, ·〉 are the Riemannian gradient, Laplacian, divergence, and metric, respectively;
the g−1-Stein operator becomes the Riemannian Stein operator [21,198,199]. Hence, the Riemannian
Stein operator is the restriction of the canonical Stein operator to gradient vector fields. In general,
decomposing the bracket into its symmetric and antisymmetric parts, B ≡ S + A, we obtain the
following useful decomposition of the B-Stein operator:

SS+A
µ (f) = divµ(XS

f ) + curlµ(A)(f). (39)
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In particular, if we restrict ourselves to a symmetric positive semi-definite B, associated to a set
of vector fields {Yi}, XB

f ≡ Yi(f)Yi for any function f , then (39) corresponds to the generator of
a µ-preserving diffusion. A suitable Stein class is then the domain of the generator, since for any
function in that domain Eµ

[
SS+A
µ f

]
vanishes by the Fokker-Planck equation. The construction

of Stein operators via measure-preserving diffusions is known as the Barbour approach [200]. In
fact, the brackets allow us to define a more general notion of Stein operator acting on 1-forms
{α : XB

α ∈ Xµ}, and, on flat Euclidean space, SBµ (α) ≡ divµ(XB
α ) recovers the “diffusion” Stein

operator [201].

4.2.2 Kernel Stein discrepancies and score matching

Once we have a Stein operator, we need to construct a Stein class for it, i.e., a set V of vector fields
(or more general tensor fields) whose image F under the operator has mean zero under µ. The
resulting IPM is then known as a Stein Discrepancy :

dSµ(V )(µ, ρ) = sup
X∈V

∣∣∣∣∫ Sµ(X)dρ

∣∣∣∣ .
The expression

∫
Sµ(X)dρ is precisely the rate of change of the KL divergence along measures

satisfying the continuity equation; an observation that leads to Stein variational gradient descent
(SVGD) methods to approximate distributions [198,202]. Specifically, in SVGD the target measure
is approximated using a finite distribution

∑
` δx` , where the location of the particles {x`}` is

updated by moving along the direction that maximises the rate of change of KL within a space of
vector fields isomorphic to a RKHS (e.g., the space of gradients of functions in a RKHS).

When Sµ is the canonical Stein operator, there is a canonical Stein class, provided by Stokes’
theorem, which essentially only depends on the manifold: for a connected manifold M, viewing
integration as an operator on smooth µ-integrable functions, then

∫
fdµ = 0 ⇐⇒

∫
dα = 0, where

f = divµ(µ](α)). Unfortunately, Stokes’ theorem usually does not provide a practical description
of the differential forms that satisfy

∫
dα = 0, aside from the compactly supported case. There

are, however, several choices of Stein class constructed from Hilbertian subspaces that lead to
computationally tractable Stein discrepancies. One route consists in constructing a RKHS of mean-
zero functions as the image of another RKHS under a Stein operator. In this case, we can use Sµ
to map a given RKHS of Rd-valued functions H, with (matrix-valued) reproducing kernel K, into
a Stein RKHS of R-valued functions Sµ(H) associated to a Stein reproducing kernel kµ, given by
(here q is the Lebesgue density of µ)

kµ(x, y) =
1

q(x)q(y)
∂y · ∂x · (q(x)K(x, y)q(y)) .

The resulting Stein discrepancy can be thought of as an MMD that depends only on ρ and is known
as kernel Stein discrepancy [203]:

KSD[ρ]2 ≡ MMD[ρ | µ]2 =

∫ ∫
1

q(x)q(y)
∂y · ∂x · (q(x)K(x, y)q(y)) dρ(y)dρ(x).

Another class of discrepancies relies on a choice of bracket B together with a corollary from Stokes’
theorem:

∫
SBµ (α)dρ =

∫
α(XB∗

H−K)dρ, where e−H and e−K are the densities of ρ and µ with respect
to a common smooth measure (below the Riemannian one), while B∗ is the dual bracket (the
transpose of B). We can thus re-write the Stein discrepancy as

sup
α∈A

∣∣∣∣∫ α(XB∗
H−K)dρ

∣∣∣∣ (40)
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over some family of 1-forms A . As we did previously, we can “remove” the supremum by re-
writing the above as a supremum over some unit ball of a continuous linear functional. This can
be achieved once we have a Riemannian metric 〈·, ·〉, which induces a natural inner product that is
central to the theory of Harmonic forms, namely (α, β)µ ≡

∫
〈α, β〉 dµ. In particular, taking as A

the smooth compactly supported 1-forms in the unit ball of L2(T ∗M, µ)—the Hilbert space of square
µ-integrable 1-forms—the Stein discrepancy recovers a generalisation of the score matching [71]:

SMB[ρ | µ] =

∫
‖XB∗

H−K‖2dρ = Eρ
[
‖XB∗

H−K‖2
]
. (41)

It is worth noting that, while L2(T ∗M, µ) is not a RKHS, and does not have a reproducing kernel,
it remains a Hilbertian subspace of the space of de Rham currents. When B is Riemannian we
recover the Riemannian score matching [21]

SMG[ρ | µ] =

∫
‖∇H −∇K‖2dρ,

while in Euclidean space (41) yields the diffusion score matching [204].

4.3 Information geometry of MMDs and natural gradient descent

MMDs and Stein discrepancies have proved to be important tools in a wide range of contexts, from
hypothesis testing and training generative neural networks to measuring sample quality [128, 205–
209]. In the context of statistical inference, once we have chosen a suitable discrepancy, D, and a
statistical model, {µΘ}, our aim is to find the best approximation of the target distribution within
the model; this corresponds to solving the optimisation problem θ∗ ∈ arg minθ∈ΘD[ρ | µθ]. As
mentioned previously, computing the value of the discrepancy D[ρ | µθ] is computationally chal-
lenging. Fortunately, we can often obtain robust Stein discrepancy estimators for smooth statistical
models, whose distributions have a smooth positive Lebesgue density, as well as MMD estimators
for generative model that are easy to sample from but have intractable model densities.

In either case, once we have an estimator D̂m based on m samples from the target, we must solve
the approximate optimisation problem θ∗m ∈ arg minθ∈Θ D̂m[ρ | µθ]. When the function D̂m[ρ | µθ] is
smooth, this may be done via the accelerated Hamiltonian-based optimisation methods previously
discussed (section §2). If D is a divergence function, one can also usually improve the speed of
convergence by following the natural gradient descent, associated with the information Riemannian
metric gθ induced by D [210–213]. In practice, this leads to implementing the update

θ̂t+1 = θ̂t − γtĝ−1
θt
∂θtD̂m[ρ | µθ],

where {γt} is an appropriate sequence of step sizes, and ĝ−1
θ is the inverse of a regularised estimate

of the information tensor [214]. Finally, note that there is a deep connection between divergences
and the geometric mechanics discussed in sampling and optimisation, as any divergence may be
interpreted as a discrete Lagrangian, and hence generates a symplectic structure and integrator [215].

4.3.1 Minimum Stein discrepancy estimators

When the model {µθ} consists of smooth measures with positive densities {qθ}, and we have access
to samples {x`} from the target, the Stein discrepancies offer a flexible family of inference methods.
For SM we can use the estimator

ˆSMm[ρ | µθ] =
1

m

m∑
`=1

(
‖BT∂x log qθ‖22 + 2∂x · (BBT∂x log qθ)

)
(x`)
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combined with the following expression for the information tensor:

(gθ)ij =

∫
BT∂x∂θi log qθ ·BT∂x∂θj log qθ dµθ.

For KSD it is convenient to choose a family of matrix kernels Kθ(x, y) = Bθ(x)k(x, y)Bθ(y)T , for
some scalar kernel k, and parameter-dependent matrix function Bθ. Denoting the associated Stein
reproducing kernel by kµθ,θ, we have the unbiased estimator

ˆKSDm[ρ] =
1

m(m− 1)

m∑
i 6=j

kµθ,θ(xi, xj),

and information tensor

(gθ)ij =

∫∫
(∂x∂θj log qθ)

T Bθ(x)k(x, y)BT
θ (y)∂x∂θi log qθdµθ(x)dµθ(y).

The parameters B and k, and the choice of statistical model, can often be adjusted to achieve char-
acteristiness, consistency, bias-robustness, and obtain central limit theorems; see [204] for details,
and for numerical experiments showing an acceleration induced by the information Riemannian
metric.

4.3.2 Likelihood-free inference with generative models

For many applications of interests, the densities of the model, {µθ}, cannot be evaluated or differ-
entiated. We thus need density-free inference methods. This is the case, for instance, in the context
of generative models wherein µθ is the pushforward of a distribution µ, from which we can sample
efficiently, with respect to a generator function Tθ. Then, the minimum Stein discrepancy estimators
based on KSD and SM, or other discrepancies that rely on the scores, are intractable. The MMDs
are suited to this case since they depend on the target and model only through integration, which
can be straightforwardly estimated using the samples. The associated information tensor is

(gθ)ij =

∫∫
∂θTθ(u)T∂x∂yk(x, y)|(Tθ(u),Tθ(v))∂θTθ(v)dµ(u)dµ(v).

Under appropriate choices of kernels and models one can derive theoretical guarantees, such as
concentration/generalisation bounds, consistency, asymptotic normality, and robustness; see, e.g.,
[209,216,217]. Moreover, many approaches to kernel selection in a wide range of contexts have been
studied, which include the median heuristic or maximising the power of hypothesis tests, and in
practice mixtures of Gaussian kernels are often employed [209,216,218–221].

5 Adaptive agents through active inference

The previous sections have established some of the mathematical fundaments of optimisation, sam-
pling and inference. In this final section, we close with a generic use case called active inference.
Active inference is a general framework for describing and designing adaptive agents that unifies
many aspects of behaviour—including perception, planning and learning—as processes of inference.
Active inference emerged in the late 2000s as a unifying theory of human brain function [82–84,222],
and has since been applied to simulate a wide range of behaviours in neuroscience [81, 223], ma-
chine learning [88,94,224], and robotics [85,86]. In what follows, we derive the objective functional
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overarching decision-making in active inference and describe its information geometric structure,
revealing several special cases that are established notions in statistics, cognitive science and engi-
neering. Finally, we exploit this geometric structure in a generic framework for designing adaptive
agents.

5.1 Modelling adaptive decision-making

5.1.1 Behaviour, agents and environments

We define behaviour as the interaction between an agent and its environment. Together the agent
and its environment form a system that evolves over time according to a stochastic process x. This
definition entails a notion of time T , which may be discrete or continuous, and a state space X ,
which should be a measure space (e.g., discrete space, manifold, etc.). A stochastic process x is a
time-indexed collection of random variables xt on the state space. More concisely, it is a random
variable over trajectories on the state space T → X :

x : Ω→ (T → X ), ω 7→ x(ω) ⇐⇒ xt : Ω→ X , ω 7→ x(ω)(t) ∀t ∈ T .

We denote by P the probability density of x on the space of paths T → X with respect to a
pre-specified base measure.

Typically, systems comprising an agent and its environment have three sets of states: external
states are unknown to the agent and constitute the environment; the observable states are those
agent’s states that the agent sees but cannot directly control; finally, the autonomous states are
those agent’s states that the agent sees and can directly control. This produces a partition of
the state space X into states external to the agent S and states belonging to the agent Π, which
themselves comprise observable O and autonomous states A. As a consequence, the system x can
be decomposed into external s, observable o, and autonomous a processes:

X ≡ S ×Π ≡ S ×O ×A =⇒ x ≡ (s, π) ≡ (s, o, a),

here written as random interacting trajectories on their respective spaces (see Figure 2 for an
illustration).

5.1.2 Decision-making in precise agents

The description of behaviour adopted so far could, in principle, describe particles interacting with a
heat bath [107] as well as humans interacting with their environment (see Figure 2). We would like a
description that accounts for purposeful behaviour [81,225–229]. So what distinguishes people from
small particles? An obvious distinction is that human behaviour is subject to classical as opposed
to statistical mechanics. In other words, people are precise agents, with conservative dynamics.

Definition 5.1 (Precise agent). An agent is precise when it evolves deterministically in a (possibly)
stochastic environment, i.e., when P (π | s) is a Dirac measure for any s. For example,

dst = f(st, πt)dt+ dwt, dπt = g(st, πt)dt.

At any moment in time t, the agent has access, at most, to its past trajectory π≤t, and has
agency over its future autonomous trajectory a>t. We define a decision to be a choice of au-
tonomous trajectory in the future given available knowledge a>t | π≤t. We interpret P (s, o | π≤t)
as expressing the agent’s preferences over external and observable trajectories given available data,
and P (s, o | a>t, π≤t) as expressing the agent’s predictions over external and observable paths given
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Figure 2: Partitions and agents. This figure illustrates a human (agent π) interacting with its environment
(external process s), and the resulting partition into external s, observable o, and autonomous a processes.
The external states are the environment, which the agent does not have direct access to, but which is sampled
through the observable states. These could include states of the sensory epithelia (e.g., eyes and skin). The
autonomous states constitute the muscles and nervous system that factor available information into decisions.
In the example of human behaviour, the environment causes observations (i.e., sensations), which informs a
nervous and muscular response, which in turn influences the environment. In general, autonomous responses
may be informed by all past agent states π≤t = (o≤t, a≤t) (the information available to the agent at time t),
which means that the systems we are describing are typically non-Markovian.

a decision. Crucially, decision-making in (precise) agents is a functional of the agent’s predictions
and preferences10

− logP (a>t | π≤t) = EP (s,o|a>t,π≤t)[− logP (a>t | π≤t)] = E[logP (s, o | a>t, π≤t)− logP (s, o, a>t | π≤t)]
= E[logP (s | a>t, π≤t)− logP (s, o | π≤t) + logP (o | s, a>t, π≤t)− logP (a>t | s, o, π≤t)︸ ︷︷ ︸

=0

]

⇒ − logP (a>t | π≤t) = EP (s,o|a>t,π≤t)[logP (s | a>t, π≤t)− logP (s, o | π≤t)]. (EFE)

This functional is known as an expected free energy (EFE) [81, 84, 231] because it resembles the
expectation of the free energy functional (a.k.a. evidence lower bound [232]) used in approximate
Bayesian inference [84, 226]. We define active inference as Hamilton’s principle of least action on
expected free energy11 that expresses the most likely decision a>t, where

a>t ≡ arg min
a>t

− logP (a>t | π≤t). (AIF)

5.1.3 The information geometry of decision-making

Interestingly, active inference (AIF) looks like it describes agents that engage in purposeful be-
haviour. Indeed, we can rearrange the expected free energy (EFE) in several ways, each of which
reveals a fundamental trade-off that underwrites decision-making. This allows us to relate active
inference to information theoretic formulations of decision-making that predominate in statistics,

10Under the precise agent assumption (Definition 5.1) it is straightforward to show that EP (s,o|a>t,π≤t)[logP (o |
s, a>t, π≤t) − logP (a>t | s, o, π≤t)] = 0 when the path space T → X is countable [230]. Presumably, this equality
can be extended to more general path spaces by a limiting argument.

11As a negative log density over paths, the expected free energy is an action in the physical sense of the word.
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Figure 3: Decision-making under active inference. This figure illustrates various imperatives that underwrite
decision-making under active inference in terms of several constructs that predominate in statistics, cognitive
science and engineering. These formulations are disclosed when one removes certain sources of uncertainty.
For example, if we remove ambiguity, decision-making minimises risk, which corresponds to aligning pre-
dictions with preferences about the external course of events. This aligns with prospect theory of human
choice behaviour in economics [233] and underwrites modern approaches to control as inference [234–236],
variously known as Kalman duality [237, 238], KL control [239] and maximum entropy reinforcement learn-
ing [240]. If we further remove preferences, decision-making maximises the entropy of external trajectories.
This maximum entropy principle [241,242] allows one to least commit to a pre-specified external trajectory
and therefore keep options open. If we reintroduce ambiguity, but ignore preferences, decision-making max-
imises intrinsic value or expected information gain [243]. This underwrites Bayesian experimental design [244]
and active learning in statistics [245], intrinsic motivation and artificial curiosity in machine learning and
robotics [246–250]. This is mathematically equivalent to optimising expected Bayesian surprise and mutual
information, which underwrites visual search [251,252] and the organisation of our visual apparatus [253–255].
Lastly, if we remove intrinsic value, we are left with maximising extrinsic value or expected utility. This
underwrites expected utility theory [78], game theory, optimal control [256, 257] and reinforcement learn-
ing [80]. Bayesian formulations of maximising expected utility under uncertainty are also known as Bayesian
decision theory [77]. To ease notation, we omitted to condition every distribution in the figure by π≤t.

cognitive science and engineering (see Figure 3). For example, decision-making minimises both risk
and ambiguity:

− logP (a>t | π≤t) = KL
[ predicted paths︷ ︸︸ ︷
P (s | a>t, π≤t) |

preferred paths︷ ︸︸ ︷
P (s | π≤t)

]︸ ︷︷ ︸
risk

+EP (s,o|a>t,π≤t)
[
− logP (o | s, π≤t)

]︸ ︷︷ ︸
ambiguity

.

(42)
Risk refers to the KL divergence between the predicted and preferred external course of events.
Minimising risk entails making predicted (external) trajectories fulfil preferred external trajectories.
In a nutshell, ambiguity refers to the expected entropy of future observations, given future external
trajectories. An external trajectory that can lead to various distinct observation trajectories is
highly ambiguous—and vice-versa. Thus, minimising ambiguity leads to sampling observations
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that enable to recognise the external course of events. This leads to a type of observational bias
commonly known as the streetlight effect [258]: when a person loses their keys at night, they initially
search for them under the streetlight because the resulting observations (“I see my keys under the
streetlight” or “I do not see my keys under the streetlight”) accurately disambiguate external states
of affairs.

Similarly, decision-making maximises extrinsic and intrinsic value [259]:

− logP (a>t | π≤t) = EP(o|a>t,π≤t)
[

KL [P (s | o, a>t, π≤t) | P (s | o, π≤t)]︸ ︷︷ ︸
≥0

]
−EP (o|a>t,π≤t)

[
log

preferred paths︷ ︸︸ ︷
P (o | π≤t)

]︸ ︷︷ ︸
extrinsic value

− EP(o|a>t,π≤t)
[

KL [P (s | o, a>t, π≤t) | P (s | a>t, π≤t)]
]

︸ ︷︷ ︸
intrinsic value

.

Extrinsic value refers to the (log) likelihood of observations under the model of preferences. This
corresponds to an expected utility or expected reward in behavioural economics, control theory and
reinforcement learning [78,80]. In short, maximising extrinsic value leads to sampling observations
that are likely under the model of preferences. Intrinsic value refers to the amount of information
gained about external courses of events. This measures the expected degree of belief updating
about external trajectories under a decision, with versus without future observations. Making de-
cisions to maximise information gain leads to a goal-directed form of exploration [231], driven to
answer “What would happen if I did that?” [247]. Interestingly, this decision-making procedure
underwrites Bayesian experimental design in statistics [244], which describes optimal experiments
as those that maximise expected information gain. In summary, decision-making weighs the im-
peratives of maximising utility and information gain, which suggests a principled solution to the
exploration-exploitation dilemma [260].

5.2 Realising adaptive agents

We now show how active inference affords a generic recipe to generate adaptive agents.

5.2.1 The basic active inference algorithm

Active inference specifies an agent by a prediction model P (s, o | a), expressing the distribution of
external and observable paths given autonomous paths, and a preference model P (s, o), expressing
the preferred external and observable trajectories. To aid intuition, we will refer to autonomous
states as actions. At any time t, the agent knows past observations and actions π≤t = (o≤t, a≤t),
and must make a decision a>t. In discrete time, active inference proceeds by assessing the expected
free energy of each possible decision and then executing the best one:

1. Preferential inference: infer preferences about external and observable trajectories, i.e.,

Approximate P (s, o | π≤t) by Q(s, o). (43)

2. For each possible sequence of future actions a>t:

(a) Perceptual inference: infer external and observable paths under the action sequence, i.e.,

Approximate P (s, o | a>t, π≤t) by Q(s, o | a>t). (44)
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(b) Planning as inference: assess the action sequence by evaluating its expected free en-
ergy (EFE), i.e.,

− logQ(a>t) ≡ EQ(s,o|a>t)
[

logQ(s | a>t)− logQ(s, o)
]
. (45)

3. Decision-making: execute the most likely decision at+1 according to

at+1 = arg maxQ(at+1), Q(at+1) =
∑
a>t

Q(at+1 | a>t)Q(a>t). (46)

5.2.2 Sequential decision-making under uncertainty

A common model of sequential decision-making under uncertainty is a partially observable Markov
decision process (POMDP). A POMDP is a discrete time model of how actions influence external
and observable states. In a POMDP, 1) each external state depends only on the current action
and previous external state P (st | st−1, at), and 2) each observation depends only on the current
external state P (ot | st). One can additionally specify 3) a distribution of preferences over external
trajectories P (s). Together, 1) & 2) forms the agent’s (POMDP) prediction model, and 2) & 3)
forms the agent’s (hidden Markov) preference model, which defines an active inference agent. A
simple simulation of active inference on a POMDP is provided in Figure 4; implementation details
on generic POMDPs are available in [81, 91, 261, 262]. For more complex simulations of sequential
decision-making (e.g., involving hierarchical POMDPs), please see [88,91,223,224,263–265].

5.2.3 World model learning as inference

Due to a lack of domain knowledge, it may be challenging to specify an agent’s prediction and
preference model. For example, how do external states map to observations? Should external states
be represented in a discrete or continuous state space?

In active inference, generative models are learned by inferring their parameters [81,91,268] and
structure [81,263,269–271]. Suppose there is an unknown parameter (or structure variable)m in the
prediction model, the preference model or both. By definition, each alternative parameterisation
m entails different predictions P (o, s | a,m) and preferences P (o, s | m). Since unknowns are
simply external states, we treat the parameter as an additional external state. We equip the space
of parameters with a prior distribution P (m), and define the agent with an augmented prediction
(resp. preference) model that combines the different alternatives P (o, s,m | a) ≡ P (o, s | a,m)P (m)
(resp. P (o, s,m) ≡ P (o, s | m)P (m)). The parameter can then be inferred along with other external
states during preferential (43) or perceptual (44) inference [81,91,268]. Better yet, having specified
priors over parameters that are independent of actions, we can infer them separately, for example,
after fixed-length sequences of decisions to reduce computational cost [81,268].

All this says that a prior P (m) and some data π≤t leads to approximate posterior beliefs Q(m) ≈
P (m | π≤t) about model parameters. But what are the right priors? One way to answer this question
lies in optimising a free energy functional F (a.k.a. an evidence lower bound [232]):

F ≡ EQ(m)

[
− logP (m,π≤t)

]︸ ︷︷ ︸
energy

−S
[
Q(m)

]︸ ︷︷ ︸
entropy

= KL
[
Q(m) | P (m)

]︸ ︷︷ ︸
complexity

−EQ(m)

[
logP (π≤t | m)

]︸ ︷︷ ︸
accuracy

.

Choosing priors that minimise free energy leads to parsimonious models that explain the data
at hand [272]. This follows since maximising accuracy increases the likelihood of the data under
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Figure 4: Sequential decision-making in a T-Maze environment. Left: The agent’s prediction model is a
partially observed Markov decision process (see text) represented here as a Bayesian network [266]. The
colour scheme illustrates the problem at t = 2: the agent must make a decision (in red) based on previous
actions and observations (in grey), which are informative about external states and future observations (in
white). Right: st: The T-Maze has four possible spatial locations: middle, top-left, top-right, bottom. One of
the top locations contains a reward (in red), while the other contains a punishment (in black). The reward’s
location determines the context. The bottom arm contains a cue whose colour (blue or green) discloses the
context. Together, location and context determine the external state. ot: The agent observes its spatial
location. In addition, when it is at the top of the Maze, it observes the reward or the punishment; when it
is at the bottom, it observes the colour of the cue. at: Each action corresponds to visiting one of the four
spatial locations. P (st): The agent prefers being at the reward’s location (− logP (st) = +3) and avoid the
punishment’s location (− logP (st) = −3). All other states have a neutral preference (− logP (st) = 0). o0:
The agent is in the middle of the Maze and is unaware of the context. a1: Visiting the bottom or top arms
have a lower ambiguity than staying, as they yield observations that disclose the context. However, staying
or visiting the bottom arm are safer options, as visiting a top arm risks receiving the punishment. By acting
to minimise both risk and ambiguity (42) the agent goes to the bottom. o1: The agent observes the colour
of the cue and hence determines the context. a2: All actions have equal ambiguity as the context is known.
Collecting the reward has a lower risk than staying or visiting the middle, which themselves have a lower risk
than collecting the punishment. Thus, the agent visits the arm with the reward. See [267] for more details.

the posterior model, while minimising complexity decreases the movement from prior to posterior,
which can be seen as a proxy for computational cost. Maximising accuracy usually results in gener-
ative models involving universal function approximators [88,224,264], while minimising complexity
results in organising representations in sparse, compartmentalised and hierarchical generative mod-
els [263, 270, 271], where higher levels of the hierarchy encode more abstract representations and
vice-versa [265]. A computationally efficient method to compare priors by their free energy is
Bayesian model reduction [81,273]. In conclusion, free energy unifies inference and model selection
under a single objective function.
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5.2.4 Scaling active inference

We conclude by identifying promising scaling methods for active inference that enable computa-
tionally tractable implementations in a variety of applications.

Planning for all possible courses of action is computationally expensive as the number of action
sequences is exponential in the length of the sequence. One way to finesse this is by planning only
for intelligently chosen subsets of action sequences, using sampling algorithms such as Monte-Carlo
tree search [87,224,274–276]. Monte-Carlo sampling can be also be used to finesse the expectations
inherent in assessing action sequences (45) [224]. A complementary approach is to assess actions,
instead of action sequences, by conditioning future actions to be optimal in the sense that they
minimise the expected free energy [228, 277]. This idea leads to a backward form of planning,
where the agent plans for the best action at the last time-step, followed by the best action at the
penultimate time-step, and so on, until the present. Crucially, it leads to smarter agents [228, 277]
whose computational complexity scales linearly (as opposed to exponentially) in the length of action
sequences [278].

Scalable inference methods [279] can be used to make active inference more efficient [280]. For
example, we can train neural networks to predict the various posterior distributions, including
the posterior over actions [88, 224, 281]. While training, the output of the neural network can be
used as an initial conditions for variational inference [282], resulting in accurate inferences whose
computational cost decrease as the network learns. Additionally, optimising free energy reduces to
efficient message passing schemes, when one imposes certain simplifying restrictions to the family
of candidate distributions [283–287].

A much cheaper implementation of active inference exists for continuous states evolving in
continuous time. The method frames perception and decision-making as variational inference, by
simulating a gradient flow on free energy in an extended state space [82,226]. Furthermore, it can be
combined with discrete active inference to operate efficiently in generative models combining discrete
and continuous states [288]. As an example, high-dimensional observations in the continuous domain
(e.g., speech) processed through continuous active inference are converted into discrete, abstract
representations (e.g., semantics) [281]. Based on these representations, the agent makes high-level,
categorical decisions (e.g., “I want to move over there”), which contextualise low-level, continuous
actions (e.g., the continuous motion of a limb towards the goal location) [289].
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