
■ ' ' '

AD/A-002 261

GEOMETRIC MODELING FOR COMPUTER VISION

Bruce Guenther Baumgart

Stanford University

^

Prepared for:

Office of Naval Research
Advanced Research Projects Agency

October 1974

DISTRIBUTED BY:

Knn©
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

..—•

^» ^n

*m^

UNCLASSIFIED
SECURITY CLAaSIFICATION OF THIS PAGE (When Data F.ntrred)

REPORT DOCUMENTATION P£GE
1. REPORT NUMBER

siM-cs-74-WJ;
2. GOVT ACCESSION NO

4. TITLE fand Si/bl/((e;

GEOMETRIC MODELING FOR COMPUTER VISION

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT 4 PERIOD COVERED

technical, Oct., 197»+

7. AUTHORCO

Bruce Guenther Bauragart

6. PERFORMING ORG. REPORT NUMBER

STAN-CS-T^ÖS
8. CONTRACT OR GRANT NUMBERfsO

DAHC l^-73-C-Oi+35

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Stanford University
Computer Science Department
Stanford, California 9^30^

II. CONTROLLING OFFICE NAME AND ADDRESS

ARPA/lPT, Attn: Stephen D. Crocker,
1400 Wilson Blvd., Arlington, Va. ccc09

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

12, REPORT DATE

October, 197^

14. MONITORING AGENCY NAME S ADDRESSfi/ ditleiint Irzm CorKrolling Olllce)

ONR Representative: Philip Surra
Durand Aeronautics Bldg., Em. 165
Stanford University
Stanford, California

13. NUMBER OF PAGES

IS. SECURITY CLASS, (of this report)

UNCLASSIFIED
15a DECLASSIFICATION/DOWNGRAD1NG

SCHEDULE

16. DISTRIBUTION STATEMENT (ol this Report)

Roleasable without limitations on dissemination.

17. DISTRIBUTION STATEMENT (ol the abS(racl entered in Block 20. II dlllerent Iron, Report)

18. SUPPLEMENTARY NOTES

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Dopartmont o(Commorco
Springfield, VA. 22151

19. KEY WORDS fCon((nue on reverse aide il necessary and identlly by block number)

20. ABSTRACT (Continue on reverse side If necessary end Idenlily by tiock number)

The main contribution of this thesis is the development of a
three dimensional geometric modeling system foi application to computer
vision. In computer vision geometric models provide a goal for
descriptive image analysis, an origin for verification image synthesis,
and a context for spatial problem solving. Some of the design ideas
presented have been implemented in two programs named GE0MED and CRE;
the programs are demonstrated in situations involving camera motion
relative to a static world.

DD FORM
1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED

»
SECURITY CLASSIFICATION OF THIS PAGE fWien Da(a E.Kered;

^rita

i

I
I
I
[

I
I
I
1

1

I
I
I
I

SECTION 0.

TABLE OF CONTENTS.

INTRODUCTION. PAGE 1.

SECTION 1. GEOMETRIC MODELING THEORY. PAGE 6.

1.0 Introduction to Geometric Modeling 6
1.1 Kinds of Geometric Models 7
1.2 Polyhedron Definitions and Properli« 12
1.3 Camera, Light and Image Modeling 13
1A Related Modeling Work 14

SECTION 2. THE WINGED EDGE POLYHEDRON REPRESENTATION. PAGE 15.

2.0 Introduction to the Winged Edge 15
2.1 Winged Edge Link Fields 17
2.2 Sequential Accessing 19
2.3 Perimeter Accessing 19
2.4 Basic Polyhedron Synthesis 21
2.5 Edge and Face Splitting 23
2.6 Coordinate Free Polyhedron Representation 26

SECTION 3. A GEOMETRIC MODELING SYSTEM. PAGE 27.

3.0 Introduction to GEOMED 27
3.1 Euler Primitives 30
3.2 Routines using Euler Primitives 34
3.3 Euclidean Routines 37
3.4 Image Synthesis: Perspective Projection and Clipping 43
3.5 Image Analysis: Interface to CRE 44

SECTION 4. HIDDEN LINE ELIMINATION FOR COMPUTER VISION. PAGE 46.

4.0 Introduction to Hidden Line Elimination 46
4.1 Initialization and Culling 48
4.2 Hide Marking a Coherent Object 51
4.3 Edge-Edge and Face-Vertex Comparing 52
4.4 Recursive Windowing 55
4.5 Photometric Modeling and Video Generation 58
4.6 Performance of OCCULT and Related Work 59

SECTION 5. A POLYHEDRON INTERSECTION ALGORITHM. PAGE 60.

5.0 Introduction to Polyhedron Intersection 60
5.1 Intersection Geometry 62
5.2 Intersection Topology 63
5.3 Special Cases of Intersection 65
5.4 Face Convexity Coercion 66
5.5 Body Cutting 66
5.6 Performance and Related Work 67

/

•i

^fei m*

^»

TABLE OF CONTENTS.

SECTION 6. COMPUTER VISION THEORY. PAGE 68.

6.0 Introduclion to Computer Vision Theory 68
6.1 A Geometric Feedback Vision System y

6.2 Vision Tasks .
6.3 Vision System Design Arguments '*
6.4 Mobile Robot Vision 77

6.5 Summary and Related Vision Work '9

SECTION 7. VIDEO IMAGE CONTOURING. PAGE 82.

7.0 Introduction to Image Analysis **
7.1 CRE - An Image Processing System »*
7.2 Thresholding !!
7.3 Contouring
7.4 Polygon Nesting "
7.5 Contour Segmentation '*
7.6 Related and Future Image Analysis "

SECTION 8. IMAGE COMPARING. PAGE 95.

8.0 Introduction to Image Comparing 95
8.1 A Polygon Matching Method ^
8.2 Geometric Normalization of Polygons 9°
8.3 Compare by Recursive Windowing '00
8.4 Related Work and Work Yet To Be Done »0°

SECTION 9. CAMERA AND FEATURE LOCUS SOLVING. PAGE 101.

9.0 Introduction to Locus Solving JO*
9.1 Parallax and the Camera Model 0*
9.2 Camera Locus Solving: One View of Three Points 104
9.3 Object Lotus Solving: Silhouette Cone Intersection 109
9.4 Sun Locus Solving: A Simple Solar Ephemeris j j||
9.5 Related and Future Locus Solving Work ' 15

SECTION 10. RESULTS AND CONCLUSIONS. PAGE 116.

10.1 Results: Accomplishments and Original Contributions | |j|
10.2 Critique: Errors and Ommissions J J°
10.3 Suggestions for Future Work j * *
10.4 Conclusion

SECTION 1L ADDENDA. PAGE 124.

11.1 References } ~*
11.2 GEOMED Node Formats ,'»1

1

/

^^—I-

I
I
I

SECTION 0

SECTION I.

SECTION 2

SECTION 3.

SECTION fl

SECTION 5

SECTION 6

.. j

*
SECTION 7

SECTION 8

SECTION 9

SECTION 10

1

LIST OF BOXES.

INTRODUCTION

GEOMETRIC MODELING THEORV

I | Ten Kmdi of Geometric Model« 7

1 2 De»ir»blo Properlic« for a Geometric Model 11

1.3 Properties of Polyhedre 12

THE WINGED EDGE POLYHEDRON REPRESENTATION
2.1 Winced EdRe Structure! and Linkt 17

2.2 Lowe«t Level Winded Edge Routine« 21

A GEOMETRIC MODELING SYSTEM
3 | The Euler Primitive« 31

3 2 Routine« U«in(; the Euler Primitive« 34

33 Euclidean Transformations 38

3fl Tram Routmo« 39

3 5 Metric Poutmp« 42

3 6 Simple Space Routines 42

HIDDEN LINE ELIMINATION FOR COMPUTER VISION.
q | Five Hidden Line Elimination Technique» 48

4 2 Status Bits for Occult Marking 49

4 3 Normalized Face and Edge Coefficient» BO

4 4 Edge-Edge Compare Step« 53

4 5 Recursive Windowing routine»...

A POLYHEDRON INTERSECTION ALGORITHM

56

COMPUTER VISION THEORY

61
62
63
64
65
66
67

68

Vision System Hierarchy 69

Three Basic Modes of Vision 69

Basic Feedback Vision System Deeign 70

Processors of a 3-0 Vision Sy»t»m 71

Six Eiamples of Computer Vision T»»k» 72

Alternative» to 3-D Geometric Modeling 75

Cart Vision Mandala 77

A Possible Cart Task Solution 78

VIDEO IMAGE CONTOURING
7 I CRE Design Choices 84

7 2 CRE Data Transformations 86

IMAGE COMPARING

CAMERA AND FEATURE LOCUS SOLVING

RESULTS AND CONCLUSIONS

10.1 Accomplishment» and Original Contribution» 116

10.2 Suggeelion» for Future Work 1 19

I III -

^^w

LIST OF FIGURES.

SECTION 0. INTRODUCTION
0 I Hone Shaped Polyhedn Derived from Video Imigee 2
0 2 Modol of Water Pump 3
03 Example of Predicted Video and Perceived Video 4
0 4 Examplo of Predicted and Perceived Contour Imagee 5

SECTION I. GEOMETRIC MODELING THEORY

SECTION 2. THE WINGED EDGE POLYHEDRON REPRESENTATION
2 I WinRpd Edfje Topology 16
22 Three Kinds of Perimeter» 20
2 3 ESPLIT and KLEV 24
24 MKFE and KLFE 25

SECTION 3 A GEOMETRIC MODELING SYSTEM
3,1 The 24 Display« of Example «1 28
3 2 The 24 Displays of Example »2 29
33 Five Kinds of Non-Sohd Polyhedr» 32
3 4 Examples of MKCU8E, MKCYLN and MKBALL 34
3 5 Creation of a Solid of Rotation by Sweeping a Wire 35
3 6 Sweep and Glue 35
3 7 Icosahedron by Prisrnoid sweep and pyramid sweep 36
3 8 Three Cut Torus Dissection into Thirteen Part« 36

I

SECTION 4 HIDDEN LINE ELIMINATION FOR COMPUTER VISION
4 I Example of Hidden Line Elimination 47
4 2 Front Face» and Folded Edge» 50
43 Front Faces and Folds of I Concave Corner 51
4 4 T-Joint Diagram 52
4 5 EE and FV Undetected Hidden Object Case» 55
4 6 Example of Video Synthesis 58

SECTION 5 A POLYHEDRON INTERSECTION ALGORITHM
5 I Polyhedron Intersection, Union and Subtraction 61
5 2 Face Piercing Geometry 62
53 Surface Edges and Interior Edge» of Intereection 63
54 Fetch Other Piercing Vertex of a Face 64
5 5 Example of a Face Hole Fixup 65
5 6 Examples of Fjc» Convexity Coercion 66

SECTION 6 COMPUTER VISION THEORY

SECTION 7 VIDEO IMAGE CONTOURING
7 1 Video Image and Contour Image 87
7 2 Saw Tooth Dekmking Illustrated 90
7 3 Contour Segmentation 93

SECTION 8

SECTION 9

SECTION 10

IMAGE COMPARING
8 1 Example of Polygon Fusion Compare 96
8 2 Example of Vertoi. Matching 98

CAMERA AND FEATURE LOCUS SOLVING
9 I The Iron Triangle and Tripod 104
9.2 Five Iron Trianle Diagram» 105
9.3 Four View» of a Baby Doll 1 10
94 Four Turntable Silhouette Cone» 111
95 Results of Silhouette Con« Inteneclion 112
9 6 High Horse Silhouette Con« Intersection 1 13

RESULTS AND CONCLUSIONS

/

^^*-

ACKNOWLEDGEMENTS.

The following people personally contributed to this work:

Thesis Adviser: John McCarthy
Readers: Donald E. Knuth, Alan C. Kay, Ken Colby.

Jerry Aein, leona Baumgart, Tom Binford, Jack Buchanan, Whitfield Diffie, Les Earnest,
Jerome Feldman, Tom Gafford, Steve Gibson, Ralph Gorin, Carl Hewitt, Jack Holloway, Tovar Mock,

Andy Moorer, Hans Moravec, Richard Orban, Ted Panofsky, Lou Paul, Phil Petit, Dave Poole,
Lynn Quam, Jeff Raskin, Ron Rivest, Rod Schmidt, Clem Smith, Irwin Sobel, Robert Sproull,

Dan Swinehart, Russell Taylor, Marty Tenenbaum, Larry Tesler, Arthur Thomas, Fred Wright.

TYPOGRAPHY

The oreinal copy of this document was produced on a Xerox Graphics Printer with a resolution of
two hundred points per inch. The principal font is News Gothic Boldface, 25 units h.gh, which
orieinated at Carnegie Mellon University. The page layout, text justificat.on, boxes, halftones and line
drawings were done using the author's document-formating program, X1P. The source files were

prepared using the text editor, E, created by Dan Swinehart and Fred Wright.

,

/

-"- ^- » . - ~w . ~ ^h_—t—^^^^^

w^^

INTRODUCTION.

SECTION 0.

INTRODUCTION.

"Tor ihr iJurposo of prrsrnlinß my arpumrnl I musl first explain the basic premise of sorcery as

ilon Juan presented it to me. He said thai for a sorcerer, the world of everyday life is not real, or out

there, as we believe it is. For a sorcerer, reality or the world we all know, is only a description. For

the sake of validating this prntnisn don Juan concentrated the best of his efforts into leading mc to a

genuine conviction that what I held in mind as the world at hand was merely a description of the world;

a description that had been pounded into mc from the moment I was born.

- Carlos Castaneda. journey to Ixtlan.

I
I
I

This thesis is about computer techniques for handling 3-D geometric descriptions of the world;

the world that can be visually perceived with a television camera. The overall design idea may be

characterized as an inverse computer graphics approach to computer vision. In computer graphics, the

world is represented in sufficient detail so that the image forming process can be numerically simulated

to generate synthetic television images; in the inverse, perceived television pictures (from a real TV

camera) are analysed to compute detailed geometric models. For example, the polyhedra in Figure 0.1

on page two were computed from views of a plastic horse on a turntable. It is hoped, that visually

acquired 3-D geometric models can be of use to other robotic processes such as manipulation,

navigation or recognition.

- 1 -

m** «M

mm*

INTRODUCTION.

FIGURE 0.1 - HORSE SHAPED POLYHEDRA DERIVED FROM VIDEO IMAGES.

I

I

I
I

I

I

I

Arita

^•i

INTRODUCTION.

I

.

Once acquired, a 3-D model can be used to

anticipate the appearance of an object in a scene,

making feasible a quantitative form of visual feedback.

For example, the appearance of the two machine parts

depicted in Figure 0.2 can be computed and analyzed

(top halves of Figures 0.3 and 0.4) and compared with

an anaylsis of an actual vidoo image of the parts

(bottom halves of Figures 0,3 and 0.4). By comparing

the predicted image with a perceived image, the

correspondence between features of the internal model

and features of the external reality can be established

and a corrected location of the parts and the camera

can be measured.

FIGURE 0.2

I
I
I
I
I

Finally by way of introduction, I wish to emphasive that the kind of vision being attempted is

metric rather than linguistic and that the results achieved to date are modest, Feature classification

and recognition in terms of English words is not being attempted, rather a system of prediction and

correction between a 3-D world model and a sequence of images is contemplated. The chapters of

this thesis proceed twice from theory through an implementation, with the first five chapters dealing

with modeling and the last five chapters dealing with vision. Theory on geometric modeling is in

Chapter 1 and theory on computer vision in Chapter 6. The implementation consists of two main

programs named GE0MED and CRE. GEOMED is a system of 3-D modeling routines with which

arbitrary polyhedra may be constructed, altered, or viewed in perspective with hidden lines

eliminated; and CRE is a solution to the problem of finding intensity contours in a sequence of

television pictures and of linking corresponding contours between pictures. Auxiliary programs

perform top level task control, comparing and locus solving.

3-

mm^

INTRODUCTION.

flililliliiifillilf11 |{||ll||P|ll|!l|l||i||l||lil||l!l||lll!| !|l|l|ll|PiP|illPIP|||PPPIilPi!iPPililllliM^^

'" (I iiiiii1'1''''li
PI

11

P 11
Uti'ii

J , .11 «i .y^' ' '

i
'I'M l!1i<'|ill I'll

' ■: :/• ■ ■'■;:i!ffiiiJllt;! i!

0 Ä,A"Ä

■ ■:■ J!l ii ' . I I ÜiÜI Ulli I

iilliliiiilto,,.'!
Ililll

! ,

 illlli'tll,,. 1 iii I
Illlllilii

11 ■'::l„ ill I
!|

i;iiii|iih';!i1i;y-i;vii!n'W
tin1 ;,,,.,,.,,,.:

V
,
;III

,
:T:;

N
 ■

!

!

'■'^t

li ill III lllf

ill |||ll!lli:;

lllllll!

ill ||l!i!

iil IS!

liiili l
|j||||i!.;i|;i • ■, ■ ; •' -' i; il'in

|| I im
I ; :l J 11 H

ii i,,'il"iil HI1 n i
i'. - ii '

■ ' '' ■ ;

[ill i
II

;i|f iPlil!

i'i

.:;- i ililll
■;..,,:.; I,il lui ||| |||||||j mil

ip I
I iiij iiiibi,.

FIGURE 0.3 - PREDICTED VIDEO t AND PERCEIVED VIDEO i

MlllliiillMilMli

I i

I
illilltl

Mm
iliiPPIIP'll

i I'Sn: I11!1

lllllll
illpljl

llilllllii

II

ililii|ii|{l ii|i||||; IM i'liifiiw ■':-"■' if ;i] PPIlillllllllililllllillilPllllliJlliP^

111 ili'li" HI

" i
ill II

IP!

i.,,:

Ti ^"TI'IHI'TI, llin'*'.''
jUPiiii i:|

:
1

I'll';
,„

■r,i,
 '

I III /i,m

liilllllli,

liinflll-luil:,!,!, ullli ''IM-j'Ji1'!! | llllJi

,■:.:,„

111'!
.

1, :l'llil

-'^■lü'
mi

mm
I- ii

lllllll1«1" jigl

■•;, , jl.i

i

l'1':iii:!l;i|ll I ili
it^iiih III in

i ■

I 'li1 llnlll

ill lilliii 'W

ll||iill||l

:- -■
:|:!lliji!

;,ill;l||, ■l'I'l'. ,.'I':11I;I1' ■I'llM llii''«Il

.gmp
WBii " iil

lillllll!'! 'Uli
»«I Hi"

'I'liii''

iiii'
.iLli'l

-!i!N! r
, J;,| i.il'iil.i1, J|:,J,,1!

I pil
|l lll!l|l

'illlii lllllll

r«.! : 'm;,i;:
IIIHHII lilin • ■ ■ '

■l ..:•■ .IIIJ

,,,!•,

:."„ "''III I :,,'■■ illl'

ill
f liiili

Hu1"1 in '1 il!il|

;...,::....,:,i: ,, lii^iillllillliyiiliililllli
11

i
iii;11! lib ■■i'lllil.i!

P IPII'I I '
11 IIk;iihi ii'1 ■ '' ■

lllllililliililliillll! ii'ivi'i.

'lil. Hii

mwmMmmm iiiaii:ii"«S R
il«ill "M^li' , b' :,'■,,:•

lllllll

I: III IIII1

ill
M i l^iplil It

Ill 1
iillliiililililiiillllillll

^■h ^*m

INTRODUCTION.

I
I
I
I
I

1
I
I

FIGURE 0.4 - PREDICTED IMAGE T AND PERCEIVED IMAGE i.

I

^k^B^M

I
1.0 Introduction to Geometric Modeling. GEOMETRIC MODELING THEORY.

SECTION 1.

GEOMETRIC MODELING THEORY.

1.0 Introduction to Geometric Modeling.

1.1 Kinds ot Geometric Models.
1.2 Polyhedron Definitions and Properties.

1.3 Camera, Light and Image Modeling.

1.4 Related Modeling Work.

1,0 Introduction to Geometric Modeling.

In the specific context of computer vision and graphics, geometric modeling refers to the

construction of computer representations of physical objects, cameras, images and light for the sake of

simulating their behavior. In Artificial Intelligence, a geometric model is a kind of world model;

ignoring subtleties, geometric world modeling is distinguished from semantic and logical world modeling

in that it is quantitative and numerical rather than qualitative and symbolic. The notion of a world model

requires an external world environment to be modeled, an internal computer environment to hold the

model, and a task-performing entity to use the model, In Geometry, modeling is a synthetic problem,

like a construction with ruler and straight edge; modeling problems require an algorithmic solution

rather than a proof. The word grometric. is an appropriate adjective to this kind of modeling in that it

is a combination of the Greek words yno (world) and jurp»« (measuring) which is exactly the activity to

be automated.

.

^di mam

1.1 Kinds of Geometric Models.

1.1 Kinds of Geometric Models.

GEOMETRIC MODELING THEORY.

Th« main problem of geometric modeling is to invent methods for represtmting arbitrary

physical objects in i computer. For the present discussion, the class of physical objects is restricUd to

objects that are solid, rigid, opaque, and macroscopic with a mathematically well behaved surface. Such

objects include: the earth, chairs, roads, and plastic toy horses; other objects, for which models will not

be attempted, include glass, fog, hair, Jello, liquids and cloth. Physical objects can move about in space

with the restriction that two objects can not occupy the same space at the same time. The scope of the

modeling problem can be appreciated by examining the models listed in Box 1.1,

BOX 1.1 TEN KINDS OF GEOMETRIC MODELS.

Space Oriented:
1. 3"D Space Array.

2. Recursive Cells.

3. 3-D Density Function.
4. 2-D Surface Functions.

5. Parametric Surface Functions.

Object Oriented:

6. Manifolds.

7, Polyhedra,
3. Volume Elements.

9. Cross Sections.

10. Skeletons.

For a naive start, first consider a 3-D array in which each element indicates the presence or

absence of solid matter in a cube of space. Such a 3-D space array has the very desirable properties

of ipatial addrcning and »patial uniquenm in their most direct and natural form. Spatial addressing

refers to finding out what the model contains within a distance R of a locus X,Y,Z; spatial uniqueness

refers to the property that physical solids can not occupy the same space simultaneously. A first

drawback of the space array idea is illustrated by the apparently legal FORTRAN statement:

DIMENSION SPACE(100000,100000,100000)

The problem with such a dimension statement is that no present day computer memory is large enough

to contain a ID15 element array. Smaller space arrays can be useful but necessarily can not model

large volumes with high resolution. A further drawback of space arrays is that objects and surfaces

are not readily accessible as entities; that is a space array lacks the property of ohjeet coherence. In

computer graphics, the term coherml denotes both the quality of holding together as parts of the same

mass and the quality of not changing too drastically from one point to the next. The meaning of

coherent approachs the mathematical notion of topologically connected and locally continuous. The word

is used to refer to the frame coherence of a film as well as to the object coherence of a model.

1
i

I
I
I
I
I

I
I

I

i
i

*

tf^ta rtM

I
I
I
I
i
I
I
I
!

1

1.1 Kinds of Ger-ielric Models. GEOMETRIC MODELING THEORY.

The space array idea can be salvaged by grouping blocks of elements with the same value

together; the addressing process becomes more complicated but the overall memory required is

reduced and the two desired properties can be maintained. One way of doing this (which has been

discovered in several applications) is rrrunit* rrlh-, the whole space is considered to be a cell; if the

space is not homogeneous then the first cell is divided into two (or four or eight) sub cells and the

criterion is applied again. This technique allows the spatial sorting of objects when the object models

can be subdivided at each recursion without losing their properties as objects.

Another salvageable naive modeling idea is that arbitrary objects can be expressed as algebraic

functions. In physics, physical objects are frequently referred to as three dimensional density functions

W«p(X,Y,Z). Unfortunately such density functions can no» be writtrn out for objects such as a typing

chair or a plastic horse without resorting to a programming language or an extensive table (which is

equivalent to the space array model). Objects that are essentially 2-D can be approximated by a

surface function 2 = F(X,Y). For example landscape may be represented by geodetic maps in such a

2-D fashion.

By definition, a function is single valued; consequently the description of even modestly

complicated objects cannot be expressed by giving one coordinate, e.g. 2, as a function of the other

two, e.g. X and Y. It is necessary either to adopt parametric functions or to subdivide the object into

portions that can be described by simple functions of Cartesian variables. The former course involves

establishing a system of surface coordinates (U,V), latitudes and longitudes, on the object in which

functions for the X,Y,2 locus of the object's surface are expressed. The advantage of parametric

functions is that extended arbitrary curve surfaces can be expressed; some of the disadvantages are

that parametric curves may be self intersecting, they are not easy to modified locally, and the functions

become impractical before the shapes of mundane artifacts can be achieved. Consequently parametric

representations are combined with object subdivision, which is called ngmcntmion. The process of

usefully segmenting an object without destroying its coherence is a major problem requiring the

combination of spatial, functional and objective representations.

8-

1.1 Kinds of Geometrie Models. GEOMETRIC MODELING THEORY.

In passing from space oriented models to object oriented models, I wish to not« that

sophisticated representation of time is beyond the scope of this worK. Although an advanced problem

solving robot will need to run world simulations along multiple time paths, the discussion will

concentrate on representing the geometry of the world at a single moment in time.

After existence in space and time, another general property of physical objects is that they can

be enclosed by an unbroken two dimensional surface with an unambiguous inside and outside; which

touchs upon the mathematical topic (celebrated in song by Tom Lehrer) of the algebraic topology of

locally Euclidean transitions of infinitely differentiable oriented Riemann manifolds. A manifold is the

mathematical abstraction of a surface; a Riemann manifold has a metric function; an oriontrd manifold

has • unambiguous inside and an outside; the phrase infinitdy differcntiahh can be taken to mean

that the surface is smooth; and the phrase locally Euclidean transition* refers to the process of

segmenting the object into portions that can be approximated by relatively simple functions. In

particular, the 2-0 Riemann submanifoid embedded in 3-D Euclidean space is the mathematical object

that comes closest to representing the shape and extent of the surface of a physical object; such

manifolds are conveniently approached through the topology of surfaces which in turn is

computationally approached by means of polyhedra.

One way to describe the topology of a 2-D Riemann submanifoid embedded in a 3-D Euclidean

space is in terms of three kinds of simplex: the O-Simplex (or vertex), the 1-Simplex (or edge), and

the 2-Simplex (or triangle). In topological analysis 2-D Riemann submanifolds may be divided into

faces, edges and vertices such that Euler's equation F-E»V«2*2»H is satisfied (where F is the number

of faces, E is the number of edges, V is the number of vertices and H is the genus or number of

handles of the manifold); and such that the surface of the manifold can be approximated by local

functions over each face which are Euclidean and which fit together smoothly at all the edges. By

introducing a sufficient (but finite) number of triangles the manifold can be approximated to within any

epsilon by constant functions, yielding the geometric object called the polyhedron.

One advantage of a polyhedral model is its connected surface topology of faces, edges and

vertices. Such a surface can be subdivided without losing its coherence or the coherence of the object.

I

I

rfm

1.1 Kinds of Geometrie Modeis. GEOMETRIC MODELING THEORY

The disadvantages of polyhedra include the lack of spatial uniqueness and spatial addressing wtvch

necessitates computation to be done to detect and prevent spatial conflict and to find the portions of an

entity occupying a given volume. Another feature of polyhedra (which can be an advantage or

disadvantage) is that all the (Gnuman) curvature happens suddenly at the vertices; however by

associating higher order approximation functions with each face the model of a continuous 2-0 manifold

can be made which is a more conventional curved object representation. Nevertheless, polyhedra are

intrinsically a general curved object representation.

I

I

I
I
I
I
1

Returning to the survey, arbitrary objects can also be described by listing a set of cross

sections taken at a sufficient number of cutting planes; this is how the shape of a ship's hull or an

airplane's wing is specified. Cross sections have the interesting feature of good space modeling on one

axis. Forsaking arbitrary shaped objects, large classes of things can be described in terms of a small

set of basic volume elements. For example, Roberts (63)* and others have built models of familiar

objects using only rectangular and triangular right prisms. Arbitrary solid polyhedra can be

constructed out of tetrahedra (the 3-simplex); however no significant genera! modeling system exists

using this potentially interesting approach.

Skeletal models are based on abstracting an object into a stick figure and by associating a

diameter or set of cross sections with the sticks. In particular, spine cross section models have been

pursued at Stanford by Agin (72) and Nevatia (74). Spine cross section models have the advantage of

being able to express many objects in a concise form suitable for recognition, but they cannot be used

directly for arbitrary shapes.

Finally, it is often useful to represent physical objects by weak geometric models such as by

sets of spheres or by sets of unconnected surface points. It is interesting to note that ihe rrnlity that

the robot in Winograd's thesis (Winograd 71) could talk about, was a blocks world based on a geometric

model consisting only of points, sire of block, and a two page LISP subroutine named FINDSPACE.

* Parenthesized names and numerals are references listed in Section 11.1

10

m^mt^mmmmm^mm

1.1 Kinds of Geometrie Models. GEOMETRIC MODELING THEORY,

Beyond the particular kinds of geometric models, four general purpose modeling techniques

deserve special mention and isolation: prototype instance structure, parts tree structure, resolution

limited structure, and procedure generated structure. Superficially, the prototype instance structure is

a memory efficiency technique based on storing generalizations (prototypes) which can be bound to

specific cases (instances) as the occasion demands. Parts tree structure is a memory management

technique of organizing the whole universe of discourse as a tree data structure, where objects are

composed of subobjects. Resolution limited structure is a memory accessing technique, where

depending on a specified scale of interest different models are retrieved or even generated. Finally,

procedure generated structure concerns the trade-off between storing and recomputing a model;

namely recomputing the details of a model as they are needed is a good idea for extending

computational resources.

l
I
I

The danger to be avoided is to mistake the general modeling techniques for the geometric model

itself. Given a modeling regime it can be improved by prototyping, parts-treeing, resolution-limiting

and procedural-generating; without a good basic geometric model the general techniques amplify the

background noise.

BOX 1.2 DESIRABLE PROPERTIES FOR A GEOMETRIC MODEL.

^

1. Spatial addressing.

2. Spatial uniqueness.

3. Object coherence.

4. Surface coherence.

5. Shape generality.

6. Large extent with high resolution.

7. Easy modifiablity.

8. Suitability for physical simulation.

9. Efficiency of memory and computation use,

10. Suitability for automatic model acquisition.

To the best of my knowledge, this survey is complete. As of this year, 1974, there are no

other significantly different kinds of simple geometric models. The desirable properties that have

turned up in this survey are listed in Box 1.2. The final desirable property is that there be some hope

that the computer can derive the model by measurements it can make itself, although it is quite likely

that one model will be best for input and another model will be best for simulation.

11

I
I /

•^^ ^■to ^äM

1.2 Polyhedron Definilions and Properties.

1.2 Polyhedron Definitions and Properties.

GEOMETRIC MODELING THEORY

:

i

i

!

■

In computational modeling, definitions are not used formally, but are rather employed piecemeal

in terms of individual properties which may or may not be present as polyhedra are generated and

processed. In particular, the properties listed in Box 1.3 (given in order of relevance) can be taken as

a working definition of a polyhedron for modeling a physical object.

BOX 1.3 PROPERTIES OF POLYHEDRA "N

V.

1. Eulerian Satisfies the Euler equation: F-E^V=2-2*H.

2. Surface Homogonoity The polyhedron does not intersect itself.

3. Trivalence All vertices and faces have three or more edges.

4. Face Planarity All vertices of a face are coplanar.

5. Solidity The volume measure is nonzero, finite and positive.

6. Simply Connected Faces Face perimeters have one loop of edges

7 Face Convexity All the face«; are convex

8. Edge Aplanarity Faces which share an edge are not coplanar.

Topologically, the surface elements of a polyhedron form a graph that satisfies Euler's

F-E»V»2-2*H equation; where as before F, E and V «re the number of faces, edges and vertices of the

polyhedron; and where H is the number of holes in (or genus of) the polyhedron. However, not all

Eulerian graphs of faces, edges and vertices correspond to the usual notion of a solid polyhedron

without the surface homogeneity and trivalence res'irictions. Surface homogeneity is the property that

for any point on the polyhedron a small enough sphere will cut from the surface a region

homeomorphic to a disk; this restriction implies that the surface cannot intersect itself and that an edge

can belong to only two different faces. The trivalence restriction insures that there are no degenerate

two edged faces or one edged vertices; although a two edged vertex has a reasonable interpretation it

is excluded by trivalence for the sake of face-verlex duality and canonical form. The last property, of

aplanarity of faces with a common edge, is alto for the sake of canonical form and is sacrificed to face

convexity when necessary.

Geometrically, the faces of a polyhedron are planar, that is lie in a plane It is also frequently

relevant to further restrict the faces of a polyhedron to be convex, that is to require that every

possible line segment between points of a face is contained within the face. To assure solidity, the

volume measure must be restricted to be finite aiiid positive; this restriction orients the surface to have

12

rt^ta

I
1.3 Camera, Light and Image Modeling. GEOMETRIC MODELING THEORY.

an exterior and an interior in the expected fashion. This restriction excludes non-orientable structures

such as Mobius bands and Klein bottles for which the volume measure is undefined; however the

restriction will be relaxed in Chapter 5 in order to exploit the concept of negative volumes.

The working definition was derived from more formal definitions such the following which defines

a polyhedron as a special kind of a two dimensional manifold:

"A polyhedron is a connected, unbounded two-dimensional manifold formed by a finite

set of non-re-entrant, simply-connected plane polygons."
- Coxeter, Regular Polytopes (Coxeter 1963).

in a coimrctrd manifold there exists a path between any two points that does not leave the manifold.

An unhnundrd manifold is one with no cuts or gaps in its surface, that is no boundaries. A polyhedral

manifold is composed of planar, simply-connected, non-re-entrant polygons; that is flat polygons with a

perimeter of edges that form one loop that doesn't intersect itself. The polyhedron restrictions and

properties are directed towards modeling physical objects and are maintained by computational

mechanisms; consequently the word polyhrdmn comes to represent an intent, rather than th«

fulfillment of any particular set of defining properties.

•

I
1.3 Camera, Light and Image Modeling.

Common to both computer graphics and vision is the necessity to model cameras, light and

images so that pictures may be synthesized or analyzed. The basic camera model has eight d«gre«s of

freedom, three in location, three in orientation and two in projection:

Location: CX, CY, CZ Vector to camera lens center.

Orientation: WX, WY, WZ Orientation vector.

Projection: AR, FR Aspect Ratio and Focal Ratio.

The orientation vector is explained in Sectton 3.3, the perspective projection is defined in Section 3.4,

and the derivation of the camera parameters is the main topic of Chapter 9. In modelint light and

physical objects, the most important and difficult property to simulate is opacity. Techniques for

modeling opaque objects are presented in Chapter 4.

13

1
I
I
I
I I

I
f
I
J
I

1
1
I
I
I
I
I

1.4 Related Modeling Work. GEOMETRIC MODELING THEORY.

Finally, an image is a 2-D geometric object representing the content o(a rectangle from the

pattern of light of light formed by a thin lens on a television vidicon. The video image is the interface

to the external reality. Image modeling is analogous to 3-D geometric modeling, since the same

tradeoffs between spatial structure and object structure arise. A 2-D image may be represented as a

video raster, which is a 2-D space array; or as a set of feature loci, which is an object oriented

description. Image structures and processors for generating and comparing image representations are

discussed in Chapters 7 and 8. Together camera, light and image modeling are the essential elements

required to apply a geometric modol to computer vision.

1.4 Related Modeling Work.

Although geometric modeling per se has a long history and a rich literature in mathematics,

physics and engineering, very little such modeling has been don5 using a computer at the level of

detail required for visual perception, This level falls between the generality typical in physics and

mathematics and the specificity typical of engineering. Computer science research in geometric

modeling has already been cited in Section 1.2; similar ideas are available from computer graphics

sources (Newman and Sproull 73). In computer graphics, the typical modeling paper invariably has a

long discussion about the implementation of a node/link modeling language (CORAL, LEAP, ASP, and

others) and very little discussion on how the actual geometric modeling is to be done in the given

language. In mathematics, I have found the work of the Canadian geometer Coxeter, (Coxeter 61) and

(Coxeter 63) to be my best source of ideas relevant to modeling; along with the observations from

recreational mathematicians (Gardner 59), (Gardner 61) and (Stewart 70); and geometry textbook

authors (Eves 65), (Snyder 14) and (Graustein 35). The translation of Hubert's book (Hilbert 52)

presenting Geometry for the non-mathematician is also a good source of ideas. From Physics, material

on classical mechanics is useful in modeling rotation and inertia tensors (Goldstein 50), (Feynman et al

63) and (Symon 53). In engineering, books on geodetic surveying, mechanical drawing and

architectural drawing contain ideas relevant to modeling particular classes of objects; I have selected

(Luzadder 71) and (Müller 67) almost at random, as introductions to engineering and architectural

drawing, respectively.

14

2.0 Introduction to the Winged Edge. WINGED EDGE

SECTION 2.

THE WINGED EDGE POLYHEDRON REPRESENTATION.

2.0 Introduction to the Winged Edge.

2.1 Winged Edge Link Fields.

2.2 Sequential Accessing.

2.3 Perimeter Accessing.

2.4 Basic Polyhedron Synthesis.

2.5 Edge and Face Splitting.

2.6 Coordinate Free Polyhedron Representation.

2.0 Introduction to the Winged Edge.

In this chapter, a particular computer representation for polyhedra is presented and some o« its

virtues and faults are explained. The representation is implemented as a data structure composed of

small blocks of words containing pointers and data in the fashion usual to graphics and simulation. An

introduction to such data structures can be found in Chapter 2 of Knuth's Art of Computer Programming

(Knuth 68). Quickly reviewing Knuth's terminology, a node is a group of consecutive word« of memory,

a field is a named portion of a node and a link is the machine address of a node. The notation for

referring to a field of a node consists simply of the field name followed by a link expression enclosed

in parentheses. For example, the two faces of an edge node whose link is stored in the variable named

"edge", are found in the fields named NFACE and PFACE, and are referred to as NFACE(edge) and

PFACE(edge). Although my latest language of implementation is PDP-10 machine code, examples in

this chapter will be given in a fictional programming language which combines ALGOL with Knuthian

node/link notation. (As an exercise, the energetic reader should write out a possible representation

for general polyhedra, before reading any further.)

15

/

^rik

FIGURE 2.1 - Winged Edg« Topology. WINGED EDGE.

*

FIGURE 2.1 - Winged Edge Topology.

Th« orientation of links is as viewed from the exterior side of the surface.

Th« eight mnemonics in the figure, were derived as follows:

NFACE(edge) Negative Face of edge.

PFACE(edge) Positive Face of edge.
PVT(edge) Positive Vertex of edge.
NVT(edge) Negative Vertex of edge.
NCW(edge) edge in Negative face Clockwise from edge.

PCW(edge) edge in Positive face Clockwise from edge.
NCCW(edge) edge in Negative face Counter Clockwise from edge.
PCCW(edge) edge in Positive face Counter Clockwise from edge.

- 16

^^ta

i
i

I
i
i
I

2.1 Winged Edge Link Fields. WINGED EDGE.

2.1 Winged Edge Link Fields.

A polyhednn in made up of four Kinds of nodes: bodies, faces, edges and vertices. The body

node is the head of three rings: a ring of faces, a ring of edges and a ring of vertices. In this context,

a ring is a doubly linked circular list with a head nod«. Each face and each vertex points directly at

only one of the edges on its perimeter. Each edge points at its two faces and its two vertices.

Completing the topology, each edge node contains a link to each of its four immediate neighboring

edges clockwise and counter clockwise about Its face perimeters as seen from the exterior side of the

surface of the polyhedron, These last four links are the wings of the edge, which provide the basis for

efficient face perimeter and vertex perimeter accessing. Finally, the links of the edge nodes can be

consistently oriented with respect to the surface of the polyhedron so that the surface always has two

sides: the inside and the outside.

BOX 2.1 WINGED EDGE STRUCTURES AND LINK NAMES.

^

Data Structures

1. Face Ring of a Body.

2. Edge Ring of a Body.

3. Vertex Ring of a Body.

4. First Edge of a Vertex.

5. First Edge of a Face.

6. The two faces of an edge:

7. The two vertices of an edge:

8. The four wing edges of an edge:

Link Names
NFACE PFACE
NED FED
NVT PVT

PED
PED

NFACE PFACE
NVT PVT
NCW PCW NCCW PCCW

Observe that there are twenty-two link fields in the basic representation: bodies contain six

links, faces throe links, vertices three links and edges ten links. If we allow a link name such as PED to

serve different roles depending on whether it applies to a body, face, edge or vertex; then the

minimum number of different link field names that need to be coined is ten. The data structures and

the link fields comprising the structures are listed in Box 2.1. The ten link names include: NFACE and

PFACE for two fields that contain face links in edges and the face ring, NED and PED for two fields that

contain edge links, NVT and PVT for two fields that contain vertex links, and NCW, PCW, NCCW and

PCCW for the four fields that contain edge links and are called the wings.

17

<

- 18

!

.... j pj ii, ruu. WINGED EDGE. 2.1 Winged Edge Link Fields.

By constraining the arrangement of links in an edge node both the surface orientation (interior

and exterior) and a linear Orientation o! th» ^dge as a directed vector can be encoded. Figure 2.1

diagrams the arrangement of the links comprising the tcpology of an edge of a polyhedron as viewed

from the exterior side of its surface. Although the vertices in Figure 2.1 are shown with only three

edges, vertices may have any number of edges; the other potential edges would not be directly linked

to the middle edge of the figure and GO were not shown.

To complete the representation, space is allocated to contain the 3-D coordinates of each vertex

in fields named XWC, YWC and ZWC; the initials "WC" stand for World Coordinam, For the sake of

vision and display, three more words are allocated to hold the Pcrsprclive Projected coordinates of

each vertex in fields named XPP, YPP and ZPP. Also a word of thirty six status bits is carried in «very

node: permanent status bits specify the type (body, face, edge, vertex, etc.) of every node, temporary

bits provide space for operations such as hidden line elimination that require marking. Passing now

from necessities to conveniences, faces carry exterior pointing normal vectors and several words of

photometric surface characteristics. The face vectors are derived from surface topology and vertex

loci, and so they are not basic geometric data as in some representations. Bodies carry a print name,

as well as four link fields (DAD, SON, BRO, SIS) for implementing a parts tree data structure; and two

link fields (CW and CCW) for a body ring of all the bodies in the world model. Node formats are given

in Section 11.2 for an implementation based on fixed sized (twelve word) nodes.

i
The Winged Edge Polyhedron Representation as just presented is complete. Edge nodes carry

most of the topology, vertex nodes carry the geometry, face nodes carry the photometry and body

nodes carry the linguistics (nomenclature) and parts tree structure. The point that remains to be

demonstrated, is that the appropriate subroutines for creating, maintaining and exploiting edge

orientation execute efficiently and provide good primitives for solving such geometric problems as

hidden line elimination and polyhedral intersection. i

i

— . ^ . ^^-

mm

I

I
i
I
I
I
I

2.3 Perimeter Accessing. WINGED EDGE.

2.2 Sequential Accessing.

An immediate consequence of the ring structures is thai the faces, edges and vertices of a body

are sequentially accessible in the manner illustrated by the following lines of code:

COntlENT APPLY fl FUNCTION TO ALL THE FACES, EDGES AND VERTICES OF A BODY;
PROCEDURE APPLY (PROCEDURE FNj INTEGER Bh
BEGIN

INTEGER F,E,V;
F - B) WHILE B-CF-PFACEID) DO FNlDj CDMtlENT APPLY FUNCTION TO FACES OF A BODY;
E ► B; WHILE B«(E*PEO(E)) DO FN(E)| COtinENT APPLY FUNCTION TO EDGES OF A BODY;
V - B; WHILE B«(V-PVTtV)) DO FN(V)) COHMENT APPLY FUNCTION TO VERTICES OF A BODY;

END;

The rings could of course have been traversed in the other direction by invoking Nv'T, NED and NFACE

in place of PVT, RED and PFACE. The reason for doubly linked list* (i.e. rings) is rapid deletion,

Finally, observe that the face and vertex rings could be eliminated at the cost of having a more

complicated face/vertex sequential accessing method requiring a visitation marking bit in the status

word of face and vertex nodes. The idea might be coded as follows:

COMMENT APPLY A FUNCTION TO ALL THE FACES OF A BODY WITHOUT USING THE FACE RINGS;

PROCEDURE APPLY (PROCEDURE FN; INTEGER B);

BEGIN

END;

INTEGER F.E.M;

E . B;
ft * MRRMPFRCECE));

DO FOR F - PFACE(E),NFACE(E) DO
BEGIN

IF n=nARt;(F) THEN FN(F))

HfiRMF) ► -M;

END;
UNTIL B.(E-PE0(E))|

2.3 Perimeter Accessing.

COMMENT FIRST EDGE OF BODY;
COMMENT READ INITIAL STATE OF HARKING BIT;
COMMENT FOR BOTH FACES OF EACH EDGE..,;

COMMENT APPLY FUNCTION TO "UN-RE-MARKED" FACE;
COMMENT FLIP THE MARKING BIT;

COMMENT ALL THE EDGES OF THE BODY;

I

The perimeter i'f a face is an ordered list of edges and vertices, the perimeter of a vertex is an

ordered list of edges and faces, and the perimeter of an edge is an ordered list consisting of exactly

two faces and two vertices. The perimeter definitions are caricatured in Figure 2.2. One virtue of the

winged edge representation is that both vertex and face perimeters can be traversed in either

direction (clockwise or counter clockwise) while being dynamically maintained in "our ring".

19-

^^

2.3 Perimeter Accessing. WINGED EDGE.

FIGURE 2.2 - Three Kinds of Perimeters.
0

EDGE

A Vertex is surrounded
by Edges and Faces

An Edge is surrounded
by Faces and Vertices

A Face is surrounded
by Edges and Vertices

Given one edge of a face (or vertex) perimeter, the next edge clockwise (or counter clockwise)

from the given edge about the particular face (or vertex) can be retrieved from the data structure

with the assistance of two subroutines called ECW and ECCW. The idea of the edge clocking routines is

to match the given face (or vertex) with one of the faces (or vertices) of the given edge and to then

return the appropriate wing. A possible coding of ECCW and ECW might be as follows:

COflMENT FETCH EDGE CCW FROfl E RBOUT FV;
INTEGER PROCEDURE ECCU (INTEGER E.FV)!
BEGIN "ECCW"

IF PFflCE(E)=FV THEN RETURN(PCCU (E))j
IF NF3CE(E)=FV THEN RETURN(NCCW(E)I;
IF PVT(E)=FV THEN RETURN(PCU(E));
IF NVT(E).FV THEN RETURN(NCW(E))i
FflTflLj

END "ECCU"i

COriHENT FETCH EDGE CLOCKWISE FROfl E RBOUT FV|

INTEGER PROCEOURE ECW (INTEGER E,FV))

BEGIN "ECW"
IF PFBCE(E)=FV THEN RETURN(PCW(E)))
IF NFflCE(E)=FV THEN RETURN (NCW (E)) j
IF PVT(E).FV THEN RETURN(NCCU(E));
IF NVT(E).FV THEN RETURN(PCCU(E))i
FflTBLi

END "ECU")

The first edge of a face or vertex is (of course) immediately available from the PED field of the face or

vertex. For example, the two procedures below can be used to visit all the edges of ■ face or all the

edges of a vertex, respectively.

COWIENT BPPLY FUNCTION TO EDGES OF R FACE;
PROCEDURE RPPLY (PROCEDURE FN; INTEGER F);
BEGIN

INTEGER E,E0;
E»E0>PED(F)i
00 FN(E) UNTIL E8.(E.ECCU(E,F))i

END;

COrtMENT APPLY FUNCTION TO EDGES OF fl VERTEXt
PROCEDURE RPPLY (PROCEDURE FN) INTEGER V) (
BEGIN

INTEGER E.EO)
E-EIKPEOW))
DO FN(E) UNTIL E8.(E-ECCW(E,V))(

END)

Using the same idea as in the edge clocking routines, a face or vertex can be retrieved relative

to a given edge and a given face or vertex. These routines include: FCW and FCCW which return the

/

20

^^ta

*m

2.4 Basic Polyhedron Synthesis. WINGED EDGF

face clockwise or counter clockwise from a given edge with respect to a given vertex; VCW and VCCW

which return the vertex clockwise or counter clockwise from a given edge with respect to a given

face; and OTHER which returns the face or vertex of the given edge opposite the given face or vertex.

Together the seven routines: ECW, ECCW, VCW, VCCW, FCW, FCCW and OTHER exhaust the possible

oriented retrievals from an edge node; they also alleviate the need to ever explicitly reference a wing

field when traveling the surface of a polyhedron. With node type checking the primitives can be made

stronger, for example ECCW(vertex,face) is implemented to return the edge counter clockwise from

the given vertex about the given face. With node type checking and signed arguments the seven

perimeter accessing routines could even be replaced by a single routine perhaps named

PERIMETER.FETCH or PGET. On the other hand, I favor having the proliferation 0» accessing names for

the sake of documenting the clocking direction and the types of nodes involved.

Two remaining surface accessing routines, of minor importance, are BGET(entity) and

LINKED(entity,entity). BGET of a face, edge or vertex merely cycles the appropriate ring to retrieve

the body of the given entity. The LINKED routine determines whether its two arguments (faces, edges

or vertices) are adjacent; there are six LINKED cases: (i) Face-Face, returns a common edge or

FALSE; (ii) Face-Edge, returns boolean value FsPFACE(E) v F»NFACE(E); (iii) Edge-Edge, returns a

common vertex or false; (v) Edge-Vertex, returns boolean value VaPVT(E) v V=NVT{E); (vi)

Vertex-Vertex, returns common edge or FALSE. (As in LISP, zero is false and non-zero is true).

2.4 Basic Polyhedron Synthesis.

BOX 2.2

Nodr Makrm:

Nodo Killers:

Wing MunRfrs:

Surfaco. Frtrlwrit:

Parts Tree Routines:

LOWEST LEVEL WINGED EDGE ROUTINES.

MKNODE, MKB, MKF, MKE, MKV, MKTRAM.

KLNODE, KLB, KLF, KLE, KLV.

WING, INVERT, EVERT.

ECW, ECCW, OTHER, VCW, VCCW, FCW, FCCW. LINKED.

BDET, BATT, BGET.

"N

There are sixteen routines for node creation and link manipulation which when combined with the

nine accessing routines of the previous section form the nucleus of a polyhedron modeling system.

These routines are very low level in that the final applications user of winged polyhedra will never

21

^^

m^m

2.4 Basic Polyhedron Synthesis. WINGED EDGE.

explicitly need to make a node or mung a link. The word mung (meaning to modify an existing

structure by altering links in place) is LISP slang that deserves to be promoted into the technical

jargon; traditionally, a mung routine is one which makes applications of the LISP primitives RPLACA and

RPLACD. The twenty five routines listed in Box 2.2 are the bedrock foundation for the Euler

primitives presented in Chapter 3.

Node Makers and Killfn. The MKNODE and KLNODE are the raw storage allocation routines

which fetch or return a node from the available free storage. Tha MKB routine creates a body node

with empty face, edge and vertex rings; the body is placed into the body ring of the world model. The

MKF, MKE and MKV each take one argument and create a new face, edge or vertex node in the ring of

the given entity; with type checking these three primitives could be consolidated. Finally the MKTRAM

node creates a (mm node, which consists of twelve real numbers that represent either a Euclidean

transformation or a Cartesian frame of reference depending on the context. (Tram nodes are explained

in Section 3.3.) The corresponding kill routines KLB, KLF, KLE and KLV remove the entity from its

respective ring and return its node to free storage.

Ifing Mungfirs. The WING(edgel,edge2) routine finds which face and vertex the arguments

edgel and edge2 have in common and stores the wing pointers between edgel and edge2 accordingly;

the exact link manipulations are illustrated in the example coding of the WING procedure immediately

following this paragraph. Recalling that odgos are directed vectors, the INVERT(E) routine flips the

direction of an odge by swapping the contents of the appropriate fields as follows:

PFACE(E)«NFACE(E); PVT(E)«NVT(E); NCW(E)«NCCW(E) and PCW(E)HPCCW(E). Finally, the EVERT(B)

routine turns a body inside out, by performing the following link swaps on all the edges of the given

body: PFACE(E)«NFACE(E); NCW(E)*.PCCW(E); and NCCW(E)«PCW(E).

PROCEDURE ICING (INTEGER E1,E2)|

BEGIN

IF PVT(E1)=PVT(E2)APFRCE

IF PVT(El).PVT(E2)/NFfiCE
IF PVT(El).NVT(E2)APFfl:E
IF PVT(El)=NVT(E2)ANFflCE
IF NVT(E1).PVT(E2)APFBCE

IF NVT(El).PVT(E2)ANFflCE

IF NVT(El).NVT(E2)APFflCE

IF NVT(El).NVT(E2)ANFflCE

END;

(E1UNFBCE

(EDrPFflCE
(EUrPFflCE
(El)=NFfiCE
(El).PFflCE

(EDsNFflCE

(ElUNFRCE

(El).PFflCE

(E2)THEN
(E2)THEN
(E2)THEN
(E2)THEN
(E2)THEN
(E2)THEN
(E2)THEN
(E2)THEN

BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN
BEGIN

PCW(El).
NCCU(El).
PCM(El).

NCCW(El).
PCCU(El).
NCU(E1)<

PCCinEl).
NCU(E1)<

E2;NCCU(E2).
E2) PCU(E2).
E2;PCCH(E2).
12; NCU(E2)<
E2; PCU(E2).
E2!NCCU(E2)I

■E2; NCU(E2)<
E2)PCCU(E2)(

EliENO;
EljENO;
E1|END(
EljENOj
EliENDj
EliENO)
EliENDi
E1|EN0|

22-
/

■ ü

^^

I
f
I
I
I
I
I

2.4 Edge and Face Splitting. WINGED EDGE.

Par» Tree Hautims. As mentioned before, body nodes can be grouped into a tree structure or

parts. The parts tree consumes four link positions (DAD, SON, BRO, SIS) and is maintained in body

nodes by the following primitives: BDET{body) detachs a body node from the parts tree,

BATT(bodyl,body2) attaehs bodyl to the ring of children belonging to body2, and BGET(imtily) returns

the body node at the head of the given face, edge or vertex ring. The SON field of a body may contain

a pointer to a headless ring of subpart bodies, the ring of subparts is maintained in the BRO (brother)

and SIS (sister) fields, and each subpart contains a pointer back to its parent in its DAD field. At

present, the notion of a body is coincident with the notion of a connected polyhedron; however by

allowing several bodies to be associated with a single polyhedral surface, a flexible object such as an

animal could be represented.

2.4 Edge and Face Splitting.

One of the most important properties of the winged edge representation is thai edges and faces

can be split using subroutines that make only local alterations to the data structure; and the splits can

easily be removed (since the doubly linked rings allow rapid deletion of nodes from a body). The edge

split routine, ESPLIT, makes a new edge and a new vertex and places them into the surface topology as

shown in Figure 2.3; the kill edge-vertex routine, KLEV, undoes an ESPLIT. The face split routine,

MKFE, creates a new edge and a new face and places them into the surface topology as shown in

Figure 2.4; the kill face-edge routine, KLFE, undoes a MKFE.

The rest of this section concerns implementation; it may be skipped by the applications oriented

reader. The split and kill routines are examples of a pattern which applies to the coding of operators

that alter winged edge structures. In a typical situation, there are five steps: first, get the proper

kinds of nodes into the body rings using the MKF, MKE, MKV primitives; second, position the vertices

by setting their XWC, YWC, 2WC fields; third, connect each vertex and face to one of its edges by

setting face/vertex PED fields; fourth, connect each edge to its two faces and its two vertices by

setting the NFACE, PFACE, NVT, PVT fields of the edge; finally, set up the wing perimeter pointers by

applying the WING primitive to the pairs of edges to be mated.

23-

^^»f

2.4 Edge and Face Splitting. WINGED EDGE.

I
I

FIGURE 2.3 - ESPLIT AND KLEV.

.

BEFORE: VNEW •- ESPLIT(EDGE);
AFTER: EDGE «- KLEV(VNEW);

INTEGER PROCEDURE ESPLIT (INTEGER E0GE>i

BEGIN "ESPLIT"
INTEGER VNEH.ENEUi

COfWENT CREATE fl NEU EDGE AND VERTEX;

VNEH ► lirV(PVT(EOCE))j

ENEU - nKE(EDCE)i

COnnENT CONNECT VERTICES « FACES TO EDGES;

PVT(ENEU) ► PVT(EOCE);

NVTCENEll) ► VNEll;

PVT(EDGE) ► VNE1J-,

PFACEfENEU) - PFACE(EDGE);

NFACECENEU) * NFflCE (EDGE);

COflHENT CONNECT EDGES TO VERTICES;

IF PED(PVT(EDCE)=EDCE THEN

PED(PVT(EDGE))-ENEWi

PED(VNEU)^ENEU;

COtWENT LINK THE WINGS TOGETHER)

NCU(ENEU) . EDGE-, PCCW(ENEU) » EDGE;

PCU(EDGE) - ENEU; PCCU(EDGE) - ENEU)

UINC(NCCU(EDGE),ENEU)i

UING(PCU(EDGE),ENEU);

RETURN(VNEU)|

END "ESPLIT"|

AFTER: VNEW *■ ESPLIT{EDGE);
BEFORE: EDGE ♦■ KLEV(VNEW);

INTEGER PROCEDURE rLEV (INTEGER VNEU);

BEGIN "KLEV"

INTEGER EDGE,ENEU(V,F,B;

ENEU ► PEG(VNEU);

EDGE ► ECCUIENEU.VNEU);

COnnENT ORIENT EDGES AS IN DIAGRAM;

IF NVT(ENEU) « VNEU THEN INVERT (ENEU);

IF PVT(EDGE) « VNEU THEN INVERT(EDGE);

COfUIENT TIE E TO ITS NEU UPPER VERTEX RND UINCSi

V - PVT(EDGE) ► PVT(ENEU))

UING(PCU(ENEU),EDGE);

UING(NCCU(ENEU),EDGE)!

COnnENT ELIMINATE OCCURRENCES OF ENEU IN F AND V|

IF PEO(V)rENEU THEN PED(V) * EDGE

IF PED(PFACE(EDGE))=ENEU THEN

PED(PFACE(EDGE))-EOGE|

IF PED(NFACE(EOGE))=ENEU THEN

PED(NFACE(EDGE))-EDCE;

COnnENT REMOVE NODES FROM RINGS AND RETURN EDGE)

KLV(VNEU)|

KLE(ENEU)|

RETURN(EDGE)|

END "KLEV"i

I

Th« actual routines differ slightly from those given above in that they do argument type

checking and data structure cheeking; nevertheless, a diagnostic trace of the implemented version

reveals that the ESPLIT routine executes an average of 170 POP-10 instructions and the KLEV routine

executes an average of 200 instructions.

24-

i
I
I
I
I /

^^

i

I
I

2.4 Edge and Face Splitting. WINGED EDGE.

FIGURE 2.4 - MKFE AND KLFE.

BEFORE: ENEW
AFTER: FACE

MKFE(V1,FACE,V2)}
KLFE(ENEW);

AFTER: ENEW ♦
BEFORE: FACE

MKFE(V1,FACE,V2);
- KLFE(ENEW);

I I
I
I
I
I
I
I
I
I

INTEGER PROCEDURE WFE (INTEGER Vl,FflCE,V2) i

BEGIN "nt-FE"
INTEGER Vl.V^FNEU.ENEII.E.EO.B.V;

COnnENT CREPTE NEU FACE S EOCEi
FNEU - nr.F(FRCE): ENEW > Mt E (PEO(FRCE));

COmiENT LINK NEU EDGES TO ITS FACES S VERTICESj

PEO(F) - PED(FNEU) ► ENEllj

PFRCE(ENEIJ> ' F; NFfiCE(ENElJ) ► FNEMi

PVT(ENEW) . VI; NVT(ENEU) ► V2i

COnnENT GET THE WINGS OF THE NEU EDGE;

E2 ► PEOIVD)

DO E2-ECW((E1*E2))V1) UNTIL FCU(El,Vl)=FflCEi

E4 ► PEDIVDi

DO E4>ECW((E3^E4),V2) UNTIL FCU(E3)V2).FBCEi

COnnENT SCAN CCU FROn VI REPLACING F'S WITH FNEW|

E - E2;

DO IF PFACE(E)=FRCE THEN PFRCE(E)^FNEM

ELSE NFRCE(E)>FNEUi

UNTIL E4 = (E-ECCtnE.FNEU));

COnnENT LINK THE WlNGSj
UlNGtEl.ENEUh WING (E2,ENEW);

UING(E3,ENEU); UING(E4,ENEU);

RETURN(ENEHIj

ENOs

INTEGER PROCEDURE KLFE (INTEGER ENEW);

BEGIN "KLFE"

INTEGER FNEH,FBCE.Vl1V2,E,Ei,E2,E3,E4i

COtltlENT PICKUP ALL THE LINKS OF ENEII;

FACE * PFACE(ENEU); FNEU - NFfiCE(ENEU)i

VI * PVT(ENEU)i V2 ► NVT(ENEU)i

El ► PCU(ENEU)i £2 * NCCU{ENEU)i

E3 - NCU(ENEU); E4 * PCCtl(ENEU);

COtlflENT GET ENEW LINKS OUT OF FACE, VI AND V2t

IF PED(Vl) = ENEU THEN PED(Vl) ► El)

IF PED(V2) = ENEW THEN PED(V2) - E3;

IF PED(FACE)=ENEU THEN PEO (FACEUES;

COnnENT GET RID OF FNEU APPEARANCES;

E * E2)

DO IF PFACE(E)=FNEH THEN PFACE (E)^ACE

ELSE NFACE(E)-FACE;

UNTIL E4 • (E.-ECCU(E,FNEU));

COIKIENT LINK WINGS TOGETHER ABOUT FACE;

UINC(E2,E1);UING(E4IE3)!
KLF(FNEW)jKLE(ENEH!i
RETURN(FACE)|

END)

Again, the actual routines differ from those given above in that they do argument type checking

and data structure checking. The above two routines typically take about twice as long to execute as

the previous pair; notice that the execution time is dependent on the length of face perim. ters, which

are mostly three or four edges long.

25

/

^rih

^^m-

2.5 Coordinate Free Polyhedron Representation. WINGED EDGE.

2.5 Coordinate Free Polyhedron Representation.

As in general relativity, all goomotric entities can be represented in a coordinate free form. In

particular, the vertex coordinates of a polyhedron can be recovered from edge lengths and dihedral

angles (the angle formed by the two faces at each edge). Having the geometry carried by only two

numbers per edge rather than by three numbers per vertex does not necessarily yield a more concise

representation because edges always outnumber vertices two for one, and in the case of • triangulated

polyhedron edges outnumber vertices by three to one.

One application of a coordinate free representation arises when it is necessary to measure a

•hap« with simple tools such as a caliper and straight edge. For example, one way to so «bout

recording the topology and geometry of an arbitrary object is to draw a triangulated polyhedron on its

surface with serial numbered vertices and to record for each edge its length, its two vertices and its

»igmi dihedral length. The dihedral length is the distance between the vertices opposite the edge in

each of the edge's two triangles; the length can be given a sign convention to indicate whether the

edge is concave or convex. The required dihedral angles can then be computed from the signed

dihedral lengths.

I
I
I

1
.

.

26

*mm ■■I ^^__—I *mm

■P9W

3.0 Iniroduction to GEOMED.
GEOMED.

I
I

1

SECTION 3.

A GEOMETRIC MODELING SYSTEM.

3.0 Introduction to GEOMED.

3.1 Euler Primitives.
3.2 Routines using Euler Primitives.

3.3 Euclidean Routines.
3.4 Image Synthesis: Perspective Projection and Clipping.

3.5 Image Analysis: Interface to CRE.

3.0 Introduction to GEOMED.

I

1
I

I

GEOMED (Geometric Editor) is a system ot subroutines for manipulating winged edge polyhedra.

The system has two manifestations: first, it appears as an interactive 3-D drawing program and second,

it appears as a geometric modeling command language. It is the latter manifestation along with some of

the details of implementation that is the subject of this chapter; the interactive drawing program is

documented in (Baumgart 74). As a language, GEOMED is all semantics with no particular syntax of its

own; there are about two hundred subroutines which take from zero to four arguments, return one or

no values and which usually have considerable side effects on the data structures. The subroutines can

be grouped into five classes: utility routines, Euler routines, Euclidean routines, image synthesis and

image analysis routines. The utility routines include input/output, trigonometric functions, memory

management, a command scanner, and device dependent display routines; the utility routines will not be

further elaborated. The Euler routines perform topological operations on links, the Euclidean routines

perform geometric computations on data, and the image synthesis routines perform photographic

simulations on the model as a whole. The fifth class, image analysis routines, consists at present solely

27

mmm

3.0 Introduction to GEOMED.
GE0ME0.

of an inUrfac« between GEOMED and CRE, the fifth group lacks the completeness of the other parts of

the system.

As in the previous chapter, the programming notation used will continue to have an ALGOL

appearance with specific examples of actual GEOMED code being given in the language SAIL (Stanford

ALGOL) as is ex'mple «1 immediately below. The program in example »1 creates two cubic prisms and

BEGIN "EXfiUPLE ONE"
REQUIRE ■'GEOnES.HORtCEn.HEr SOURCEJILE]

DEFINE PI."3.14159:7";

INTEGER 81,62,11
tlKUNIV;
Bl * MfCUBE(8,l,0.S);

B2 ► nrCUBE(1,2,4))
TRflNSL(82,-7,1.5,01;

FOR 1-1 STEP 1 THRU 24 DO

BEGIN
CEODPYi
PL0T0("TnP."«CVS(l));
ROTATE(81,PI/18,PI/12,PI/13);

R0TRTE(B2,8,2*PI/23,8)I

END;
END "EXBriPLE ONE";

COhnENT DECLRRE CEOnED ErtBEDOEO IN SRIL;

COnnENT TWO BODIES RNO RN IHRGE COUNTER;

COnnENT INITIRLIZE THE DRTR STRUCTURES;

COmENT CRERTE fl COUPLE OF CUBIC PRISHSi

COHMENT DISPLRCE ONE OF THEfl;

COMMENT MRICE 24 HIRCES;

COMMENT DISPLRY REFRESH;
COMMENT OUTPUT LATEST DISPLAY TO DIStC;

COMMENT RCTION WITH RESPECT TO ...;

COMMENT ...WORLD COORDINRTES;

FIGURE 3.1 - THE 24 DISPLAYS OF EXAMPLE «1

Qt 0
c^ ^ 7 V V

,01
•^0

a si m JCD ^^D

DJI O ID <P

displays them rotating. The header file, GEOMES.HDR, is kept on a disk area [GEM.HE] and contains the

names of the necessary load modules, the declarations of all the modeling routines and SAIL mscros for

accessing GEOMED data structures. After the header, the first routine to execute is MKUNIV (make

universe), which initializes the data structures. Next two polyhedra are created using the MKCUBE

routine which takes three arguments: width, breadth and height for specifying a rectangular right

parallelepiped. All such creation routines return an integer which is the machine address of the node

of the entity created. The first routine of the FOR-loop is GEODPY which refreshes the display of the

28

/

^^"T

I

I
I
I
i
I

3.0 Introduction to GEOMED. GEOMED.

I
I

model. Finally, the example calls TRANSL and ROTATE which perform translation and rotation. TRANSL

takes four argument: the thing to be moved followed by the three components of a translation vector;

similarly ROTATE takes four arguments: the thing to be moved followed by the three components of a

rotation vector; there are several other ways to specify translation and rotation.

FIGURE 3.2 - THE 24 DISPLAYS OF EXAMPLE «2.

BEGIN "EXfltlPLE TUO"

REQUIRE "CCOMfS.HDRtGEfl.HE]" SOURCEJILEi

DEFINE ox"C0MI1ENT"i DEFINE PI."3,1*15927";
INTEGER B1,B:,J1,J2,J3,J4,J51J61C1,CHR,1!

riKUNIV|GEODPV;

Bl - INR3D("RRI1[DRT,BCBl")i

B2 ► INR30("TflBLEtDflT,BGBr)|
Jl ► FONntlECJOINTDj

J2 « FDNflnE("J0INT2");
J3 ► FDNRME("JOINTS")i
J4 ► FONflNE("JOINT«");
J5 ► FDNflnE("JOINTS")|
J6 ► FDNfiME("JOINTS"!;
Cl

o GEOMED EMBEDDED IN SRILi
a DECLARE COMMENT PREFIXj

o MODEL OF THE YELLOU RRMi
a MODEL OF THE HRNO/EYE TRBLti
a SHOULDER - RBOUT VERTICAL)
a RRM - ABOUT HORIZONTAL;
a SLIDE;
a WRIST TUIST;
a WRIST FLAP;
a HAND;

INCRMC'RRMCRMtDAT.BGB)"); a INPUT A PRRTICULRR CRMERR MODEL;
a TWENTY FOUR IMRGES FOR FIGURE 3.2;

a HIDDEN LINE ELIMINRTION OISPLRY REFRESH;
a OUTPUT LATEST DISPLAY FILE TO DISK;
a ACTION WITH RESPECT TO BODY COORDINRTES. ,
a ...WHEN BODY ARGUMENT IS GIVEN NEGATIVE;

FOR M STEP 1 UNTIL 24 DO
BEGIN

SH01I2(0,0);
PLOTO("PLTx:."SCVS(I));
R0TRTE(-J1,0,0,PI/40);
R0TRTE(-J2,0,0,-PI/SO);
TRANSL(-J3,0,0,0.06);

END;
END "EXAMPLE TWO";

In example «2, the model of an actual robot arm is read in and the first three joints are run

through a simulated arm motion. The routine INB30 reads a B3D polyhedron file from the disk. The

arm was drawn from measurements using the interactive form of GEOMED. The FDNAME, find name,

routine retrieves a body by its print name; FDNAME returns zero when a name is not found. The

routine INCAM reads in a camera file. Finally, the routine SHOW2 calls the hidden line eliminator;

when SHOW2,s arguments are zero, default options are assumed. The arm model was originally made

29 -

^fe mm

^m^

3.1 Euler Primitives.
GEOMED.

to illustrate an arm trajectory for a thesis on arm control (Paul 69) and has been used two times since

in projects concerning arm trajectory planning and arm collision avoidance.

GEOMED is a hierarcy ot several levels of routines that are finally invoked by syntactically trivial

subroutine calls. The point illustrated by the examples is that some applications level GEOMED cod«

has a quite ordinary appearance that does not require mastery of the many underlying primitives which

are explained in the next several sections.

3.1 Euler Primitives.

The Euler routines are based on the idea that an arbitrary polyhedron can be created in steps

that always maintain the Euler relation: F-E.VS2*IB-H). Topologically, a connected Eulerian polyhedrai

graph can be built up with only lour creation primitives: MKBFV, MKEV, MKFE and GLUEE or taken

apart with four kill primitives: KLBFEV, KLEV, KLFE and UNGLUEE. The prefixes "MK" and "KL", stand

for make and kill; the initials "B", "F", "E" and "V" invariably stand for body, face. cdKr and vertex

and tend to appear in that order. The notion of GLUE is associated with the process of forming (or

removing) a handle which increases (or decreases) the topological genus of the surface by on* unit.

Th« MKBFV primitive takes no arguments and creates a degenerate point polyhedron of one vertex,

or.* face and one body which is the minimal non-zero binding satisfying the Euler relation. The MKEV

creates a new edge and a new vertex, the new edge is attached to the old vertex as a spur in the

perimeter of the given face. The MKFE creates a new face and a new edge, the new edge is placed

between the two given vertices. And the GLUEE routine creates a handle or kills a body node by

placing a new edge between two given vertices and by removing the second of two given faces.

Completing the set, the ESPL1T routine (explained in Section 2.5) is included as a form of MKEV.

In principle, the advantages of the pure Euler primitives are that they assure valid topology, full

generality, reasonable simplicity and they achieve a semantic level slightly higher than that of

manipulating the nodes and links directly. However, the Euler primitives only satisfy the first of the

conditions defining a solid polyhedron; imposing no particular restrictions on surface orientation,

face/vertex trivalence, face planarity, face convexity or surface self intersection. Furthermore, even

-30-

1
I

;

!

i i

^**

mmm

3.1 Euler Primitives.
GCOMED

some low level lopologieal operations (such as body intersection, Chapter 5) are inconvenient to

specify in term of the Euler primitives. Nevertheless in practice, the Euler primitives perform a useful

role as a topological foundation for coding routines which embody more algebra and geometry and

which lead to higher semantic levels.

<B0x 3.1 THE EULER PRIMITIVES. "V

EULER MAKE PRIMITIVES:

I. BNEW«-MKBFV; Makes point polyhedron.

2. VNEW f MKEV(F,V); Makes new edge and vertex.

VNEW *■ ESPLIKE); Makes new edge and vertex.

3. ENEW-MKFE(V1,F,V2); Makes new face and edge.

4. ENEW-GLUEE(F1,V1,F21V2); Makes new edge, kills F2,

and makes a hole or kills a body,

EULER KILL PRIMITIVES:

1. QNEW ♦-KLBFEV(Q); Kills bodies, faces, edge and vertices.

2. FACE •■ KLFE(E); Kills E and NFACE(E). Returns PFACE(E).

3. EDGE «- KLEV(V); Kills V and PED(V). Returns other E of V.

VERT - KLEV{E); Kills E and NVT(E). Returns PVT(E).

4. FNEW - UNGLUE(E); Kills E, makes F. Returns the new face.

^

and kills a hole or makes a body. /

The remainder of this section consists of more explanation and examples of the Euler primitives

and may be skipped by the reader who does not need an elaboration of this level of modeling.

Noit-mlid »olyhrdrn: Intermediate between Eulerian and solid polyhedra are the wire, dangling-wire

(or spur), lamina, sheet and wasp-edged polyhedra which are transition states for creating and altering

polyhedral solids. The wirr polyhedron consists of one face, N edges and N«l vertices. A Inmiun is a

two faced polyhedron with no interior edges or dangling wire. A dnngling wirr or spur is made when

a MKEV is applied to a vertex of an already closed simply connected face perimeter; dangling wire

spurs are ultimately "closed" or "tied down" by a MKFE application. A thrrt is an array of lamina, with

the exception of ruled surfaces of rotation, commands for folding and manipulating sheets have not

been developed. Finally, a wasp polyhedron is a transition stale formed by the GLUEE primitive; this

degenerate polyhedron is named for the wasp waisted face perimeter which (like a spur) is eliminated

by appropriate MKFE applications.

31

-■^

^^^r-

3.1 Eular Primitives. GEOMED.

FIGURE 3.3 - FIVE KINDS OF NON-SOLID POLYHEDRA.

WIRE LAMINA DANGLING WIRE SHEET WASP WAIST

The use of the Euler primitives is limited to the above transition states. MKEV sweeps a MKBFV

point body into a wire, the wire may be continued (at only its newest end) by additional MKEVs until it

is closed into a lamina by MKFEing the first and last vertices of the wire. The MKFE ic oriented such

that if the wire is planar and the resulting lamina is homogeneous (non-self-intersecting); then the

exterior vector of the newly created face points into the counter clockwise halfspace of the lamina, the

halfspace from which the order of creation of the vertices appears to be counter clockwise. This

particular generation by Euler sweeping from point, through wir' and lamina, to solid is illustrated by

the make hexahedron example *3 and by the make tetrahedron example «4; the final example of this

section, example «5, illustrates the use of GLUEE.

Example 3 - Make Hexahedron.

BEGIN "EXRHPLE THREE"
REQUIRE "GEOIIES.HDRlCEn.HEl" SOURCEJILEI

INTEGER PROCEDURE IWKECUBE(REftL DX.DY.DZli
BEGIN "imECURf"

INTEGER B,r>E>Vl)V2,V3,V4)
DEFINE »."COrmENT"!

a HAKE RECTRNCULRR LfiMINfi;
B <- tlKBFV; F^PFflCE(B)i Vl*PVT(B)i
XUC(Vl) .. DX/2J VUCtVl) - 0Y/2i ZUC(Vl) —DZ/2|
V2 ► nKEV(FIVl)i XUC(V2) ► -DX/2)
V3 ► nKEV(F,V2)j YUC(V3) - -DY/2;
V4 ► OKEVtF.VS)! XHC(V4) ► 0X/2|
HKFEm.F.V*)) F ► PFflCE(F)j

a HAKE FOUR SPURS ON THE LRIHNRt
VI ► nr.EV(F,Vl)|V2 ► nKEV(F>V2)i
V3 ► nKEV(F1V3);V4 . nKEV(F,V4);
ZUC(Vl) k ZUC(V2) ► ZWC(V3) ► ZUC(V4) ► DZ/2j

a JOIN SPURS TO FORM FINAL FRCE;
HKFE(V1,F,V2)| nKFE(V2>F,V3)i
nKFE(V3,F,V*)) tnCFEM.F.Vl»!
RETURN(B)|

END "nflKECUBE";
HKUNIV; HRKECUBE(16,8,6);

END "EXRHPLE THREE";

-32

a GEOMED EHBE0DE0 IN SRILj

a COnnENT 0ELII1ITER!

o (IRCE POINT POLYHDERfli
a POSITION FIRST VERTEX|
a nfiKE RND POSITION 2ND VERTEXj
o nRKE RND POSITION 3RD VERTEXj
a HRKE RNO POSITION 4TH VERTEX)

a POSITION LRST FOUR VERTICES)

o TEST CRLL ON HRKECUBE)

I
I
I
!

i

I

I
I
I
I

[

3.1 Euler Primitives.

Example 4 - Make Regular Tetrahedron.

BPGIN "EXRMPLE FOUR"

REQUIRE "CEOnES.KDRICEMEl" SOURCEJILE;
DEFINE o."COmiENT"il)£FINE PI = "3.1415927";

INTEGER PROCEDURE ni'TETRfl (REfiL R);

BEGIN "tllTETRB"
INTEGER B,Fl,F:,Vl,V2,V3,V4i

B - niBFVj Fl - PFflCEIB); VI » PVT(B);

WCm) ► BBS(R*0.342689)! tllC(Vl) ► -flBS(R/3)|

V2 - HKEVCFl.Vlli R0TflTE(v:,0,0,2'/PI/3)j

V3 - m:£V(Fl,V2)i ROTATE (73,0,O^^PI^);

V4 ► f1(:EV(Fl,V3)i

XIJC (V4) »YWC (V4) »0i ZUG (V4) ►BBS IR) i

HKFE<V1,F1,V4)| F2 ► PFflCECFDj
m:FE(Vl,Fl,V31 j m:FE (72^2,74)1

RETURN(Bl)
END "nKTETRfl"i

mUNIVi l1KTETRfl(6)|
GEODPY;

END "EXBMPLE FOUR")

Example 5 - Glue two N-edged faces together.

BEGIN "EXflMPLE FIVE"
REQUIRE "GEOtlES,HÖRIGEM,HE!" SOURCEJILEj
DEFINE !i="C0nnENT"; DEFINE PU"3.1415927";
INTEGER B1,B2!

INTEGER PROCEDURE GLUEFF(INTEGER FflCEl,FBCE2);
BEGIN "GLUEFF"

INTEGER V,V1,V2,E,E0,I; REBL DniN.D;
VI ► VCCU(PEO(FflCEl),FflCEl)|

a FIND VERTEX OF FflC£2 THAT IS CLOSEST TO Vl)
OniN ► lOelO; E - £8 * PED(FflCE2)!
DO BEGIN

V ► VCCII(E,FBCE2);0 ► DISTflN(Vl,V);
IF D<0I1IN THEN BEGIN 0niN<-DlV2>ViEN0|

END UNTIL EO = (E»ECCW(E,FflCE2))i
a nM.l THE HBSP EDGE;

E * CLUEE(FBCEl,Vl,FflCE2>V2);
o CLOSE OTHER EDGES;

V * 0THER(NCCU(E),V1))
DO BEGIN

VI ► OTHER (PCIKE),VI))
V2 ► OTHER (PCCII(E),V2)i
E ► m:FE(Vl>FflCEl(V2);

END UNTIL VrVl;
RETURN(BGET(E)I;

END "GLUEFF";
ni-UNIV;
Bl •■ tirCUBE(2,2,2); B2 > n^CUBEO.S.S);
ROTATE(Bl.O,-PI/2,0);TRflNSL(81,-3,0,8);
ROTATE (B2,8, ^1/2,0);TRnNSL(B2,*4,8,8);
CLUEFF(PFACE(Bl),PFfiCE(B2)l;
GEODPY;

END "EXflnPLE FIVE";

GEOMED.

o CEOtlED EriBEODED IN SAIL;

o IIBKE TETRAHEDRON;

a HAKE POINT POLYHOERR;
a POSITION FIRST VERTE»;
a MBCE AND POSITION 2ND VERTEX;
a MALE AND POSITION 3RD VERTEX;
a MAKE AND POSITION 4TH VERTEX;

a CLOSE Sr.EU QUADRILATERAL;

a RETURN THE CREATION;

a INITIALIZE AND TEST M^TETRfl;
ot DISPLAY REFRESH;

a GEOMED EMBEDDED IN SAIL;

a TWO TEST CUBES;
a DEMO CLUE FACE TO FClCE-

a PICK ONE VERTEX OF FACEl;

a INITIALIZE MINIMAL DISTANCE;

a SCAN FACE2 FOR VERTEX CLOSEST TO VI(

a FACE2 AND BODY ARE KILLED;

a LAST VERTEX, TO STOP SCAN;

a FETCH NEXT PAIR OF VERTICES;

a CLOSE AN EDGE;

a RETURN THE SURVIVING BODY;

a INITIALIZATION;
a TUO TEST CUBES;
a ORIENT CUBES SO FIRST FACES...;
a ...ARE OPPOSITE;
a TEST THE FUNCTION;
a DISPLAY REFRESH;

33-

^rita

3.2 Routines using Euler Primitives. GEOMED.

3.2 Routines using Euier Primitives.

Further methods of polyhedral construction can readily be coded using the Euler primitives. For

example, the routines listed in Box 3.2 illustrate «he direct generation of simple prototypical polyhedra,

as well as contruction by sweeping, cutting, glueing, copying and duality.

BOX 3.2

1. BNEW
BNEW *■
BNEW *•
FACE*-
FACE«-
PEAK •-

7. BODY «-
8. BNEW ♦■

9. QNEW ••
10. BODY «-

2.
3.
4.

5.
6.

ROUTINES USING EULER PRIMITIVES.

MKCUBE(DX,DY,DZ); Create right rectangular prism.

MKCYLN(RADIUS,N(DZ)j Create cylinder approximation.

MKBALL(RADIUS,M,N); Create sphere approximation.

Make prism on face (or sweep wire).

Rotation sweep wire face completion.
Make pyramid on a face (or vertex).

Removes facel and face2.
Divide body at cutting plane.

Copy an entity.
Apply face/vertex duality to a body.

SWEEP(FACE,FLAG);

ROTCOM(FACE);
PYRAMID(FV);
GLUE(FACE1IFACE2);
MKCUT(BODY,X,YIZ);
MKCOPY(ENTITY);

FVDUAUBODY);

The first three routines make cubic prisms as well as polyhedral approximation« to circular

cylinders and spheres; or more accurately, MKCUBE creates rectangular right prisms, MKCYLN creates

regular polygonal right cylinders and MKBALL creates hedrons faceted by two N-sid#d regular polar

polygons and N«(M-1) trapezoidal polygons with all vertices lying on the surface of a sphere of a

given radius.

FIGURE 3.4 - Examples of MKCUBE, MKCYLN and MKBALL

MKCUBE Results MKCYLN Results MKBALL Results

Although, the implementation of curved edges and curved faces in GEOMED has always been

jusi around the corner, I have balked at the idea because it would require additional nodes connected

to edges and faces or it would require expanding the node size, which I have always before taken as

34

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I
1

- ^-

3.2 Routines using Euler Primitives. REOMFP

I

:

an omen for restarting from scratch. There have so far been four cold starts: GEOWED I, 1 969, was

based on sweep primitives and was written in LEAP/SAIL; GEOMED II, 1970, was based on winged

edge primitives and was written SAIL without using LEAP; GEOMED III, 1971, was written SAIL and

FAIL; GEOMED IV, 1972 to present, is written in FAIL. Future mythical GEOMED's include export

GEOMED V, coded in simple international ALGOL for export; a big GEOMED VI, larger nodes for curved

object representation of smooth manifolds rather than polyhedra; a small GEOMED VII coded for a mini

computer; and finally a 4-D GEOMED VIII for four dimensional modeling.

FIGURE 3.5 - Creation of a Solid of Rotation by Sweeping a Wire.

Initial Wire After four SWEEPs After ROTCOM

The three sweep primitives SWEEP, ROTCOM and PYRAMID involve the non-solid Euler

polyhedra: wire, lamina and sheets. A lone vertex body can be swept into a wire, a wire can be

closed to form a lamina or a wire can be swept into a sheet, and a sheet can be closed to form a solid

polyhedron. Figure 3.5 illustrates the creation of a solid by sweeping a wire-face, using

SWEEP(FACE,0), to form a sheet. Figure 3.6 illustrates the creation of • solid by sweeping a normal

face as well as the use of the GLUE(FACE1,FACE2) primitive to close a torus.

FIGURE 3.6 - Sweep and Glue.

O

Initial Face Lamina After twelve SWEEPS After GLUE

35

3.2 Routines using Euler Primitives.
GEOMED.

Th« sweep flag argument determines whether triangles (flag non-zero) or rectangles (flag zero)

art to be formed as the sweep of the edges of the face. Sweeping out rectangles forms prisms,

sweeping out triangles forms prismoids. The PYRAMID routine when applied to a face creates a peak

vertex at the average locus of vertices of the Idee and connects all the vertices of the given face to

the peak vertex. PYRAMID applied to a vertex coorces all the faces of the vertex to be triangles, the

interpretation being that the given vertex is to be made like a peak of a pyramid. Prismoid sweep and

face pyramiding are illustrated by the construction of an icosahedron in Figure 37; the icosahedron can

be changed into a dodecahedron by the DUAL routine. The DUAL routine mungs face nodes into vertex

nodes and vertex nodes into face nodes; the new vertices are placed at the arithmetic mean of the

vertices of the old faces, consequently the dual is not its own inverse since objects tend to shrink.

FIGURES.? - ICOSAHEDRON BY PRISMOID SWEEP AND PYRAMID SWEEP.

The MKCUT(BODYlX,Y,Z) primitive divides a body at cutting plane into as many pieces as

necessary. Figure 3.8 illustrates how to cut a toroidal polyhedron into thirteen pieces using only three

cutting planes, after Figure 63 of (Gardner 61). The action of MKCOPY should be obvious - a new

polyhedron is returned that has the same topology, geometry and photometry as the given polyhedron.

More routines using Euler primitives could be coded for particular applications in architecture,

computer animation, mechanical design, numerical machine control, assembly diagraming and so on.

FIGURE 3.8 - THREE CUT TORUS DISSECTION INTO THIRTEEN PARTS.

I

I

36

I
!

I
I
I
I

3.3 Euclidean Routinas. GEOMFD

3.3 Euclidean Routines.

The Euclidean routines o< GEOMED fall roughly into four groups: transformations, metrics, tram

routines and space simulators. The Euclidean transformations are translation, rotation, dilation and

reflection following Klein's Erlangen Program, 1872. The Euclidean metric routines compute distances,

angles, areas, volumes and inertia tensors. The tram routines create or alter tram nodes which are the

main topic of this section. The final group of routines perform spatial simulations such as collision,

intersection, propinquity, occupancy and occultation.

Trnm \orlrs. A tram node contains twelve real numbers. Fundamental to all the Euclidean

routines is the curious fact that tram nodes have two interpretations: they may represent a cooHmate

system or they may represent a Euclidean transformation. As a coordinate system, the twelve number^

contain a location of the origin of the coordinate system as well as the three components of each of the

three unit vectors of the axes of the coordinate system. As a transformation, the application of a tram

node to a vertex is defined by the procedure named SCREW, given below.

Tram as a Coordinate System:

location of origin of coordinates:

components of X-axis unit vector:

components of Y-axis unit vector:

components of Z-axis unit vector:

7>nm Node Data I'irld Nama

XWC, YWC, ZWC, LOCATION VECTOR.

IX, IY, IZ,

JX, JY, JZ, ORIENTATION MATRIX.

KX, KY, KZ.

Tram as a Transformation:
COnriENT RPPLY TRRfl Q TO VERTEX V POSTFIXj

PROCEDURE 3CREU (INTEGER V,Q);

BEGIN PERL t,y,Z;

X ► XUC(V); Y ► YUC(V), Z - ZUC(V)i

XUC(V) ► X«IX(Q) ♦ Y«JX(Q) ♦ 2«KX(Q) ♦ XUC(Q)i

YHC(V) * X«IY(Q) ♦ Y<.JY(Q) ♦ 2*KY(Q) ♦ YUC(Q)|

rUC(V) ► X*IZ(0) ♦ Y<.JZ(Q) ♦ ZtKZCQ) ♦ ZWC(0)i

END;

Generalizing, the procedure APTRAWIENTITY.TRAM) applies a tram to an arbitrary entity The

APTRAM procedure is formed by surrounding the SCREW procedure with suitable type checking and

data structure tracing mechanisms so that a tram can be applied (postfix) to almost anything:: bodies,

faces, edges, vertices, as well as to other trams, camera models and window nodes.

37

^rih imm

3.3 Euclidean Routines. GEOMED.

To repeat for emphasic, a tram node has two interpretations; a tram node may be interpreted as

a coordinate system and the very same tram node may be interpreted as a Euclidean transformation. A

source of confusion, is that a coordinate systom tram is a definition of one coordiate system (call it llv>

body coordinates) in terms of another coordinate system (call it the world coordinates). The application

of a body coordinate system tram to an en',:ty in body coordinates brings the entity down into the

world coordinate system in which the tram is defined. To say it another way, th« rule is that

APTRAM(BODY,TRAM) converts from body coordinates to world coordinates, whereas

APTRAMCBODY.INTRAMCTRAW)) converts world coordinates to body coordinates. The procedure

INTRAM Inverts a tram node in the manner given below. As alluded to in example «2, body nodes

carry a pointer to a tram defining a system of body coordinates so that Euclidean transformtions can be

relocated relzlive to arbitrary coordinate systems.

INTEGER PROCEDURE INTRRN (INTEGER Q))
BEGIN "INTRRn"

RERL X.Y.tt
X ► XllCfQ); Y ► YlJC(Q)i 2 ► :iJC(Q! j

XHC(Q) - -(X#IX(Q) + Y»IY(Q) ♦ ZilZIQ));

YUC(Q) • -(XaJXIQ) ♦ Y.'.JY(Q) ♦ Z«JZ(a))i
ZUC(O) ► -(X*mO) + Y*mQ) + ZtKZlQ));
IY(Q) - JX(Q); IZ(Q) - KX(Q)| J2(Q) - KY(Q)) COnnENT TRBNSPOSEi
RETURNfQ);

END "INTRRn";

/^BOX 3.3 EUCLIDEAN TRANSFORMATIONS

ENTITY «- APTRAM(ENTITY,TRAM);

TRAM *■ INTRAM(TRAM);

RESULT «- TRANSL(XWD(TRAM1ENTITY),DX,DY,DZ);

RESULT «- ROTATE(XWD(TRAM,ENTITY),WX,WY,WZ);

RESULT ♦• SHRINK(XWD(TRAM,ENTITY),SX,SY,SZ);

Pragmatically, the creation, relocation and application of a tram node are invoked all at once by

an appropriate Euclidean transformation routine. The transformation routines are listed in Box 3.3 with

APTRAM and INTRAM. As a further pragmatic device, the first argument of the Euclideans is

"microcoded" using the XWD notation which packs two links into one word. The expression XWD(A,B)

is equivalent to the expression (A*2T18 ♦ (B MOD 2T18)), where A and B are positive integers. When

th« entity of the first argument of the Euclidean routines is zero, the transformations create and return

a tram node; when the entity of the first argument is nonzero, the transformations create a tram, apply

I

I

I
I
!

\

[

I

I

38

!

1
1
i

^n wm

3 3 Euclidean Routines. GEOMED

it to the entity, kill the tram node and return the entity. When the first argument rarries a tram A*

well as an entity (using the XWD notation) the desired transformation (or creation) ir, rone with respc»

to the coordinate system defined in the given tram, (this is called coordinate relocation). When the

first argument is negative the body coordinates tram is retrieved and used for relocation of the

transformation. Most bodies carry a tram pointer (in the link field named TRAM) which defines body

coordinates; the body coordinates of a face, edge or vertex are taken as the TRAM of the BGET of the

face, edge or body; a zero TRAM link is mapped into a zero translation, unit rotation matrix tram by all

the Euclidean routines. Finally, the actual transformation is specified by giving three components of a

vector; the meaning of a translation vector is obvious, rotation vectors are explained in a subsequent

paragraph and a scale vector is a triple of factors which are multiplied into the corresponding

components of all the vertices of an entity with respect to the axes of transformation Reflection«; »re

specififid as negative shrinks; a reflection on one or on three axes will evert a body's surface

orientation

Further routines to create and alter tram nodes are listed in Box 3 4. The MKTRAM rou'.no

simply returns an identity tram witn zero translation and zero rotation (that is a unit rotation matrix).

The MKTRMA routine creates a tram from the Euler angles pan, tilt and swing; see (Goldstein 1950).

The Euler angles come conveniently close to the rotational degrees o» freedom of automatic camera

mounts, but unlike a rotation vector the Euler angles are discontinous at zenith and nadir.

BOX 3.4 TRAM ROUTINES

TRAM - MKTRAM;

TRAM •- MKTRMA(PAN,TILT,SWING);

TRAM •- MKTRMF(FACE);

TRAM •- MKTRME(EDGE);

TRAM «- MKTRMV(WX,WY,WZ);

TRAM •- NORM(TRAM);

TRAM*- ORTHOl(TRAM);

TRAM «- 0RTH02(TRAM);

Returns an identity tram.

Makes a tram from Euler angles.

Makes a tram from a Face

Makes a tram from an Edge

Makes a tram from a rotation vector.

Normalization to unit vectors

Orthogonalize by worst ca^e

Orthogonalize by two cross products:

K Ml CROSS J) and J - (K CROSS I)

Thr Hnintiim Matrix. The nine elements named IX, IY, IZ, JX, JY, JZ, KX, KY and KZ form what

is know as a three by three rotation matrix. By virtue of the definition of rigid object rotation, the

tram rotation matrix must be maintained orthonormal. (The trams created by SHRINK are tolerated as a

39

^Mk

3.3 Euclidean Routines. GEOMED.

special case which are not considered to be rigid rotations.) Orthonormality is maintained with the aid

of three routines: NORM(TRAM) which normalizes the row vectors of a tram rotation matrix; 0RTHO1

which orthogonalizes a rotation matrix by comparing the sums of pairs of dot products of pairs of the

three unit vectors; the unit vector that is most out of allignment is recomputed by crossing the other

two (ORTHOl performs its check twice and then exits); and ORTH02, which coerces orthogonality by

setting row vector K to the cross product of rows I and J, followed by setting row vector J to the cross

product of rows K and I.

The Kolniim IVrior. All 3-D rotations can be expressed as a vector where the direction of the

vector specifies the axis of rotation and where the magnitude of the vector specifies the amount of

rotation in radians. Given such a rotation vector WX, WY, WZ with direction cosines CX, CY, CZ and

magnitude W in radians; let CW be cosine(W) and SW be sine(W); and let a function called SIGN return

positive or negative one depending on whether its argument is positive or negative; then the relation

between a rotation matrix and a rotation vector can be listed:

Rotation vector to Rotation matrix;
IX » (1-CW)*CX*CX ♦ CW; IY • (1-CW)*CY*CX ♦ CZ*SW; IZ - {1-CW)*CZ*CX - CY#SW;

Rotation matrix to Rotation vector:

TRAM4D

I xwc YWC ZWC

0 IX IY IZ

0 JX JY JZ

0 KX KY KZ

I did not use homogeneous coordinates in GEOMED for three reasons: first, the computer at hand, (a

PDP-10) has floating point arithmetic hardware so that homogeneous components were not needed for

I
I
I
I
i
I
I
I
I
I

JX '= U -Cw')*CX*CY - 'CZ*SW; JY « (1 -CW)*CY*CY ♦ CW; JZ - (1 -CW)#CZ#CY ♦ CX#SW; .
KX = (1-CW)*CX*CZ«CY*SW; KY « (1-CW)*CY*CZ - CX#SW; KZ » {1-CW)*CZ*CZ ♦ CW; (

tation mairix IO woianon vetior; ■

WX « SIGN(JZ-KY)*AC0S(0.5*(IXOY.KZ-l))*SQRT(»IX-JY-KZ)/(3-IX-JY-KZ));
WY = SIGN(KX-IZ)*AC0S(0.5*(IX»JY.KZ-1))*SQRT(-IX.JY-KZ)/(3-IX-JY-KZ));

WZ * SIGN(IY-JX)#AC0S(0.5*(IX»JY.KZ-l))*SQRT(-IX-JY*KZ)/(3-IX-JY-KZ));

nomogrnrous Conrdimm, The Euclidean routines involving trams could be written out in

terms of the 4-D homogeneous coordinates frequently found in computer graphics, by prefixing a

column to each tram and a fourth component to each vertex.

1

40

I
!

3 3 Euclidean Routines. GcOMF-.D

numerical scaling; second, the homogeneous representation requires more coordinates per vertex and

more multiplications per transformation than the GEOMED representation; and third, my intuition is

stronger in atfine metric geometry than it is in homogeneous projectivo geometry

Standard Convnuiona. There are seviral nettlesome details related to rotation, translation and

projection among which a computer geometer must distinguish: (i). matrix vs. algebraic notation; (ii).

postfix vs. prefix transformation application; (iii). row vs. column vertices; (iv). 4-D homogeneous vs.

3-D affine coordinates; (v). rotation vector vs. Euler angles and so on. At the moment, I favor

algebraic notation, postfix transformations, row vertices, 3-D coordinates and rotation specification by

vector; a demonstrably superior natural set of standard conventions probably does not exist

In GEOMED, tram nodes were until recently called frame nodes, however I wish to abandon all

use of the word frnmr for three reasons: first, the term is ambiguous and overused (even within

graphics alone); second, the term does not include the notion of transformation; and third, the term

risks confusion (or association) with the connotations of (Minsky 74) and (Winograd 74); i.e. the

coinotation of a I'rnmo Sytlrm as a modular mental universe of stereotyped world situations. In

geometric modeling, the word frame can be replaced in all three of its usual graphics applications: the

frame of rrfrrrucr or roordinntr frnmo is now a coordinate iyttem, the frame of a movie film is

now an imnne, the frame of a display screen is now a window t harder.

Metric Routines. Given one or several geometric entities, the Euclidean metric routines listed

in Box 3.5 compute length, area, volume, angle or moments of Inertia. The DISTANCE routine computes

the distance between two anythings in a reasonable manner; the measure routine returns the volume,

area or length of bodies, faces or edges respectively (by a pragmatic argument hack, the measure of a

negative body is its surface area). The ANGLE routine computes the angle between two entities by

returning the arc cosine of the normalized inner product of two vectors: vertices are interpreted as

vectors from the origin of the body in which they belong, edge are vectors from their NVT to their

PVT, faces are taken as their normal vector and bodies are represented by the K unit vector ot t'ieir

body coordinates tram; trams and cameras also are mapped into K unit vectors.

41

^Ai

^

3.3 Euclidean Routines. GEOMED.

BOX 3.5 METRIC ROUTINES

VALUE

VALUE

RADIANS
RADIANS

RADIANS

RADIANS

VALUE

NODE

DISTANCE(ENTITY,ENTITY);

MEASURE(ENTITY);

ANG! E^NTITY.ENTITY);
ANCL37(V1,V2,V3);

ANGLCW(EDGE);

ANGLCCW(EDGE);

DETERM(TRAM);

INERTIA(BODY);

"N

Since the arc cosine function returns an angular value between zero and pi; the routines ANGL3V,

ANGLCW and ANGLCCW employ ihe arc tangent to compute an angular value between negative pi and

positive pi. The ANGL3V return the angle between the vector (V3-V2) and (V2-V1), the ANGLCW(E)

returns the angle between E and PCW(E), ANGLCW{-E) returns arctan of E and NCW(E); likewise

ANGLCCW returns values for E and PCCW(E) or E and NCCW{W). The DETERM of a tram is the

determinate of the rotation matrix of a tram. Finally, the INERTIA of a body is a sixtuple: MXX, MYY,

MZZ PXY PXZ, PYZ packed into the first six words of a node and representing the moments and

products of the intertia tensor of a polyhedron of uniform (unit) density associated with the given body.

The inertia routine takes the liberty of updating the origin of the body coordinates to correspond to

the center of mass and to orient the K unit vector of the body parallel to the principal axis of inertia.

I

I
I
I

Spntinl Simulntinn. The difficult space routines perfonr occultation and intersection and are

explained in Chapters 4 and 5 respectively, The simple space routines, listed in Box 3.6, perform

propinquity, collision detection and spatial compare.

XBOX 3.1 SIMPLE SPACE ROUTINES N

V

HEXAHEDRON

V-PIERCE

FLAG
FLAG

FLAG
FLAG

MKBUCK(BODY);

COMPFE(FACE,EDGE);

COMPEE(EDGE,EDGE);
WITH2D(FACE,VERTEX);
WITH3D(B0DY,VERTEX);
C0LDET(B11B2,FPSIL0N).

The MKBUCK routine returns a hexahedron that buckets the given body, i he COMPFE compares a face

and an edge in 3-D for intersection, if the arguments are disjoint then zero is returned, if the

42

j^. ^^M

^^■P"

i
I

3.4 Image Synthesis: Perspective Projection and Clipping. GEOMED

arguments intersect then the edge is split and the new vertex is positioned at the locus where the

edge pierces the face. The COMPEE routine determines whether two edges cross in a given

perspective view, The within 2-D routine, WITH2D, determines whether a vertex appears to be

interior to a ;iven face in a perspective view and the WITH3D determines whether a given vertex falls

I interior to a body in 3-D. The COLDET routine compares all the vertices and faces of two objects for

propinquity within an epsilson as well as all the edges of the two objects. Temporary collision pointers

I are left between vertices and the nearest alien collision face as well as between temporary collision

vertices. Collision vertices are formed at the foot of the shortest line segment between the skew lines

] of two edges that pass within the epsilon distance of each other.

3.4 Image Synthesis: Perspective Projection and Clipping.

Image synthesis is the process of generating various kinds of images: vector display, video,

contour map or mosaic. Independent of the final image representation the process always requires the

ororations of perspective projection and clipping. The perspective projection takes the 3-D world

locus of every potentially visible vertex and computes a 3-D camera center coordinate locus followed

by a perspective projection in the fashion illustrated in the PROJECT procedure given below.

INTEGER PPOCEOURE PROJECT (INTEGER V.CRilERfl);

I BEGIN "PROJECT"

INTEGER TRM; RERL)(,Y,Z,XCC, YCC.^CCi

COMflENT TRRNSFORM FROH IIORLD COORDINATES TO CfldERR COORDIflTESi

- TRn ► TRRmcflnERfi)!

X ► XUC(V) - XUC(TRn)i

Y - YUC(V) - YIICITRM);

2 ► ZIIC(V) - ZUC(TR(1)j

XCC - X:IX(TRt1) ♦ Y;IY(TRt1) * J«I2tTRI1l|

YCC - X>JX(TRt1) + Y:üY(TRn) ♦ 2)J?(TRn);

ZCC ► XiMCTRtl) ♦ Y;IY(TRn) 4 ZrfZCTRtDj

r COtinENT PERSPECTIVE PROJECTION TRRNSFORIIftTIONj

COfltlENT NOTR BENEi :PP(V) IS positive whon v«rHx is in vi«H o« camera I)

XPP(V) ► SCRLEXfCRnERRKXCC/ZCCj COIWENT (SCRLEX * -FOCRL/PDX),

YPP(V) ► SCRLEY(Cflf1ERR)*YCC/ZCCi COnnENT (SCRLEY . -FOCRL/POY);

ZPP(V) ► SCRLE2(CRnERR) /ZCC, COdnENT (SCRLEZ . -FOCRL/PDZ)|

RETURN (V)i

END "PROJECT";

The perspective projection transformation is a 3-D to 3-D mapping; the third component, ZPP, allows

the hidden line eliminator to perform orthographic depth comparisons. The perspective projection

43-

3.5 Imago Analysis: Interface to CRE. GEOMED.

quite literally is taking the whole world model and crushing it into a slanty space between the camera

lens center and the camera focal plane. The camera scales are defined in terms of the ficticious 3-D

pixel dimensions PDX, PDY, PDZ and the physical camera focal plane distance, FOCAL. The pixel

dimensions are arbitrarily defined as PDY=PDZ=40 microns and PDX«AR*PDY where AR is the aspect

ratio of the camera; the aspect ratio can be directly measured by taking the ratio of the width to

height of the image of a large black sphere on a white background, AR is usually almost one. The focal

plane distance is typically between 10 and 50 millimeters and is derived from definition

(FOCAL=FR*PDY) of the focal ratio, FR, which can be simply measured as explained in Section 9.1.

The term clipping refers to the process of computing which parts of the world model are in view

of the camera. In GEOMED there are several clipper routines: one for fast transparent refresh, three

for hidden line elimination and one more for clipping the contents of 2-D display windows that may be

scrolled about. Three dimensional clipping can be factored into a Z-clipper and an XY-elipper. The

Z-clipper determines which portions of the model are in the visible 3-D halfspace and splits edges and

faces that cross the focal plane. The XY-clipper determines which portion of a 2-D perspective edge

is within a given 2-D rectangular window (with sides parallel to the coordiate axes). The XY-clip is

done by first applying ao easy outsider test: endpoints of the edge both below, above, left or right of

the window; followed by an easy insider test: endpoints of the edge both inside the window; followed

by the evaluation of four polynomials of the form A*X«B*Y«C where A,B,C are the edge coefficents

and X,Y are the locus of corners of the clip window. If all four polynomials have the same sign the

edge is a hard outsider, otherwise the intersection of a side of the window and the edge can be

detected from alternating signs and the locus of intersection can be computed from the edge

coefficients.

3,5 Image Analysis: Interface to CRE.

Although there are no actual honest image analysis routines currently implemented in GEOMED,

the internal GEOMED environment was designed for image based model synthesis and model

verification. The routine INCRE(FILENAME) inputs from a disk file a CRE node structure that consists of

a film of contour images, contour images consist of levels, levels consist of polygons and polygons

44-
/

■Ate ^Mfel *mm

^"

I

I

i

3.5 Image Analysis: Interface to CRE. GEOMED.

consist of vectors. In GEOMED, the CRE polygons become two-faced lamina bodies; the contour levels

hierarchy becomes a parts tree structure; and a new kind of GEOMED node called an image is

introducad.

The root of the GEOMED data structure is a universe node, which is the head of a ring of world

nodes. World nodes have a ring of body nodes and a ring of camera nodes each camera represents a

physical camera so that there might be at most three or four camera nodes. Each camera has two rings

of images: a ring of perceived images and a corresponding ring of simulated images. The perceived

image ring is created by INCRE and the simulated image ring is created by the hidden line eliminator,

thus providing a environment for the development of polygon based image analysis. This completes the

general description of the geometric modeling system ea'led GEOMED.

45

iteHMi

', 0 Introduction to Hidden Line Elimination. OCCULT

SECTION 4.

HIDDEN LINE ELIMINATION FOR COMPUTER VISION.

4.0 Introduction to Hidden Lin« Elimination.

4.1 Initialization and Culling.

4.2 Hide Marking a Coherent Object.

4.3 Edge-Edge and Face-Vertex Comparing.

4.4 Recursive Windowing.

4.5 Photometric Modeling and Video Generation.

4.6 Performance of OCCULT and Related Work.

4.0 Introduction to Hidden Line Elimination.

Hidden line elimination refers to the process of simulating the appearance of opaque three

dimensional objects. The phrase hidden line elimination dates from when the problem only involved

deleting the undesired, that is the hidden lines, from a line drawing (Figure 4.1); today the phrase

persists but connotes the wider problem of synthesizing realistic images using a computer. The

present discussion is about techniques which have been implemented in a particular hidden line

eliminator named OCCULT, from the Latin word oeculiare meaning to hide. OCCULT illustrates novel

solutions to the graphics problems of exploiting object coherence and image coherence, of combining

image space with model space techniques, and of sorting faces, edges and vertices in two dimensions.

OCCULT is further characterized by its intended application to computer vision and robotics. The

distinguishing design requirement of a hidden line eliminator intended for vision is that it must maintain

back pointers from the final 2-D images to the initial 3-D models so that the identity of features can be

recovered. In computer graphics, the results of hidden line elimination are intended for human viewing

46

4.0 Introduction to Hidden Line Elimination. OCCULT

so tne correspondence between the image and the model is not usually retained (unless image based

model editing is being attempted). Another design goal for OCCULT was to output a connected graph

ot regions, edges and vertices that covers the image with no holes missing, no regions overlapping and

no dangling edges. It was naively assumed that such a highly structured image representation, called a

momir. imngr, would provide a suitable basis for deriving features such as the location and orientation

of high contrast edges without having to generate video images.

FIGURE 4.1 - EXAMPLE OF HIDDEN LINE ELIMINATION.

BEFORE AFTER

Hidden line eliminators appear in two previous vision systems: one by Robert« (63) and the

other by FalK (70); the present system is a direct heir of the worK of FalK in that the last version of

tn« Falk system contained one of the first versions of OCCULT (installed by Richard Orban). As with

image analysis, image synthesis (i.e. hidden line elimination), is a perennial research problem because

it cjnnot be fully isolated from physical modeling. Metaphorically, hidden line elimination is the visible

tip of the iceberg of physical simulation. The weaknesses of the underlying model literally show up in

passing through the process of image synthesis. The present day collection of techniques is still quite

lacking in realism, economy, flexibility and even reliability.

OCCULT is not a simple hidden line eliminator. In overall structure it is a combination of five

tttdiniques. Box 4.1. The first method, called culling, eliminates portions of the model which are

hidden because of some easy to compute heuristic reason. The cull heuristics (detailed in Section 4.1)

nclnde: elimination by clipping planes, elimination by face vectors, elimination by inspection of concave

47

I
i

f
I
I
I
I /

^^w

I
I

4.1 Initialization and Culling. OCCULT

corners, and elimination by previous occultation. After the culls have been applied, the next three

techniques are arranged in a three level heirarchy which comprises the main part of OCCULT. At the

outermost level there is a WarnocK (68) like recursive windowing method, which calls an edge-edge

comparing method on small enough windows, which in turn calls a coherent object tracing method to

split off and mark the portions of an object that are hidden. The methods are explained in bottom-up

order: hide tracing in Section 4.2, edge-edge comparing in Section 4.3 and recursive windowing in

Section 4.4. The fifth technique is a face-vertex compare method that is occasionally required to solve

a particular class of cases that are missed by the edge-edge compare. The difficult part in building an

OCCULT like hidden line eliminator lies in getting all the unruly beasts in harness together; the

mystery being that no one beast is sufficiently strong to carry the whole burden by itself.

/<

.1

BOX 4.1 THE FIVE HIDDEN LINE ELIMINATION TECHNIQUES OF OCCULT.

1. Initialization Hide Culling.

2. Recursive Windowing.

3. Coherent Object Hide Tracing.

4. Edge-Edge Comparing.

5. Face-Vertex Comparing.

"N

4.1 Initialization and Culling.

A substantial part of sophisticated hidden line elimination lies in careful attention to initial

preparations. As it has now stood for the past two years, OCCULT has two input restrictions imposed

for the sake of execution speed: no conflicting bodies are allowed and no concave faces are allowed.

Conflicting bodies are those that occupy the same space at the same time; concave faces are faces with

interiors containing a pair of points such that the line segment between the points is not contained in

the face. The rational for both these restrictions is based on the optimization technique of getting

computations out of inner loops; conflicting bodies and concave faces can be eliminated by employing

certain polyhedral construction primitives prior to hidden line elimination. The restrictions are not

inherent limitations of any of the techniques in OCCULT, so that a lass restricted but slower

implementation is feasible.

48

4.1 Initialization and Culling. OCCULT

OCCULT is a marking algorithm, the temporary marking bits are listed in Box 4.2. The

combination (POTENT and -VISIBLE) means potentially visible; (-POTENT and VISIBLE) means actually

visible; (-POTENT and -VISIBLE) means hidden; and the combination (POTENT and VISIBLE) is an unused

state that happens to be interpreted as VISIBLE.

"BOX 4.2 STATUS BITS FOR OCCULT MARKINGS.

POTENT Potentially Visible Entity.

VISIBLE Actually Visible Entity.
P22 Behind the camera image plane, Positive Zee.

N2Z Before the camera image plane. Negative Zee.

TMPBIT Temporary Split edge of vertex.

POLDEO Edge with only one POTENT face.

JOTBIT Joint over T vertex.

JLTTBIT Joint under T vertex.

The initialization is performed in three steps: (1). vertex marking and vertex perspective

projection; (2). face marking, face Z-clipping, and computation of face coefficients; and (3). edge

marking and computation of edge coefficients. Two cull heuristics are done during the initialization:

clipping and backside faee elimination; and the other two culls are done immediately afterwards:

concave corners cheek and the hide last hidden cheek.

Vertex initialization includes the prospective projection of every vertex in the model and the

marking of every vortex that is in front of the camera as POTENT (potentially visible) if its perspective

projected Z coordinate, ZPP(V), is greater than the simulated image plane distance, FOCAL. Two

further status bits, named PZZ and NZZ, indicate positive ZCC (camera coordinates) or negative ZCC

are inclusive ORod into all the faces and edges of each vertex for the sake of the Z-elipper.

Face initialization consists of Z-clipping: if a faee has only its NZZ bit turned on, then it is

completely behind the camera and is immediately dropped from all futher eondsideration (i.e. culled

out); if the face has both its PZZ and its NZZ turn on then it is Z-clipped by using the camera's image

plane as a cutting plane. Next for faces in view of the camera, the 3-D perspective projected face

coefficients are computed (equations given below) and the faces with their backsides towards the

camera are culled out (Figure 4.2); faces surviving to this point are marked as POTENT and are placed

into a list of faces of the first window of the recursive window sort.

49

i

1 /

^ria

«w

4 2 Hido Marking a Coherent Object OCCULT

ddges that are easily discovered to be hidden (i.e the end of the edge that is connected to the corner

is hidden by a face of that corner) The second cull is applicable when hidden line elimination is being

done on a sequence of images which are not changing very much from one picture to the next. By

saving a pointer to the nrrrfum that covered each hidden vertex in the immediately preceding hidden

line olimmation, the previous overface can be quickly checked to see if it still covers the vertex In the

case of arm animation (example «2, Section 3.0) this form of exploiting frnmr-rolirmtcr realized a

twenty-five percent savings in computation time (under timesharing, but with no other user programs).

FIGURE 4.3 - FRONT FACES AND FOLDS OF A CONCAVE CORNER.

inspite of the complexity explained so far, still further measures could be taken to make 'he

hidden line eliminator even faster, For example more 3-D clipping or spatial recusive ceil sorting would

allow the earlier elimination of objects that are out of sight.

4.2 Hide Marking a Coherent Object.

OCCULT marks the faces, edges and vertices of a polyhedral scene as being either visible or

hidden with respect to a simulated camera Edges that were at first partially visible are split into

pieces so that each piece is either fully visible or fully hidden. All splits are undone and all OCCULT

bits are cleared by a fixup routine named UNCULT. In a modeling environment that provides coherent

polyhedea that can be easily traveled and modified, the simple techniqu« of hide marking the neighbors

of entities already hidden can be used to do almost all of the actual hiding, one« a starting place has

been found.

In OCCULT, the two innermost routines, EHIDE and VHIDE, perform this kind of marking and

splitting The routine VHIDE takes two arguments: the vertex, V, which is to be marked as hidden and

the face, F, that is known to hide V; the rou'ine then simply calls EHIDE for each potentially visible

51

!

I

I

^^ mmm

4.3 Edge-Edge and Face-Vertex Comparing. OCCULT

I

1

I

edge of V's perimeter. EHIDE in turn takes three arguments: an overface, F, an edse, E. and one

vertex, V, of that edge which is known to be hidden by F. EHIDE then checks to see wnether or not E

leaves its overface, F, there are three basic cases: (i) E does no! leave F, so it is marked as hidden

and VHIDE is applied to the verlax 0THER(E,V); (ii) E does leave overface F by crossing under a

-FOLDED edge which provides a new overface for EHIDE to check; or (iii) E leaven F by crossing under

a folded edge, so EHIDE splits the original edge, E, and the folded edge to form a T-jomt (exolained

below) marking the hidden portion of E as hidden and leaving the remaining portion of E potentially

visible.

A T-joint occurs in the image, when a folded edge hides a second edf»e that L further away

from the camera. When OCCULT discovers a T-joint, both edges are ESPLIT and two n«w vflrtifer ?r6

created the further one is called the JUT, Joint-Under-T, vertex the nearer one is called the JOT,

Joint-Over-T, vertex. Juts and Jots point at each other using a temporary link field named TJOINT.

FIGURE 44 - T-JOINT DIAGRAM.

(The dufinm it i view from sliRhlly to the left and below the cimen from which JOT »nd JUT auoMr eomodert /

l

FOLD

.EDGE

JUT

JOT

There are several techniques for finding hidden starting places, the major techniques involve

doing an edge-edge or a face-vertex compare using all the potentially visible (aces, edges and

vertices; the minor techniques include the concave corner cull and the hidden on last hide cull

4.3 Edge-Edge and Face-Vertex Comparing.

In OCCULT, two particular compares stand out as most basic, the edge-odge comoaro and the

face-vertex compare which are implemented in procedures named COMPEE and COMPFV, respectively.

52

- ii

A 3 Edge-Edga and Face-Vertex Comparing. OCCULT

Tho odge-odge compare routine, COMPEE, determines whether or not two edges intersect in the 2-D

image coordinates, XPP and YPP. The basic edge-edge intersection test requires passing two

opposition conditions: the ends of one edge must be in the opposite halfplane with respect to the line

containing the other edge and vice versa. Halfplane opposition is checked by two evaluating the normal

equation of the line using the edgo coefficients AA, BB, CO and the vertex coordinates XPP and YPP.

Consequently, it can be assumed tliat the two edges cross if the following expressions both return

negative values:

FLflCl - lfiB(El)*XPP(PVT(E2)) ♦ BB(E1)«YPP(PVT(E2)) ♦CC(El))

XOR tRfl(El)«XPP(NVT(E2)) ♦ BBIE1)«YPP(NVT(E2)) ♦ CC(E1));

PLRC: ► (fiR(E2)*XPP(PVT(El)) ♦ BB (E2)4VPP (PVT (El)) ♦CC(E2))

XOR (RP(E2)«XPP(NVT(E1)) ♦ BB(E2)«YPP(NVT(E1)) ♦CCtE2))|

The infix operator XOR (exclusive OR) is for toggling the sign bits in the same fashion as a

multiplication would in more conventional ALGOL. When the crossing condition is tru«, the locus of

intersection can be computed by solving two equations in two unknowns:

TMP

XPP(V)
VPPW)

(flfl(El) .BBIE2I - nR(E:);PB(Ei))i
ICC (ED ;BBIE2I - CC(E21 :E>B(E1))/TMP|
(flfl(El):CC(E2) - RR(E2l~CC(El))/TnPi

An alternate edge-edgo compare method would be to solve the two equations in two unknowns

first and then to see whether the intersection locus is interior to the line segments of both edges.

Since, disjoint pairs of edges occur much more frequently than intersecting edges, the alternate method

requires more floating arithmetic on the average than the first method which can discover about half of

the disjoint cases by computing FLAG1. Furthermore the alternate method does not lend itself to

distinguishing the almost touching cases which must be nudged to be disjoint. The OCCULT design

depends on coercing edges to intersect at one unique point or not at all, the steps listed in Box 4.4

handle the special cases requiste to such a crossing discipline. The nudge is done in image coordinates,

so the accuracy of world coordinates is maintained.

y'BOX 4.4 Edge-Edge Compare Steps.

i. Test for Identity: same edge twice.

li. Test for Topological connection: Edges with vertex or T-joint in common,

hi. Test for span Overlap in XPP and YPP: To prevent nasty collinear cases.

iv. Compare for crossing: Opposition Tests and Crossing Solver,

v. Nudge (Move off line, towards right and down).

"N

I
I
I
I
I

I
I
I

53-

i^^w

4.3 Edge-Edge and Face-Vertex Comparing. OCCULT

I

I
i

I
I
I
I

I

I
I
I
I

The lace-vertex compare routine, COMPFV has two parts: /.-dcfiih rompnrc for vertex under

the plane of the lace, and 2-1) within rompnrc for vertex enclosure by the face perimeter The first

compare is done by evaluating the Z-depth of the vertex with respect to the plane ot the face. The

second comparo tests whether the vertex falls outside of the face with respect to any of the edges of

the face perimeter, since faces are convex and since polyhedra are oriented the o.:erly directed

edges coefficient are available. The Z-depth test is performed first because it is quickt

Two very simple but important kinds of hidden line eliminators (that almost work) are based on

combining edge-edge comparing or face-vertex comparing with coherent object hiding, In the

edge-edge compare method all the edges (or even merely all the folded edges) of the image are

compared with each other, N)t<{N-l)/2 compares, for crossings; when a crossing is found a T-joint is

made and the hidden portion of the under edge is given to an EHIDE routine. In the face-vertex

compare method all the vertices are compared with all the faces, (face count)*(vertex count) compares,

for enclosure and covering; when a vertex is found hidden under and within a face it is given to a

VHIDE routine. Together the EE-compare method and the FV-compare method form one slow but sure

hidden line olimination algorithm; alono the EE-method fails to detect hidden objects with edges that

don't intersect any edges of the occluding object as in the left panel of Figure 4 5 which shows two

bricks of the same size but one behind the other. Likewise the FV-method fails to detect hidden

objects in scenes where no vertex of the object is surround or covered by a face, right panel of

Figure 4.5.

In OCCULT, the edge-edge compare is done after recursive windowing has isolated a reasonably

small number of edges (twelve). A face-vertex compare is done only if any potentially visible vertices

remain after all the other techniques have finished; in particular face-vertex comparing is only done

when the case illustrated in the left panel of Figure 4.5 actually occurs and the set of faces that are

used are only the faces that intersect the recursive window that contains the vertex.

-54-

^k

^•w

4.4 Recursive Windowing. OCCULT

FIGURE 4.5 - EE AND FV UNDETECTED HIDDEN OBJECT CASES.

I
I
I

EDGE-EDGE FAILURE CASE, FACE-VERTEX FAILURE CASE.

4.4 Recursive Windowing.

Recursive Windowing is a two dimensional spatial sorting technique for partitioning the faces,

edges and vertices associated with a rectangular region called a window into two subwindows. The

technique is applied recursively until a desired condition is achieved. The usual termination condition is

that the population of entiles in the window becomes sufficiently low or that the window becomes

extremely small. The idea is implement in a routine called ESORT which resembles the hidden line

eliminators of (WarnocK 68) and (Sutherland 69). However ESORT is unique in that it maintains a data

structure which allows edges to be split during the sort. The potentially nasty fixups are accomplished

using a aata structure that maintains a coherent image of both windows and edges. Metaphorically, the

data structure is a cloth with a warp of windows and a woof of edges, where each warp thread is

bound to a woof fiber by a bead.

Window Simriurc. The sort window itself is a twelve word node which contains data fields

ndmed XLO, XHI, YLO and YHI which specify the boundary of the window and data fields named

PENCNT, SURCNT, EDGCNT and VCNT which specify the number of faces that penetrate the window,

the number of faces that surround the window, the number of edges that pass through the window and

the number of vertices that fall within the window, respectively. The window contains link fields to

55

^*m

mm

I
I
I

4.4 Recursive Windowing. OCCULT

hold pointers to the head cl the pon-face list (penetrating faces), the sur-face list (surrounding faces),

the vertex list, the head and tail the edge list and a pointer to its antecedent window.

lirnd Siniriuro A bead is a two word node that contains four pointers and which represents

one instance of an edge passing through a window. Each edge has a list of beads representing an

ordered list of the windows through which it passes; and each window has a list of beads representing

a list of the edges it contains. The link fields named WND and EDG of a bead, point to the particular

window and the particular edge to which the bead belongs. The link fields named WNBL and EDBL of a

bead contain the necessary links for the window's bead list and for the edge's bead list.

BOX 4 5 RECURSIVE WINDOWING ROUTINES.

1. MKSWN Make Sort Window.

2. PSHSWN Push Sort Window.

3. PENSUR Update penetrator and surrounder lists.

4. POPSWN Pop Sort Window.

5. BLED Bead List Edit.

The actual sort is composed of five routines (Box 4.5) which perform all the necessary creations

and alterations to the window/edge/bead data structure. Initialization is done by the make sort window

routine, MKSWN, which places all the potentially visible faces, edges and vertices into the first sort

window along with the population counts and the extreme location of vertices in the positive and

negative, XPP and YPP directions.

If the population counts of the window are too large, the pushdown sort windowing routine,

PSHSWN, creates a new window node, places the node into the sort-window pushdown list, halves the

original window's rectangle (spliting the longer sides) leaving the left (or upper) half of the rectangle

in the old window node and allocating the right (or lower) half to the new window node. Next the

vertex list is partitioned, each vertex falls into only one or the other window. Next the original

window's bead list of penetrating edge is scanned, each edge must fall into one or the other or both

windows. If an edge falls into both windows then a new bead is made and is placed in order into the

bead list of the edge so that the beads of every edge indicate window penetrations in order from

upper-left-most to lower-right-most. Finally PSHSWN applies PENSUR to each of the two windows.

56

4 4 Recursive Windowing. OCCULT

The penettator and surrounder (ace routine, PENSUR, scans the new bead lists o< penetrating edges o<

the two suowindows and marks the faces oi those edges as penetrators and places them on the pen-list

of the new window; next the routine scans the old penetrator list of the parent window and tests (and

clears) the markings. Unmarked faces must be either surrounders or outsiders; the surrounders are

placed in the sur-list of the new window.

If the populations of the window are sufficiently low the hidden line eliminator (or the body

interboctor, Chapter 5) processes the window (does the edge-edge compares) and ca Is the pop sort

window routine, POPSWN POPSWN zeroes the window field, WND, of beads of the window as an

indication that the window is dead and so are its beads; dead beacic an returned to free storage by

the BLED routine explained below. Next the POPSWN scans the vertices or the window and places th«

pen-list and sur-list pointers of the window into temporary fields of each vertex; this trick preserves

the results ot the recursive window sort for the sake of possible face-vertex comparing. Finally the

window node is popped off the pushdown window list and returned to free storage.

During both hidden line elimination and body intersection, edges are split in order to isolate the

portion that is hidden or in order to create face piercing points. When an edge is split its bead list of

windows is also split by means of the bead list edit routine, BLED. Since beads of an edge are ordered

upper-left to lower-right; the BLED routine scans the beads for the window into which the newly

;redt«d spht vertex falls within; the vertex is then placed on that window's vertex list and a new bead

is created (since both the old and the new edges must have beads in the window that contains the split)

and the old bead list is split. Dead beads that are found while scanning the bead list ar« returned to

free storage

Although the link manipulations are complicated to recite, the essential point is that both

windows and edges can be split without losing their topologieal connectedness, which gives one a tool

(or reducing an N-squared spatial computation into an N-log-N computation. The present

implementation is coded in PDP-10 machine code, an ALGOL publication version will appear in a

forthcoming technical report which is beyond the scop« of this paper.

57

I
I
I

..

!

1
I

5.0 Introduction to Polyhedron Inlorsection. POLYHEDRON INTERSECTION.

SECTION 5.

POLYHEDRON INTERSECTION.

5.0 Introduction to Polyhedron Intersection.

5.1 Intersection Geometry.

5.2 Intersoction Topology.

5.3 Special Cases of Intersection.

5.4 Face Convexity Coercion.

5.5 Body Cutting.
5.6 Performance and Related Work.

5.0 Introduction to Polyhedron Intersection.

The intersection, union, and set differences of two solid polyhedra can be computed by

combining a body intersection procedure called BIN with the EVERT primitive, as Figur» 5.1 illustrates.

The body intersection procedure is important for three reasons: first, it is a general and conceptually

elegant construction operator; second, it can be used for spatial modeling <" collision detection and

trajectory planning for manipulators and vehicles; and third, it can be used to localize an object in 3-D

space from a sequence of silhouotto viows. The intersection algorithm consists of two parts: first,

there is a geometric part in which all the faces and edges are compared with each other for potential

face/edge intersections called piercing points; and second, there is a topoiogical part in which the

results are "copied off" of the given polyhedra; the results may consist e' zero, one or many

polyhedra. In the following, the term "operands" refers to the sett of polynedra given to BIN ••

arguments and the term "result" refers to the set (possibly empty) of polyhedra produced by BIN.

-60

^^h

1

I
I
I

I
I

I
1

I
1
I

5.1 Intersection Geometry. POLVHEDTON INTERSECTION.

5.1 Intersection Geometry.

Conceptually, the geometric part of the polyhedron intersection algorithm, BIN, consists of

* comparing each face of one operand with every edge of the other operand and vice versa. In practice

the potentially N-squared compares are avoided by using the same recursive window partition sort that

was used in the hidden line eliminator, OCCULT, Section '..3. Ignoring the recursive windowing for a

moment, the innermost face-edge compare of BIN consists of four steps: opposition, intersection,

enclosure and fission.

FIGURE 5.2 - FACE PIERCING GEOMETRY.

Piercing Point Within F. Piercing Point outside F.

Oniuniiion 7V.W. Given a face F and an odge E, first, the endpoints of the edge are checked to

see whether they are in opposite halfspaces with respect to the plane of the face In terms of vector

geometry, the dot product of the lace vector and each vertex vector is taken and the signs compared;

different signs indicate that the vertices are in different halfspaces. The opposition test requires six

multiplications, httpniunhn l.nrns. The locus of the point where the edge pierces the plane of the

face is computed (four multiplications). Ijjirhmrv Test. Next the edge is tested to see if it actually

passes thru the interior of the face. In BIN, this test exploits the face convexity restriction The test

consists of crossing neighboring pairs of vectors radiating from the face-plane piercmg-pomt to each

vertex of the given face and testing for a sign change, Figure 5.2. Since only one component of the

cross product needs to be evaluated, the test requires only two multiplications per edge of the face

whoes plane is pierced. KHso Fimon. If the edge pierces the face, then the edge is split (using the

ESPLIT and BLED routines) forming a new vsrtex, called a face piercing vertex A temporary link of

the vertex node (field CW, left half of word 7) is set to point at the face that was pierced and the PED

link of the new vertex is set to point at the one of its two edges that is external to the surface.

-62

- *

5.2 IntorsGction Topology POLYHEDRON INTERSECTION.

5.2 Intersection Topology.

After the face-piercing vertices have been made (assuming no pathological cases, Section 5.3),

the edges and vertices of the result can be created in relation to the faces, edges, and vertices of the

operands. The relation between the operands and the results is established in terms of two kinds of

edges: interior edges and surface edges as illustrated in Figure 5.3. Surface edges correspond to the

intersections of pairs of operand faces and interior edges correspond to edges of one operand that are

enclosed inside the surface of the other operand. Surface edges always form connected loops. In

Figure 5.3, two solid prisms are being intersected, on the loft the surface edges of the intersection (a

surface loop) is intensified in heavy lines, on the right the interior edges are intensified.

FIGURE 5.3 - THE SURFACE AND INTERIOR EDGES OF INTERSECTION.

i i
I

Surface Edges of Intersection.

^

Interior Edges of Intersection.

In similar fashion there are surface vertices and interior vertices of the result. Each

face-piercing vertex of the operands has a corresponding surface vertex in the result which is always

a trihedral corner. The operand/result correspondence is maintained in a temporary link field named

ALT; the alternate vertices and edges that belong to the result are created by two topological trace

routines: the nuke surface, MKSURF routine, which creates surface edges and vertices of the result by

tracing surface loops starting from an "un-ALTered" face piercing vertex. At each face-piercing

vertex, MKSURF applies the ETRACE routine to the single interior edge of the trihedral corner.

ETRACE creates edges and vertices interior to the result by tracing the edge graph bounded by

face-piercing vertices. The now result edges are temporarily linked (PFACE and NFACE) to the old

63

i

I i

*m

5.2 Intersection Topology POLYHEDRON INTERSECTION.

I
I
I
I

operand faces. The MKSURF and ETRACE routines are followed by three step', that fix up the -.urface

wings, interior wings and face nodes so that a complete winged edge polyhedral result is legally

formed.

The interior trace routine is iriv^l - all the links are readily accessed using the ECCW and

OTHER primitives on the operand poly'iedra. The surface trace routine is made easy by implementing a

procedure, NEXTPV, to retrieve the next face-piercing vertex about a surface loop The NEXTPV

procedure, given below, is based on the obseravtion that the intersection of two convex faces is one

line segment and either one face is pierced twice by two different edges of the other face; or each

face is pierced once by one edge ci the other face, Figure 5.4.

I
FIGURE 5.4 - FETCH NEXT FACE-PIERCING VERTEX.

Edge of Fl pierces F2 at V2. Edge of F2 pierces FI at V2

;

I

COnnENT RETURN THE NEXT FfiCE PIERCING VEXT Of R SURfflCE LOOP;

INTEGER PROCEDURE NEXTPV (INTEGER F2,V1I;

BEGIN "NEXTPV"

INTEGER F1,V2|
Fi .. CUCVIM COMflENT FACE PIERCED BY VI;

COMtlENT DOES PN EDGE OF Fl PIERCE F2 AT THE OTHER PIERCE-VERTEX V2;

E ► EO ► PE0IF1);

DO IF F2 = CU(V:yVCCU(E,Fl)) THEN RETURN(V2) UNTIL EO » (E-ECCU (E ,f 1) I ;

COnriENT DOES PN EDGE OF F2 PIERCE Fl PT THE OTHER PIERCE-VERTEX V2;

E - EO - PED(F2);

DO IF Fl , CU(V2-VCCU(E,F1)) i- V2.V1 THEN RETURNS) UNTIL EO . (^ECCUIE.FZ) >;

COHflENT FPTPL CONSISTENCY ERROR - SOUETHINC WRONG IN FPCE/EDGE COtlPflRE PS3S;

PETURN(O);

END "NEXTPV";

Fix up stop-l places vertex and wing pointers in all the interior edgns An interior edge is

distinguished by its non-zero ALT link, The new vertices are provided with a first odge, PED(VNEW),

if it be lacking. Fix up step-2 wings together the surface vertex tridedral corners Since by good luck

-64-

^Ü ^rik MH

T
5 3 Special Cases of Internoclion POLYHEDRON INTERSECTION.

.ill surface vertices are necessarily trihedral, the edges can be passed to the WING primitive for

oriented linking, in any order The two surface wings of a surface vertex were stored in the NED and

FED links by MKSURF; the inward wing can be retrieve as the FED(ALT{U)). Surface vertices are

distinguished by their ALT vertex being marked as a piercing vertex. Fix up step-3 replaces the alien

faces of the result with nativa faces. This is done by scanning the edge ring of the body, testing the

two faces of each edge to see if they belong to the result body, and if a face doesn't belong it is

replaced by a new one. Face replacement, as ususal, requires clocking around a face perimeter and

changing the appropriate lace link in each edge. A final marking trace assigns one body node to each

separate connected graph of faces, edges and vertices.

I
I

FIGURE 5.5 - EXAMPLE OF A FACE HOLE FIXUP.

5.3 Special Cases of Intersection.

In order of difficulty from easy to hard, the four special cases that must be han'iled are

non-intersection, extremely short edges, face holes and coincident entities. Non-h\irrsrriinn. When

the face-edge compare (by recursive window space sort) returns no piercing points, it implies that the

surfaces of the given polyhedra do not intersect and that a further test is needed to determine

whether the operands are disjoint (and so the intersection be empty) or whether one operand contains

the other, rnm llnlrs. Because EVERTod solids are allowed, one polyhedron can cut a hole in a face

of the other without intersecting any of the edges of that face, which would fool the copy-trace. So as

a preliminary step to BIN, all the surface loops are traced and checked to make certain they cross

more than one face. If a one face surface-loop is found, the face is pyramided to a vertex interior to

the surface-loop. A face hole fix up is illustrated in Figure 5.5, the middle panel of the figure shows

65 -
I

MM mam—m

5.5 Body Cutting, POLYHEDRON INTERSECTION.

I

I
I
I

that two faces of the cubic prism wore pyramided, the right panel of the figure shows the result after

face-convexity coercion. .S'/»ir(I'.'l, r<. An application of BIN can create edges with almost zero length,

which require an extra pass to lind and delete. Omridnu EniUiw. An occasional edge that lie-,

exactly in the plane of a face can be nudged off the plane a little resulting in extremely short edges

which are later removed. Although it is meaningful to try to intersect polyhedra which have many

faces, edges and vertices that are exactly coincident, the present implementation loses track of interior

and exterior when too many nearly zero length edges are made.

5.4 Face Convexity Coercion.

Since, both the body intersecter, BIN, and the hidden line eliminator, OCCULT, are restricted to

convex faced polyhdera; it is essential to have a routine that detects and subdivides the concave faces

of a given polyhedron. The make convex routine, MKCNVX, reduces the concave faces of a body into

reasonably small number of convex faces The method consists of two steps: first, the face is broken

down into triangles and second, the longest unnecessary newly made edges are removed. The

reduction to triangles step is recursive: the pointiest extrema vertex of a face, VO, is lopped off, if no

other vertices of the face are on the same side of the line segment between VO's immediate

neighboring vertices: OTHER(ECCW(V0,F),V0) and 0THER(ECW(V0,F),V0). Otherwise the face is split,

MKFE, using the vertex closest to VO that violates VO's potential lop line. An extrema vertex is one

that touchs the smallest circumscribed rectangle whose sides are parellel to 'he coordinate axes; the

pointiest vertex is the one with fhe largest cosine.

FIGURE 5.6 - EXAMPLES OF FACE CONVEXITY COERCION.

5.5 Body Cutting.

Body cutting is the operation of dividing an arbitrary polyhedron into sets of parts above and

66 -

JHh rtuta mm

5 6 PeHorrtidnce and Related Work POLYHEDRON INTERSECTION.

below a given cutting plane, as has already been illustrated in Figure 3.8. Although body cutting might

be done by subtracting a very large thin rectangular prism, the process is sufficiently important to

merit a separate implementation which nevertheless resembles the subtraction. First, all the edges of

the given body are compared with the given cutting plane and piercing vertices are formed in pairs

(one vertox for each side of the cut). Between the cutting-plane vertex-pairs are zero length edges

which are placed into a special temporary list. Next, pairs of cutting-plane vertices (belonging to the

same face and dest ^ed to be in the same half-space) are MKFEed together splitting the faces with

cutting-plane edge pairs (one edge for each side of the cut). Between the cutting-plane edge-pairs

are zero area faces. Finally all the zero length cutting plane edges are KLFEed if their PFACE and

NrACE are different or UNGLUEed if thoir PFACE and NFACE are the same. In this circumstance an

er.ge having the same NFACE and PFACE is a wasp edge. The simplicity of the body cutting

implementation is do to the power of the UNGLUE Euler primitive.

5.6 Performance and Related Work.

Curious to relate, I have found no example in the literature of a general polyhedron intersection

method. Maruyama's (72) method is a collision detector rather than a intersector, because he does not

attempt to generate the polyhodra of intersection; however, his algorithm does resemble the geometric

first phase of BIN and might have been extended for generating new solids. The intersection methods

of Braid (73) are restricted to particular combinations of six volume elements which comprise a useful

subset of cases for mechanical drawing.

The version of BIN is implemented on a PDP-10 (with 2 microsecond core memory) can

construct the intersection of simple objects such as a pair of cubes in less than a quarter of a second;

the intersection of a couple of twenty sided cylinders in about two seconds; the intersection of two

horse silhouette cones takes (chapter 9) about fifteen seconds; and the intersection of two silhouette

cone intersections can take up to a minute.

67

.a^i ^Mta

6.1 A Geometric Feedback Vision System. VISION THEORY.

SECTION 6.

COMPUTER VISION THEORY.

6.0 Introduction to Computer Vision Theory.

6.1 A Geometric Feedback Vision System.

6.2 Vision Tasks.
6.3 Vision System Design Arguments.

6.4 Mobile Robot Vision.
6.5 Summary and Related Vision Work.

6.0 Introduction to Computer Vision Theory.

Computer vision concerns programming a computer to do a task that demands the use of an

image forming light sensor such as a television camera. The theory I intend to elaborate is that

general 3-D vision is a continuous process of keeping an internal visual simulator in sync with

perceived images of the external reality, so that vision tasks can be done more by reference to the

simulator's model and less by reference to the original images. The word theory, as used here, means

simply a set of statements presenting a systematic view of a subject; specifically, I wish to exclude the

connotation that the theory is a natural theory of vision. Perhaps there can be such a thing as an

artificial theory which extends from the philosophy thru the design of an artifact.

6.1 A Geometric Feedback Vision System.

Vision systems mediate between images and world models; these two extremes of a vision

system are called, in the jargon, the bottom and the top respectively. In what follows, the word

image will be used to refer to the notion of a 2-D data structure representing a picture; a picture

-68

JL_ . Mi ~ —-^

6.1 A Geometric Feedback Vision System. VISION THEORY.

being a rectangle taken from the pattern of light formed by a thin lens on the nearly flat photoelectric

surface of a television camera's vidicon. On the other hand, a world modrl is a data structure which is

supposed to represent the physical world for the purposes of a task processor. In particular, the main

point of this thesis concerns isolating a portion of the world model (called the 3-D geometric world

model) and placing it below most of the other entities that a task processor has to deal with. The

vision hierarchy, so formed, is illustrated in box 6.1.

/'BO BOX 6.1

The Top

The Bottom

VISION SYSTEM HIERARCHY.

Task Processor

I
Task World Model

I
3-D Geometric Model

I
2-D Images

Between the top and the bottom, between images and the task world model, a general vision

system has three distinguishable modes of operation: recognition, verification and description.

Recognition vision can be characterized as bottom up, what is in the picture is determined by extracting

a set of features from the image and by classifing them with respect to prejudices which must be

taught. Verification vision is top down or model driven vision, and involves predicting an image

followed by comparing the predicted image and a perceived image for differences which are expected

but not yet measured. Descriptive vision is bottom up or data driven vision and involves converting the

image into a representation that makes it possible (or easier) to do the desired vision task. I would

like to call this third kind of vision "revelation vision" at times, although the phrase "descriptive vision"

is the term used by most members of the computer vision community.

Box 6.2 THREE BASIC MODES OF VISION.

1. Recognition Vision - Feature Classification, (bottom up into a prejudiced top).

2. Verification Vision - Model Driven Vision, (nearly pure top down vision).

3. Descriptive Vision - Data Driven Vision, (nearly pure bottom up vision).

There are now enough concepts to outline a feedback system. By placing a 3-D geometric

model between top and bottom; recognition vision can be dote mapping 3-D (rather than 2-D) fertures

69

6.1 A Geomelric Feedback Vision System. VISION THEORY.

I

info the task world model with descriptive vision and verification vision linking the 2-D and 3-D models

in a relatively dumb, mechanical fashion. Previous attempts to use recognition vision, to bridge directly

the gap between 2-D images (of 3-D objects) and the task world model, have been frustrated because

the characteristic 2-D image features of a 3-0 object are very dependent on the 3-D physical

processes of occultation, rotation and illumination. It is these processes that will have to be modeled

and understood before the features relevant to the task processor can be deduced from the peiceived

images. The arrangement of these elements is diagramed below.

Box 6.3 BASIC FEEDBACK VISION SYSTEM DESIGN.

Task World Model

T

RECOGNITION

T

3-D geometric model

t i

DESCRIPTION VERIFICATION

T i

2-D images

The lower part of the above diagram is the feedback loop of the 3-D geometric vision system.

Depending on circumstances, the vision system may run almost entirely top-down (verification vision)

or bottom-up (revelation vision). Verification vision is all that is required in a well known predictable

environment; whereas, revelation vision is required in a brand new (tabula rasa) or rapidly changing

environment. Thus revelation and verification form a loop, bottom-up and top-down. First, there is

revelation that unprejudically builds a 3-D model; and second, the model is verified by testing image

features predicted from the model. This loop like structure has been noted before by others; it is a

form of what Tenenbaum (71) called accommodmion and it is a form of what Falk (69) called heuristic

vision; however I will go along with what I think is the current majority of vision workers who call it

fecdhnck vision.

Completing the design, the images and worlds are constructed, manipulated and compared by a

variety of processors, the topmost of which is the task processor. Since the task processor is expected

to vary with the application, it would be expedient if it could be isolated as a user program tiat calls

70

6.2 Vision Tasks. VISION THEORY.

on utility routines of an appropriate vision sub-system. Immediately below the task processor are the

3-D recognition routines and the 3-D modeling routines. The modeling routines underlie most

everything because they are used to create, alter and access the models.

Box 6 4 PROCESSORS OF A 3-D VISION SYSTEM.
■^

0. The task processor.

1. 3-D recognition.

2. 3-D modeling routines.

3. Reality simulator.

4. Image analyser.

5. Image synthesizer.

6. Locus solvers.

7. Comparators: 2D and 3D.

The remaining processors include the reality simulator which does mechanics for modeling

motion, collision and gravity. Also there are image analyzers, which do image enhancement and

conversions such as converting video rasters into line drawings. There is an image synthesizer, which

does hidden line and surface elimination, for verification by comparing synthetic images from the model

with perceived images of reality. There are three kinds of locus solvers that compute numerical

descriptions for cameras, light sources and physical objects. Finally, there is of course a large number

of (at least ten) different compare processors for confirming or denying correspondences among

entities in each of the different kinds of images and 3-D models.

6.2 Vision Tasks.

The 3-D vision research problem being discussed is that of finding out how to write programs

that can see in the real world. Related vision problems include: modeling human perception, solving

visual puzzles (non-real world), and developing advanced automation techniques (ad hoc vision). In

order to approach the problem, specific programming tasks are proposed and solutions are sought,

however a programming task is different than a reseach problem because many vision tasks can be

done without vision. The vision solution to be found should be able to deal with real images, should

include the continuity of the visual process in time and space, and should be more general purpose and

less ad hoc. These three requirements (reality, continuity, and generality) will be developed by

surveying six examples of computer vision tasks.

71

WS1 a. ^^

i
I
I
I
I

6.2 Vision Tasks. VISION THEORY.

1

BOX 6.5 SIX EXAMPLES OF COMPUTER VISION TASKS.

Cnrl Rrlnlrd Tnskx.

1. The Chau<feur Task.

2. The Explorer Task.

3. The Soldier Task.

Table Top Rrlnlrd Tnskx,

4. Turntable Task.

5. The Blocks Task.

6. Machine Assembly Tasks.

First, there is the robot chauffeur task. In 1969, John McCarthy asked me to consider the vision

requirements of a computer controlled car such as he depicted in an unpublished essay. The idea is

that a user of such an automatic car would request a destination; the robot would select a route from

an internany stored road map; and it would then proceed to its destination using visual data. Tho

problem involves representing the road map in the computer and establishing the correspondence

between the map and the appearance of the road as the automatic chauffeur drives the vehicle along

the selected route. Lacking a computer controlled car, the problem was abstracted to that of tracing a

route along the driveways and parking lots that surround the Stanford A.I. Laboratory using a

television camera and transmitter mounted on a radio controlled electric cart. The robot chauffeur task

could be solved by non-visual means such as by railroad like guidance or by inertial guidance; to

preserve the vision aspect of the problem, no particular artifacts should be required along a route

(landmarks must be found, not placed); and the extent of inertial dead reckoning should be noted.

I
I
I
I
I

Second, there is the task of a robot explorer. In (McCarthy 1964) there is a description of a

robot for exploring Mars. The robot explorer was required to run for long periods of time without

human intervention because the signal transmission time to Mars is as great as twenty minutes and

because the 23.5 hour Martian day would place the vehicle out of Earth sight for twelve hours at a

time. (This latter difficulty could be avoided at the expense of having a set of communication relay

satellitfis in orbit around Mars.) The task of the explorer would be to drive around mapping the

surface, looking for interesting features, and doing various experiments. To be prudent, a Mars

explorer should be able to navigate without vision; this can be done by driving slowly and by using a

tactile collision and crevasse detector. I the television system fails, the core samples and so on can

stül be collected at different Martian sites without unusual risk to the vehicle due to visual blindness.

72

■Mi

6.2 Vision Tasks. VISION THEORY.

The third vision task is that of the robot soldier, tank, sentry, pilot or policeman. The problem

has several forms which are quite similar to the chauffeur and the explorer with the additional goal of

doing something to coerce an opponent. Although this vision task has not yet been explicitly attempted

at Stanford, to the best of my knowledge, the reader should be warned that a thorough solution to any

of the other tasks almost assures the Orwellian technology to solve this one.

Fourth, the turntable task is to construct a 3-D model from a sequence of 2-D television images

taken of an object rotated on a turntable. The turntable task was selected as a simplification of the

explorer task and is an example of a nearly pure descriptive vision task.

Fifth, the classic blocks vision task consists oi two parts: first convert a video image into a line

drawing; second, make a selection from a set of predefined prototype models of blocks that accounts

for the line drawing. In my opinion, this vision task emphasizes three pitfalls: single image vision, line

drawings and blocks. The greatest pitfall, in the usual blocks vision task, is the presumption that a

single image is to be solved; thus diverting attention away from the two most important depth

perception mechanisms which are motion parallax and stereo parallax. The second pitfall is that the

usual notion of a perspective line drawing is not a natural intermediate state; but is rather a very

sophisticated and platonic geometric idea. The perfect line drawing lacks photomelnc information; even

a line drawing with perfect shadow lines included will not resemble anything that ran readily be gotten

by processing real television pictures. Curiously, the lack of success in deriving line drawings from

real television images of real blocks has not dampened interest in solving the second part of the

problem. The perfect line drawing puzzle, was first worked on by Guzman (68) and extended to

perfect shadows by Waltz (72); nevertheless, enough remains so that the puzzle will persis» on its own

merits, without being closely relevant to real world computer vision. Even assuming that imperfect line

drawings are given, the blocks themselves, have lead such researchers as Falk (69) ?nd Grape (73) to

concentrate on vertex/edge classification schemes which have not been extended beyond the blocks

domain. The blocks task could be rehabilitated by concentrating on photometric modeling and the use

multiple images for depth perception.

4;
I {

(

73 /

mmam

6.3 Vision System Design Arguments VISION THEORY

Sixth, the Stanford Artificial Intelligence Laboratory has recontly (1974) begun work on a

National Science Foundation Grant supporting research in automatic machine assembly. In particular,

effort will be directed to developing techniques that can be demonstrated by automatically assembling a

chain saw gasoline engine. Two vision questions in such a machine assembly task are, where is the

part and where is the hole; these questions will be initially handled by composing ad hoc part and hole

detectors for each vision step required for the assembly.

The point of this task survey was to illustrate what is and is not a task requiring real 3-D vision;

and to point out that caution has to be taken to preserve the vision aspects of a given task. In the

usual course of viüion projects, a single task or a single tool unfortunately dominates the research; my

work is no exception, the one tool is 3-D modeling, and the task that dominated the formative stages of

the research is thai of the robot chauffeured cart. A better understanding of the ultimate nature of

computer vision can be obtained by keeping the several tasks and the several tools in mind.

6.3 Vision System Design Arguments.

L

The physical information most directly relevant to vision is the location, extent and light

scattering properties jf solid opaque objects; the location, orientation and projection of the camera that

taker, the pictures; and the loca^on and nature of the light that illuminates the world The

transformation rules of the everyday world that a programmer may assume, a priori, are the laws of

physics. The arguments against geometric modeling divide into two categories: the reasonable and the

intuit ve. The reasonable arguments attack 3-D geometric modeling by comparing it to another

modeling alternative, some of which are listed in Box 6.6, Actually, the domains of efliciency of the

possible kinds of models do not greatly overlap; and an artificial intellect will have some portion of

each kind. Nevertheless, I feel that 3-D geometric modeling is superior (or the task at hand, and that

the othe/ models are less relevant to vision.

-74 -

^^ ■■

6.3 Vision System Design Arguments, VISION THEORY.

BOX 6.6 Alternatives to 3-D Geomotric Model ng in a Vision System.

1. Image memory and with only the came-a model in 3-D.

2. Statistical world model, e.g. Duda & Hart.

3. Procedural Knowledge, e.g. Hewitt & Winograd.

4. Semantic knowledge, eg WilKes & Shank.

5. Formal Lop,ic modele, eg McCarthy & Hayes.

6. Syntactic models

Perhaps the best alternative to a 3-D geometric model is to have a library of little 2~D images

describing the appearance of various 3-D loci from given directions. The advantage would be that a

sophisticated image predictor would not be required; on the other hand the if age library is potentially

quite large and that even with a huge data base law views and lighting of familiar objects and scenes

cannot be anticipated. A second alternative is the statistical world model used in the pattern

recognition parad gm. Such modelir; might he added to the ^ smetric model; however, alone the

statistical abstraction of world features in the presence of oceultation, rotation and illumination seems as

hopeless as the abstraction of a man's personality from the pattern of tea leaves in his cup.

r
i
r

i

Procedural knowledge models ropresenl the world in terms of routines (or actors) which either

kn?w or can compute the answer to a question about the world. Semantic models represent the world

in term of a data structure of conceptual statemerh; and formal logic models represent the world in

terms of first order predicate calculus or in terms of a situation calculus. The procedural, semantic and

formal logic world models are all general enough to represent a vision model and in a theoretical sense

they are merely other notations for 3-0 geomotric modeling. However in practice, these three

modeling regimes are not efficient holders and handlers of quantitative geometric data; but are rather

intended for a higher level of abstract reasoning. Another alleged advantage of these higher models is

that they can represent partial knowledge and uncertainty, which in a georwäiric model is implicit, in

that structures are missing or incomplete. For example, McCarthy and Feldman demand that when a

robot has only seen the front of an office desk that it should be able to draw inferences from its nodel

about the back of the desk; I feel that this so called advantage is not required by the problem and (hat

basic visual modeling is on a more agnostic level.

75

I

1

!

!

1
I

""T

I

I.

■

6.3 Vision System Design Arguments, VISION THEORY,

The syntactical approach to descriptive vision is that an image is a sentence of a picture

grammar and that consequently the image description should be given in terms of a sequence of

grammar transformations rules. Again this paradigm is valid in principle but impractical for real images

I of 3-0 objects because simple replacement rules cannot readily express rotation, perspective, and

photometric transformations. On the other hand, the syntactical model has been used to describe

I perfect line drawings of 3-D objects, (Gips 74),

The intuitive arguments include the opinions that geometric modeling is too numerical, too exact,

L
or too non-human to be relevant (or computer vision research. Against such intuitions, I wish to pose

two fallacies. First, there is the natural mimkry fallacy, which is that it is false to insist that a machine

must mimic nature in order to achieve its design goals. Boeing 747's are not covered with feathers;

trucks do not have legs; and computer vision need not simulate human vision. The advocates of the

uniqueness of natural intelligence and perception will have to come up with a rather unusual uniqueness

proof to establish their conjecture. In the meantime, one should be open minded about the potential

I
forms a perceptive consciousness can take.

Second, there is the self introspection fallacy, which is that it is dlse to insist that one's

introspections about how he thinks and sees are direct observations o, thought and sight. By

introspection some conclude that the visual models (even on a low level) are essentially qualitative

rather than quantitative. My belief is that the vision processing of the brain is quite quantitative and

only passes into qualities at a higher level of processing. In either case, the exact details of human

visual processing are inaccessible to conscious self introspection.

Although describing the above two fallacies might soften a person's prejudice against numerical

geometric modeling, some important argument or idea is missing that would be convincing short of the

final achievement of computer vision. Contrariwise, I have not heard an argument that would change

my prejudice in favor of such models. Nevertheless beyond prejudice, my theory would be proved

wrong if a really powerful computer vision system is ever built without using any geometric models

worth speaking of, perhaps by employing an elaborate stimulus response paradigm.

76

^■^

6.4 Mobile Robot Vision. VISION THEORY.

6.4 Mobile Robot Vision.

The elements discussed so far will now be brought together into a system design for performing

mobile robot vision. The proposed system is illustrated below in the block diagram in Box 6.7. (The

diagram is called a mandala in that a tnmulnln is any circle-like system diagram). Although, the robot

chauffeured cart was the main task theme for this research; I have tailed to date, August 1974, to

achieve the hardware and software required to drive the cart around the laboratory under its own

control. Nevertheless, this necessarily theoretical cart system has been of considerable use in

developing the visual 3-D modeling routines and theory, which are the subject of this thesis.

BOX 6.7 CART VISION MANDALA.

IMPfl IV(0
U1IH0

I'lcn ivio ..
imvn locus

. »im IIT .
sinuinioe

DRIVIR

IMC CftBI
nnnY
i nur,

PI vi m
cnniwi

cnm vn
i new
■".ra v\»

vmi >
rnniwi

WlOIClfO
UOUtD

• PPIOICKO ••
enmsn IOCUS

PRIOICIID'
SUN IOCUS

inn
STNIIIISI/'

. I'll'll ll/ll)...
misnn. mni.i

■ • ppimcifo
nnsnii: innni

V

IM I'll IVI I)
CHN'iiiip inm.i

nva i vi i)
vim n mriM

in IVISIMN
rnniPft

PPIDICIID
coNimw innac

PKIDICIin .
VIDIO innu

The robot chauffeur task involves establishing the correspondence between an internal road map

and the appearance of the road in order to steer a vehicle along a predefined path. For a first cut, the

planned route is assumed to be clear, and the cart and the sun are assumed to be the only movable

things in a static world. Dealing with moving obstacles is a second problem, motion thru a static world

must be dealt with first.

77

^fe ^h

^»^■

6.4 Mobile Robot Vision. VISION THEORY.

The cart at the Stanford Artificial Intelligence Laboratory is intended for outdoors use and

consists of a piece of plywood, four bicycle wheels, six electric motors, two car batteries, a television

camera, a television transmitter, a box of digital logic, a box of relays, and a toy airplane radio

receiver. (The vehicle being discussed is not "Shaky", which belongs to the Stanford Research

Institute's Artificial Intelligence Group. There are two A.I. labs near Stanford and each has a computer

controlled vehicle.) The six possible cart actions are: run forwards, run backwards, steer to the left,

steer to the right, pan camera to the left, pan camera to the right. Other than the television camera,

there is no telemetry concerning the state of the cart or its immediate environment.

/"BOX 6.8 A POSSIBLE CART TASK SOLUTION.

1. Predict (or retrieve) 2-D image features.

2. Perceive (take) a television picture and convert into features.

3. Compare (verify) predicted and perceived features.

4. Solve for camera locus.

5. Servo the cart along its intended course.

The solution to the cart problem, begins with the cart at a known starting position with a road

map of visual landmarks with known loci. That is, the upper leftmost two rectangles of the cart mandala

are initialized so that the perceived cart locus and the perceived world correspond with reality.

Flowing across the top of the mandala, the cart driver, blindly moves the cart forward along the

desired route by dead reckoning (say the cart moves five net and stops) and the driver updates the

predicted cart locus. The reality simulator is c dentity in this simple case because the world is

assumed static. Next the image synthesizer uses the predicted world, camera and sun to compute a

predicted image containing the landmark features expected to be in view. Now, in the lower left of the

mandala, the cart's television camera takes a percalved picture and (flowing upwards) the picture is

converted into a form suitable for comparing and matching with the predicted image. Features that are

both predicted and perceived and found to match are used by the camera locus solver to compute a

new perceived camera locus (from which the cart locus can be deduced). Finally the cart driver

compares the perceived and the predicted cart locus and corrects its course and moves the cart again,

and so on.

78

.■fe ■I

m^

6.5 Summary and Related Vision Work. VISION THEORY.

The remaining limb of the cart mandala is invoked in order to turn the chauffeur into an

explorer. Perceived images are con-pared in time by the reveal compare and new features are located

by the body locus solver and placed into the world model. The generality and feasibility of such a cart

system depends almost entirely on the representation of the world and the representation of image

features. (The more general, the less feasible). Four smaller cart systems might be possible using

simpler 3-D models.

I
|

I
A first system might consist of a road map, a road model, a red model generator, a solar

ophemeris, an image predictor an image comparator, a camera locus solver, and a course servo routine.

The roadways and nearby environs are entered into the computer. In fact, real roadways are

constructed from a two dimensional (X,Y) allignment map showing where the center of the road goes as

a curve composed of lins segment and circular arcs; and from a two dimensional (S.Z) elevation

diagram, showing the height of the road above sea level as a function of distance along the road in a |

sequence of linear grades and vertical arcs which (not too surprising) are nearly cubic splines. A

second version, might be made like the first except that the road model, road model generator, and |

image predictor are replaced by a library of road images. In this system the robot vehicle is trained

by being driven down the roads it is suppose to follow, A third system also might be m.ide like the |

first except that the road map is not initially given, and indeed the road is no longer presumed to exist.

Part of the problem becomes finding a road, a road in the sense of a clear area; this version yields the |

cart explorer and if the clear area is found quite rapidly and the world is updated quite frequently, the

explorer can be a chauffeur that can handle obstacles and noving objects, |

6.5 Summary and Related Vision Work. I

To recapitulate, three visio- system design requirements were postulated: reality, generality,

and continuity. These requirements were illustrated by discussing a number of vision related tasks.

Next, a visio-i system was described as mediating between 2-D images and a world model; with the

world model being further broken down into a 3-D geometric model and a task world model. Between

these entities three basic vision modes were identified: recognition, -erification and revelation

(description). Finally, the general purpose vision system was depicted as a quantitative and description

79-

I
I
I
I

Mik

mmmm

!

6.5 Summary and Related Vision Work, VISION THEORY.

onentod feedback cycle which maintain a 3-D geometric model for the sake of higher qualitative,

symbolic, and recognition onentod task processors. Approaching the vision system in greater detail;

the role of seven (or so) essential kinds of processors were explained: the task processor, 3-D

modeling routines, reality simulator, image analyser, image synthesizer, comparators, and locus solvers

The processors and data types were assembled into a cart chauffeur system.

Larry Roberts Is justly credited fo,' doing the seminal work in 3-D Computer Vision; although his

thesis (Roberts 63) appeared over ten years ago the subject hat languished dependant on and

overshadowed by the four areas called: Image Processing, Pattern Recognition, Computer Graphics, and

Artificial Intelligence. Outside the computer sciences, workers in psychology, neurology and philosophy

also seek a theory of vision

Image Processing involves the study and development of programs that enhance, transform and

compare 2-D images Nearly all image processing work can eventually be applied to computer vision in

various circumstances A survey of this field can be found in an article by Rosenfeld(59). Image

Pattern Recognition involves two steps: feature extraction and classification. A comprehensive text

about this field with respect to computer vision, has been written by (Duda and Hart 73). Computer

Graphics is the inverse of descriptive computer vision. The problem of computer graphics is to

synthesis images from three dimensional models; the problem of descriptive computer vision is to

analyze images into three dimensional models. An introductory text book about this field would be that

of (Newman and Sproull 73). Finally, there is Artificial Intelligence, which in my opinion is an

institution sheltering a heterogenous group of embryonic computer subjects; the biggest of the present

day orphans include: robotics, natural language, theorem proving, speech analysis, vision and planning.

A more narrow and releva' definition of artificial intelligence is that it concerns the programming of

the robot task processor . ic; cits above the vision system.

The related vision work of specific individuals has already been mention in context. To

summarize, the present vision work is related to the early work of Roberts(63) and Sutherland; to

recent work at Stanford: Falk, Feldman and Paul(67), Tenenbaum(72), Agin(72), Grape(73); to the

work at MIT: Guzman, Horn, Waltz, Krakaurer; to the work at the Universlt/)f Utah: Warnock, Watkins;

-80

^^ta

wm^

6.5 Summary and Related Vision Work.
VISION THEORY.

and to work at other place! SRI and JPL. Future progress in computer vision will proceed in step with

better computer hardware, better computer graphics software, and better world modeling software.

Further vision work at Stanford, which is related to the present theory is being done by Lynn Quam

and Hans Morevac. The machine assembly task is being pursued both by the Artificial Intelligence

Group of the Stanford Research institute and by the Hand Ey* Project at Stanford University. Because

the demand for doing practical vision tasks can be satisfied with existing ad hoc methods or by not

using a visual sensor at all; little or no theoretical vision progress will necessarily result from the

achievement of spectacular robotic industrial assembly demonstations (hire the handicap, blind robots

assembles widgets). On the other hand, since the missing ingredient for computer vision is the spatial

modeling to which perceive images can be related; 1 b^üeve that the development of the technology

for generating commercial film and television by computer for entertainment might make significant

contribution to computer vision.

81 -

^rita immt

»p

I
«

I
I
I
I
I
I

I
I
I
B
I

.0 Introduction to Image Analysis.
IMAGE CONTOURING.

SECTION?.

VIDEO IMAGE CONTOURING.

7 0 Introduction to Imsge Analysis

7.1 CRE - An Image Processing System.

7 2 Thresholding
7 3 Contouring

7 4 Polygon Nesting.

7 5 Contour Segmentation.

7 6 Related and Future Image Analysis.

7.0 Introduction to Image Analysis.

Simply put, image analysis is the inverse of image synthesis. From this point of view, the

usually difficult question of "analysis into what ?" is answered by the answer to the question "synthesis

from what ?", Since a 3-D geometric model is adequate (and necessary) for synthesizing digital

television pictures, it is reasonable to suppose that such a model is an appropriate subgoal in the

analysis of television pictures Such an analysis into a 3-D model would provide a useful data reduction

as well as a convenient representation for solving robotics problems such as manipulation, navigation

and recognition This approach to image analysis is somewhat heretical, the orthodox method is to

extract features from 2-D images, which features are then used directly for the desired task. On the

other hand, vision by inverse computer graphics may be viewed as an extreme form of feature finding,

involving the extraction of a set of basic geometric features which are combined to form a

superfeature, a 3-D model. The rest of this introduction enumerates some of the kinds of information

available in a sequence of images and some of the kinds of data structures for representing images.

An image is a 2-D data structure representing the contents of a rectangle from the pattern of light

formed by a thin lens; a sequence of images in time is called a film.

82

r^^^^Zmm—mmmmmlmm—^^^mmmm^mm—m

mmm

7.0 Introduction to Image Analysis. 'MAGE CONTOURING,

Three basic kinds of information in an image are photometric information, georratric information,

and topological in<3rmation. Fundamentally, geometry concerns distance measure. The geometry of an

image is based on coordinate pairs that are associated with the elements that form the image. From

the coordinates such geometric properties as length, area, angle and moments can be computed.

Photometry means light measure, although physical measurements of light may include power, hue,

saturation, polarization and phase; only the relative power between points of the same image is easily

available to a computer using a television camera. The taking of color images is possible at Stanford by

means of filters; however, the acquisition of color is inconvenient and has not been seriously pursued

in the present work. Finally, topology has to do with neighborhoods, what is next to what; topological

data may be explicitly represented by pointers between related entities, or implicitly represented by

the format of the data.

Three basic kinds of image data structures are the raster, the contour map and the mosaic. A

raster image is a two dimensional integer valued array of pixels; a pixel "picture element", is a single

sample position on a vidicon. Although the real shape of a pixel is probably that of a blunt ellipse; the

fiction that pixels tesselate the image into little rectangles will be adopted. For other theoretical

purposes the array is assumed to bo formed by sampling and truncating a two dimensional, smooth,

infinitely differentiable real valued function. A contour image is like a geodesic contour map, no two

contours ever cross and all the contours close. A mosaic image (or tesselation) is like a ce 'amic til«

mosaic, no two regions ever overlap and the whole image is completely covered with tiles. Further

useful restrictions might be made concerning whether it is permitted to have tiles with holes

surrounding smaller liles or whether it is permitted for a tile to have points that are thinn«r than a

si..gle pixel.

Given a raster image, the usual visual analysis approach is to find the features. One canonical

geometric image feature is called the pdge and the places where edges are not found are called

rcßions. For a naive start, an edge can be defined as a locus of change in the image function. Edges

and regions ere complementary sides of the same slippe./ concept; the concept is slippery because

although a continuous fundion of two variables and a graph of edges are each well known mathematical

83

I

I

I
I
I

I
I
I

I
I
i

I
I
I
I
i
I

l_^^^_^Ma__^_a^_IMMi^___H^MMMaMHaa

7 1 CRE - An Imaße Processing Sub-System IMAGE CONTOURING.

I objects the conversion of one into the other is a poorly understood process that depends greatly on

ones motives and resources A computational definition of the region/edge notion would include a

procedure for converting a raster approximation of an image function into a region/edge

representation based on parameters which are conceptually elegant

7.1 CRE - An Image Processing Sub-System.

!

i

I
I
r
i

The acronym CRE stands for "Contour, Region, Edge". CRE is a solution to the problem of

finding contour edges in a sequence of television pictures and of linking corresponding edges and

polygons from one picture to the next. The process is automatic and is intended to run without human

intervention Furthermore, the process is bottom up; there are no inputs that anticipate the content of

the given television images The output of CRE is a 2-D contour map data structure which is suitable

input to the 3-D modeling program, GEOMED. Five design choices that determine the character of CRE

are listed in Box 7.1. The design choices are ordered from the more strategic to the more tactical; the

first three choices being research strategies, the latter two choices being programming tactics.

Adopting these design choices lead to image contouring and contour map structures similar to those of

Krakauer (71) and Zahn (66)

^
BOX 7.1 CRE DESIGN CHOICES

1. Dumb vision rather th;in model driven vision

2. Multi image analysis rather than single image analysis.

3. Total image structure imposed on edge finding; rather

than separate odgo finder and image analyzer.

4. Automatic rather than interactive.

5 Machine language rather than higher level language.

The first design choice does not refer to the issue of how model dependent a finished general

vision system will be (it will be quite model dependent), but rather to the issue of how one should

begin building such a system The best starting points are at the two apparent extremes of nearly

total knowledge of a particular visual world or nearly total ignorance. The first extreme involves

synthesis (by computer graphics) of a predicted 2-0 image, followed by comparing the predicted and a

perceived image for slight differences which are expected but not yet measured. The second extreme

involves analyzing perceived images into structures which can be readily compared for near equality

-84

7.1 CRE - An Image Processing Sub-System. IMAGE CONTOURING.

and measured for slighi differences; followed by the construction of a 3-D geometric modf.l of the

perceived world. The point is that in both cases images are compared, and in both cases 'he 3-0

model initially (or finally) contains specific numerical data on the geometry and physics of the particular

world being looked at.

The second design choice, of mulli imaj;» analysis rather than single image analysis, provides a

basis for solving for camera positions and feature depths. The third design choice solves (or rather

avoids) the problem of integrating an edge finder's results into an image. By using a very simple edge

finder, and by accepting all the edges found, the image structure is never lost. This design postpones

the problem of interpreting photometric edges as physical edges. The fourth choice is a resolution to

write an image processor that does not require operator assistance or manual parameter tuning. The

final design choice of using machine language was for the saKe of implementing node link data

structures that are processed cne hundred times faster than LEAP, ten times faster than compiled LISP

and that require significantly less memory fha * similar structures in either LISP or LEAP. Furthermore

machine code assembles and loads faster than higher level languages; and machine code can be

extensively fixed and altered without recompiling.

It is my impression that CRE itself does not raise any really new scientific problems; nor does it

have any really new solutions to 'he old problems; rather CRE is another competent video region edge

finding program with its own set of tricks. However, it is further my impression that the particular

tricks for necting and comparing polygons in CRE are original programming techniques. As a part of

the larger feedback system, CRE is a necessary, but not entirely satisfactory implementation of pur«

bottom up image analysis.

CRE consists of five steps: thresholding, contouring, nesting, smoothing and comparing.

Thresholding, contouring and smoothing perform conversions between two different kinds of images.

Nesting and contouring compute topological relationships within a given image representation. In

summary the major operations and operands are as listed in Box 7.2; the VIC-lmages are Video Intesity

Contour Images and the ARC-images are contours that have been smoothed.

85

— —^ m m

^m

I 7.2 Thresholding.
IMAGE CC'ITOURING.

s BOX 7 2 CRE DATA TRANSFORMATIONS.
MAJOR OPERATION OPERAND RESULT

1 THRESHOLDING: 6-BIT-IMAGE, 1-BIT-IMAGE",
2. CONTOURING: 1-BIT-IMAGES, VIC-IMAGE.

3- NESTING: VIC-IMAGE, NESTED-VIC-IMAGE
4. SMOOTHING: VIC-IMAGE, ARC-IMAGE.
5. COMPARING: IMAGE & FILM, FILM.

The Initial operand is a 6-bit video raster, which in the present implementation is coerced into a

window of 216 row by 288 columns; intermediate operands consist of 1-bit rasters named PAC, VSEG

and HSEG which are explained below, as well as a raster of links named SKY which is used to perform

the polygon nesting The magic window size 216 by 288 was derive by considering the largest

product of powers of two and three that would fit within a v,deo image. T! . final result is a node/lmk

structure composed of several kinds of nodes: vectors, arcs, polygons, lamtons (lamina inertia tensors)

levels, images and the film node.

Although the natural order of operations is sequential from imag« thresholding to image

comparing; in order to keep memory size down, the first four steps are applied one intensity level at a

time from the darkest cut to the lightest cut (only nesting dopend ,n this sequential cut order); and

comparing is applied lo whole images Figure 7.1 illustrates an initial video image and its

corresponding contour image. The contoured image consist-, of thirteen intensity levels and took 45

seconds to compute (on a PDP-IO, two microsecond memory) The final CRE data structure was

composed of 1 996 nodes.

7.2 ThreGholding.

Thresholding, tht first and easiest step of CRE, consists of two subroutines, called THRESH and

PACXOR THRESH converts a 6-bit image into a 1-bit image with respect to a given threshold cut level

botwoen zero (or black and r.ixty-throe for light. All pixels equal to or greater than the cut, map into

a one; all the pixels Ions than the cut, map into zero. The resulting 1-bit image is stored in a bit array

of 216 rows by 288 columns (1728 words, 36 bits per word) called the PAC (picture accumulator)

which was named in memory of McCormick's ILL1AC-III, After THRESH, the PAC contains blobs of bits.

-86

i^riki mm

FIGURE 7.1 - VIDEO IMAGE AND CONTOUR IMAGE.
IMAGE CONTOURING.

87

iM mssi

f

I
I
I

'

7 3 Contourms IMAGE CONTOURING

A blob is defined *s "rook's move" connected; IM is «very bit of * blob can be reached by horizontal

or vertical moves from any other bit without having to cross a zero bit or having to make a diagonal

(bishop's) move Blobs may of course have hole«. Or equivaiently a blob always has one outer

perimeter polygon, and may have one, several or no inner perimeter polygons This blob and hole

topology is recoverable from the CRE data structure and is built by the nesting step

Next, PACXOR copies the PAC into two slightly larger bit arrays named HSEG and VSEG Then

the PAC n shifted down one row und exclusive 0R*d into the HSEG array; and the PAC is shifted right

one column and exclusive ORod into the VSEG array to compute the horizontal and vertical border bits

of the PAC blobs Notice, that technically this is the very heart of the edge fmder of CRE; namely,

PACXOR is the mechanism that converts regions into edges Edge tracing is the only operation CRE

performs Dn the 1-bit rasters; although Boolean image processing has caught the ey« of many vision

programmers (perhaps because it resembles an array automata or the game Life) one rapidly discovers

that raster operations alone are too weak to do anything interesting that can't already be done better

analytically in a raster of numbers or topologically m a node/link data structure

7.3 Contouring.

Contouring, converts the bit arrays HSEG and VSEG into vectors and polygons The contouring

itself, is done by a single subroutine named MKPGON, make polygon When MKPGON is called, it looks

fur the upper most left non-zoro bit in the VSEG array If the VSEG array is empty, MKPGON returns

a NIL However, when the bit is found, MKPGON traces and erases the polygonal outline to which that

bit belongs and returns a polygon node with a ring of vectors The MKPGON trace can go in four

directions: north and south along vertical columns of bits in the VSEG array, or east and west along

horizontal rows of the HSEG array The trace starts by heading south until it hits a turn; while heading

south MKPGON must check for first a turn to the east (indicated by a bit m HSEG); next for no turn

(continue south); and last for a turn to the west When a turn is encountered MKPGON creates a

vector node representing the run of bits between the previous turn and the present turn The trace

always ends heading west bound The outline so traced can be either the edge of a blob or a hole, the

two cas*s are distinguished by looking at the VIC-polygon's uppermost left pixel in the PAC bit array.

-88

^M

7 4 Polygon N«<tin| IMAGE CONTOURING

Th«r» ar« two compl«xi1i«s: centrist accumulition »rd dtKinkinj Th« contrast 0« a v«etor it

d.fmad as (QUOTIENT (DIFFERENCE (Sum of pixal valuas on on« sid« of th« v«ctor)(Sum of ptxal valu«s

on th« oth«r std« of th« v.ctor)) (laneth of Ih« vactor m pixals)) Sine« v«tor$ ar« always «ither

horizontal or v.rt.eal and ar« construad at bainf on th« craeKs batwaan p.xals; th« spacifiad

summations rtfar to th» pixals immad.ataly to aithar sid« ol th« v«etor Notic« that th.s d«fmition of

contrast will always |iv« a posit.va contrast for vaetors of a blob and naptiva contrast for th« v«ctors

of a hoi«

Th« contours that hav« just b««n tracad would appaar "sawtoothad" or "KmKy"; th« t«rms

"kinK", "sawtooth" and "jany" ara usad to axprats what saams to b« wrong about th« low«rmott l«ft

polygon in Figur« 7 2. Th« problem mvolvat doing somathing to a r«ctilin«ir quantizad s«t Of

s«gm«nts, to mak« its continuous natura mora avidant In CRE, th« jaggias solution (in th« subroutm«

MKPGON) m«r«ly positions th« turning locus diagonally off its grid point a httl« in th« dir«ction

(north«a$t, nor.hwast, southwast or soulhaast) that bisacts th« turn's right angla Th« distanc« of

d«kinK v«rni«r positioning is always lass than half a pixal; but graatar for bnghtar cuts and lass for

th« darkar cuts; in ordar to pr«s«rv« tha nastmg of contours Th« sawtoothad and th« d«kink«d

v«rsions of a polygon hav« tha sama numbar of vaetors I am vary fond J this dakinking algorithm

bacaus« of its incradibl« efficiancy; givan that you hava a north, south, «ast, wast polygon trac«

routm« (which handlas imaga coordinates packad row, column into on« word); th«n d«kinking r«quir«s

only on« mor« ADD instruction axecution par vactor !

7.4 Polygon Nesting.

Th« n«$ting probl«m is to d«cid« whathar ona contour polygon is within anothar Although «asy

in th« two polygon cas«; solving th« n«sting of many polygons with r«sp«ct to «ach othar b«com«s

n-squar«d «xp«nsiv« in «ith«r computa tima or in mamory spac« Th« n«sting solution in CRE

sacnficas m«mory for th« saka of graatar spaad and raquiras a 3IK array, callad th« SKY CRE's

accumulation of a proporly n«$tad traa of polygons dapands on tha ordar of thr«shold cutting going

from dark to light For «ach polygon thara ara two nastmg staps: first, tha polygon is placad in th«

89

^MM

I
I
I

FIGURE 7.2 - SAW TOOTH DEKINKING ILLUSTRATED.
IMAGE CONTOURING

5 90

IAI mm^m

7 4 Poly ton N«tm| IMAGE CONTOURING

ITM of n«t«d polytons by »h« tubroutm« INTREE; »«cond, th» polyjon it placed in th« SKY array by

tha tubroutm« named INSKY

Th« SKY array n 216 rowt of 289 columnt of 18-bit pomUrt Th« nam« "SKY" cam« about

bacaut«, th« array us« to raprasant tha farthatt away ra|iont or background, which in th« cat« of a

robot vahicl« it th« r«al thy blu« Th« tky contamt vaetor pomtart; and would b« mor« «fficl«nt on a

virtual mamory machm« that didn't allocata unutad pagat of itt addrast tpac« Wh«r«as most

comput«rt hava mor« m«mory contamars than addratt tpaca; computar graphict and vition might b«

«ati«r to program in a mamory with more addratt tpac« than phytical tpac«; i«. an almott «mpty

virtual mamory

Th« firtt part of th« INTREE routm« Imdt th« turround«r of a givan polygon by tcannmg th«

SKY du« «att from th« upp«rmost lall pixel of tha givan polygon Th« SON of a polygon is always its

upper notl laft v«ctor Aft«r INTREE, th« INSKY routm« places pomtert to the vertical vectort of th«

giv«n ,'Olygon into th« tky array The second part of the INTREE routine checks for and fixes up th«

cat« whe« th« n«w polygon capturet a polygon that it already enclaved. Thit only happant whan two

or mor« l«v«lt of th« imag« have blobt that have holet. The next paragraph explains the arcane

details of fixing up the tree linkt of multi level hole polygont; and may be tkipped by «v«ryon« but

thos« who might with to impl«m«nt a polygon n«tt«r

Let th« giv«n polygon b« named Poly; and l«t th« turround«r of Poly b« called Exopoly; and

assume that Exopoly surrounds several enclaved polygons called "endo's", which are already in th«

n«st«d polygon tr«« Also, th«r« ar« two kinds of temporary lists named the PLIST and the NLIST

Ther« it on« 'LIST which is initially a list of all the ENOO polygont on Exopoly't ENDO ring Each «ndo

In turn hat an NLIST which it initially empty. Th« tubroutin« INTREE r«-teant th« tky array for th«

polygon du« «att (to th« l«ft) of th« upp«rmott l«ft v«ctor of «ach «ndo polygon on th« PLIST,

(Exopoly't ENDO ring). On tuch ^-scanning, (on behalf of tay an Endol), there ar« four cases: No

chnngr; th« scan raturnt Exopoly; which it Endol't original EXO. Po/y rnpturrt Hudol; th« tcan

raturnt Poly indicating that endol hat been captured by Poly. My brolhert fate; th« tcan hits an

«ndo2 which it not on the PLIST; which meant that endo2't EXO it valid and it th« valid EXO of «ndo!.

91

i

 J

7 5 Contour SwM.Uo* 'MACE CONTOURING

My fntr drlayrH; th« ««n hits Ml »0002 which it ttill on tho PLIST; which MMM th«t •ndo2"$ EXO is

not y«t valid but *h«n discovered it wtH «Iso be Endol's EXO; so Endol is CONSed into Endo2,s NLIST

Wh.n an «ndo polyson's EXO has b««n rtJi!COv«r«d, th«n all th« polytons on that «ndo's NLIST ar«

also placod into th« polyton tre« at that plac« All of this link crunchint machm.ry taKas "lalf a pas« of

cod« and is not Iriquontly executed

7.5 Contour Segmentation.

In CRE the term tgmenlhg reters to the problem of breakinj a I-D manifold (a polygon) into

Simple functions (arcs) The segmentinf step, conve-ts the polygons of vertical and horizontal vectors

into polygons of arcs For the present the term "arc" means "linear are" which is a line segment

Fancier arcs: circular and cubic spline were implemented and thrown out mostly because they were of

no use to h.gher processes such as the polygon compare wh.ch would have to break the fancy arcs

bacK down into linear vectors for computing areas, inertia tensors or mere display buffers

Segmenting is applied to each polygon f a level To start, a ring of two arcs is formed (a

bi-gon) with one arc at the uppermost left and the other at the lowermost right of the given vector

polyROn Next a recursive maKe arc operation, MKARC, is appled to the two initial arcs Since the arc

given to MKARC is in a one to one correspondence with a doubly linked list of vectors; MKARC checks

to see whether each point on the list of vectors is close enough to the approximating arc MKARC

returns the given arc as good encugh when all the sub vectors fall within a given width; otherwise

MKARC splits the arc m two and places a new arc vertex on the vector vertex that was farthest away

from the original arc

The two large images in Figur«, 7 3, illustrate a polygon smoothed with arc width tolerances set

tt two different widths in order to show one recursion of MKARC The eight smaller images illustrate

the results of setting the arc width tolerance over a range of values. Because of the dekinking

mentioned earlier the arc width tolerance can be equal to or less than one pixel and still yield a

substantial reduction in the number of vectors it takes to describe a contour polygon.

92

^^

*»

IMAGE CONTOURING

FIGURE 7.3 - CONTOUR SEGMENTATION.

7 6 Related and Future Image Analysis
IMAGE CONTOURING

A final .mporlanl detail is that the arc width tolerance is actually taken as a function of the

highest contrast vector found along the are; so that high contrast are« are smoothed with mceh smaller

are w.dth tolerances than are low contrast ares After smoothini, the contrast across each arc is

computed and the ring of ares replaces the nng of vectors of the g.ven polygon (Polygons that would

be expressed as only two ares are deleted)

7.6 Related and Future Image Analysis.

In general, robotic image analysis should consist of three step«: fir«», high quality p.ctures are

taken continuously in time and space; second, several iow level bulk operations (such a« correlation,

filtering, h.stogramming and thresholding) are applied to each .mage and to peirs of image«; th.rd, the

rasters are converted into imked 2-0 structures which are further amalgamated into connected 3-D

models It is clear to me that my present implementation only ha« fragile toy routine« where rugged

tools are needed Eventually, more kinds of .mage fe.tures and larger coherent structure« must be

included In particular, the contour mips should be bundled into regional mosaics and more features

should be woven into the node/link structure

Contour image processing is effectively surveyed by Freeman (74) who give« »he .rrontou«

„npress.on IM contour images are the best image representation (rasters and mosaic« «re equally

important) Contours are applied to recognition of silhouettes by Dudani (70) using moment« «imilar to

those explamed m the next chapter Finally, my own acquaintance with the contour image

representation wa« initially derived from papers by Zahn (66) and Krakauer (71)

-94

- -

8 0 Introduction to lm«g« Comparinj COMPARING.

I

I
I

SECTION 8

IMAGE COMPARING.

8 0 Introduction to Imif« Compirinj

8 1 A Polygon Mitchmg Mtthod

8 2 Geomotnc Normilization ot Polygon»

8 3 Compare by Rtcursiv« Windowing

8 4 Related WorK and WorK Yet To Be Oone

8.0 Introduction to Image Comparing.

The image compare process is both the "kryitonr of ihr nrrh" it well as the "urnkru link of

f ihf rhnin' By comparing images, the 3-0 modeling and the 2-0 image processing are finally linked,

however as will be apparent the implementation to date demonstrates only a small part of what Is

i possible In the feecbacK perception design, there are thre« classes of compare operations:

verification, revelation and recognition which may be applied to each of the three Kinds of image data

I structures: raster, contour and mosaic The verify compare finds the corresponding entities between a

predicted image and a perceived im^ge for the saKe of calibration measurement and for the sake of

I eliminating already known features from further consideration In vision for industrial machine

assembly, calibration measurements suddenly seems to be the only kind of vision necessary in a

I relatively constrained factory situation The "-eveal compare involves finding the corresponding entities

in two perceived images, so that the location and extent of new objects can be solved. Finally, th«

recognition compare involves matching a perceived entity with one of a set of prototype entities

•95

^^

8,0 Introduction to Ir^s« Comparin| COMPARING

From th« vitw point ot modtlmj th« low«st ltv«l compart optntion should somthow b«

arranfcd to b« a on« to on« tsmplat« match rath«r than a multi dim«nsional statistical discrimination or

a Craph isomorphism l«st That is if th« «ntiti«t to b« match«d ar« incomm«nsurat«1 th« mod«l

d«sien«r c«n$ur«s th« mod«l that fnirrttd an unr«alistic pr«diction rath«r than th« patt«rn match«r

which cannot s«« a vaju« r«s«mblanc« Cl«arl/ this position should not b« taK«n to an «xtr«m« and th«

pr«s«nt syst«m could b« «nhanc«d by th« inclusion of an appropnat« coll«ction of traditional patt«rn

matchinj t«chniqu«s How«v«r1 two t«chniqu«s of comm«risuration that ar« naturally th« r«sponsibility

of a mod«l build«r ar« t«om«tric normalizat-on and topolojical s«tm«ntation G«om«trie normalization

mvolv«! «hmmatmi th« irr«l«yant |«om«tric diff«r«n<«s such as location, ori«nt«lion and seal«

TopolOfical s«tm«ntätion invoiv«s subdividinj a compl«K obj«ct into pi«c«$, (p«rhap8 «v«n canonical

pi«c«s) so that only simpl« small parts n««d b« match«d (that is th« compar« b«com«s r«eursiv«) Th«

r«maind«r of this chapUr «xplains a m«thod for matchmf structur«d imat«t consisting of polygons

Th« most original part of th« m«thod invo1v«s finding th« cor^spond«««, illustraUd in Figur« 8.1, for

polygonal figur«s that fission O' (us« from on« imag« to th« n«xt

FIGURE 8.1 - EXAMPLE OF POLYGON FUSION COMPARE.

96 -

^rti

8 1 A Polyjon Mitchlnj Method COMPARING

8.1 A Polygon Matching Method.

Th« imajo compar» process m CRE, conneeti the polyjons md vector« of one image with

correipondmg polygon« and vector« of another imag» CRE'« compare «olves the problem of

correlating polygons between two iMItr images and is composed of four step«:

1 Compute polygonal lamina inertia tensors, Inmirn nndr*

2 Compare and connect polygons one to one at corresponding level« of the nested polygon tree

3 Compare and connect polygons two to one at corresponding level« of the nested polygon tree

4 Compare and connect vertices of connected polygon« u«ing recur«ive windowing

First, the lamina inertia tensor nodes (called (nminr«) of all the polygons of an image are

computed A lamlen node contains the center of mas« a« well as the tensor of a polygon The maanmg

of the inertia tensor is that it characterizes each polygon as a rectangle of a rertam length and width

at a particular location and orientation; and of further importance such inertia tensors can be added to

characterize two or more polygons by a single rectangle It it the lamten rectangles that provide a

basis for normalization

Second, all the lamtens of the polygons of one level of the first image are compared with all the

lamtens of the polygons of the corresponding level of the second image for nearly exact match The

potentially (M»N/2) compares is avoided by sorting on the center of mas« locations. In CRE, which i«

intended tor comparing sequences of picture« of natural scenes; match for center of mass location is

tested first and most strictly, followed by match for inertia. Pointer« between matching polygons are

placed m two link positions of the polygon nodes and the polygons are considered to be matched.

Third, all the unmated polygons of a level are considered two at a lime ano a fusion lamten node

for each pair is made The potentially (N«N/2-N) fusion lamten« are avoided because there it a

maximum possible unmated inertia in the other image; if there are no unmated polygons in one image

then the extra polygons of the first image can be ignored. In the event where there are unmated

polygons in corresponding levels of the two images, the multi-polygon fusion lamter. of one are

compared with the single polygon lamten of the other. The fusion (fission) compare solves the rather

•97

mm

8 2 G«om«lric Normalization o« Polygons COMPARING

nasty probl.m. of ImKmt two contour polyROnt of on« mtf with a lingl« contour polyton in th« n«xt

imae«

Fourth, th« v«rtic«t of mat«d polyjont ar« in turn compar«d and mat«d To «tart a v«rt«x

compar«, th« v«rtic«i of on« polygon .-« transUt«d, rotatad and d.latad to g«« that polygon'« lami«n

r«ctanel« co...cid«nt with its mat« (or rnaUs) Concaptually, «ach v«rt«x of on« polygon is eompar«d

with «ach v«rt«» of th« oth«r polygon(B) and th« mutually clos«st v«rtic«s (clos«r than an «psilon) ar«

eonsid«r«d to b« mat«d Actually th« pot«ntial (N*M) compares ar« avoided by a r«cursiv« windowing

sch«m« similar to that us«d in hidd«n Im« ol.mmation algorithms Th« compar« «x«cuiion taK«s l«ss

th^n a s«cond on imag«s such as th« pump bas« (Figuras 0 3 and 0 4) blocks (Figur« 8 1) and a doll

(Figur« 8.2) Th« doll's silhou«tt« is h«adl«ss wh«n vi«w«d from th« bacKsid« b«caus« its hair is black

FIGURE 8.2 - EXAMPLE OF VERTEX MATCHING.

8.2 Geometric Normalization of Polygons.

Th« lamina in«rtia Unsor of a polygon with N sides i. compuUd by summation ov«r N frap«20id«.

Th« trap«20id corresponding to «ach sid« is form«d by dropping p«rp«ndicul«rs up to th« top of th«

iNMM fram«; «ach such trapazoid consists of a r«ctangl« an a right tnangl«; sine« th« sides of

98

- -

8.2 Gaomstric Normdization of Poi/gons COMPARING

polrROns art directed vector; the areas o< the tmngles and rectangles can be arranged to take

positive and negative value", '.uch that a summation will describe the interior region of the polygon as

positive The equation', necc.iary for computing the lamina inertia tensor of a polygon were derived

from material in (Golditem 1950)

RECTANGLE'S LAMINA INERTIA TENSOR ABOUT ITS CENTER OF MASS
MXX •- B*B*AREA/I2; (B HEIGHT IN ROWS).
MYV - A*A*AREA/I2; (A WIDTH IN COLUMNS)
MZZ •■ MXX • MYY;
PXY - 0;

ORIENTED RIGHT TRIANGLE'S LAMINA INERTIA TENSOR ABOUT ITS CENTER OF MASS
MXX * B«B*AREA/I8: (B HEIGHT IN ROWS)
MYY - A«A*AREA/18; (A WIDTH IN COLUMNS)
MZZ «■ MXX ♦ MYY;
PXY - -A*B*AREA/36;

SUMMATION Pf LAMINA INERTIA TENSORS
AREA -
XCM -
YCM -
MXX «-
MYY -
PXY -

(AREA: ♦ AREA2);
(AREA1*XCM1 • AREA2 * XCM2) / AktA,
{'7EAI * YCMI • AREA2 « YCM2) / AREA;
MXX! ♦YCMI*YCMi«AREAl .MXX2 ♦YCM2*YCM2«AREA2 -YCM«VCM*AREA;
MYY1 .XCMI«XCMi«AREAl •MVY2 ♦XCM2«XCM2*AREA2 -XCM«XCM«AREA;
PXY1 -XCMUYCMUAREAI ♦PXY2-XCM2«YCM2«AREA2 «XCMmYCMatAREA;

ANGLE OF PRINCIPLE AXIS
The angle of the principle axis, PHI, lies in the interval -n/2 to n/2

PHI *• 0 5*ATAN(2*PXY/(MYY-MXX));
PXY •- 0 5«(MYY - MXX)«TAN(2«PHI);

TRANSLATION OF LAMINA INERTIA TENSOR AWAY FROM CENTER OF MASS
MXX" - MXX ♦ AREA*DY«DY;
MYY' ♦• MYY • AREA«DX*DX;
PXY' •- PXY - AREA*DX*DY;

ROTATION OF LAMINA INERTIA TENSOR ABOUT CENTER OF MASS.
C - COSINE(PHI);
S - SINE(PHI);
MXX' - C«C*MXX ♦ S«S*MYY - 2«C*S*PXY;
MYY' •- C«C*MYY • S*S*MXX ♦ 2«C*S«PXY;
PXY' - (C*C - S«S)*PXY • C*S«(MYY - MXX);

99

^^

^"

^

8 4 Ralatad Work and Work Y«t To B« Don« COMPARING

8.3 Compare by Recursive Windowing.

Th« final step m th« CRE polyton match (Section 8 1) it to link th« corresponding v«rtic«t

b«twaan two t«on>«tncally normali2«d polyton» (or t«tt of polyfOns) using a n«ar«t ntijhbor

crit«rion Th# n«ar»jt neighbor« ar« found by r«curjiv« windowing, initially all 1h« varticat ar«

puthad into ona larga window which it tubtaquantly tplit until thara war« faw anough varticat

containad in tha window to allow axhauttiva comparing To maka Ihit windowing tachmqua applicable

to tha naarast naighbor problam a dittanca cntanon, drlia, hat 10 ba daclarad to that tha wmdowt

ovarlap by that amount Consaquantly tha windows ara no longar disjoint ractanglat, but ara rathar

boxat with roundad cornart, tha smallast postibla window bamg a circla with radius, drlia Th«

racurtiva windowing tachmqua is astontially a two dimantional partition sort, tha tachmqua can b«

ganoralizad for comparing adgis and othor ontitiat in 2*D or highar dimantiont.

8.4 Related Work and Work Yet To Be Done.

To complata tha visual faadback tystam, thara ramamt yat to ba written an imaga compare that

uses both raster basad and polygon basad tachniquat Tha two kindt of compares are symbiotic in that

the polygon compare could aim the raster correlator alleviating the need to do bulk correlation over

wide areas, and the raster correlator could verify and improve the measurement of corresponding

vertex loci At Stanford, image comparison by raster correlation techniques it begin worked on by

Ouam(7l), Hannah and Morevac Another approach to comparing polygons is to examine their

curvature, the curvtturi of a polygon can ba expressed as a parametric function of arc length; two

such functions can be ;iormalize'< and alligned and diffarancec; using statistical techniques (Zahn 66)

100

mm

I 9.0 Introduction to Locus Solving LOCUS SOLVING

SECTION 9.

CAMERA AND FEATURE LOCUS SOLVING.

9 0 Introduction to Locus Solving

9.1 An Eight PanmaUr Camera Modal

9 2 Camera Locus Solving: On« Viaw ot Thra« Points

9 3 Objact Locus Solving: Silhouatta Cona Intartaction.

9 4 Sun Locus Solving: A Simple Solar Ephamarit.

9 5 Ralatad and Futura Locus Solving Work

9.0 Introduction to Locus Solving.

There are thraa kinds of locus solving problems in computer vision: camera locus solving,

feature locus solving and sun 'ocus solving Camera solving is routinely attempted in two ways: using

one image the 2-D image loci r f a set of already known 3-D world loci (perhaps points on a calibration

object) are measured and a Ct-^era model is confuted; or using two or more images a set of

corresponding landmark feature pom's are found among the images and the whole system is solved

relative to itself After the camera positions are known, the location and extent of the objects

composing the scene can be found using parallax (motion parallax and stereo parallax) Parallax is the

principal means of depth perception and is the alchemist for converting 2-D images into 3-D models

After the camera and object positions are known to some accuracy, the nature and location of light

sources might potentially be deduced from 'he shines and shadows in the images However, in outdoor

situations the primary light source is the sun, whose position in the sky can be computed from the time,

date and latitude by means of a simple solar ephemeris routine

I
101 -

- -

mm

9.1 An Eifht P«r«m«Ur C«m«r» Mod«l LOCUS SOLVING.

9.1 An Eight Parameter Camera Model.

In GEOMED md ORE ItN b«sic cimtra mod«l is ip«c.fi«d by «nht p«rim«t«ri. Th«r« ar* Ihr««

MTMMton for th« l«n« c«nt«r locit.on of th« c.m«ri: CX, CY, C2; «hr«« p«r«m«1«r« for th«

ori«nti1ioni WX, WY, WZ; md »wo pirim«t«ri for «h« proj«e1ion rit.oi: th« aspect ratio, AR; and th«

focal ratio, FR Th« location is |iv«n in world coordmaUs and th« oriontation is sp«cifi«d by a rotation

v«c»or whos« dir«ction |iv«i an axis and whos« magmtud« |iv«s rotation which wh«n applied to a s«t

of thr«« ax«s unit v«ctors yi«ld$ » s«t of unit v«ctors that d«t«rmin«s th« cam«ra,s coordmat« syst«m

By conv«ntion th« p. -K.pal ray of th« cam«ri is parall«! to th« 2 axis unit v«ctor and it n«fativ«ly

dir«ct«d Th« cam«ra rast«r is allitnad such that th« rows (vidicon scan lines) ar« parall«! to th« X unit

voctor and th« columns ar« parall«! to th« Y unit v«ctor

Th« asp«ct ratio, AR, is th« ratio of width, PDX, to haifhl, PDY, of a ting!« vidicon tampl« point

call«d a pix«!: AR » PDX/PDY Th« focal ratio, FR, is th« ratio of th« focal plan« distanc« to th« h«ifht

of a smtl« pix«l: FR • FOCAL/PDY Th« typical valu« of th« «sped ratio is about on«, and th« typical

valu« of th« focal ratio runs from 300 to 3000

Th« actual physical siz« of th« digital rastar of a t«l«vision vidicon is on th« ordor ol 12

millim«1«r$ wid« by 8 millim«t«rs high with approximataly 512 lin«s of pot«ntially 512 pix«ls per lin«.

How«v«r, a standard t«l«vition scans its rasUr in two phas«s (odd rows in on« phas«, «v«n rows in th«

n«xt) so that a on«-phas« pix«l is approximat«ly 40 microns by 40 microns (rathar than 20 by 20) B«,

contrast, th« con«s and rods in a human «y« ar« 1 and 2 microns in diam«t«r r«sp«ctiv«ly

Th« aspact ratio and th« focal ratio can b« m«asurad individually using a tph«rical calibration

objoct. I hav« used plastic toy balls and billiard balls, billiard ball radius RBB.2 125". Th« p«rsp«ctiv«

projoction of a sph«r« is an «Hips« and th« ratio of th« apparent width to haight of th« «Hips« of a

tph«r« that naarly fills th« vi«wing scr««n is th« aspact ratio. To maasur« th« focal ratio, mount th«

tph«r« on a stick and moasura its apparent radii (rl and r2) at two positions that ar« approximataly

along th« camera's principal axis a measured distance, DZ, apart. Then then the focal ratio FR •

102

^^ MK4

■^

I
I 9 1 An Eight Pirn Mr Camera Model LOCUS SOLVING

DZ«rl*r2/(R*(rl-r2)) which can be thought of as the FOCAL plane distance in pixels The beauty o<

this is that a naive measuring method yields results as good as measurements obtained by more

elaborate methods such as principal axis relaxation of a camera model in numerous variables (Sobel 70)

and Pmgle unpublished

Camora Resolution The focal ratio description allows one to have a firm numerical intuition of

camera's spatial resolution in the object space The smallest distance interval, DELTA, a earner« can

measure at a given range, RNG, is merely the ratio of range to TR: DELTA«RNG/FR The «rcian of th«

reciprocal of the focal ratio ARCTAN(1/FR) is the angle subtended by a tingle pixel

Lens Center Irrelevancy Theorpm The actual location of the prineioal axis of the lens in the

image plane ii irrelevant boceu-.e Iho effect of deviation from the true center is equivalent to rotating

the camera Many camera modelr.ts worry needlessly about the exact location of the camera lens

center; the angular error, ANGCPR, of a pixel X units from the center of the image of a camera

modeled with a lens center that is wrong in the X direction by 0 pixels is .jiven by the following

expression:

ANGER" i ARCTAN(X/FR) - ARCTAN((X»0)/FR) - ARCTAN(Q/FR)

Which for the physical parameters of the television hardware at Stanford in 1974; means that the lens

center can be allowed to wandor by tens of pixels from its true position without causing a pixel of

error at the edge of the image, (allowing that one camera model is alhgned on the same feature by

rotation as the camera that defines a good lens center)

I
I 103

^^

^»

9 2 C«m«ri Locus Solving: On« V.ew o» Thro« Points LOCUS SOLVING

9.2 Camera Locus Solving: One View of Three Points

- The Iron Triangle Camera Solving Method.

A mobil« robot hiving only vitual p«rc«ption must d«t«rmin« wh«r« it it tomt by what it MM.

Sp«cifieilly, th« position o« Ih« robot is tound r«l»tiv« to th« position ot th« l«ns c«nl«r ol its CMMTt.

Th« »ollowmg algorithm is a geometric method «Or computing th« locus ot a cam«ra,s l«ns center from

three landmark points.

FIGURE 9,1

The Iron Triangle and Tnpod

Consider (our non-coplanar points A, B, C and L. Let L be the unknown camera's lens center,

also called the camera locus Let A, B and C be the landmark points whose loci either are fven on a

map or are found by stereo from two already known viewing positions Assuming for the moment an

ideal camera which can see all 4n steradians at once, the camera can measure the angles formed by

the ray« from the camera locus to the landmark points. Let these angles be called a, 8 and y wh*» t a

it the angl BLC, ß is the angle ALC and y is the angle ALB The camera also measures whether the

landmarks • pear to be in clockwise or counter clockwise order as seen from L If the landmarks are

counterclockwise then B is swapod with C and 6 with y A mechanical analog of the problem would be

to position a rigid triangular piece of sheet metal between the logs of a tripod so that its corners touch

each leg The metal triangle is the same size as the triangle ABC and the legs of the tripod are rigidly

held forming the angles a, $ and y The algorithm was developed by thinking in terms of thit analogy.

I
I
I
I
I
I
I

104

mm

9.2 Cam«r» Locus Solvmt: On« Vi»w of Thr»« Pomli LOCUS SOLVING.

FIGURE 9 2 • FIVE IRON TRIANGLE

In ord«r 1o pu» th« ron Irungl» mlo th« tnpod, 1h« »df BC

is first pl«c«d b«»wMn th« tr,pod le;s of «ngl« a. L«t i b«

th« l«n|th of BC, IIK«WIS« b «nd c «r« th« l«njth$ of AC snd

AS

R«strictin6 attention to th« plan« LBC, consider th« locus of

points L* •rriv«d «t by sliding th« tripod and mimtiinint

contacts at B and C

DIAGRAMS

R«memb«ring that in a cird«, a chord subtends «qual angles

at all points of each arc on either side of the chord; it can be

seen that th« s«t of possible L' points lie on a circular arc.

Let this arc be called L's arc, wh ch is part of L's circle.

Also in a circle th« angl« at th« cent«r is doubl« th« angl« at

th« circumference, when the rays forming the angles meet

th« circumference in th« sam« two points

And th« perpendicular bisector of a chord passes thru th«

c«nt«r of th« chord's circl« bi5«cting th« c«ntral angl« Let S

be th« distanc« b«tw««n th« c«nt«r of th« circl« and th«

chord BC So by trigonometric definitions:

R ■ a / 2sin(a)

S ■ R cos(a)

• 105

92 Cimtra Locus Solvmj: On« Vi«w ol Thr«« Point» LOCUS SOLVING

var

Tha posit.on of L on its »re m th« plan* 8LC c«n b« ««pr^sstd .n t.rms of on« p«ram«'r.c

iabl« om«e* w. wh«r« w .5 th« count«r clockw.s« MgHUr displac«m«nt of L from th« p«rp«ndicular

bi$«ctor «uch that for wn-a, L .$ at B and for u*a-n. L is at C By spmnmu th« iron tr.antl« «bout th«

•xit BC, th« v«rtM A sweeps a c.rtl« L«t H b« th« radius of A's ere!« and l«t D b« th« d1r«ct«d

dotanc« b«tw««n th« c«nt«r of A's circl« and th« midpoint of 5C. By Trnonom«tric relations on th«

tnangl« ABC:

COS(ACB) • (aT2 ♦ bT2 - cT2)/2ab

SIN{ACB)« SORTd -C0S(C)T2)

H • b SIN(ACB)
D « b COS(ACB) - a/2

Now eontid«r th« third !«(of th« tripod which form« th« angl«« tf and > Th« third ieR

int«rs«ct« th« BLC plan« at point L and «xtonds into th« appropnat« halfspac« «o that th« landmark

points app«ar to b« in clockwis« ord«r as MM from L Lot A' b« th« third I«»'« point of int«rs«ction

with th« plan« contaimnt A's circl« Lot th« distanc« b«tw««n th« point A1 and th« c«nt«r of A's circl«

l«ss th« radius H of A's lircl« b« call«d "Th« Gap" Th« e*p's valu« is n«8at.v« if A' falls within A's

circl«. By constructin8 an «xpressior for th« valu« of th« Gap as a function of th« param«tric vanabl«

w, a root solvmt routin« can find th« H for which th« gap is 2«rO thus d«t«rm1nin6 th« onontation of

th« tnanil« with r«sp«ct to th« tnpod and Ml turn th« locus of th« point L in space

Using vector fOtvWy, plac« an origin at th« midpoint of BC, «stablish th« unit y-v«ctor j

pointing towards th« v«rt«x B, let th« plan« BCL b« th« x-y plan« and onont th« unit x-v«etor i

pomtmc into L's halfplan« For right handodnoss, s«t th« unit z-v«ctor K to i cross j In th« n«wly

d«fin«d coordinat«s points B, C, and L b«com« th« v«ctors:

B » (-s, •a/2, 0);

C • (-s,-a/2,0)
L • (R coslw), R sin(w), 0)

Introducing two unknowns xx and zz th« locus of point A' as a vector is:

A' • (xx, D, zz)

106

^^i wm

I
I
\

I

1

I

I
I

I
I
I
I

9.2 Cim«r« Locus Solving: On« Vi«w of Thr«« PoinU LOCUS SOLVING.

Th« vtelors corresponding to the legs of the tripod ire:

LB « B - L « (-s-Rcos(w), ••/2-Rsin(w)l 0)

LC » C - L » (-s-Rcos(w), -•/2-R»in(w), 0)

LA » A'- L • (xx-Rcoslw), D-Rsmlw), zz)

Since the third leg forms the angles B «nd y:

LA LC * |LA| |LC| cosW)

LA LB « |LA| |LB| cos(>)

Solving each equation for |LA| yields:

|LA| • (LA LC)/|LC|cos(tf) • (LA LB)/|LB|co«(ir)

Multiplying by |LB| |LC1 cos iß) cos b) t,v":

(LA LC)|LB| cosi-y) » (LA LB)|LC| cos(fl)

Expressing the vector quintites in t»-ms of their components:

|LB| » sqrt((-S-Rc05(w))T2 • (•»/2-Rsin(w))T2)

|LC| « sqrt((-S-Rcos(w))T2 ♦ (-i/2-Rsin(w))T2)

LA LC » (xx-Rcos(w))(-s-Rcos(w)) • (D-Rsm(w))f-i/2-R»m(w))

LA LC ■ (xx-Rcos(w))(-s-Rcos(w)) • (D-Rsin(w))(»i/k-Siin(w))

Substituting:

((xx-Rcos(w))(-s-Rcos(w)) ♦ (D-Rsin(w))(-«/2-Rim(w))) |LB|cos(7)

((xx-Rcos(w))(-s-Rcos(w)) • (D-Rsin(w))('«/2-R«in(w))) |LC|cosW)

The previous equation is linear in xx, so solving for xx:

xx = P/Q ♦ Rcos(w)

where

P « (-s-Rco$(w))(lLB|cüs('r) - |LC|cos(fl))

Q . (D-Rsin(w))(('a/2-Rsin(w))|LC|cos(fl)

- (-a/2-Rsin(w))|LB|cos('r))

I The unknown zz can be found from the definition of |LA|

|LA| • sqrU (xx-Rcos(w))T2 ♦ (D-Rsin(w))T2 ♦ zzt2)

so zz « sqrt(1LA|T2 - (P/0)T2 - (D-Rsin(w))T2)

and since:

|LA| • (LA LC) / |LC|cos(fl)

The negative values of zz are precluded by the clockwise ordering

of tha landmark points Thus the expression for the Gap can be formed:

GAP • sqrU (XX.S)T2 • zzT2) - H

- 107

mm

9 2 Cimeri Locus Solving: One View ol Three Points LOCUS SOLVING

As mentioned above, when the gap is zero the problem is solved r e the locus ot A' then must

be on A's c.re.e. «o the triangle touches the third leg The gap fun. jn loot-.s like • cubic on its

interval [e-n.n-a] which almost always has just one lero crossing

Having found the locus of L in the specially defined coordinate system all that remains to do i* to

solve for the components of L m the coordinate system that A, B and C were given Thi« can be done

by considering three vector expressions which are not dependent on the frame of reference and do

not heve second order L terms, namely: (CA dot CD; (CB dot CU| and ((CA x CB) dot CD Let the

locus of L m the given frame of reference be IX,V,Z) «nd let the components of Iho points A, B end C

be (XA.YAJA), (XB.YB^B) and (XC.YCZC) respectively Lilmg all four points in both frames of

reference:

A « (xx, 0, n) • (XA, YA, ZA)
B « (-s, '»12, 0) « (XB, YA, 2A)

C • (-s, -a/2, 0) • (XC, YC, ZC)
L • (Rcos(w),Rsin(w),0) « (X, Y, Z)

Evaluating the vector expressions which are invariant:

CA . A - C • (XA-XC YA-VC, ZA-ZC)

CB-B-CIO.a.O) ■ (XB-XC, YB-YC, ZB-ZC)

CL - L - C » (Rcos(w).s.Rsin(w).a/210) • (X-XC, Y-YC, Z-ZC)

The aot products are:
CA CL • (xx.S)(Rco5(w)«sHD»a/2)(Rsin(w)«A/2)

. (XA-XCKX-XC) • (YA-YC)(Y-YC) • {ZA-ZC)(Z-ZC)

CB CL ■ a(Rsin(w) ♦ a/2)
. (XB-XCKX-XC) ♦ (YB-YC)(Y-YC) ♦ (ZB-ZC)(Z-ZC)

The cross product is:
(CA x CB) CL » -a zz(Rcos(w) • s)

. ((YA-YC)(ZB-ZC) - (ZA-ZC)(YB-YC)) (X-XC)
- ((XA-XCKZB-ZC) - (ZA-ZC)(XB-XC)) (Y-YC)

♦ ((XA-XC)(YB-YC) - (YA-YC)(XB-XC)) (Z-ZC)

The last three equations are linear equations in the three unknowns X, Y and Z which «re reedily

isolated by Cramer's Rule The whole method has been implement in auxiliary programs LSIV3P and

QBALL which calibrate a camera with respect to a turntable for the sake of the silhouette cone

intersection demonstration in Section 9 3

108 -

- —

I
I
I

!

I

9 3 Object Locus Solving: Silhouette Con« InUrstclion LOCUS SOLVING

9.3 Object Locus Solving: Silhouette Cone Intersection.

After the camera location, orientation and projection are Known; 3-D object models can be

. constructed The silhouette cone intersection method it a conceptually simple form of wide angle,

stereo reconstruction The idea «rose out of an original intention to do "blob" oriented visual model

I acquisition, however a 2-0 blob came to be represented by a silhouette polygon and a 3-D blob

consequently came to be represented by a polyhedron The present implementation requires a very

favorably arranged viewing environment (white objects on darK backgrounds or vice versa); application

to more natural situations might be possible if the necessary hardware (ard software) were available

for extracting depth discontinuities by bulk correla'ion F. Ihermo.e, the restriction to turntable

rotation is for the sake of easy camera solving; this restriction could be lifted by providing stronger

feature tracking for camera calibration

Figure 9 3 shows lour video images dnd the corresponding silhouette contours of a baby doll on

a turn table Figure 9 4 is an overhead view o* the four silhouette cones that were swept from the

contours, the cncle In the middle of Figure 9 4 is the turntable Figure 9 5 gives three views (cross

• yed stereo pairs) of the polyhedron that resulted by taking the intersection of the four silhouette

cones Like in th<» joKe about carving a statue by cutting away everything that does not look like the

subject, the approximate shape of the doll is hewed out of 3-D .pace by cutting away everything that

falls outside of the silhouettes A second example of silhouette cone intersection is depicted in Figure

9 6; the model was made from three silhouettes of the horse facing to the left which can be compared

with an initial video image and a final view of the result of the horse facing to th« right - • plausible

(maximal) backside has been constructed that is consistent with the front views.

The silhouette cone intersection method does indeed construct concave objects and even objects

with holes m them - what are missed ^re concavities with a full nm, that is points on the surface of the

object whose tangent pl*ne cuts the surface in a loop that encloses the point

109

^^ta

FIGURE 9.3 - FOUR VIEWS OF A BABY DOLL.
video images silhouette contours

„mi! ., ■, ■•.iMf.>i«.>ni>|Mi"«)i.p ftifi

\l<"

I
lluini'"-1'

1

■H i I' .1 ■MIL

'. ■' ' ;...■. rM.||.

I'li -I -

f ■■'■

iltrr j
i IM

■'ii

. »uiiiiiiiii;"

iiirpnii -

i

'"'"'' ilrll .l||||.

I I

UüiuyiiMiiiMiinui1
■ Hill I iibM iLttlUI

- 110

^^i

^^ n

I
I
I
I

FIGURE 9.4 - FOUR TURNTABLE SILHOUETTE CONES.
...as viewed from above.

I

1

111

mm

FIGURE 9.5 - RESULTS OF SILHOUETTE CONE INTERSECTION

Front View.

Rear View.

Top View.

112-

^fe

i
l

I

FIGURE 9.6 - HIGH HORSE SILHOUETTE CONE INTERSECTION

11.11

il! IM
1

-•- •> "^i;|" i"" r ii' 11| »'"I ^t"—YH

•lilr
"
I

I 'HI
1

n1

% ■

I,,, •,
I, /'

ij " |H "; H

I'l'il i« i ,1, ,.;■■■. . ■ '•' •mi
lllilll |,.'l(Miuujhlillilii.llmiilLiiili Uiiiüitl . "Uitoir i uiuiUiiliiliiui.ilHililiiiM.,luiill.uuÜll

113

I
I 9 5 R.lalod «nd Futur« Locus Solvmj Work. LOCUS SOLVING

9.5 Related and Future Locus Solving Work.

* Th« cim«ra solvmt problem is discuss.d in Roberts (63), Sob«! (70) and 0u«m (71), I hav«

always dislik.d th« many dimensional hill chmbmt approach to cam«ra solvinj and hav« sought mor«

C«om«trie «nd intuitiv« solutions to th« probl.m Although th« bulk of this chapt«r conc«rn«d cam.r«

solving using on« vi«y; ot thr«« points th« multi vi«w c«m«ra calibration is probably mor« important to

continuous imag« proc«ssint

»

115-

^^

10.1 Rtculit: Accomplishments and Onjin*! Contributions RESULTS AND CONCLUSIONS

(

I
I
I

SECTION 10.

RESULTS AND CONCLUSIONS.

10 1 Results: Accomplishments and Original Contributions

10 2 Critique: Errors and Ommissions

10 3 Sucsestions for Future Work

10 4 Conclusion

10.1 Results: Accomplishments and Original Contributions.

I

At a regular feature in a PhD dessert.tion, it is required to state explicitly what has been

accomplished and what is original Some of what has been accomplished is itemized in box 10 1; with

the so called nrininnl ronirilmiinin marked by asterisk: Each of the accomplishments has been

elaborated in the indicated chapter

/
BOX 10 1 ACCOMPLISHMENTS AND ORIGINAL CONTRIBUTIONS

v

0 The Geometric Feedback Vision Theory

•1, The Winged Edge Polyhedron Representation

*2 The Euler Primitives for Polyhedron Construction

3 The Iron Triangle Camera Locus Algorithm

»4 The OCCULT hidden line elimination algorithm

*5 The Polygon Nesting Algorithm

*6 Ti.e Polygon Dekmkmg Method

7 The Polygon Segmenting Method

8. The Polygon Comparing Method

*9 Silhouette Cone Intersection

Chapter 6

Chapter 2.

Chapter 3

Chapter 9.

Chapter 4

Chapter 7

Chapter 7

Chapter 7

Chapter 8

Chapters 5 and 9

As a whole, the system described in this thesis is the third of its kind, succeeding the systems of

Roberts (1963) and Falk (1970) Although, the modeling routines of the present system are

considerably more sophisticated than were those of its predecessors; improvement in the visual

analysis routines is less dramatic and more open to question. The present image analysis differs from

116

^^ta

^»

10 1 R«ulU: Accomplishmenls and Original Confnbul.ons RESULTS AND CONt LUSIONS

th« ••rli«r sysUms In that «nnphasis is plK«d on th« us« of mullipl« imaj« for lh« sake of parallax

dapth parcapfion and in lhat savaral spatially connacled ima|a raprasantations art combinad (contour

imata, mosaic imaga and raslar MMg«) to prasarva tha structura of tha scana throufh faatur«

attraction rathar than followmt tha earlier paradum of axtradmt features from the imafa plecameal

and attempting to splice them together afterwards

As a design theory, the present work can be compared with earlier work by comparing tha

block diagrams The charctenstically circular feedback vision mandala like diagrams appear in (Falk)

Figure 4-7, page 78; (Grape) Figure 12.1, page 242; (Tenenbaum) Figure 1.13, page 43; as wall as in

this work Figure 6.1, page 70 The feedback mandala is conspicuously absent in the best of th«

stimulus-response visual parsing work, (Waltx), as well as in statistical recognition work, (Duda ard

Hart). Tha important ideas depicted m the feedback vision n-endala are the duality of the simulated and

physical worlds, tha duality of description and verification, tha dua sm of camera and body locus

solving, and tha dual opposing flows of predicted and perceived nages along a hiaracry of

commensurate abstractions Tenenbaum's figure illustrates the basic feedback loop in the immediate

vicinity of the visual sensor The diagrams of Falk and Grape are similar mirrors of the overall system

design of the Stanford Hand/Eye group (1969 to 1973) under tha leadership of Professor Jerome

Feldman The two diagrams depict an array of relevant boxes (camera solver, edge finder, world

modeler and so on) all sending messages to each other under the benign direction of a box labeled

"general strategist"

Among the elements composing th« GEOMED/CRE system, the most onginal accomplishment is

the winged edge polyhedron representation In computer graphics models are based on face perimeter

lists (or arrays), with an awareness that more topoiogical relations exist but with no realiiation that a

substantial improvement in surface topology modeling is teasible using approximately th« sam«

resources

117

Another accomplishment, the Euler primitives was based on a constructive proof of th« Eul«r

r«lation from (Coxater 61) Other graphics systems lack this level of abstraction that falls between th«

l«v«l of node/link operations and operations with solids The Euler primitives were useful in

^Ma

^"

10 2 Critiqu.: £rror. .nd 0m*** ""ULTS AND CONCLUSIONS

im
plemenlmg OCCULT «nd GEOMED swwp »n6 (IM operations, but th.y wtr« less us.ful in

implom^ntmg th» body int«r5«ctor, BIN

A pr«-cOmpuUr form of th» Iron Trunjl« c«m#r« solvinj mtthod i^poars in » piptr by B.rKay

(59) B«rKay d«scrib«d th« m.thod «t «n «mloi proc.dur« to b« p.rform.d with pip«r, rul«r «nd

«Uw oth«r phototr«mm«tric h«nd tools (Tho «xist««« of this p«p«r w«s pomt.d out to M by Irwin

Sobsl)

Th« oriemal «ceomphshm.nt of th« hidd«n HM ■tlwiniXr. OCCULT li«t in iti unification of

s«v«r«l m«thods and in its «xploil«tion of obj«et «nd im«c« ooh«r«nc« m«d« possibl« by th« Eul«r

primitiv«s «nd th« Winj«d Edg« R«pr«5«nt«tion

Th« l«st fiv« aceomplishm.nts list«d in box 10 1 «r« r«lat«d to vision Th« nesting and d«Kmkinf

orobUms hav« b««n staled «nd '.olved by oth.rs, th« pr«s«nt solutions ar« original only in t«chnical

d«tail: th« n«stmg for its us« of m«mory to «void a N-squar«d nunnb«r of compar«s and th« d«kinkin|

for its «ch,«v«mont of good r«sults with almost no «ffort Th« r«cursiv« polygon s«gm«ntation and th«

polygon compar« id«a w«r« accomplishm«nts that w«r« compatibl« w.th th« contour imag« approach but

ar« not n«cessanly original id««:

10.2 Critique: Errors and Omissions.

Th« major w«aKn«ss in th« existing mod.lmg syst«m is that it lacks ov«rall unity - th« mod«ling

and image anaylsis ar« not y«t suffici«ntly w«ll int«grat«d Th« second major weakness is that th«

«ss«ntial subsyst«ms involving comparing, locus solving and r«cognition ar« still in a primitiv« condition.

Cons«qu«ntly1 an unambiguous objective demonstation of the relevance of 3-D modeling to computer

viston is missing; the particular demonstration which I had in mind was to h«ve a robot v«hiel« dnv«

outsid« around th« l«bor«tory visually '.«rvomg «long « tr«jeclOry given in «dv«nc«

In th« cours« of this work, lechmc«! f«ilures h«ve included the «ttempt to us« Eul«r primitiv«s to

impl«m«nt body int«rs«ction1 th« «ttempt to bundle contour im«ges into mosi«c images, at well at

118

mm

1
10 3 Suggestions tor future WorK RESULTS AND CONCLUSIONS

attempts to make the Euler kill pnm.lives legicaUy nr tight without time consuming model checking.

However, the worst errors are ol the form of misallocated effort; more time might have been spent on

image analysis and lest on image synthesis and so forth The research suffers from not having a

criterion for deciding which objectives deserves the most immediate effort

A final barrier to progres? in computer vision is the inadequacy of the hardware It may be true

that "It is a poor workman who blames his tools"; but for me the greatest source of personal

frustration has been the television cameras, the cart and the turntable At Stanford, these device«

have not been implemented or maintained wth sufficient care to make them convenient to use

10.3 Suggestions for Future Work.

Box 10 2 SUGGESTIONS FOR FUTURE WORK

V

SPATIAL MODELING WORK
I Combmaticii Geometric Models - Converters

2. Cellular Spaco Modeling - Tetrahedral Simplices

3 Spatial Simulation: Collision Avoidance Problem

4 Higher Dimensionality, 4-0 GEOMED

SIMULATIONS
5. Mechanical Simulation

6 Creature Simulations

7. Geometric Task Planning.
g Geometric/Semantics Modeling

MATHEMATICALLY ORIENTED PPQDLEMS
9 The Manifold Resurfacm» Problem

10. The Curved Patches Problem
II Prove the Correctness of a Hidden Line Eliminator.

GET RICH QUICK APPLICATIONS

1 2 Automatic Machmu Shop
'3. Animation for Entertainment Industry

$YST£vtS SOFTWARE AND VISION HARDWARE WORK
14 Better Loader and/or Incremental Assembler

15 Better Cameras
16 Image Oriented Number Crunching Computer Hardware

17 Bettor Robot Vehicles

The application of geometric modeling to vision f. robotics raises numerous interesting ideas

and problems, box 10 3 Future development of Com/iiimiion Coomnrir hlodrlt may begin by writing

converters between geometric representations For example, there it a need to convert polyhedra

119

10 3 Suggestions for Fulur« WorK RESULTS AND CONCLUSIONS

into spin« cross sections, space pomts into polyhedra, contour maps into faceted surfaces and so on

Extramural combination mode's include Cromririr Srmamir Modrling which will be needed to cover

the gulf between MmsK/s (1974) notion of a visual frame-system (eg the expectation of a roorr,

interior) and a geometric prediction of the features to be found m the image Although the MmsKy

Frame-System theory does not explicitly reveal the crucial interface between numerical geometric

modeling and symbolic abstractions, that nexus is a central part of the frame-system idea

The O/Mor Spare MnHrling idea is that both space and objects should be modeled using a

space filling tesselation of cells; perhaps using the tetrahedral 3-simplex The difficulty llet m getting

the Euclidean primitives to update the geometry and topology of empty space as an object moves and

rotates The rewards might include an elegant approach to collision avoidance problems m vehicle

navigation and arm trajectory planning Other approaches to fpatinl timulntion and rollinion

nioidnnrr pnhlemi that might be pursued include the use of simulated viewpoints to see obstacle free

trajectories by means of hidden line elimination, this method is suggested in (Sutherland 69)

In several recent Stanford dissertations, (FalK, YaKimofsKy, Grape, and so on) the authors

conclude with the prediction that their ossontially 2-D techniques can readily be extended to 3-D in

future work In my turn, I seriously wish to propose that my essentially 3-D techniques can be

extended to 4-D The resulting models could be applied to Regge Calculus for computing the general

relativistic geometric models of such systems as two or three colliding blacKholes or on a lets cosmic

level a 4-D GEOMED could be of service for planning sequences of arm manipulations viewing time as a

spatial dimension Collision of 3-D polyhdera moving in time can be described as a static intersection

of 4-0 poiytopes

I

Geometric modeling is also applicable to future work in simulation Mrrlmnirnl Simulation

involves computing the Newtonian mechanics of everyday objects, problems which are immediately

approachable from a GEOMED foundation include simulated obi ct collision, statics, and pseudo friction

For example, consider what is needed to predict the Outcome of setting one more block a. a given

place on an exrlmg tower or of throwing one block into a tower of other blocks Crnm- <rir Task

Plmtnina problems include the old Al favorite of block stacking as well as the newer research

- 120

10 3 Su|e«s''0"S to* Futur« Work RESULTS AND CONCLUSIONS

probUms r«l«Ud fo industrial «tembly Exittin| solution» to s«om«tric t«k» irt notoriously

rÄStncUd, for «xampl« i Know ot no blocks sucking proinm that h«ndl«i arbitriry rotations, all blocks

to data art piled on th« square

Althoufh, it ha» bMn rtcogniitd («arly and ofttn) that th« proframminf of numerically

control«<? machm« tools should b« automaUd, th« actual impl«m«ntation of • syst«m that builds artifact»

dir«ctly fron a t«om«tric mod«l still li«s in th« fulur« A» a »tart, som«on« at any of th« r«$«arch labs

with a c«neral purpose manipulator could b«tin by carving mod«ls out of soap or oth«r soft mat«ri«l

with a rotating cutting tool

Advanced m«chanic8l simulations as w«ll as /liiiinniioii for Enirrtniitntritt quickly run into th«

probl«m of Crrmurr Simulmion - giv«n a mullil«gg«d bug, what control program is r«quir«d to mak«

th« bug walk through a building Barring th« darkness of war, it i» liK«ly that th« greatest potential

futur« us«rs of robotic simulation will not b« found in gov«rnm«nt, univ«rsiti«s, or manufacturing

mdustn«» but rath«r in th« entertdinment industry When it becomes economically feasible to creat«

realistic (and surr«alistic) animation by computer graphics, great progress will be made in simulating

visual reality and in representing mundane situations in a computer.

Theoretical work in geometric modeling will continue to pursue curved representations. Two

problems that I would especially like to see solved involve titling curved surfaces to form a smooth

object, (a manifold), as well as resurfacing an existing manifold representation Both problems I

believe are more a question of automatic sogmontation rather than automatic smoothing. It is easy to

fit functions to facial patches of an object, it is hard to subdivide an object into the proper s«t of

patches In terms of analysis of algorithms and the mathematical theory of computation, the on«

g«om«tric algorithm that s««m5 most np« for futur« quantativ« study and logical analysis is th« hidden

nne «limmation proc«ss Th«r« is a w«alth of diff«r«nt techniques to b« compared and th« inputs and

outputs s««m to b« suffici«ntly well defined for formal axiomatizmg

Finally progress in computer vision and geometric modeling requires progress in tysUmt

»oftwar« and compui«r sy»t«ms In my opinion, r«c«nt univ«rsity bated r«»«arch in programming

121

^^

10 4 Conclus.ons RESULTS AND CONCLUSIONS

laneuagss is Ov«r concentnUd in vary high l«v«l Ijnguie« thtory «nd lutomatic programming Futur«

language and systems work should include developing »,1 incremental loader, assembler, debugger and

editor that can handle algebraic expressions, block structure, node/lmk storage notation as well as

unvarnished machm* instructions Although special purpose image processing hardware has earned a

bad reputation (starting with the llliac-lll); m my opinion a real vision system will be composed of a

large array of computer like elements (4096 by 4096) that pipeline a stream of images into structured

image representations The porcoivod imagos are then compared with predicted images and a detailed

3-D model is altered or constructed in real time (24 images per second) using a small number of

computers (32 or less) which by the standards of our day (1974) would be very large and very fast

(ten megawords mam memory and ten megahertz instruction execution) Assuming the continuation of

civilization with a growing technology over the next one hundred to a thousand years, developments in

Computer Vision and Artificial Intellegence could lead to robots, androids and cyborgs which will be

able to see, to think and to feel conscious

10.4 Conclusions.

The particular technical conclusions of this work include the methods, system designs and data

structures for geometric modeling which have already been elaborated Based on the details, one

could make such generalized observations as that: recursive windowing is a good technique for spatial

sorting, simple geometric reprocentationr, fall into space oriented and object oriented classes, the

essence of an object representation is its coherence under various operators and that the power of a

vision system might be enhanced by application of 3-D modeling techniques However in closing, I

would like to draw three rather more general conclusions, conclusions which by contrast to the

technical ones rm%M be construed as scientific conclusions

1. fhr \niiirr of /Vrrcjition Perception is essential to intelligence at it Is the process which

converts external sensations .nto mte'nal thoughts. There are two kmd« of simple perception system»:

stimulus-response and prediction-correction feedback; together they explain perception

122

MM

10 4 Conclusions RESULTS AND CONCLUSIONS

2 Ihr \rrr\<.iit in h'.x iirriwntt Robotic hirciwirt is etsentnl to Artificul lnt«llij«nc« as an

• xperim«n(al science. It is misleadm» to study only theoretical robotics of plausible abstractions,

mathematics, puzzles, games and simulations Tne real physical world is the best test of adaptive

general intellijence The complexity and subtlety of real world situations, even of a situation <is

seemingly finite as a digital television picture, can not be anticipated from a philosopher's armchair or

from a programmer's console

3 ri,r \Wr(<ii> in Siiimlnii' \ i<i<nl Kmliit Modeling is essential to prediction-correction

feedback perception Although simulated robot environments should not be used in place of the

external physical reality, such environmental simulations are an essential part of a robot's internal

mental reality In the particular case of vision, geometric models should be easy to adapt to the basic

mental abilitie*; of present day computer hardware To conclude, perception requires two worlds on«

that is the external physical reality and the other which is the internal m. ntal reality

^

123

^

III R«f«r«nc«t ADDENDA

SECTION 11.

ADDENDA

11.1 References

11.2 GEOMEO Nod« Formats.

11.1 References.

Ag.n (1972)

Gsrald Jacob Agin; "Rtpresantation and Description of Curved Objects";

PhD Thesis, Computer Science Department, Stanford Artificial Intelligence

Laboratory, Memo no AiM-173, Stanford University, October 1972.

Archuleta (1972)

Michael Archuleta; "Hidden Surface Line Dramwg Algorithm"; University of

Utah, Technical Report UTEC-CSc-72*121; Salt Lake City, Utah; June 1972

Baumgart (1972)

Bruce G Baumgart; "Winged Edge Polyhderon Representation"; Stanford

Artificial Intelligence Laboratory, Memo no. AIM-179, Stanford University,

October 1972

Baumgart (1973)

Bruce G Baumgart; "Image Contouring and Comparing"; Stanford Artificial

Intelligence Laboratory, Memo no AIM-199, Stanford University, October

1973

Baumgart (1974)

Bruce G Baumgart; "GEOMED • A Geometric Editor"; Stanford Artificial

Intelligence Laboratory, Memo no AIM-232, Stanford University, May 1974

- 124

- -

Ill R*f*r«nc*(
ADDENDA

EvM (1965)
Howard Pyt^A Surw of G«onn»try;Allyn and Bacon, Boston, 1965

Faldman (1969)
J«rom« F.ldman, Gilb«r« FalK and Lou Paul; "CompuUr R«pr«»nt«tion of

Simply D«icrib«d Setnes"; Stanford Artificial lnt«llit«nc« Laboratory,

SAILON-52; Stanford Univ«rtity, 1969

Fcynman (1963)

Richard P. F«ynman, Rob«rt B. Ltighton, Matthew Sands;

Tl,r /■>vii»in>i Lectures on Physics; Addiion-Wtslty; Rtadinf,

Massachusetts; 1963

- 125

^

BerKay (1958)
Nedret BerKay; "Determination of Space Coordinates of Photographic

Exposures by a Semi-Graphic Method"; Brausch & Lomb Photogrammetry

YearbooK; 195«

Coons (1967)
Steve A Coons; "Surface for Computer Aided Design of Spece Forms";

PrO)ecl MAC Technical Report, MAC-TR-41, Massachusetts Institut« of

Technology, Cambridge, Massachusetts; June 1967

Coxeler (1961)
Harrold S M Coxeter; Introduction to Geometry; John Wiley & Sons, New

York, 1961

Coxeter (1963)
Harrold S M. Coxeter; Reiular Polytopes; Macmillan, New York, 1963

Duda(1973)
Richard Duda and Peter Hart; Pattern Classification and Scene Analysis; John

Wiley & Sons. New York, 1973

I

Dudam (1970)
Sahibsmgh Amulsmgh Dudam; "An Expenmental Study of Moment Methods

for Automatic Identification of Three Dimensional Objects from Television

Images "; Ph D Thesis, Department of Electrical Engineering; Communication

and Control Systems Laboratory, Ohio State University; Columbus, Ohio;

August 1970

.
Falk (1970)
Gilbert Falk; "Computer Interpretation of Imperfect Line Data as a Three

Dimensional Scene"; PhD Thesis, Computer Science Department, Stanford

Artificial Intelligence Laboratory, Memo no. AIM-132, August 1970

:

11 1 McrwieM. ADDENDA

Fretman (1974)

Herbert Frt«m*n; "Computor Processing of Lm« Dr»win|s"; ACM Compu»in|

Surveys, volume G, number 1; Mirch 1974.

Gardner (1959)

Martm Gardner;

Thr Mtnlifir flfflgflfflfl Bggll "f Mathematical Puzzles and Diversions;

Simon and Schuster; New York; 1959

Gardner (1961)

Martin Gardner;

Thr 2i\<i Sririili/i'r Amrnrnn llnnk nf Mathematical Puzzles and DivertlOPt;

Simon and Schuster; New Yot-h; 1959

Gill (1972)
Aharon Gill; "Visual Feedback and Related Problems in Computer Controlled

Hand Eye Coordination"; PhD Thesis, Computer Science Department,

Stanford Artificial Intelli'ence Laboratory, Memo no. AIM-178, Stanford

University, October 1972

Gips (1974)

James Gips; "Shape Grammars and their Uses"; PhD Thesis, Computer

Science Dopjrlmont. Stanford Artificial Intellijence Laboratory, Memo no

AIM-231, Stanford University, May 1974

Goldstein (1950)

Herbert Goldstein; Classical Mechanics; Addison-Wesley; Reedm|,

Massachusetts; 1950

Gouraud (1971)

Henn Gouraud; "Computer Display of Curved Surfaces"; Ph.D. Thesis,

Department of Computer Science, University of Utah, Technical Report

UTEC-CSc-71-113; Salt Lake City, Utah; June 1971.

Grape (1973)

Gunnar R Grape; "Model Based (Intermediate-Level) Computer Vision";

PhD Thesis, Computer Science Department, Stanford Artificial Intellijenee

Laboratory, Memo no AIM-201, Stanford University, May 1973.

Graustem (1935)

William C Graustem; Differential Geometry; Macmillan; New York; 1935.

126

- -

Ill RsUrancat ADDENDA

Guzman (1968)
AdoHo Guzman; "CompuUr Rtcojnilion of Thr« Dimansional Obj»c»i in a

Visual Scana"; PhD Thesis, Oapartman« of Elactncal Enimaarini, Projacf

MAC Taehmcal Raporl, MAC-TR-59, Maisaehusatt» Initifuta of Taehnolofy,

Cambndga, Massachusafts; Oacambar 1968

Hilbart (1952)
David Hilbart and S Cohn-Vossan; translatad by Namanyi, P.;

Geometry and tha Imagination; Chelsea Publishin| Company; New YorK;

1952

Knuth (1968)
Donald Ervm Knuth; The Art of Computer Procrammint; Addi«on-Wa»lay;

Raadmi.Massachusatts; 1968

KraKauar (1971)

Lawrence J Krakauer; "Computer Analysis of Visual Propartia» of Curved

Objects"; Project MAC Technical Report, MAC-TR-82, Massachutatts Initifuta

of Tachnoloty, Cambridje, Massachusetts; May 1971

Luzaddar (1971/

Warren J Luzadder; Fundampnt^^ of Engmeerme Drawmt; Pnntica Hall;

Entl«wood Cliffs, New Jersey; 1971.

Maruyama (1972)
Kiyoshi Maruyama; "A Procedure to Determine Intersections Between

Objects"; International Journal of Computer and Information Sciences, volume

I, number 3, 1972

McCarthy (1964)

John McCarthy; "Computer Control of a Machine (or Explonni Man';

Stanford Artificial Intelligence Laboratory, Memo no. AIM-14, SUnford

University, June 1964

McCarthy (1968)

John McCarthy and Patrick Hayes; "Some Philosophical Problems from the

Standpoint of Artificial Intellicence"; Stanford Artificial Intellitence

Laboratory, Memo no AIM-73, Stanford University, Novemtar 1968

MinsKy (1974)

Marvin MinsKy; "Frame-Systems"; Unpublished Paper, MIT-AI LAB 1974; (ct.

draft version of 27 February 1974; SAIL internal document)

- i27

- -

Ill Reference'. ADDENDA

Müller (1967)
Edw»rd J Müller; Architectural Drtwing nnrf l.iahl Contirvnion;

Printict-H.ll: Englewood Cliffs, New Jertey; 1967

Neveti» (1974)
Ramakjnt Nevetn; "Structured Descriptions of Complex Objects for

Recognition and Visual Memory"; PhD Thesis, Computer Science

Department, Stanford University, (Forthcommj) 1974

Newman and Sproull (1973)

William M Newm*n and Robert T Sproull;

Principles o< Interactive Computer Graphics; McGraw-Hill; New York; 1973

ParKe (1972)

Frederic Ira ParKe; "Computer Generated Animation of Faces"; PhD Thesis,

Department of Electrical Enemeenng, University of Utah, Technical Report

UTEC-CSc-72-123; Salt Lake City, Utah; June 1972

Paul (1969)

Richard Paul, Gilbert FalK and Jerrome A Feldman; "The Computer

Representation of Simply Described Scenes"; Stanford Artificial lntellit«nce

Laboratory, Memo no AIM-101, Slinford University, October 1969

Paul (1972)
Richard Paul; "Modelling, Trajectory Calculation and Strvomg of a Computer

Controlled Arm"; PhD Thesr., Computer Science Department, Slamord

Artificial Inlelligonco Laboratory, Memo no. AIM-177, SUnlord University

November 1972

Ouam (1971)
Lynn H Qutm; "Computer Comp.iri'.on of Pictures"; P1". J hesis. Computer

science Department, Stanford Artificial Intelligence Laboratory, Memo no

AIM-144, Stanford University, May 1971

Quam et 'I (1972)

Lynn H Quan., Sidney Lieb«, Robert B Tucker, Botond G Erois and

Marsha Jo Hannah; "Computer Comparison of Pictures"; Stanford Artificial

Intelligence Laboratory, Memo no AIM-166, Stanford University, April

1972

Roberts (1963)

Larry G Roberts; "Machine Perception of Three Dimensional Solids"; Lincoln

Laboratory Technical Report no 315; Lexington, Massachuselts; Mi;' 1963

128

^rti

Ill RcUrencts
ADDENDA

Rosenfeld (1969)
Aznal Ros«nf«ld; "Pictur« ProctMinj by CompuUr"; ACM CompuUr

Surveys, volum« 1, numb«r 3; S«pt«mb«r 1969;

Schtndt (1971)
Rodn«y A Schmidt; "A Study M Hw Rtil-Tim« Control of • CompuUr

Driv«n Vohicl«"; PhD Thesis, D«p«rtm«nt of P|«ctrie«l En|in««rin|;

Stanford Artificial lnlolln«nc« Laboratory, Momo no AIM-149, Stanford

Umvtriity, May 1971

Snydor (1914)
Virfil Snyd«r and C H Sisam; Analytic G«om«try of Soac«; H«nry Holt and

Company; N«w York; 1914

Sob«l(1970)
Irwin Sobol; "Camera Modtls and Machm« Porcoption"; PhD Th«is,

D«parlm«nt of Eltctrical Engm««rin|; Stanford Artificial Intolheonc«

Laboratory, Memo no AlM-121, Stanford Umvartity, May 1970

Stewart (1970)

Bonnie Stewart; Adventures Amon» the Torpids; OKemot, Mich (an; 1970

Sutherland, SprouH and Schumacl(er(l973)

Ivan E. Sutherland, Robert F Sproull, and Robert A SchumacKer; "A

Characterization of Ten Hidden-Surface AI|orithms"; Evans & Sutherland

Computer Corporation, Salt Lake City, Utah; 1973 (alto published ins ACM

Computmt Surveys; volume 6, number 1; March 1974).

Sutherland (1969)

Ivan E. Sutherland; draft copy of "A Method for Solvinf Arbitrary-wall

mazes by Computer"; which later appeared in the IEEE transaction« or

Computers, 1969

Sutherland (1970)

Ivan E. Sutherland; "Computer Displays"; Scientific American, volume 222,

number 6; June 1970

Sutro and Kilmer(1969)

Louis L Sutro and William L. Kilmer; "Assembly of Computers to Command

and Control a Robot"; Instrumentation Laboratory, Report number R-582;

Massachusetts Institute of Technolojy, Cambridje, Massachusetts; February

1969

Symon(1953)
Keith R Symon; Mechanics; Addison-Wesley; Readmt, Massachusetts; 1953

129-

^^B

li.l Reference. ADDENDA

Tenenbaum (1970)

J«y Martin Ttnsnbaum; "Accommoddtion in Computer Vision"; PhD Th«!»,

Department o) Eloctncal Engmoermg, Stanford Artificial Intelligence

Laboratory, Memo no AIM-134, Stanford University, October 1970

Waltz (;972)
David L Waltz; "Genoralmj» Semantic Descriptions from Drawings of Scenes

with Shadows"; MIT Antificial Intelligence Laboratory, Technical Report,

AI-TR-271, Massachusotto Institute of Technology, Cambridge, Massachusetts;

November 1972

Warnock (1968)

John E Warnock; "A Hidden-Line Algorithm for Halftone Picture

Representation," Technical Report 4-5, Department of Computer Science,

University of Utah, Salt LaKe City, Utah; May 196«

Warnock (1969)

John E Warnock; "A Hidden-Surface Algorithm for Computer Generated

Halftone Pictures"; Tech^cal Report 4-15, Department of Computer Science,

University of Utah, Salt Lake City, Utah; June l0Ci,

Watkins (1970)

G S Watkins: A Peal-T.me Visible Surface Algorithm"; University of Utah,

Technical Report UTEC-CSc-70-101; Salt Lake City, Utah; June 1970

Wmograd (1971)
Torry Winogrdd; "Procedures as a Roprosentation for Data in a Computer

Program for Understanding Natural Language": Ph D Thesis, Department of

Mathematics; MIT Antidcial Intelligence Laboratory, Technical Report,

AI-TR-17 or MAC-TR-84, Massachusetts Institute of Technology, Cambridge,

Massachusetts; January 1971

Wmograd (1974)

Terry Wmograd; "Frame Representations and the Declarative/Procedural

Controversy"; (forthcoming), 1974

Yakimovsky (1973)

Yoram Yakimovsky; "Scene Analysis Using a Semantic Base for Region

Growing"; PhD Thesis, Computer Science Department, Stanford Artificial

Intelligence Laboratory, Memo no A1M-209, Stanford University, June 1973

Zahn (1966)
Charles T Zahn; "Two-Dimpniional Pattern Description and Recognition via

Curvaturepomh"; Stanford Linear Accelerator Center, SLAC Report no 70,

Stanford University, Docembor 1966

130

^*t

11.2 GEOMED Node Formats. ADDENDA.

11.2 GEOMED Node Formats.

Th« latest (Jun« 1974\ public implementation ol GEOMED distinguishes sixteen different node

formats at the user level: Tram, Empty, Universe, Sun, Camera, World, Window, Image, Text, Xnode,

Ynode, Znode, Body, Face, Edge and Vertex Of the sixteen nodes, five are ummplemented, open

ended or truial and so will not be exhfbited: Empty, Text, Xnode, Ynode and Znode The empty node

contains all zeroes except for a one in the status word and a free list pointer in the PFACE field The

Text nodes were implemented m 1973 by Tovar MocK and were taken out The X, Y end 2 node« «re

used for miscellaneous things such as beads, one-word atom« «nd merti« tensor« Field name« printed

in capital letters indicate that the contents of that field have one standard mtrepretation; lower case

field name« are temporary mtrepretation« The machine addre«» of a node point« to word zero of the

format diagram«

TRAM NODE-0 FORMAT
The tram node, explained m Section 3.3, represents both Cartesian coordinate systems

and Euclidean transformation Although the status bits contain data, TRAM node« are can be

distinguished from other nodes because bits 0 and 9 are either different or the word is all zeroe« in

the POP-10 floating number format

Location of TRAM origin

or Vector of TRAM translation.

X-axis unit vector

or 3 by 3 rotation matrix.

Y-axis unit vector

Z-axis unit vector

131

mm

11.2 GEOMED Node Formats. ADDENDA.

UNIVERSE NODE-2 FORMAT
The Universe node tz the unique root of the dit< structure and represents the universe

of discourse Directly iccesiible from the universe node ire the free $1or«|e list, the world rmf end

the display ring The world nn« and display rings are headiest so two pomten ere kept one indicating

a "now" entity and the other indicating the "first" made entity

-3

-2

-1

0 STATUS BITS

1 AVAIL

2

3

4 NWRLD PWRLD

5

6

7 NDPY PDPY

8

Free St orb,,-' List of Nodes.

Now World, First World.

Now Display Ring, First Display Ring.

SUN NODE-3 FORMAT
The sun node represents a very distant ^omt light source. The sun belongs to a ring of

suns that belongs to a world, although handling of multiple light sources it quite premature. The

location and orientation of the sun is carried by a TRAM pointed to by the TRAM field

3

2

■1

0 STATUS BITS

1

2

3

4 PWRLD World containing this sun.

5 BRO SIS Ring of Suns.

6 alt TRAM Location/Orientation of Sun

7

8 nlnk pink User links.

- 132

-J

11.2 GEOMED Node Formats. ADDENDA.

CAMERA NODE-4 FORMAT
Th« c»m«ri nod« contains th« sctl« conttjnts of projection, th« phytical piK«l tiz«, PDX

and POY; th« logical imae« siz«, LDX and LDY; and th« focal plan« dittanc« FOCAL

-J

-2

-1

0

1

2

3

4

5

6

7

8

scalex = -focal/pdx

scaley = -focal/pdy

scalez = -focal/pdz

STATUS BITS

PDX LDX

PDY LDY

FOCAL

PWRLD

BRO SIS

e.t TRAM

SIMAG PIMAG

nlnk pink

Perspective Projection Scales.

Physical Pixel Size

and Logical image size.

Focal Plane distance.

World of Camera.

Camera Ring.

Camera location/orientation.

Simulated and Perceived Image Rings.

User links.

WORLD NODE-5 FORMAT
Th« world nod« hat a ring Of bodias, • ring of earner», and ■ ring of suns which

compnt« th« totality of «xisUnc« for imag« simulation On« world it th« reality world who«« cameras

corr«spond to actual vid«o hardwar« and whoes bodi«s correspond to th« physical objects actually in

th« proximity of th« cam«ras Other worlds ar« fantasy worlds for planning and Uarning.

Simulated World Time. -3

-2

-1

0

1

2

3

4

5

6

7

8

time and date

PNAME1

PNAME2

STATUS BITS

rfaca pface

ned ped

MCAMR PCAMR

BRO SIS

NSUN TRAM

CW CCW

nlnk pink

Print Name of World.

Potentially visible face list.

Potentially visible edge list.

Now camera and First camera.

World Ring.

Sun Ring and World Coordinates.

Head links of Body Ring of World.

User links.

133

J

11.2 GEOMED Node Formats. ADDENDA.

WINDOW NODE-6 FORMAT
The displiy window node represents » mapping from a camera's image coordinates

(source image) to a display device's screen coordinates (object image) Window mappings can be

composed The mapped vurdow >s clipped to a border XL, XH, YL, YH in object coordinates after being

dilated by the scale tactor MAG The windows are organized into a ring of displays which each consists

of a ring of windows

-3

-2

1

0

1

2

3

5

6

7

8

sx SY

ox OY

MAG

STATUS BITS

XL XH

YL YH

NCAMR

BRO SIS

CW CCW

nlnk pink

Locus of center of Source Image.

Locus of center of Object Image.

Magnification of Window Mapping.

Object Image Clipping Border.

Now Camera of Window.

Window ring of a display.

Display ring of window rings.

User Links.

IMAGE NODE-7 FORMAT
Image nodes represent either perceived contour images created by input from CRE or

simulated mosiac images created by tk,e I. Hden line eliminator, OCCULT Like a world, images carry a

list of bod1 s and a time reprpsennn* when Ih« image was taken Image nodes also carry a pointer to

a copy of the earner« and sun under which they were made

Corresponding Video image file name.

3
i

2 PNAME1

1 PNAME2

0 STATUS BITS

1

2

3

4 NCAMR PWRLD

5 NTIME PTIME

6 ALT

7 CW CCW

8 nlnk pink

Gamers Copy and World of this image,

image ring links to form a film.

Corresponding image.

Head links of image body ring.

User Links.

- 134

^^ta

11.2 GEOMED Node Formats. ADDENDA

BODY NODE-14 FORMAT
Th« body node is the head of the iac«, edge and vertex rings which use word 1, 2, and

3 The body node carries a parts tree structure in word 4 and 5 There it • print name ot up to ten

characters carried in words -2 an -1 The links of the eighth word are always left free for linkage to

user data structures

-3

2

-1

0

1

2

3

4

5

6

7

8

PNAME1

PNAME2

STATUS BITS

NFACE PEACE

NED PED

NVT PVT

DAD SON

BRO SIS

alt TRAM

CW CCW

nlnk pink

Ten character print name.

Face ring.

Edge ring.

Vertex ring.

Parts Tree links: up and down tree.

Parts Tree links: ring of siblings.

Body coordinate system TRAM.

Body ring of world.

User links.

FACE NODE-15 FORMAT
The face node carries a normalized face normal vector in AA, BB, and CC; the negative

distance of the face plane from the orgm, KK; photometric parameters are kept in words 4, 5 and 7

3 AA

2 BB

1 CC

0 STATUS BITS

1 NFACE PEACE

2 Ncnt PED

3 KK

4 red grn blu wht

5 Lr Lg Lb Lb Sm Sn

6 alt alt 2

7 QQ
3 nlnk pink

Face plane normal vector.

f'ace ring of a body.

Edge count and first edge.

Distance of face plane from origin.

Reflectivities under four filters.

Luminosities and Spectral constants.

Temporaries.

Video Intensity under four filters.

User Links.

135

.■^ ^^

11.2 GEOMEO Node Formats ADDENDA

EDGE NODE-16 FORMAT
Th« imporUnt ti«ids ol th« wirjtd »of noo« ar» axplnnad in Ch«pt«r 2 Th« Mgativt

IhrM words if us«d (or «dg« co«)tici«nts ind (or clipped dupliy coordm«t«s o< th« «dg« Th« ill,

■H2 and cw fi.id «r« used is («mponry (i«lds in OCCULT. BIN and »0 on Th« CCW dald points it

body of »de* «nd •xp.dites BGET Th« nlnK wid plnK dalds art Ktpt «mpfy for developmental work

Clipped Display Coordinates or

2-D Edge Coefficients or

3-D line Cosines.

-3

2

-1

0

1

2

3

5

6

7

8

xldc AA yldc

x2dc BB y2dc

CC

STATUS BITS

NFACE PEACE

NED PED

NVT PVT

NCW PCW

NCCW PCCW

alt alt2

cw ccw

nlnk pin*

Two faces of the edge

Edge ring of the body.

Two vertices of the edge.

Wings: neighboring edges in PEACE and

Neighboring edges in NEACE.

Temporaries.

Temporary and Body Link.

User links.

VERTEX NODE-17 FORMAT
The vertex node carries a point's locus in three coordinate systems: world coordinates,

perspective proofed coordinates and display coordinates The first edge of a vertex perimeter it

contained in the PED field The alt, alt2. cw, ccw and Tjomt (ields art ustd as temporaries

■3

-2

-1

0

I

2

3

4

5

6

7

8

XWC

YWC

ZWC

STATUS BITS

XDC YDC

Tjoint PED

NVT PVT

XPP

YPP

alt ZPP alt 2

cw ccw

nlnk pink

World Locus

Display Screen Locus.

Temporary and First Edge.

Vertex ring of the body.

Perspective Projected Locus.

...also used for temporaries.

temporaries.

User links.

- 136

mtm J

