e

AD/A-002 261
GEOMETRIC MODELING FOR COMPUTER VISION

Bruce Guenther Baumgart

Stanford University

Prepared for:

Office of Naval Research

Advanced Research Projects Agency

October 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

UNCLASSITIED

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

L]

REPORT DOCUMENTATION P#GE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

STAN-CS-Th-463

2. GOVT ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

G) /. 00226/

4. TITLE (and Subtitle)

GEOMETRIC MODELING FOR COMPUTER VISION

s. YYPE 'OF REPORT & PERIOD COVERED

technical, Oct., 1974

6. PERFORMING ORG. REPORT NUMBER

STAN-CS-Th-463

7. AUTHOR(s)

Bruce Guenther Baumgart

B. CONTRACT OR GRANT NUMBER(S)

DAHC 15-73%-C-0k435

9. PERFORMING OR.GANIZA.TION NAME AND ADDRESS
Stanford University

Computer Science Department
Stanford, California 94305

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

ARPA/IPT, Attn: Stephen D. Crocker,

12. REPORTY DATE

October, 1974

1400 Wilson Blvd., Arlington, Va. 22209

13. NUMBER OF PAGES

14y

T4, MONITORING AGENCY NAME & ADDRESS(if differant from Controfling Office)
ONR Representative: Philip Surra
Durand Aeronautics Bldg., Rm. 165
Stanfcrd University
Stanford, California

1S. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a, DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Rerleasable without limitations on dissemination.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

S Departmont of Commarce
Sptingfield, VA, 22151

19. KEY WORDS (Continue on reverse sido if nocessary and Identify by block number)

20. ABSTRACT (Continue on reverse side If necessary and Identify by tiock number)

relalive to a static world.,

The main contribution of this thesis is the development of a
three dimensional geometric modeling system for application to computer
vision. In computer vision geometric models provide a goal for
descriptive image analysis, an origin for verification image synthesis,
and a context for spatial problem solving. Some of the design ideas
presented have been implemented in two programs named GEOMED and CRE;
the programs are demonstrated in situations involving camera motion

DD , an%s; 1473 EDITION OF 1 NOV 6515 OBSOLETE

UNCLASSIFIED

.

!

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY OCTOBER 1974
MEMO AIM 249
COMPUTER SCIENCE DEPARTMENT REPORT NO. CS-463

GEOMETRIC MODELING FOR COMPUTER VISION.

Bruce Guenther Baumgart

ABSTRACT:

The main contribution of this thesis is the development of a three dimensional geometric modeling
system for application to computer vision. In computer vision geometric medels provide a goal for
descriptive image analysis, an origin for verification image synthesis, and a context for spatial problem
solving. Some of the design ideas presented have been implemented in two programs named GEOMED
and CRE; the programs are demonsirated in situations involving camera motion relative 1o a static
world.

This research was supported in part by the Advanced Rescarch Projecis /gency of the
Office of the Seerctary of Defense under ontract No. DANC 15-73-C-0435 The views and
conclusions contained in this document are those of the author and should not be interpreted as
necessarily representing the official policies, either expressed or implied, of the /ldvanced
Research Project Agency or the United Sintes Government.

I

]

. . e A T
2 & 2

SECTION

SECTION

._._._._._
Dwiv— o

SECTION

20
2.1
2.2
2.3
2.4
25
2.6

SECTION

30
3l
3.2
33
3.4
35

SECTION

4.0
4]
4.2
43
4.4
45
4.6

- SECTION

50
5.1
5.2
5.3
5.4
5.5
5.6

TABLE OF CONTENTS.

0. INTRODUCTION. PAGE 1.
1 GEOMETRIC MODELING THEQGRY. PAGE 6.
Introduction to Geometric MOdeIing ...

Kinds 0f Geometric Modals ... s
Polyhedron Definitions and Properties
Camera, Light and Image Modeling
Related Modeling WOrk ... st

2. THE WINGED EDGE POLYHEDRON REPRESENTATION. PAGE 15.

Introduction to the Winged Edge
Winged Edge Link Fields

Sequential ACCeSSING ..o

Parimeter Accassing.....

Basic Polyhodron SYnth@Sis ... s

Edge and Faco Splitting

Coordinate Free Polyhedron Representation.............mmmnnnesimn, 26
3. A GEOMETRIC MODELING SYSTEM. PAGE 27.

Introduction to GEOMED ... 27

Euler Primitives. ... ssssssssnes 30

Routings using EUl@r Pritnitives ...cmimmimmmmseesees s sssssssssssmsnssssssssssssssssssssssessssssssnonssess 34

EUclidBan ROUNINES ... s 37

Image Synthasis: Perspective Projection and CHpping ... 43

Image Analysis: Interface {0 CRE......cuuiimmimmmmmmmmmiinsmsnnn. 44

4. HIDDEN LINE ELIMINATION FOR COMPUTER VISION. PAGE 46.

Introduction to Hidden Line ElimMination.........emmemensm e,

Initialization and Culling ..

Hide Marking a Coharent Object ...

Edge-Edge and Face-Vartax COMParing..........uu s

Recursive Windowing ...

Photometric Modaling and Video Generation

Performance of OCCULT and Related WOrK.......cooovcvvccenmmmmnmmnessennnnnerisesnssnsnssimnensoninne
5 A POLYHEDRON INTERSECTION ALGORITHM. PAGE 60.

Introduction to Polyhedron INt@rsection........uuwnmnmmmmmmmnmmsned 60

Intersection GEOMELrY ... s ssssrend 62

INt@rSECtiON TOPOIOBY ...ovvvvrermrirmvmmmisismnsssssssssmssssssssssmsssssssssssssosssanssstsonsssssssssssstaned 63

Spacial Cases Of INters@Ction.......mimm i 65

Face Convexity COBPCION. ..o 66

Body Cutting.....ccomi T o 04 0 TSRS TR a6 TEFF R4 PRI TT r Ti1TS 66

Performance and Related WOrK.........cmimmmmmmimmmmmmmsisis 67

SECTION 6. COMPUTER VISION THEORY. PAGE 68.
6.0 Introduction to Computer Vision TREOFY . 68
6.1 A Geometric Feedback Vision Syst@m ... 68
6.2 Vision Tasks ...cvmmmmmminmmmiinn e RSSO 71
6.3 Vision System Design Arguments ..., 74
6.8 MODIle RODOY VISION ..covivsiusimssmmssssstmssssssssssssssesss st s s st s s st s 77
6.5 Summary and Related Vision WOrK......mmmmsmmsis s 79
SECTION 7. VIDEO IMAGE CONTOURING. PAGE 82.
7.0 Introduction to Image Analysis ...
7.1 CRE - An Image Processing System
7.2 ThrEShOIdING .oovcceessnsssmrsmssmssssssssss s st s s
7.3 COMMOUPINE cvervrvrrressssssssass s s s s s AR RSO
7.4 Polygon Nesting .o
75 CoOntour SOEMENTAtioN ...comicimveserss st
76 Related and Future Image Analysis.
SECTION 8. IMAGE COMPARING. PAGE 95.
80 Introduction 10 Image COMPAFING ..ttt 95
8.1 A Polygon Matching MethOO. ... s 97
8.2 Geometric Normalization 0f POl gONS ..ot s 98
8.3 Compare by Recursive WindOWING ...t 100
8.4 Related Work and Work Yet To Be DONG ... 100
SECTION 9. CAMERA AND FEATURE LOCUS SOLVING. PAGE 101.
9.0 Introduction to Locus Solving...........
9.1 Parallax and the Camera Model
9.2 Camera Locus Solving: One View of Three Points

9.4 Sun Locus Solving: A Simple Solar EPh@MEriS......mmmmmmmensimsssimssmssssinis

95 Related and Future Locus SOIVINg WOrK......ccmmmmmmmmmmsmmmmsseie:
SECTION 10. RESULTS AND CONCLUSIONS. PAGE 116.

10.1 Results: Accomplishments and Original Contribubions ... 116

10.2 Critique: Errors and Ommissions 118

SECTION 11.

10.3 Suggestions for Future Work
10.4 CONCIUSION....ccvvveerrcrmrmrmminsssss it issss s

11.1 References........umw

TABLE OF CONTENTS.

Object Locus Solving: Silhouette Cone Intersection

11,2 GEOMED Node FOPMAlS v i ———

fsniea vy

SECTION O.

SECTION I.

SECTION 2.

SECTION 3.

SECTION 4

SECTION 5.

SECTION 6

SECTION 7

SECTION 8.
SECTION 9.

SECTION 10

LIST OF BOXES.

INTRODUCTION

GEOMETRIC MODELING THEORY

11 Ten Kinds of Geometric Models. e
12 Desirsbia Propertics for a Geometric Mod
13 Properties of Polyhedrs.......... ..

THE WINGED EDGE POLYHEDRON REPRESENTATION
2.1 Winged Edge Structures and Links,
22 Lowest Lovel Winged Edge Routines

A GEOMETRIC MODELING SYSTEM

31 The Euler Prinitives

32 ’ Routines Using the Euler Primitives...

33 Euchdean Transformations

34 Tram Routines il z

35 Metric Routines

36 Simple Space Routines TN

HIDDEN LINE ELIMINATION FOR COMPUTER VISION

41 Five Hidden Line Elimnation Techniques... T N—— | S| S—— 48
42 Status Bits for Occult Marking . 49
43 Normalized Face and Edge Coefficients 50
44 Edge-Edpe COMPEre SIEPS . i s s i i s, 53
45 ROCUrsive WIndowIng FOUURES ... s oiiiris s i s it oo s s 56
A POLYHEDRON INTERSECTION ALGORITHM

COMPUTER VISION THEORY

61 Vision System Hierarchy .. 69
62 Three Basic Modes of Vision ... 69
63 Bssic Feedback Vision Systam Design 70
6.4 Processors of a 3-D Vision System 71
65 Six Exsmples of Computer Vision Tesks 72
66 Alternatives to 3-D Geometric Modeling 75
67 Cort Vision Mandala 77
68 A Possible Cert Tesk Solutior. 78
VIDEO IMAGE CONTOURING

71 CRE Design Choices84
72 CRE Dsts Transformations......... 86
IMAGE COMPARING

CAMERA AND FEATURE LOCUS SOLVING

RESULTS AND CONCLUSIONS

10.1 Accomplishments and Origins! Contributions......... 116
10.2 Sugpestions for Future Work......n o 119

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION

SECTION
SECTION

SECTION

SECTION

SECTION

0

LIST OF FIGURES.

INTRODUCTION

01 Horse Shaped Polyhedra Derived from Video Imagea

02 Model of Water Pump

03 Example of Predicted Video and Pucelvad Vldeo

04 Examplo of Predicted and Perceived Contour Images.........

GEOMETRIC MODELING THEORY

THE WINGED EDGE POLYREDRON REPRESENTATION

21 Winped Edpe Topology

22 Three Kinds of Perimetera .
23 ESPLIT and KLEV 0 T
24 MXFE and KLFE

ohwN

A GEOMETRIC MODELING SYSTEM

31 The 24 Displays of Example o1 . .

32 The 24 Displays ot Example 92

33 Five Kinds of Non-Solid Polyhedra

34 Examples of MKCUBE, MKCYLN and MKBALL

35 Creation of 2 Solid of Rotation by Sweeping a Wire
36 Sweep and Glue L
37 lcoaahedron by Prismoid awesp and pyun\ld oweep......
38 Three Cut Torus Dissection into Thirteen Parte.

HIDDEN LINE ELIMINATION FOR COMPUTER VISION

4| Example of Hidden Line Elimination. ...

42 Front Facea and Folded Edpea ..
43 Front Fazea and Folds of a Concave Covner

44 T-loint Diagram....
45 EE and FV Undetected Huddan Ob;oct Cnn

a6 Example of Video Synthesis ...

A POLYHEDRON INTERSECTION ALGORITHM

51 Polyhedron Intersection, Union and Subtraction....
52 Face Piercing Geometry -

53 Surface Edpes and Interior Edpeo o(Imouoctlon
54 Fetch Other Piercing Vertex of a Face..

58 Examplo of a Face Hole Fixup.......coccc .

56 Examples of Fice Convexity Coercion....

COMPUTER VISION TIEORY
VIDEO IMAGE CONTOURING

71 Video Image and Contour Image
72 Saw Tooth Dekinking lllvatrated..
73 Contour Segmentation ...

IMAGE COMPARING

61

.62

63

... 68

66

81 Example of Polygon Fusion Compare...

82 Example of Verto: Matching

CAMERA AND FEATURE LOCUS SOLVING

LN The lron Triangle and Tripod..

92 Five lron Trianle Diagrams

a3 Four Views of a Baby Doll...... ...

94 Four Turntablo Silhouette Conea ...
85 Reaulta of Silhouette Cone Interasction...
36 Kigh Horse Silhoustte Cone Interaection .

RESULTS AND CONCLUSIONS

104
105
110
11
112
113

ACKNOWLEDGEMENTS.

The following people personally contributed 1o this work:

Thesis Adviser: John McCarthy
Readers: Donald E. Knuth, Alan C. Kay, Ken Colby.

Jerry Agin, Leona Baumgart, Tom Binford, Jack Buchanan, Whitfield Diffie, Les Earnest,
Jerome Feldman, Tom Gafford, Steve Gibson, Ralph Gorin, Carl Hewitt, Jack Holloway, Tovar Mock,
Andy Moorer, Hans Moravec, Richard Orban, Ted Panofsky, Lou Paul, Phil Petit, Dave Poole,
Lynn Quam, Jeft Raskin, Ron Rivest, Rod Schmidt, Clem Smith, Irwin Sobel, Robert Sproull,
Dan Swinehart, Russell Taylor, Marty Tenenbaum, Larry Tesler, Arthur Thomas, Fred Wright.

TYPOGRAPHY

The orginal copy of this document was produced on a Xerox Graphics Printer with a resolution of
two hundred points per inch. The principal font is News Gothic Boldtace, 25 units high, which
originated at Carnegie Mellon University. The page layout, text justification, boxes, halftones and line
drawings were done using the author's document-formating program, XIP. The source files were

prepared using the text editor, E, created by Dan Swinehart and Fred Wright.

INTRODUCTION.

SECTION 0.

INTROBUCTION.

“For the purpose of presenting my argument I must first explain the hasie premise of sorcery as
don Juan presented it to me. He said that for a sorcerer, the world of everyday life is not real, or out
there, as we believe it is. For a sorcerer, reality or the world we all know, is only a description. For
the sake of vahdating this premise don Juan concentrated the hest of his efforts into leading me to a
gennine conviction that what 1 held in mind as the world at hand was merely a description of the world;
a description that had heen ponnded into me from the moment I was born."

- Carlos Castancda. Journey to Ixtlan,

This thesis is about computer techniques for handling 3-D geometric descriptions of the worid;
the world that can be visually perceived with a television camera. The overall design idea may be
characterized as an inverse computer graphics approach to computer vision. In computer graphics, the
world is represented in sufficient detail so that the image forming process can be numericaily simulated
to generate synthetic television images; in the inverse, perceived television pictures (from a reai TV
camera) are analysed to compute detailed geomatric modeis. For example, the polyhedra in Figure 0.1
on page two were computed from views of a plastic horse on a turntable. It is hoped, that visually

acquired 3-D geometric modeis can be of use to other robotic processes such as manipulation,

navigation or recognition.

s et s 8

INTRODUCTION. ' '

FIGURE 0.1 - HORSE SHAPED POLYHEDRA DERIVED FROM VIDEO IMAGES.

INTRODUCTION.

Once acquired, a 3-D model can be used to
anticipate the appearance of an object in a scene,

making feasible a quantitative form of visual feedback.

FIGURE 0.2

For example, the appearance of the two machine parts

depicted in Figure 0.2 can be computed and analyzed

(top halves of Figures 0.3 and 0.4) and compared with
an anaylsis of an actual vidoo image of the parts
(bottom halves of Figures 0.3 and 0.4). By comparing
the predicted image with a perceived image, the
correspondence between features of the internal model
and features of the external reality can be astablished

and a corrected location of the parts and the camera

can be measured.

Finally by way of introduction, | wish to emphasive that the kind of vision being altempted is
meftric rather than linguistic and that the resuits achieved to date are modest. Feature classification
and recognition in terms of English words is not being attempted, rather a system of prediction and
corraction between a 3-D world model and a sequence of images is contemplated. The chapters of
this thesis proceed twice from theory through an implementation, with the first five chapters dealing
with modeling and the last five chapters dealing with vision. Theory on geometric modeling is in
Chapter | and theory on computer vision in Chapter 6. The implementation consists of two main
programs named GEOMED and CRE. GEOMED is a system of 3-D modeling routines with which
arbitrary polyhedra may be constructed, altered, or viewed in perspective with hidden lines
eliminated; and CRE is a solution to the problem of finding intensity contours in a sequence of
television pictures and of linking corresponding contours between pictures. Auxiliary programs

perform lop level task control, comparing and locus solving.

INTRODUCTION.

i n T
\\\\l”l e
| m‘

i 'Illhun' Hm.,

)

T 1 !
'|"'! it i

i ' -'t
“‘”"Inlu m l “ ,,

e | ‘IH 1.'|1|'i" ':'i:'..'l’ il
IWI QI"TI";;II !\\ ‘:
M /| e

]l “\l\ |'I‘

)

||IH|

url

!‘I,\!

il

itk i
h'ill'!” \\l!!"n'h‘dl il il |
FIGURE 0.3 - PREDICTED VIDEO T AND PERCEIVED VIDEO {.

\u“ i

W .I' h!‘)n’"""“ L o

|l|ll

i '*w ;,11»1}*\\\\\\”
i L .a\

'II alh il,;i' ,‘| i ‘j!l}].l'l,.,-”" g L
i i u"||| e el '\ il
T”. .“ ."‘ ||ll| IIIM H l | |I| ||| i \H‘“‘ r 1 I‘ll ' i e ,IQ ! l||i|” .

" . 5:."'::! l,ul' ;1 M“}llﬂ'h)

! W |1‘ ||. ll

\11\“"“' S

w.h! lz...‘*"'i .
““ll : \Jld}l‘u)h‘\u‘ﬂii &\Il l“‘i i ﬂuﬁlﬁ“] | l

-4-

INTRODUCTION.

FIGURE 0.4 - PREDICTED IMAGE t AND PERCEIVED IMAGE {.

10 Introduction to Geometric Modeling.

GEOMETRIC MODELING THEORY.

SECTION 1,

GEOMETRIC MODELING THEORY.

1.0
1.1
1.2
13
1.4

Introduction to Geometric Modeling.
Kinds of Geometric Models.
Polyhedron Definitions and Properties.
Camera, Light and Image Modeling,
Related Modeling Work.

1.0 Introduction to Geometric Modeling.

In the specific context of computer vision and graphics, geometric modeling refers to the

construction of computer representations of physical objects, cameras, images and light for the sake of

simulating their behavior. In Arlificial Intelligence, 2 geometric model is a kind of world model;

ignoring subtleties, geometric world modeling is distinguished from semantic and logical world modeling

in that it is quantitative and numerical rather than qualitative and symbolic. The notion of a world model

requires an external world environment to be modeled, an internal computer environment to hold the

model, and a lask-performing enlily to use the model. In Geometry, modeling is a synthelic problem,

like a construction with ruler and straight edge; modeling problems require an algorithmic solution

rather than a proof. The word geomatric is an appropriate adjective 1o this kind of modeling in that it

is a combination of the Greek words yno (world) and uerpia (measuring) which is exactly the activity to

be automated.

1.1 Kinds of Geometric Models. GEQMETRIC MODELING THEORY.

1.1 Kinds of Geometric Models.

The main problem of geometric modeling is fo invent methods for representing arbitrary
physical objects in 2 computer. For the present discussion, the class of physical objects is restricted to
objects that are solid, rigid, opaque, znd macroscopic with a mathematically well behaved surface. Such
objects include: the earth, chairs, roads, and plastic toy horses; other objects, for which models will not
be attempted, include glass, fog, hair, Jello, liquids and cloth. Physical objects can move about in space
with the restriction that two objects can not occupy the same space at the same time. The scope of the

modeling problem can be appreciated by examining the models listed in Box 1.1.

f BOX 1.1 TEN KINDS OF GEOMETRIC MODELS. \

Space Oriented: Object Oriented:
1. 3-D Space Array. 6. Manifolds.
2. Recursive Cells. 7. Polyhedra,
3. 3=D Density Function. 3. Volume Elements.
4, 2-D Surface Funclions. 9, Cross Sections.

k 5. Parametric Surface Functions. 10. Skeletons. J

For a naive start, first consider a 3-D array in which each element indicates the preserce or

absence of solid matter in a cube of space. Such a 3=D space array has the very desirable properties
of spatial addressing and spatial uniqueness in their most direct and natural form. Spatial addressing
refers to finding out what the model contains within a distance R of a locus X,Y,Z; spatial uniqueness
refers 1o the property that physical solids can not occupy the same space simultaneously. A first
drawback of the space array idea is illustrated by the apparently legal FORTRAN statement:
DIMENSION SPACE(100000,100000,100000)

The problem with such 3 dimension statement is that no present day computer memory is large snough
to contain a 10'° element array. Smaller space arrays can be useful but necessarily can not model
large volumes with high resolution. A further drawback of space arrays is that objects and surtaces
are not readily accessible as entities; that is a space array lacks the properly of object coherence. In
computer graphics, the term coherent denotes both the quality of holding together as paris of the same
mass and the qualily of not changing too drastically from one point to the next. The meaning of

coherent approachs the mathematical notion of topologically connected and locally continuous. The word

is used to refer to the frame coherence of a film as well as 1o the object coherence of a model.

i‘ Ty

3

b

——

ri- R

oz

~' ‘ i ' . i i 3 i ik

GEOMETRIC MODELING THEORY.

1.1 Kinds of Germetric Models.

The space array idea can be salvaged by grouping blocks of elements with the same value
together; the addressing process becomes more complicated but the overall memory required is
reduced and the two desired properties can be maintained. One way of doing this (which has been
discovered in several applications) is recursive cellss the whole space is considered to be a cell; if the
space is not homogeneous then the first cell is divided into two (or four or eight) sub cells and the
criterion is applied again. This technique allows the spatial sorting of objects when the object models

can be subdivided at each recursion without losing their properties as objects.

Another salvageable naive modeling idea is that arbitrary objects can be expressed as algebraic
functions. In physics, physical objects are frequently referred to as three dimensional density functions
W=p(X,Y,2). Unfortunately such density functions can not be written out for objects such as a typing
chair or a plastic horse without resorting to a programming language or an extensive table (which is
equivalent to the space array model). Objects that are essentially 2-D can be approximated by a
surface function Z = F(X,Y). For example landscape may be represented by geodetic maps in such a

2=D fashion.

By definition, a function is single valued; consequently the description of even modestly
complicated objects cannot be expressed by giving one coordinate, e.g. Z, as a function of the other
two, e.g. X and Y. It is necessary either to adopt parametric functions or to subdivide the object into
portions that can be described by simple functions of Cartesian variables. The former course involves
establishing a system of surface coordinates (U,V), latitudes and longitudes, on the object in which
functions for the X,Y,Z locus of the object's surface are expressed. The advantage of parametric
functions is that extended arbitrary curve surfaces can be expressed; some of the disadvantages are
that parametric curves may be self intersecting, they are not easy to modified locally, and the functions
become impraclical before the shapes of mundane artifacts can be achieved. Consequently parametric
representations are combined with objecf subdivision, which is called segmentation. The process of

usefully segmenting an object without destroying its coherence is a major problem requiring the

combination of spatial, functional and objective representations.

S el

1.1 Kinds of Geometric Models. GEOMETRIC MODELING THEORY.

In passing from space oriented models to object oriented models, | wish to note that
sophisticated representation of time is beyond the scope of this work. Although an advanced problem
solving robot will need to run world simulations along multiple time paths, the discussion will

concentrate on representing the gcometry of the world at a single moment in time.

After existence in space and lime, another general property of physical objects is that they can
be enclosed by an unbroken two dimensional surface with an unambiguous inside and culside; which
touchs upon the mathematical topic (celebrated in song by Tom Lehrer) of the algebraic topology of
locally Euclidean transitions of infinitely differentiable oriented Riemann manifolds. A manifold is the
mathematical abstraction of a surface; a Riemann manifold has a metric function; an oriented manifold
has a unambiguous inside and an outside; the phrase infinitely differentiable can be taken to mean
that the surface is smooth; and the phrase locally Euclidean transitions refers to the process of
segmanting the object into portions that can be approximated by relatively simple functions. In
particular, the 2-D Riemann submanifold embedded in 3D Euclidean space is the mathematical object
that comes closest to representing the shape and extent of the surface of a physical object; such
manifolds are conveniently approached through the topology of surfaces which in turn is

computationally approached by means of polyhedra.

One way to describe the topoiogy of a 2D Riemann submanifold embedded in a 3-D Euclidean
space is in terms of three kinds of simplex: the O=Simplex (or vertex), the 1-Simplex (or edge), and
the 2-Simplex (or triangle). In topological analysis 2-D Riemann submanifolds may be divided into
faces, edges and vertices such that Euler's equation F-E+V=2-2%H is satisfied (where F is the number
of faces, E is the number of edges, V is the number of vertices and H is the genus or number of
handles of the manifold); and such that the surface of the manifold can be approximated by local
functions over each face which are Euclidean and which fit togethaer smoothly at all the edges. By
introducing a sufficient (but finite) number of triangles the manifold can be approximated to within any

epsilon by constant functions, yielding the geometric object called the polyhedron.

One advantage of a polyhedral model is ils connected surface topology of faces, edges and

vertices. Such a surface can be subdivided without losing its coherence or the coherence of the object.

s

GEOMETRIC MODELING THEORY

1.1 Kinds of Geometric Models.

The disadvantages of polyhedra include the lack of spalial uniqueness and spatial addressing which
necessitates computation to be done to detect and prevent spatial contlict and to find the portions of an
entity occupying a given volume. Another feature of polyhedra (which can be an advantage or
disadvantage) is that all the (Caussian) curvature happens suddenly at the vertices; however by
associating higher order approximation functions with each face the model of a continuous 2-D manifold
can be made which is a more conventional curved object rapresentation. Nevertheless, polyhedra are

intrinsically a general curved object representation.

Returning to the survey, arbitrary objects can also be described by listing a set of cross
cections taken at a sufficient number of cutting planes; this is how the shape of a ship's hull or an
airplane's wing is specified. Cross sections have the interesting feature of good space modeling on one
axis. Forsaking arbitrary shaped objects, large classes of things can be described in terms of a small
cet of basic volume elements. For example, Roberts (63)% and others have built models of familiar
objects using only rectangular and triangular right prisms. Arbitrary solid polyhedra can be
constructed out of tetrahedra (the 3-simplex); however no significant general modeling system exists

using this potentially interesting approach.

Skeletal models are based on abstracting an object info a stick figure and by associating a
diameter or set of cross sections with the sticks. In particular, spine cross section models have been
pursued at Stanford by Agin (72) and Nevatia (74). Spine cross section models have the advantage of
being able to express many objects in a concise form suitable for recognition, but they cannot be used

directly for arbitrary shapes.

Finally, it is often useful to represent physical objects by weak geometric models such as by
sets of spheres or by sets of unconnected surface points. It is interesting to note that the reality that
the robot in Winograd's thesis (Winograd 71) could talk about, was a blocks world based on a geometric

model consisting only of points, size of block, and a two page LISP subroutine named FINDSPACE.

% Parenthesized names and numerals are references listed in Section i1

1.1 Kinds of Geometric Models. GEOMETRIC MODELING THEORY.

Beyond the particular kinds of geometric models, four general purpose modeling techniques
deserve special mention and isolation: prolotype instance structure, parts iree structure, resolution
limited structure, and procedure generated structure. Superticially, the prototype instance structure is
s memory efficiency technique based on storing generalizations (protolypes) which can be bound io
specific cases (instances) as the occasion demands. Parts tree structure is & memory management
technique of organizing the whole universe of discourse as a tree data siructure, where objecis are
composed of subobjects. Resolution limited structure is a memory accessing technique, where
depending on a specified scale of interest different models are retrieved or even generaled. Finally,
procedure generated structure concerns the trade-off between storing and recomputing a model;
namely recomputing the defails of a model as they are needed is a good idea for extending

computational resources.

The danger to be avoided is to mistake the general modeling techniques for the geometric model
itself. Given a modeling regime it can be improved by prototyping, parts-treeing, resolution=limiting
and procedural-generating; without a good basic geometric model the general techniques amplify the

background noise.

f BOX 1.2 DESIRABLE PROPERTIES FOR A GEOMETRIC MODEL. \
|. Spatial addressing. 6. Large extent with high resolution.
2. Spatial uniqueness. 7. Easy modifiablity.
3. Object coherence. 8. Suitability for physical simulation.
4, Surface coherence. 9. Efficiency of memory and zomputalion use,

\ 5. Shape generality. 10. Suitability for automatic model acquisition. ‘

To the best of my knowledge, this survey is complete. As of this year, 1974, there are no

other significantly different kinds of simple geometric models. The desirable properties that have
turned up in this survey are listed in Box 1.2. The final desirable property is that there be some hope
that the computer can derive the model by measurements it can make itself, although it is quite likely

that one model will be best for input and another mode! will be best for simulation.

e

|
g
i
}
y
i
!
I
!
b
I
|
|
i

p—

-t}

1.2 Polyhedron Definitions and Properties. GEOMETRIC MODELING THEORY.

1.2 Polyhedron Definitions and Properties.

In computational modeling, definitions are not used formally, but are rather employed piecemeal
in terms of individual properties which may or may not be present as polyhedra are generated and
processed. In particular, the properties licted in Box |.3 (given in arder of relevance) can be taken as

a working definition of a polyhedron for modeling a physical object.

ﬁox 1.3 PROPERTIES OF POLYHEDRA. \

1. EULOFIAN e rressesisssssssssssssenns Satisfies the Euler equation: F-EsV=2-2%H.
2. Surface Homoganaity ... The polyhedron does not intersect itself.
3. Trivalente .. All vertices and faces have three or more edges.
4. Face Planarity..........ccoene All vertices of a face are coplanar.
B, SOty i The vold‘m‘w measure is nonzero, finite and positive.
6. Simply Connected Faces......occccune. Face perimeters have one loop of edges
7. Face Convexity ... All the faces are convex.
k 8. Edge Aplanarity ..., Faces which thare an adge are not coplanar. J

Topologically, the surface elements of a polyhedron form a graph that satisfies Euler’s
F-E+V=2-2%H equation; where as before F, E and V are the number of faces, edges and vertices of the
polyhedron; and where H is the number of holes in (or genus of) the polyhedron. However, not all
Eulerian graphs of faces, edges and vertices correspond to the usual notion of a solid polyhedron
without the surface homogeneity and trivalence resirictions. Surface homogeneity is the property that
for any point on the polyhedron a small enough sphere will cut from the surface a region
homeomorphic to a disk; this restriction implies that the surface cannot intersect itself and that an edge
can belong to only two different faces. The trivalence restriction insures that there are no degenerate
two edged faces or one edged vertices; although a two edged vertex has a reasonable interpretation it
is excluded by trivalence for the sake of face-verlex duality and canonical form. The last property, of
aplanarity of faces with a common edge, is also for the sake of canonical form and is sacrificed to face

convexity when necessary.

Geometrically, the faces of a polyhedron are planar, that is lie in a plane. It is also frequently
relevant to further restrict the faces of a polyhedron to be convex, that is to require that every
possible line segment between points of a face is contained within the face. To assure solidity, the

volume measure must be restricted to be finite aid positive; this restriction orients the surface to have

“]2 =

1.3 Camera, Light and image Modeling. GEOMETRIC MODELING THEOQRY.

an exterior and an inferior in the expocted fashion. This restriction exciudes non-orientable structures
such as Mobius bands and Klein bottles for which the voiume measure is undefined; however the

restriction will be relaxed in Chapter 5 in order o expioit the concept of negative volumes.

The working definition was dorived from more formal definitions such the following which defines

a polyhedron as a special kind of a two dimensional manifold:

"A polyhedron is a connected, unbounded two-dimensional manifold formed by a finite
set of non-re-entrant, simply-connected piane polygons.”
- Coxeter, Regular Polytopes (Coxeter 1963).

In a connected manifold there exisls a path between any two points that does not leave the manifold.
An unhounded manifold is one with no cuts or gaps in its surface, that is no boundaries. A polyhedral
manifold is composed of planar, simply=connected, non-re-entrant polygons; that is flat polygons with a
perimeter of edges that form one loop that doesn't intersec! itself. The polyhedron restrictions and
properties are directed towards modeling physical objecls and are maintained by compulational
mechanisms; consequently the word polyhedron comes to represent an intent, rather than the

fulfiliment of any particular set of defining properties.

1.3 Camera, Light and Image Modeling.

Common to both computer graphics and vision is the necessity to model cameras, light and

images so that pictures may be synthasized or analyzed. The basic camera modal has aight degrees of

freadom, three in location, three in orientation and two in projection:

Location: Cx, Cvy, Cz Vecior to camera lens center.
Orientation: WX, WY, WZ Orientation vector.
Projection: AR, FR Aspect Ratio and Focal Ratio.

The oriantation veclor is explained in Section 3.3, the perspective projection is definad in Saction 3.4,
and the derivation of the camera parameters is the main topic of Chapter 9. In modeling light and

physical objects, the most important and difficult property to simulate is opacity. Tethniques for

modeling opaque objects are presented in Chapter 4.

b e

o ¥

s e MbuE ES

1.4 Related Modeling Work. GEOMETRIC MODELING THEORY.

Finally, an image is a 2-D geomelric object representing the content of a reclangle from the
pattern of light of light formed by a thin lens on a television vidicon. The video image is the interface
to the external reality. Image modeling is analogous to 3-D geomelric modeling, since the same
{radeoifs belween spatial structure and object structure arise. A 2-D image may be represented as a
video rasler, which is a 2-D space array; or as a el of feature loci, which is an object oriented
description. Image structures and processors for generating and comparing image represeniations are
discussed in Chapters 7 and 8. Togethar camera, light and image modeling are the essential elements

required to apply a geomelric model to computer vision.
1.4 Related Modeling Work.

Although geometric modeling per s has a long history and a rich literature in mathemalics,
physics and engineering, very little such modeling has been don3 using a compuler at the level of
detail required for visual perception. This level falls between the generality typical in physics and
mathematics and ihe specificity typical of engineering. Computer science research in geomatric
modeling has already been ciled in Seclion 1.2; similar ideas are available from computer graphics
sources (Newman and Sproull 73). In computer graphics, the typical modeling paper invariably has a
long discussion about the implementation of a node/link modeling language (CORAL, LEAP, ASP, and
others) and very little discussion on how the actual geometric modeling is fo be done in the given
language. In mathematics, | have found the work of the Canadian geometer Coxeler, (Coxeler 61) and
(boxeler 63) to be my best source of ideas relevant to modeling; along with the observations from
recreational mathematicians (Gardner 59), (Gardner 61) and (Stewart 70); and geometry textbook
authors (Eves 65), (Snyder 14) and (Graustein 35). The translation of Hilbert's book (Hilbert 52)
presenting Geomelry for the non-mathematician is also a good source of ideas. From Physics, material
on classical mechanics is useful in modeling rotation and inertia tensors (Goldstein 50), (Feynman et al
63) and (Symon 53). In engineering, books on geodelic surveying, mechanical drawing and
architectural drawing contain ideas relevant fo modeling particular classes of objecis; | have selected
(Luzadder 71) and (Muller 67) almost al random, as introductions 1o enginoering and architectural

drawing, respectively.

20 Introduction to the Winged Edge. WINGED EDGE

SECTION 2.

THE WINGED EDGE POLYHEDRON REPRESENTATION.

20 Introduction to the Winged Edge.

2.1 Winged Edge Link Fields.

2.2 Sequential Accessing.

2.3 Perimeter Accessing.

2.4 Basic Polyhedron Synthesis.

25 Edge and Face Splitling.

26 Coordinate Free Polyhedron Representation.

2.0 Introduction to the Winged Edge.

In this chapter, a particular computer representation for polyhedra is presented and some of its
virtues and faulls are explained. The representation is implemented as a data structure composed of
small blocks of words containing pointers and data in the fashion usual to graphics and simulation. An
introduction to such data structures can be found in Chapter 2 of Knuth's Art of Computer Programming
(Knuth 68). Quickly reviewing Knuth's terminology, 2 node is a group of consecutive words of memory,
a field is a named portion of a node and a link is the machine address of a node. The notation for
referring to a field of a node consists simply of the field name followed by a link expression enclosed
in parentheses. For example, the two faces of an edge node whose link is stored in the variable named
“edge"”, are found in the fields named NFACE and PFACE, and are referred to as NFACE(edge) and
PFACE(edge). Although my latest language of implementation is PDP-10 machine code, examples in
this chapter will be given in a fictional programming language which combines ALGOL with Knuthian
node/link notation. (As an exercise, the energetic reader should write out a possible representation

for general polyhedra, before reading any further.)

-15-=

FIGURE 2.1 - Winged Edge Topology. WINGED EDGE.

PVT(edge)
NCCW(edge)

NFACE(edge) edge PFACE(edge)

NVT(edge) PCCW/(edge)

FIGURE 2.1 - Winged Edge Topology.

The orientation of links is as viewed from the exterior side of the surface.
The eight mnemonics in the figure, were derived as follows:
NFACE(edge) Negative Face of edge.
PFACE(edge) Positive Face of edge.
PVT(edge) Positive Vertex of edge.
NVT(edge) Negative Vertex of edge.
NCW(edge) edge in Negative face Clockwise from edge.
PCW(edge) edge in Positive face Clockwise from edge.
NCCW(edge) edge in Negative face Counter Clockwise from edge.
PCCW(edge) edge in Positive face Counter Clockwise from edge.

- 16 -

2.1 Winged Edge Link Fields. WINGED EDGE.

2.1 Winged Edge Link Fields.

A polyhedran in made up of four kinds of nodes: bodies, faces, edges and vertices. The body
node is the head of three rings: a ring of faces, a ring of edges and a ring of vertices. In this context,
a ring is a doubly linked circular list with a head node. Each face and each vertex points directly at
only one of the edges on its perimeter. Each edge pcints at its two faces and its two vertices.
Completing the topology, each edge nude contains a link to each of its four immediate neighboring
edges clockwise and counter clockwise about its face perimeters as seen from the exterior side of the
surface of the polyhedron. These last four links are the wings of the edge, which provide the basis for
efficient face perimeter and vertex perimeter accessing. Finally, the links of the edge nodes can be
consistently oriented with respuct to the surface of the po'vhedron so that the surface always has two

sides: the inside and the outside.

ﬁox 2.1 W!NGED EDGE STRUCTURES AND LINK NAMES. \
Data Structures Link Names
|. Face Ring of a Body. NFACE PFACE
2. Edge Ring of a Body. NED PED
3. Vertex Ring of a Body. - NVT PVT
4, First Edge of a Vertex. PED
5. First Edge of a Face. PED
6. The two faces of an edge: NFACE PFACE
7. The two vertices of an edge: NVT PVT
k 8. The four wing edges of an edge: NCW PCW NCCW PCCW J

Observe that there are twenty-two link fields in the basic representation: bodies contain six
links, faces three links, vertices three links and edges ten links. If we allow a link name such as PED to
serve different roles depending on whether it applies to a body, face, edge or vertex; then the
minimum number of different link field names that need to be coined is ten. The data structures and
the link fields comprising the structures are listed in Box 2.1. The ten link names include: NFACE and
PFACE for two fields that contain face links in edges and the face ring, NED and PED for two fields that
contain edge links, NVT and PVT for two fields that contain vertex links, and NCW, PCW, NCLC'¥ and

PCCW for the four fields that contain edge links and are called the wings.

l
i

2.1 Winged Edge Link Fields. WINGED EDGE.

By constraining the arrangement of links in an edge node both the surface orientation (interior
and exterior) and a linear ocientation oi the wdge as a directed vector can be encoded. Figure 2.1
diagrams the arrangement of the links comprising the 1t yology of an edge of a polyhedron as viewed
from the exterior side of its surface. Although the vertices in Figure 2.1 are shown with only three
edges, verticas may have any number of edges; the other potential edges would not be directly linked

to the middle edge of the figure and so were not shown.

To complete the representation, space is allocated to contain the 3-D coordinates of each vertex
in fields named XWC, YWC and IWC; the initials "WC" stand for World Coordinates. For the sake of
vision and display, three more words are allocated to hold the Perspective Projected coordinates of
each verlex in fields named XPP, YPP and 7PP. Also a word of thirty six status bits is carried in every
node: permanent status bits specify the type (body, face, edge, varlex, els.) of every node, temporary
bits provide space for operations such as hidden line elimination that require marking. Passing now
from necessities 1o conveniences, faces carry exterior pointing normal vectors and several words of
photometric surface characleristics. The face vectors are derived from surface topology and vertex
loci, and so they are not basic geometric data as in some representations. Bodies carry a print name,
as well as four link fields (DAD, SON, BRO, 31S) for implemenling & parts tree data structure; and two
link fields (CW and CCW) for a body ring of all the bodies in the world model. Node formals are given

in Section 11.2 for an implementation based on fixed sized (twelve word) nodes.

The Winged Edge Polyhedron Representation as just presented is complete. Edge nodes carry
most of the topology, vertex nodes carry the geometry, face nodes carry the pholometry and body
nodes carry the linguistics (nomenclature) and parts lree siructure. The point that remains to be
demonstrated, is that the appropriate subroutines for creating, maintaining and exploiting edge

orientation execute efficiently and provide good primitives for solving such geometric problems as

hidden line elimination and polyhedral intersection.

-

‘

2.2 Perimeter Accessing. WINGED EDGE.

2.2 Sequential Accessing.
An immediate consequence of the ring structures is that the faces, edges and vertices of a body
are sequentially accessible in the manner illustrated by the following lines of code:

COMMENT RPPLY A FUNCTION TO ALL THE FACES, EOGES ANO VERTICES OF A BOOY;
PROCEOURE APPLY (PROCEOURE FN; INTEGER B)

BEGIN e

INTEGER F,E,V;

F - By WHILE Bw(F<PFRCE(F)) 00 FH(F); COMMENT APPLY FUNCTION TO FACES OF A BOOY;

E ~ B; WHILE Bx(E~PEO(E)) DO FN(E); COMMENT APPLY FUNCTION T0 EDGES OF A BOOY;

V « By HWHILE Bax(VePVT(V)) 00 FN(V), COMMENT APPLY FUNCTION TO VERTICES OF A BOOY,
ENO,

The rings could of course have been traversed in the other directior; by invoking NVT, NED and NFACE
in place of PVT, PED and PFACE. The reason for doubly linked lists (i.e. rings) is rapid deletion.
Finally, observe that the face and vertex rings could be eliminated at the cost of having a more
complicated face/vertex sequential accessing method requiring a visitation marking bit in the status
word of face and vertex nodes. The idea might be coded as follows:

COMMENT APPLY A FUNCTION TO ALL THE FACES OF A BOOY HITHOUT USING THE FACE RINGS,
PROCEQURE APPLY (PROCEOURE FN; INTEGER B);

BEGIN }
INTEGER F,E M;
E «~ B; COMMENT FIRST EOGE OF BOOY;
M « MARK(PFACE(E)); COMMENT RERQO INITIAL STRTE OF MARKING BIT;
00 FOR F « PFACE (E) NFACE(E) 00 COMMENT FOR BOTH FACES OF ERCH EOGE...;
BEGIN
IF M=MARK (F) THEN FN(F) COMMENT APPLY FUNCTION TO "UN-RE-HMARKEQ" FACE;
MARK (F) « =M COMHMENT FLIP THE MARKING BIT)
ENO3
UNTIL B=(E+PEO(E)); CONMMENT ALL THE EOGES OF THE BOOY;
ENO,

2.3 Perimeter Accessing.

The perimeter 't a face is an ordered list of edges and vertices, the perimeter of a vertex is an
ordered list of edges and faces, and the perimeter of an edge is an ordered list consisting of exactly
two faces and two vertices. The perimeter definitions are czricatured in Figure 2.2, One virtue of the

winged edge representalion is that both vertex and face perimeters can be fraversed in either

direction (clockwise or counter clockwise) while being dynamically maintained in "ons ring".

2.3 Perimeter Accessing. WINGED EDGE.

FIGURE 2.2 - Three Kinds of Perimeters.

9
VERTEX EDGE
é
A Vertex is surrounded An Edge is surrounded A Face is surrounded
by Edges and Faces by Faces and Vertices by Edges and Vertices

Given one edge of a face (or vertex) perimeter, the next edge clockwise (or counter clockwise)
from the given edge about the particular face (or vertex) can be retrieved from the data structure
with the assistance of two subroutines called ECW and ECCW. The idea of the edge clocking routines is
to match the given face (or vertex) with one of the faces (or vertices) of the given edge and to then

return the appropriate wing. A possible coding of ECCW and ECW might be as follows:

COMMENT FETCH EOGE CCH FROM E ABOUT Fv; COMMENT FETCH EOGE CLOCKWISE FROM E RBOUT FV;

INTEGER PROCEQURE ECCH (INTEGER E,FV)) INTEGER PROCEOURE ECH (INTEGER E,FV),

BEGIN "ECCH" BEGIN “ECH"
IF PFACE(E)=FV THEN RETURN(PCCU(E)) IF PFACE(E)=FV THEN RETURN(PCH(E));
IF NFACE (E}eFV THEN RETURN (NCCHIED); IF NFACE (E)=FV THEN RETURN(NCH(E)),
IF PVT(E)=FV THEN RETURN(PCU(E)); IF PVT(E)eFV THEN RETURN(NCCH(E));
IF NVT(E)eFV THEN RETURN (NCW(E)), IF NVT(E)FV THEN RETURN(PCCH(E)),
FATAL; FATAL;

ENO "ECCH", END "ECH",

The first edge of a face or vertex is (of course) immediately available from the PED field of the face or
vertex. For example, the two procedures below can be used to visit all the edges of a face or all the

edges of a vertex, respectively.

COMMENT APPLY FUNCTION TO EOGES OF A FACE; COMHMENT APPLY FUNCTION TO EOGES OF A VERTEX:
PROCCOURE APPLY (PROCEOURE FN; INTEGER F), PROCEOURE APPLY (PROCEOURE FN; INTEGER V),
BEGIN BEGIN

INTEGER E,EQ; INTEGER E,EO;

E~EQ-PEO(F); E-EQ-PEO(V);

00 FN(E) UNTIL E@=(E<ECCH(E,F)); 00 FN(E) UNTIL E« (E-ECCH(E,V));
ENO; ENO;

Using the same idea as in the edge clocking routines, a face or vertex can be retrieved relative

to a given edge and a given face or vertex. These routines include: FCW and FCCW which return the

2.4 Basic Polyhedron Synthesis. WINGED EDGE

face clockwise or counter clockwise from a given edge with respect to a given vartex; VCW and VCCW
which return the vertex clockwise or counter clockwise from a given edge with respact to a given
face; and OTHER which returns the face or vertex of the given edge opposite the given face or vertex.
Togethor the seven routines: ECW, ECCW, VCW, VCCW, FCW, FCCW and OTHER exhaust the possible
oriented retrievals from an edge node; they also alleviate the need to ever explicitly reference a wing
field when traveling the surface of a polyhedron. With node type checking the primitives can be made
stronger, for example ECCW(vertex,face) is implemented to return the edge counter clockwise from
the given vertex about the given face. With node type checking and signed arguments the seven
perimeter accessing routines could even be replaced by a single routine perhaps named
PERIMETER_FETCH or PGET. On the other hand, | favor having the proliferation oi accessing names for

the sake of documenting the clocking direction and the types of nodes involved.

Two remaining surface accessing routines, of minor importance, are BGET(entity) and
LINKED(entity,entity). BGET of a face, edge or vertex merely cycles the appropriate ring to retrieve
the body of the given entity. The LINKED routine determines whether its two argumants (faces, edges
or vertices) are adjacent; there are six LINKED cases: (i) Face=Face, returns a common edge or
FALSE; (i) Face-Edge, returns booloan value F:PFACE(E) v FzNFACE(E); (iii) Edge-Edge, returns a
common vertex or false; (v) Edge-Vertex, returns boolean value V=PVT(E) v V=NVT(E); (vi)

Vertex-Vertex, returns common edge or FALSE. (As in LISP, zero is false and non-zero is true).

2.4 Basic Polyhedron Synthesis.

/ BOX 2.2 LOWEST LEVEL WINGED EDGE ROUTINES.
Node Makers: MKNODE, MKB, MKF, MKE, MKV, MKTRAM,
Node Killors: KLNODE, KLB, KLF, KLE, KLV.
Wing Mungers: WING, INVERT, EVERT.
Surface Fetchers: ECW, ECCW, OTHER, VCW, VCCW, FCW, FCCW, LINKED.

\ Parts Tree Routines: BDET, BATT, BGET.

There are sixteen routines for node creation and link manipulation which when combined with the

nine accessing routines of the previous section form the nucleus of a polyhedron modeling system.

These routines are very low level in that the final applications user of winged polyhedra will never

2.4 Basic Polyhedron Synthesis. WINGED EDGE.

explicitly nead to make a node or mung a link. The word mung (meaning to modify an existing
structure by altering links in place) is LISP slang that deserves to be promoted into the technical
jargon; traditionally, a mung routine is one which makes applications of the LISP primitives RPLACA and
RPLACD. The twenty five routines listed in Box 2.2 are the bedrock foundation for the Euler

primitives presented in Chapter 3.

Node Makers and Killers. The MKNODE and KLNODE are the raw siorage allocation routines
which fatch or return a node from the available free storage. Tha MKB routine creates a body node
with ampty face, edge and vertex rings; the body is placed into the body ring of the world model. The
MKF, MKE and MKV each take one argument and create a new face, edge or vertex node in the ring of
the given entity; with type checking these three primitives coulc be consolidated. Finally the MKTRAM
node creates a tram node, which consists of twelve real numbers that represent either a Euclidean
transformation or a Cartesian frame of reference depending on the context. (Tram nodes are explained
in Section 3.3.) The corresponding kill routines KLB, KLF, KLE and KLV remove the entity from its

raspective ring and return its node to free storage.

Wing Mungers. The WING(edgel,edge2) routine finds which face and vertex the arguments
edgel and edge2 have in common and stores the wing pointers between edgel and edge2 accordingly;
the exact link manipulations are illustrated in the example coding of the WING procedure immediately
following this paragraph. Recalling that edges are directed vectors, the INVERT(E) routine flips the
direction of an rdge by swapping the contents of the appropriate fields as follows:
PFACE(E)eNFACE(E); PVT(E)eNVT(E); NCW(E)oNCCW(E) and PCW(E)»PCCW(E). Finally, the EVERT(B)
routine turns a body inside out, by performing the following link swaps on all the adges of the given

t
body: PFACE(E)eNFACE(E); NCW(E)ePCCW(E); and NCCW(E)»PCW(E).

PROCEDURE WING(INTEGER El1,E2);

BEGIN
IF PVT(EL)=PVT(E2) ~PFRCE (EL)=NFRCE(E2)THEN BEGIN PCH(EL1)«E2;NCCH(E2)«EL;END;
IF PVT(EL)aPVT(E2) +NFRCE(EL)=PFACE (E2) THEN BEGIN NCCH(E1)«E2; PCH(E2)«ELl;END;
IF PVT{E1)aNVT(E2) APFRCE(EL)=PFRCE (E2) THEN BEGIN PCH(EL1)«E2;PCCH(E2)«EL;END;
IF PVT{EL)=NVT(E2) ANFRCE (E1) =NFRCE (E2) THEN BEGIN NCCH(E!)«E2; NCW(E2)+«E1;END;
IF NVT(EL)=PVT(E2) ~PFRCE(E})«PFRCE(E2) THEN BEGIN PCCH(EL)«E2; PCH(E2)«EL1;END;
IF NVT{EL)=PVT(E2) ANFRCE (E1)=NFACE (E2) THEN BEGIN NCH(E1)+E2;NCCH(E2)+EL1;END;
JF NVT{(E1)=NVT(E2)APFACE(EL) «NFACE (E2) THEN BEGIN PCCR(EL1)«E2; NCH(E2)+EL1;END;
JF NVT(EL)aNVT(E2) ANFACE(EL1)=PFACE (E2) THEN BEGIN NCR(EL)«E2;PCCH(E2)«EL1;END;

END;

2.4 Edge and Face Splitting. WINGED EDGE.

Part Tree Routines. As mentioned before, body nodes can be grouped into a tree structure or
parts. The parts tree consumes four link positions (DAD, SON, BRO, SIS) and is maintained in body ‘«
nodes by the following primitives: BDET(body) detachs a body node from the paris tree,
BATT(bodyl,body2) attachs body! to the ring of children belonging to body2, and BGET{antity) returns
the body node at the head of the given face, edge or vertex ring. The SON field of a body may contain
a pointer to a headless ring of subpart bodies, the ring of subparts is maintained in the BRO (brother)
and SIS (sister) fields, and each subpart contains a pointer back to its parent in its DAD field. At
present, the notion of a body is coincident with the notion of a connected polyhedron; however by

allowing several bodies to be associated with a single polyhedral surface, a flexible object such as an |

animal could be represented.

2.4 Edge and Face Splitting.

One of the most important properties of the winged edge representation is that edges and faces
[can be split using subroutines that make only local alterations to the data structure; and the splits can

- easily be removed (since the doubly linked rings allow rapid deletion of nodes from a body). The edge

H split routine, ESPLIT, makes a new edge and a new vertex and places them into the surface topology as
f shown in Figure 2.3; the kill edge=vertex routine, KLEV, undoes an ESPLIT. The face split routine,
i MKFE, creates a new edge and a new face and places them into the surface topology as shown in
' . Figure 2.4; the kill face-edge routine, KLFE, undoes a MKFE.
1
: The rest of this section concerns implemantation; it may be skipped by the applications oriented
£ g reader. The split and kill routines are examples of a pattern which applies to the coding of operators
b that alter winged edge structu_res. In a typical situation, there are five steps: first, get the proper
v kinds of nodes into the body rings using the MKF, MKE, MKV primitives; second, position the vertices
| by setting their XWC, YWC, ZWC fields; third, connect each vertex and face to one of its edges by
3 sefting face/vertex PED fields; fourth, connect each edge to its two faces and its two vertices by
3 setting the NFACE, PFACE, NVT, PVT fields of the edge; finally, set up the wing perimeter pointers by

applying the WING primitive to the pairs of edges to be mated.

PRRAEY

2.4 Edge and Face Splitting.

INTEGER PROCEOURE ESPLIT (INTEGER EDGE),
BEGIN "ESPLIT"
INTEGER VNEM, ENEW;

COMMENT CREATE A NEW EOGE AND VERTEX;
VYNEH « MKV (PVT(EDGE));

ENEW « MKE (EDGE);

COMMENT CONNECT VERTICES & FACES TD EDGES;
PVT(ENEW) « PVT(EDGE);
NVT(ENEI) -~ UNEIl;

PVT(EDGE) » VNEM;
PFACE(ENEW) » PFACE (EDGE);
NFACE (ENEM) « NFACE (EDGE);
COMMENT CONNECT EDGES TD VERTICES;
IF PED(PVT(EDGE) =EDGE THEN
PED (PVT (EDGE)) «ENEN;
PED (VNEW) « ENEM ;
COMMENT LINK THE HINGS TOGETHER,

WING (NCCH (EDGE) , ENEW)
WING (PCH (EDGE) , ENEM) 3
RETURN (VNEH)
END "ESPLIT",

executes an average of 200 instructions.

EDGE PFACE

BEFORE: VNEW « ESPLIT(EDGE);
AFTER: EDGE « KLEV(VNEW);

NCW(ENEW) « EDGE; PCCH(ENEW) «~ EDGE;
PCH(EDGE) « ENEW; PCCH(EDGE) » ENEW;

g o

WINGED EDGE.

FIGURE 2.3 - ESPLIT AND KLEV.

AFTER: VNEW « ESPLIT(EDGE);
BEFORE: EDGE « KLEV(VNEW);

INTEGER PRDCEDURE KLEV (INTEGER VNEW);
BEGIN "KLEV"
INTEGER EOGE,ENEW,V,F,B;
ENEW » PED(VNEW);
E0GE « ECCH (ENEW, VNEW) ;
CONMENT DRIENT EOGES AS IN DIAGRAHN;
IF NVT(ENEW) = VNEW THEN INVERT(ENEW);
IF PVT(EDGE) = VNEW THEN INVERT(EDGE);
CONMENT TIE E TO ITS NEW UPPER VERTEX AND WINGS;
V « PVT(EDGE) » PVT(ENEW)
WING (PCH (ENEW) , EDGE) ;
WING (NCCH (ENEW) , EDGE) ;
COMENT ELIHINATE OCCURRENCES OF ENEW IN F AND V,
IF PED(V)=ENEH THEN PED(V) « EDGE
IF PED (PFACE (EDGE)) =ENEW THEN
PED (PFACE (EDGE)) ~EDGE
IF PED (NFACE (EDGE))=ENEW THEN
PED (NFACE (EDGE)) «EOGE ;
COMMENT REHDVE NDDES FROM RINGS AND RETURN EDGE;
KLV(VNEM) 5
KLE (ENEW) 4
RETURN (EDGE)
END "KLEV",

The actual routines differ slightly from those given above in that they do argument type
checking and data structure checking; nevertheless, a diagnostic trace of the implemented version

reveals that the ESPLIT routine executes an average of 170 PDP~-10 instructions and the KLEV routine

2.4

Edge and Face Splitting.

WINGED EDGE.

FIGURE 2.4 - MKFE AND KLFE.

Vi

vz

=,

o,

“x.,“\'-—.__
BEFORE: ENEW « MKFE(VI,FACE,V2);
AFTER: FACE « KLFE(ENEW);

INTEGER PROCEQURE MKFE (INTEGER VI, FACE,V2)y
BEGIN "MKFE"

INTEGER V1,v2,FNEW,ENEI,E,ED,B,V;

COMMENT CREATE NEW FACE & EOGE;

FNEW « MKF(FACE); ENEW « MYE(PEO(FACE));

COMMENT LINL NEW EOGES 70 ITS FACES & VERTICES;

PED(F) « PED(FNEW) « ENEIl;
PFACE (ENEW) = F; NFACE(ENEW) « FNEW,
PVT(ENEH) « V1; NVT(ENEH) « V23

COMMENT GET THE WINGS OF THE NEU EDGE;

E2 « PECWVD)y
00 E2-ECH((E1+E2),V1) UNTIL FCHIEL,V1)=FACE;
€4 « PEDWVI);
00 E4-ECH((E3+E4),V2) UNTIL FCH(E3,V2)=FACE;

COMMENT SCAN CCH FROM V1 REPLACING F'S WITH FNEW,

E « E2;

00 IF PFACE(E)=FACE THEN PFACE(E) +FNEN
ELSE NFACE (E)«FNEW;

UNTIL €& = (E~ECCH(E,FNEW));

COMMENT LINK THE WINGS;

ENOy

WINGCEL,ENEH) | HING(E2,ENEN);
WING(E3,ENEN) ; WING (E4,ENEW);
RETURN (ENEH) |

INTEGER

AFTER: ENEW « MKFE(V! FACE,V2);
BEFORE: FACE + KLFE(ENEW);

PROCEQURE ¥LFE (INTEGER ENEH);

BEGIN "KLFE"

COMMENT

COMMENT

CONMENT

COMMENT

END,

INTEGER FNEW,FRCE,V1,v2,E,Ei,E2,E3,E4;
PICKUP ALL THE LIMKS OF ENEW:

FACE « PFACE(ENEW); FNEH « NFACE (ENEW);
V1 « PVT(ENEN); V2 « NVTLENEW);

El « PCH(ENEN); E2 « NCCH(ENEW);

E3 « NCH(ENEH); E4 ~ PCCH(ENEW);

GET ENEW LINKS OUT DF FACE, VI AND V2,
IF PEC(VI) = ENEW THEN PEO(V]) « El}
IF PED(V2) = ENEW THEN PED(V2) « EJ;
IF PEC(FACE)=ENEW THEN PEOQ(FACE)«EJ;
GET RIC OF FNEW APPEARANCES;

E « E2)

00 IF PFACE(E)=FNEW THEN PFACE (E)«~ACE
ELSE NFACE (E)~FACE;

UNTIL €& = (E<ECCH(E,FNEW));

LINK HINGS TOGETHER RBOUT FACE;
NING(E2,EL1);HING(ES,ED);

KLF (FNEW) | KLE (ENEW) 3

RETURN (FACE)

Again, the actual routines differ from those given above in that they do argument type checking

and data struclure checking. The above two routines typically take aboul twice as long te execute as

the previous pair; notice that the execution time is dependent on the length of face perim:.ters, which

are mostly three or four edges long.

25 Coordinate Free Polyhedron Representation, WINGED EDGE.

2.5 Coordinate Free Polyhedron Representation.

As in general relativily, all geometric entities can be represented in a coordinate free form. In
particular, the vertex coordinates of a polyhedron can be recovered from edge lengths and dihedral
angles (the angle formed by the two faces al each edge). Having the geometry carried by only two
numbers per edge rather than by three numbers per vertex does not necessarily yield a more concise
representation because edges always outnumber vertices two for one, and in the case of a triangulated

polyhedron edges outnumber vertices by three to one.

One application of a coordinate free representation arises when it is necessary 1o measure a
shape with simple tools such as a caliper and straight edge. For example, one way to go about
recording the topology and geomelry of an arbitrary object is to draw a triangulated polyhedron on its
surface with serial numbered vertices and to record for each edge its length, its two vertices and its
signed dihedral length. The dihedral length is the distance between the vertices opposite the edge in
each of the edge's two triangles; the length can be given a sign convention to indicate whether the
edge is concave or convex. The required dihedral angles can then be computed from the signed

dihedral lengths.

L

R

.

30 Introduction to GEOMED. GEOMED.

SECTION 3.
A GEOMETRIC MODELING SYSTEM.

30 Introduction to GEOMED.

3.1 Euler Primitives.

32 Routines using Euler Primitives.

3.3 Euclidean Routines.

3.4 Image Synthesis: Perspective Projection and Clipping.
35 Image Analysis: Interface to CRE.

3.0 Introduction to GEOMED.

GEOMED (Geometric Editor) is a system of subroutines for manipulating winged edge polyhedra.
The system has two manifestations: first, it appears as an interactive 3-D drawing program and second,
it appears as a geometric modeling command language. It is the latter manifestation along with some of
the details of implementation that is the subject of this chapter; the interactive drawing program is
documented in (Baumgart 74). As a language, GEOMED s all semantics with no particular syntax of its
own; there are about two hundred subroutines which take from zero to four arguments, return one or
no values and which usually have considerable side effects on the data structures. The subroutines can
be grouped into five classes: utility routines, Euler routines, Euclidean routines, image synthesis and
image analysis routines. The utility routines include input/output, trigonometric functions, memory
management, a command scanner, and device dependent display routines; the utility routines will not be
further elaborated. The Euler routines perform topological operations on links, the Euclidean routines
perform geometric computations on data, and the image synthesis routines perform photographic

simulations on the model as a whole. The fifth class, image analysis routines, consists at present solely

-27 -

3.0 Introduction to GEOMED. GEOMED.

of an interface between GEOMED and CRE, the fitth group lacks the completeriess of the other parts of |

the system.

As in the previous chapter, the programming notation used will continue to have an ALGOL

appearance with specific examples of actual GEOMED code being given in the language SAIL (Stanford

ALGOL) as is ex>mple #1 immediately below. The program in example #1 creates two cubic prisms and

BEGIN "EXRMPLE ONE"
REQUIRE “GEOMES.HOR(GEM,HE]" SOURCE_FILE; COMMENT OECLARE GEDMED EMBEDDED IN SRIL;

DEFINE P1="3.1415827%;
INTECGER B1,82,1;
MKUNTV;

COMMENT THD BODIES AND RN IMRGE COUNTER;
COMMENT INITIALIZE THE OATR STRUCTURES;

8] » HKCUBE(8,1,0.5); COMMENT CRERTE A COUPLE DF CUBIC PRISMS)
B2 « MKCUBE(1,2,8);
TRANSL (82,-7,1.5,0); COMMENT OISPLACE ONE OF THEM,
FOR 1. STEP 1 THRU 24 0O COMMENT HAKE 24 IMAGES;
» BEGIN
GEDOPY, COMMENT O1SPLAY REFRESH;
PLOTO("THP. "&CVS (1)) ; COMMENT DUTPUT LATEST DISPLAY TD DISK;
ROTRTE(B1,P1/10,P1/12,P1/13); COMMENT RCTION WITH RESPECT T0 ...;
ROTATE (82,0,2:P1/23,0); COMMENT .. .HORLO CODRDINATES,
END;

END “EXRMPLE ONE“;
FIGURE 3.1 = THE 24 DISPLAYS OF EXAMPLE #1.

M |8_o |@ » |T / [fﬂ/ p IF] P

j‘ i@ -0 - 0 I =F| =B | F&

% %} :ﬁ l:% o) |2 |Be P

displays them rotating. The header file, GEOMES.HDR, is kept on a disk area [GEM,HE] and contains the

-

names of the necessary load modules, the declarations of all the modeling routines and SAIL macros for
accessing GEOMED data structures. After the header, the first routine to execute is MKUNIV (make
universe), which initializes the data structures. Next two polyhedra are created using the MKCUBE
routine which takes three arguments: width, breadth and height for specifying a rectangular right
parallelepiped. All such creation routines return an integer which is the machine address of the node

of the entity created. The first routine of the FOR-loop is GEODPY which refreshes the display of the

e e e

3.0 Introduction to GEOMED. GEOMED.

model. Finally, the example calis TRANSL and ROTATE which perform translation and rotation. TRANSL
takes four argument: the thing to be moved followed by the three components of a translation vector; (
similarly ROTATE takes four arguments: the thing to be moved followed by the three components of a

rotation vector; there are several other ways to specify translation and rotation.

FIGURE 3.2 - THE 24 DISPLAYS OF EXAMPLE #2.

"3 A b—""1s1} [

REQUIRE "GEDNES.HOR {GEM, HE1 " SOURCE _FILE; o GEDMED EMBEODED IN SAIL;

])
E.J Y zﬁy 1
l [‘"““ |)
L T
7R 77
[' —
Y 3
I DEFINE «="COMMENT"; DEFINE P1x"3,1415927"; o DECLARE COMMENT PREFIX;
INTEGER B1.B2,J1,42,J3,J8,J5,J6,C1,CHR, I;

BEGIN "EXAMPLE THD" |
MKUNTV;GEDDPY;

Bl « INR3D("ARM(DAT,BCBI"); « MDDEL OF THE YELLDW ARM;
B2 - INB3D("TABLE(DAT,BGBI")| o« MODEL DF THE HAND/EYE TABLL;
J1 « FDNRME (" JDINTI™); « SHOULDER - RBOUT VERTICAL,
J2 « FDNANE (" JDINT2*); « ARM - ABOUT HORIZONTAL;
J3 « FDNANE (" JDINT3"), « SLIDE;
J& « FONANE (" JDINT&™); « WRIST THIST;
JS « FDHAME (" JDINTS"); « HRIST FLAP;
J6 « FONRNE (*JOINTE"); « HAND;
~ Cl « INCAH("ARMCAMIDAT,BGBI")| a INPUT A PARTICULAR CAMERA MODEL;
: FOR 1«1 STEP 1 UNTIL 24 OO « THENTY FOUR IMAGES FOR FIGURE 3.2;
BEGIN
SHDU21(0,00; HIDDEN LINE ELIMINATION DISPLAY REFRESH;
| /’ PLOTD("PLTXD. “6CVS (1)) DUTPUT LATEST DISPLAY FILE TO DISK;

ROTATE (-J1,0,0,P1/40)
ROTATE (-J2,0,0,-P1/80)
TRANSL (-J3,0,0,0.86) ;

ACTION WITH RESPECT TD BOOY CDORDINATES...;
+++HHEN BODY RRGUMENT 1S GIVEN NEGATIVE;

! 2 2 2

END;
END "EXAMPLE THD";

In example ¥2, the model of an actual robot arm is read in and the first three joints are run
through a simulated arm motion. The routine INB3D reads a B3D polyhedron file from the disk. The
arm was drawn from measurements using the interactive form of GEOMED. The FDNAME, find name,
routine retrieves a body by its print name; FDNAME returns zero when a name is not found. The
routine INCAM reads in a camera file. Finally, the routine SHOW2 calls the hidden line eliminator;

when SHOW2's arguments are zero, default options are assumed. The arm model was originally made

-29 -

3.1 Euler Primitives. GEOMED.

{o illustrate an arm trajectory for a thesis on arm control (Paul 69) and has been used two times since

in projects concerning arm trajectory planning and arm collision avoidance.

GEOMED is a hierarcy of several lavels of routines that are finally invoked by syntactically trivial
subroutine calis. The point illustrated by the examples is that come applications level GEOMED code
has a quite ordinary appearance that does not require mastery of the many underlying primitives which

are explained in the next several sections.

3.1 Euler Primitives.

The Euler routines are based on the idea that an arbitrary polyhedron can be created in steps
that always maintain the Euler relation: F-E+V=2%(B-H). Topologically, a connected Eulerian polyhedrai
graph can be buill up with only four creation primitives: MKBFY, MKEY, MKFE and GLUEE or taken
apart with four kill primitives: KLBFEY, KLEV, KLFE and UNGLUEE. The prefixes "MK" and "KL", stand
tor make and kill; the initials “B", "F", "E" and "V" invariably stand for hody, face, edge and vertex
and tend to appear in that order. The notion of GLUE is associaled with the process of forming (or
removing) a handle which increases (or decreases) the topological genus of the surface by one unit.
The MKBFV primitive takes no arguments and creates a degenerate point polyhedron of one vertex,
ona face and one body which is the minimal non-zero binding satisfying the Euler relation. The MKEV
creates a new edge and a new vertex, the new edge is attached to the old vertex as a spur in the
perimeter of the given face. The MKFE creates a new face and a new edge, the new edge is placed
between the two given vertices. And the GLUEE routine creates a handle or kills a body node by

placing a new edge between fwo given vertices and by removing the second of two given faces.

Completing the set, the ESPLIT routine (explained in Section 2.5) is included as a form of MKEV.

in principle, the advantages of the pure Euler primitives are that they assure valid fopology, full
generality, reasonable simplicity znd they achieve a semantic level slightly higher than that of
manipulating the nodes and links directly. However, the Euler primitives only satisfy the first of the

conditions defining a solid polyhedron; imposing no particular restrictions on surface orientation,

tace/vertex trivalence, face planarity, face convexity or surface self intersaction. Furthermore, even

P ——

3.1 Euler Primitives. GEOMED.

some low level topological operations (such as body intersection, Chapter 5) are inconvenient 1o
specify in term of the Euler primitives. Nevertheless in practice, the Euler primitives perform a useful

role as a topological foundation for coding routines which embody more algebra and geometry and

which lead to higher semantic levels.

/ BOX 3.1 THE EULER PRIMITIVES. \

EULER MAKE PRIMITIVES:

1. BNEW « MKBFV; Makes point polyhedron.

2. VNEW & MKEV(F,V); Makes new edge and vertex.
VNEW « ESPLIT(E); Makes new edge and vertex.

3. ENEW « MKFE{(VI,FV2); Makes new faca and edge.

4, ENEW « GLUEE{F1,V1,F2,v2); Makes new edge, kills F2,

and makes a hole or kills a body.
EULER KILL PRIMITIVES:

1. QNEW « KLBFEV{Q); Kills bodies, faces, edge and vertices.

2. FACE « KLFE(E); Kills E and NFACE(E). Returns PFACE(E).

3. EDGE + KLEV(V); Kills V and PED{V). Returns other E of V.
VERT « KLEV(E); Kills E and NVT(E). Returns PVT(E).

4, FNEW « UNGLUE(E); Kills E, makes F. Returns the new face,

\ and kills a hole or makes a body.

The remainder of this section consists of more explanation and examples of the Euler primitives

and may be skipped by the reader who does not need an elaboration of this level of modeling.
Non-solid polyhedra: Intermediate between Eulerian and solid polyhedra are the wire, dangling-wire
(or spur), lamina, sheet and wasp-edged polyhedra which are transition states for creating and altering
polyhedral solids. The wire polyhedron consists of one face, N edges and N+I vertices. A lamina is a
two faced polyhedron with no interior edges or dangling wire. A dangling wire or spur is made when
a MKEV is applied 1o a vertex of an already closed simply connected face perimaoter; dangling wire
spurs are ultimately "closed” or "tied down" by a MKFE application. A sheet is an array of lamina, with
the exception of ruled surfaces of rotation, commands for folding and manipulating sheets have not
been developed. Finally, a wasp polyhedron is a transition state formed by the GLUEE primitive; this

degenerate polyhedron is named for the wasp waisted face perimeter which (like a spur) is eliminated

by appropriate MKFE applications.

-

3.1 Euler Primitives. GEOMED.
FIGURE 3.3 - FIVE KINDS OF NON-SOLID POLYHEDRA.
WIRE ‘ LAMINA DANGLING WIRE SHEET WASP WAIST

The use of the Euler primitives is limited to the above transition states. MKEV sweeps a MKBFYV

point body into a wire, the wire may be continued (at only its n

aewast end) by additional MKEVs until it

is closed into a lamina by MKFEing the first and last vertices of the wire. The MKFE is oriented such

that if the wire is planar and tha resulting lamina is homogeneous (non-self-intersecting); then the

exterior vector of the newly created face points into the counte

r clockwise halfspace of the lamina, the

halfspace from which the order of creation of the vertices appears to be countar clockwise. This

particular genaeration by Euler sweeping from point, through wi

r~ and lamina, to solid is illusirated by

the make hexahedron example #3 and by the make tetrahedron example #4; the final example of this

section, example #5, illustrates the use of GLUEE.

Example 3 - Make Hexahedron,

BEGIN "EXAMPLE THREE"
REQUIRE “GEOMES.HOR (GEM,HE] " SOURCE _F ILE; a
INTEGER PROCEOURE MAKECUBE (REAL OX,DY,02)
BEGIN "MAKECURE"
INTEGER B,F,E,VI,V2,V3,V4,
DEF INE oa"COMMENT", a
« MAKE RECTANGULAR LAMINA;
B « HKBFYV; F o« PFACE(BY; V1 « PVT(B);
XHC (V1) « DX/2; YHC(VL) « DY/2; ZHC(VD) »-D2/2,
V2 « HKEV(F,V1); XUC(VD) « -0X/2;
V3 « HKEV(F,V2); YHC(VD) « -0Y/2;
Vo o MKEV(F,V3); XHC(VA) « OX/2;
MKFE(V1,F,V4); F « PFACE(F);
« MAKE FOUR SPURS ON THE LAMINA;
V1 « MKEV(F,V1){V2 « MKEV(F,V2);
V3 « MKEV(F,V3);Ve « MKEV(F,V4);
ZHC (V1) o ZHC(V2) « ZUC(V3) « ZHC(VE) « D2/2; @
« JOIN SPURS TD FORM FINAL FACE;
MKFE(V1,F,V2); MKFE(V2,F,V3);
MKFE (V3,F,V4)| MKFE(Ve,F V1),
RETURN (B)
END "MAKECUBE",
MKUNIV; MAKECUBE (18,8,6); a
END "EXAMPLE THREE";

TR/ a8 9 9 9

GEOMED EMBEOOED IN SAIL,

COMHENT DELIHITER;

HAKE POINT POLYHOERA;
POSITION FIRST VERTEX
HAKE AND PDSITION 2ND VERTEX,
HAKE AND POSITION 3RD VERTEX,
MAKE ANO POSITION 4TH VERTEX;

POSITION LAST FOUR VERTICES;

TEST CALL ON MAKECUBE;

e Nam B MNE NNE S

P

Prneremd

s

— emm W W o

it

tnimd

Euler Primitives.

Example 4 - Make Regular Tetrahedron,

BEGIN "EXAMPLE FDUR"
REQUIRE "GEDMES.HDR{GEM,HE]" SDURCE_FILE;
DEF INE o="CDHMENT®;DEF INE P1="3,1415927";
INTEGER PROCEDURE MY TETRA (REAL R);
BEGIN "MFTETRA"
INTEGER 8,F1,F2,V1,V2,V3,V4;
B« HVBFV; F1 » PFACE(R); VI « PVT(R)
YHC (V1) « ABS(R:0,942609); ZUC(VD) » -ABS(R/3);
V2 « NFEV(F1,V1); RDTATE(V2,0,0,2:P1/3)
V) « MEEV(FL,V2); RDTATE (v3,0,8,2¢P1/3)
V4 « MEEVIFL,V3);
XHC (V&) «YHC (V4 «0; ZHC (V4) «ABS (R) ;
MKFE(VL,FI,V4); F2 « PFACE(FL);
MKFE (VE,FI,V3); MEFE(V2,F2,V4);
RETURN (B) ;
END “MKTETRA";
MIUNIV; HKTETRA(6);
GEDDPY;
END "EXAMPLE FDUR")

Example 5 = Glue two N-edged faces together.

BEGIN "EXAMPLE FIVE"
REQUIRE "GEDMES.HDR [GEM,HEI" SOURCE _F ILE;
DEF INE o<"COMMENT"; DEFINE Pl="3.1415927";
INTEGER B1,R2;
INTEGER PROCEDURE GLUEFF (INTEGER FACEL,FACE2)
BEGIN "GLUEFF"
INTEGER V,V1,V2,E,EQ,]1: REAL DHIN,D;
V1 « VCCH(PED(FACEL) FACELY;
a FIND VERTEX DF FACE2 THAT IS CLDSEST TO VI,
OMIN « 106i0; E « EB « PED(FACE2);
DD BEGIN
V « VCCI{E,FACE2) ;0 « DISTAN(VL,V);
IF D<DMIN THEN BEGIN DMIN&D)V2+V;END,
END UNTIL E@ = (E~ECCH(E,FACE2));
a MAKE THE WASP EDGE;
E « GLUEE(FACE1,VI,FACE2,V2);
a CLDSE DTHER EDGES;
V « DTHER(NCCU(E),VD);
00 BEGIN
V1 + DTHER(PCI(E) V1),
V2 » DTHER(PCCUIE),V2);
E « HEFE(V1,FACEL,V2)
END UNTIL VaV1;
RETURN(BGET(E)) §
END "GLUEFF";
MYUNTV;
Bl « MYCUBE(2,2,2); B2 « MKCUBE(3,3,3);
RDTATE(BL,0,-P1/2,0) ; TRANSL (B1,-3,0,0);
ROTATE (82,0, +P1/2,01; TRANSL (B2, +4,0,0)
GLUEFF (PFACE (B1), PFACE (B2)) ;
GEDDPY;
END “EXAMPLE FIVE",

-33 -

2

-] 2 8 2 2 2 =

2

2 2

-4

2

2

a

2

2

2 2 2 2 2 2

GEOMED.

GEDMED EMBEDDED IN SAIL;

HAKE TETRAHEDRON;

MAKE PDINT PDLYHDERA;
PDSITION FIRST VERTEX;

HAKE AND PDSITIDN 2ND VERTEX;
HALE AND PDSITIDN 3RD VERTEX;
MAKE AND PDSITIDN 4TH VERTEX;
CLOSE SKEW DUADRILATERAL:
RETURN THE CRFEATIDN;

INITIALIZE AND TEST HKTETRA,
DISPLAY REFRESH;

GEDHED EMBEDDED IN SRIL;

THD TEST CUBES;

DEMD GLUE FACE TD FACE:

PICK DNE VERTEX DF FACEL;
INITIALIZE MINIMAL OISTANCE;

SCAN FACE2 FDR VERTEX CLDSEST TD Vi,

FACE2 AND BDDY ARE KILLED;
LAST VERTEX, TD STOP SCAN;
FETCH NEXT PAIR DF VERTICES;
CLDSE AN EDGE;

RETURN THE SURVIVING BODDY;
INITIALIZATION;

THD TEST CUBES;

DRIENT CUBES SD FIRST FACES...;
.+ .ARE DPPDSITE;

TEST THE FUNCTIDN;
DISPLAY REFRESH;

N .

.

2.2 Routines using Euler Primitives. GEOMED.
3.2 Routines using Euler Primitives.
Further methods of polyhedral construction can readily be coded using the Euler primitives. For

example, the routines listed in Box 3.2 iiiusirzte the direct generation of simple prototypical polyhedra,

as well as contruction by sweeping, culting, glueing, copying and duality.

/ BOX 3.2 ROUTINES USING EULER PRIMITIVES. \

1. BNEW ¢ MKCUBE (DX,DY,D2); Create right rectangular prism.
2. BNEW ¢ MKCYLN(RADIUS,N,DZ); Create cylinder approximation.
3. BNEW « MKBALL(RADIUS,MN); Create sphere approximation.
4, FACE « SWEEP(FACE FLAG); Make prism on face (or sweep wire).
5. FACE ¢ ROTCOM(FACE); Rotation sweep wire face completion.
6. PEAK + PYRAMID(FV); Make pyramid on a face (or vertex).
7. BODY « GLUE(FACEI ,FACE2); Removes facel and face2.
8. BNEW « MKCUT(BODY,X,Y,Z); Divide body at cutling plane.
9. QNEW « MKCOPY(ENTITY); Copy an entity.
klo. BODY « FVDUAL(BODY); Apply face/vertex duality {o a body. J

The first three routines make cubic prisms as well as polyhedral approximations to circular
cylinders and spheres; or mora accurately, MKCUBE creates rectangular right prisms, MKCYLN creates
regular polygonal right cylinders and MKBALL creates hedrons faceted by two N-sided regular polar
polygons and Nx(M-1) trapezoidal polygons with all vertices lying on the surface of a sphere of a

given radius.

FIGURE 3.4 - Examples of MKCUBE, MKCYLN and MKBALL.

&
D

MKCUBE Results MKCYLN Results MKBALL Resulis
Although, the implementation of curved edges and curved faces in GEOMED has always been
just around the corner, | have balked at the idea because it would require additional nodes connected

to edges and faces or it would require expanding the node size, which | have always before taken as

!m n m

3.2 Routines using Euler Primitives. GEOMED

an omen for restarting from scratch. There have so far been four cold starts: GEOMED |, 1969, was
based on sweep primitives and was written in LEAP/SAIL; GEOMED I, 1970, was based on winged
edge primitives and was written SAIL without using LEAP; GEOMED ll, 1971, was written SAIL and
FAIL; GEOMED IV, 1972 to present, is written in FAIL. Future mythical GEOMED’s include export
GEOMED V, coded in simple international ALGOL for export; a big GEOMED VI, larger nodes for curved
object reprosentation of smooth manifolds rather than polyhedra; a small GEOMED VIl coded for a mini

computer; and finally a 4-D GEOMED Vill for four dimensional modeling.
FIGURE 3.5 - Creation of a Solid of Rotation by Sweeping a Wire.

L

Initial Wire After four SWEEPs After ROTCOM

The three sweep primitives SWEEP, ROTCOM and PYRAMID involve the non=solid Euler
polyhedra: wire, lamina and sheets. A lone vertex body can be swept into a wire, a wire can be
closed to form a lamina or a wire can be swept into a sheet, and a sheet can be closed to form a solid
polyhedron. Figure 3.5 illustrates the creation of a solid by sweeping a wire~face, using
SWEEP(FACE,0), to form a sheet. Figure 3.6 illustrates the creation of a solid by sweeping a normal

face as well as the use of the GLUE(FACE!,FACE2) primitive to close a torus.

FIGURE 3.6 - Sweep and Glue.

O

Initial Face Lamina After twelve SWEEPS After GLUE

3.2 Routines using Euler Primitives. GEOMED.

The sweep flag argument determines whether triangles (flag non-zero) or rectangles (fiag zero)
are to be formed as the sweep of the edges of the face. Sweeping out rectangles forms prisms,
sweeping out triangles forms prismoids. The PYRAMID routine when applied to a face creates a peak
vartex at the average locus of vertices of the face and connects all the vertices of the given face fo
the peak vertex. PYRAMID applied to a veriex coorces all the faces of the vertex to be triangles, the
intarpretation being that the given vertex is to be made like a peak of a pyramid. Prismoid sweep and
face pyramiding are illustrated by the construction of an icosahedron in Figure 3.7; the icosahedron can
be changed into a dodecahedron by the DUAL routine. The DUAL routine mungs face nodes into vertex
nodes and vertex nodes into face nodes; the new vertices are placed at the arithmetic mean of the

vertices of the old faces, consequently the dual is not its own inverse since objects tend fo shrink.

FIGURE 3.7 - ICOSAHEDRON BY PRISMOID SWEEP AND PYRAMID SWEEP.

— | B | & | &

The MKCUT(BODYX,Y,2) primitive divides a body at cutting plane into as many pieces as
necassary. Figure 3.8 illustrates how to cut a toroidal polyhedron inta thirteen pieces using only three
cutting planes, after Figure 63 of (Gardner 61). The action of MKCOPY should be obvious = a new
polyhedron is returned that has the same topology. geometry and photometry as the given polyhedron.
More routines using Euler primitives could be coded for particular applications in architecture,

computer animation, mechanical design, numerical machine control, assembly diagraming and so on.

FIGURE 3.8 - THREE CUT TORUS DISSECTION INTO THIRTEEN PARTS.

2.3 Euclidean Routines. GEOMED

3.3 Euclidean Routines.

The Euclidean roulines of GEOMED tall roughly into tour groups: transformations, metrics, tram
routines and space simulalors. The Euclidean transiormations are translation, rotation, dilation and
reflection lollowing Klein's Erlangen Program, 1872. The Euclidean metric routines compute disiances,
angles, areas, volumes and inertia tensors. The tram routines create or alter tram nodes which are the
main topic of this section. The final group of routines perform spatial simulations such as collision,

intersection, propinquity, occupancy and occultation.

Tram Nodes. A iram node contains twelve real numbers. Fundamenial to all the Euclidean
routines is the curious tact that tram nodes have two interpretations: they may represent a coorrinate

syslem or they may tepresent a Euclidean transtormation. As a coordinate system, the tweive numbers

contain a location of the origin of the coordinate sysiem as well as the three components ot each of the

three unit vectors of the axes of the coordinale system. As a {ransformation, the applicalion ot a tram

node to a vertex is defined by the procedure named SCREW, given below,

Tram as a Coordinate Systom: Tram Node Data I'ield Names
location of origin of coordinates: XWC, YWC, 1IWC, LOCATION VECTOR.
componenis ot X-axis unil vector: X, Y, 1Z,
components of Y=axis unit veclor: JX, Jv, J2, ORIENTATION MATRIX.
components ot Z-axis unil vector: KX, KY, KZ.

Tram as a Transiormation:

COMMENT RPPLY TRAH Q TO VERTEX V PQSTFIX;

PROCEQURE 5CREW (INTEGER V,0);

BEGIN PEAL X,Y,2;
X « XHC(V); Y « YHC (V) 2« ZHCVY;
XHC (V) o X81X(Q) « Y&JX(Q) + 2¢4KX(Q) + XHC(Q)
YHC (V) o XelY(Q) & YaJY(Q) o Z5KY(Q) « YHC(Q);
ZHC (VY o X&l2(0) & Y2J2(Q) o 2xKZ2(Q) « ZHC(Q)y

END;
Generalizing, the procedure APTRAM(ENTITY,TRAM) applies a tram {o an arbitrary entity The
APTRAM procedure is tormed by surrounding the SCREW procedure with suiteble type checking and

data struciure fracing mechanisms so that a tram can be applied (posifix) to aimost anything: hodies,

faces, edges, verlices, as well as fo other trams, camera models and window nodes.

3.3 Euclidean Routines. GEOMED.

To repeat for emphasis, a tram node has two interpretations; a tram node may be interpreted as
a coordinate system and the very same tram node may be interpreted as a Euclidean transformation. A
source of confusion, is that a coordinate system tram is a detinition of one coordiate system (call it the
body coordinates) in terms of another coordinate system (call it the world coordinates). The application
of a body coordinate system fram to an eniity in body coordinates brings the entity down into the
world coordinate system in which the tram is defined. To say it another way, the rule is that
APTRAM(BODY,TRAM) converts from body coordinates to world coordinates, whereas
APTRAM(BODY,INTRAM(TRAM)) converts world coordinates to body coordinates. The procedure
INTRAM inverts a tram node in the manner given below. As alluded to in example #2, body nodes
carry a pointer to a tram defining a system of body coordinates so that Euclidean transformtions can be

relocated relzlive to arbitrary coordinale systems.

INTEGER PROCEDURE INTRAN (INTEGER Q)
BEGIN "INTRAM®
REAL X,Y,c
X« XUC(Q); Y - YNC(O)4 2 . 2UCO);
XHE(0) o = (Xe1X(Q) + Y2IVIQ) + 2¢120Q));
YHC(Q) » = (XaJX(Q) o Y2JY(Q) & Z&JZ(Q);
ZHEIQ) » - (XaKX Q) & Y2EY (@) + 2:K2(Q)))
IV(Q) = JX(Q); 12(Q) « KX(@); J2(Q) « KY(Q); COMMENT TRANSPOSE

RETURN (Q) ;
END "INTRAH";
BOX 3.3 EUCLIDEAN TRANSFORMATIONS
ENTITY « APTRAM(ENTITY,TRAM);
TRAM « INTRAM(TRAM);
RESULT « TRANSL(XWD(TRAM,ENTITY),DX,DY,DZ);
RESULT « ROTATE(XWD(TRAM,ENTITY),WX WY WZ);
RESULT « SHRINK(XWD(TRAM,ENTITY),SX,SY,52);

Pragmatically, the creation, relocation and application of a tram node are invoked all at once by
an appropriate Euclidean transformation routine. The transformation routines are listed in Box 3.3 with
APTRAM and INTRAM. As a further pragmatic device, the first argument of the Euclideans is
"microcoded” using the XWD notation which packs two links info one word. The expression XWD(A,B)
is equivalent to the expression (Ax2118 + (B MOD 2118)), where A and B are positive integers. When
the entity of the first argument of the Euclidean routines is zero, the transtormations create and return

a tram node; when the entity of the tirst argument is nonzero, the transformations create a tram, apply

s

|
|

33 Euclidean Routines. GEOMED

it to the ortily, kill Ihe tram node and return the entity. When the first argument carrigs a tram ae
wall as an entity (using the XWD notation) the desired transformation (or creation) is ctane with resper?
to lhe coordinate system defined in the given tram, (this is called coordinate relocation). When the
first argument is negative the body coordinates tram is retrieved and used tor relocation ot the
transformation. Most bodies carry a tram pointer (in the link field named TRAM) which defines body
coordinates; the body coordinates ot a tace, edge or vertex are taken as the TRAM of the BGET ot the
tace, edge or body; a zero TRAM link is mapped into a zero translation, unit rotation matrix tram by all
the Euclidean routines. Finally, the actual {ransformation is specified by giving three componenis of a
vector; the meaning of a translation vector is obvious, rotation veclors are explained in a subsequent
paragraph and a scale vector is a triple of factors which are multiplied into the corresponding
components of all the vertices of an entity with respect to the axes of transformation Reflections are
spacifind as negative shrinks; a retlection on one or on three axes will evert a body's surtace

orientation.

Further routines to create and alter tram nodes are listed in Box 3.4. The MKTRAM routina
simply returns an identity tram wiin zero translation and zero rotation (that is a unit rotation matrix).
The MKTRMA routine creates a tram trom the Euler angles pan, tilt and swing; see (Goldstoin 1950).
The Euler angles come conveniently close to the rotational degrees of freedom ot automatic camera

mounts, but unlike a rotation vector the Euler angles are discontinous at zenith and nadir.

ﬁox 3.4 TRAM ROUTINES \
TRAM « MKTRAM; Returns an identity tram.

TRAM « MKTRMA(PAN,TILT ,SWING); Makes a tram from Euler angins,
TRAM « MKTRMF(FACE); Makes a tram from a Face

TRAM « MKTRME(EDGE); Makes a tram from an Edge.

TRAM « MKTRMV(WX WY ,W2); Makes a tram from a rotation vector.
TRAM « NORM(TRAM}; Normalization to unit vactors.

TRAM « ORTHOI (TRAM); Orthogonalize by wors! ca=a

TRAM « ORTHO2(TRAM); Orthogonalize by two cross products:

K « {I CROSS J) and J « (K CROSS 1), J

The Rotation Matrix. The nine elements named IX, IY, 1Z, JX, JY, JZ, KX, KY and KZ torm what

1s know as a three by three rotation matrix. By virtue of the definition of rigid object rotation, the

tram rotation matrix must be maintained orthonormal. {The trams created by SHRINK are tolerated as a

3.3 Euclidean Routines. GEOMED.

special case which are not considered to be rigid rotations.) Orthonormality is maintained with the aid
of three routines: NORM(TRAM) which normalizes the row veclors ot 2 tram rotation matrix; ORTHO!
which orthogonalizes a rotation matrix by comparing the sums of pairs of dot products of pairs of the
three unit vectors; the unit vector that is most out of allignment is recomputed by crossing the other
two (ORTHO! performs its check twice and then exits); and ORTHO2, which coerces orthogonality by
setting row vector K to the cross product of rows | and J, followed by setting row vector J to the cross

product of rows K and |.

The Rotation Vector. All 3=D rofations can be expressed as a vector where the direction of the
vector specifies the axis of rotation and where the magnitude of the vector specities the amount of
rotation in radians. Given such a rotation vector WX, WY, W2 with direction cosines CX, CY, CZ and
magnitude W in radians; let CW be cosine(W) and SW be sine(W); and let a function called SIGN return
positive or negative one depending on whather its argument is positive or negative; then the relation

between a rotation matrix and a rotation vector can be listed:

Rotation vector to Rotation matrix:

IX = {1 -CW)XCX*CX ¢ CW; IY = (1-CW)XCYXCX ¢+ CZkSW; 12 = (1-CW)XCZXCX = CY®SW;
IX = (1=CW)XCX*CY = CZ%SW; JY = (1-CW)XCY*CY + CW; JZ = (1=CW)XCZ*CY + CX%SW;
KX = (1 -CW)XCX*CZ » CY*SW; KY = (1-CW)*CY*CZ - CX%SW; KZ = (1-CW)*CIxCZ + CW;

Rotation matrix to Rotation vector:
WX = SIGN(JZ-KY)*ACOS(O.S*(lXoJYoKZ-|))*SQRTMX-JY-KZ)/(3-IX-JY-KZ));
WY = S|GN(KX-IZ)*ACOS(O.S#(lXoJYoKZ-|))*SQRT(-IXoJY-KZ)/'(-3-IX-JY-KZ));
w2 SIGN(IY=JX)%ACOS(0.5%(1XJY+KZ-I))RSQRT (=IX=JY+KZ)/(3=IX-JY=KZ));

HHomogencous Coordinates. The Euclidoan routines involving trams could be written out in
terms of the 4-D homogeneous coordinates frequenily found in computer graphics, by prefixing a

column to each tram and a fourth component to each vartex.

1 XWC YWC Iwe

0 IX Y 1Z
LRAMAD 0 X Jy 3

0 KX KY K2

| did not use homogeneous coordinates in GEOMED for three reasons: first, the computer at hand, (a

PDP-10) has floating point arithmetic hardware so that homogeneous components were not needed for

T S WO R (R

33 Euclidean Routines. GeOMED.

numerical scaling; second, the homoganeous representalion requires more coordinates per vertex and
more mulliplications per transformalion than the GEOMED representalion; and fhird, my infuition is

sfronger in affine mefric geomeafry {han it is in homogeneous projecfive geometry.

Standard Conventions. There are several nelflesome details relafed to rofation, franslafion and
projection among which a computer geomefer must distinguish: (i). mafrix vs. algebraic nofation; (ii).
posffix vs. prefix fransformafion applicafion; (iii). row vs. column verfices; (iv). 4-D homogeneous vs.
3-D affine coordirafes; (v). rotafion vector vs, Euler angles and so on. At the moment, | favor
algebraic notafion, postfix fransformafions, row vertices, 3-D coordinates and rofafion specification by

vector; a demonstrably superior natural sef of sfandard conventions probably does not exist

In GEOMED, tram nodes were until recently called frame nodes, however | wish to abandon all
use of the word frame for fhree reasons: firsl, the term is ambiguous and overused (even witkin
graphics alone); second, fhe term does nof include fhe nofion of fransformafion; and third, fhe ferm
risks confusion {or association) wifh the connofafions of (Minsky 74) and (Winograd 74); 1e. fhe
connofafion of a Frame System as a modular menfal universe of sfereotyped worid situafions. In
geomelric modeling, the word frame can be replaced in all three of its usual graphics applications: the
frame of reference or coordinate frame is now a coordinate system, the fraine of a movie film is

now an image, the frame of a display screen is now a window ¢ horder.

Metric Routines. Given one or several geometric entilies, the Euclidean metric routines lisfed
in Box 3.5 compute length, area, volume, angle or moments of inertia. The DISTANCE routine computes
fhe distance befween fwo anythings in a reasonable manner; the measure roufine returns the volume,
area or length of bodies, faces or edges raspeclively (by a pragmatic argument hack, the measure of a
negafive body is ils surface area). The ANGLE routine computes the angle between two entifies by
refurning the arc cosine of the normalized inner product of two veclors: vertices are interpreted as
vecfors from fhe origin of fhe body in which fhey belong, edge are vectors from fheir NVT to fheir

PVT, faces are taken as their normal vector and bodies are represenied by the K unif vector oi their

body coordinates fram; irams and cameras also are mapped info K unit vectors.

3.3 Euclidean Routines. GEOMED.

/ 80X 3.5 METRIC ROUTINES \
VALUE DISTANCE{ENTITY ENTITY);

-
VALUE - MEASURE(ENTITY);
RADIANS - ARG E(ENTITY ENTITY);
RADIANS - ANGL3'7(V1,V2,V3);
RADIANS - ANGLCW(EDGE);
RADIANS - ANGLCCW(EDGE);
VALUE - DETERM(TRAM);

-

k NODE INERTIA(BODY); /

Since the arc cosine function returns an angular value between zero and pi; the routines ANGL3V,

ANGLCW and ANGLCCW employ ihe arc tangent to compule an angular value betwaen negative pi and
positive pi. The ANGL3V return the angle between the vector (V3-V2) and (V2-V1), the ANGLCW(E)
returns the angle between E and PCW(E), ANGLCW(-E) returns arctan of E and NCWI(E); likewise
ANGLCCW returns values for E and PCCW(E) or E and NCCW(W). The DETERM of a tram is the
determinate of the rofation matrix of a tram. Finally, the INERTIA of a body is a sixtuple: MXX, MYY,
MZZ, PXY, PXZ, PYZ packed into the first six words of a node and representing the moments and
products of the intertia tensor of a polyhedron of uniform {unit) density associated with the given body.
The inertia routine takes the libarty of updating the origin of the body coordinates to correspond to

the center of mass and to orient the K unit vector of the body parallel to the principal axis of inertia.

Spatial Simulation. The difficult space routines performr occultation and intersection and are
explained in Chapters 4 and 5 respectively. The simple space routines, listed in Box 3.6, perform

propinquity, collision detection and spatial compare.

/ BOX 3.6 SIMPLE SPACE ROUTINES \

HEXAHEDRON + MKBUCK(BODY)

V-PIERCE - COMPFE(FACE,EDGE);

FLAG - COMPEE(EDGE EDGE);

FLAG « WITH2D(FACE,VERTEX);

FLAG - WITH3D{BODY,VERTEX);
k FLAG «

COLDET(B1Y,B2,EPSILON).)

The MKBUCK routine returns a hexahedron that buckets the given body. The COMPFE compares a face

and an edge in 3=D for intersection, if the arguments are disjoint then zero is returned, if the

B
E
!
k
4
.
B
i
i
]
I
I
|
I
i

3.4 Image Synthesis: Perspective Projection and Clipping. GEOMED !

arguments intersect then the edge is split and the new vertex is positioned at the locus where the !
edge pierces the face. The COMPEE routine determines whether two edges cross in a given '1
perspective view. The within 2-D routine, WITH2D, determines whether a vertex appears to be ,(
interior to a ;iven face in a perspective view and the WITH3D determines whether a given vertex falls 1
interior to a bady in 3-D. The COLDET routine compares all the vertices and faces of two objects for

prapinquity within an epsilson as well as all the edges of the two objects. Temporary collision pointers

are left between vertices and the nearest alien collision face as well as between temporary collision ,

vertices. Collision vertices are formed at the foot of the shortest line segment between the skew lines

of two edges that pass within the epsilon distance of each other.

3.4 Image Synthesis: Perspective Projection and Clipping.

Image synthesis is the process of generating various kinds of images: vector display, video,
contour map or mosaic. Independent of the final image representation the process always requires the
oparations of perspective projection and clipping. The perspective projection takes the 3-D world
locus of every potentially visible vertex and computes a 3-D camera center coordinate locus followed

by a perspoctive projection in the fashion illustrated in the PROJECT procedure given below.

INTEGER PROCEOURE PROJECT (INTEGER V,CRMERR);
BEGIN "PROJECT"

INTEGER TRM; REAL X,Y,Z,XCC,YCC,ZCC)
COMMENT TRANSFORM FROM 1IORLO COOROINRTES TO CRHMERR COOROIRTES;

TRH » TRAM(CAMERA);

X & XHC (V) - XWC(TRHM};

Y « YUC (V) - YHC(TRH);

2« 20CVY - ZHCLTRHY
] XCC « X¢IX(TRM) « Y:IY(TRM) & Z3I2(TRH);
YCC » X«JX(TRM) + Y:JY(TRM) + Z23JZ(TRH);
CC « X:EXC(TRM) & Y:hY(TRH) & Z:K2(TRM)4

i COMHENT PERSPECTIVE PROJECTION TRANSFORMATION;
COMMENT NOTR BENE: ZPP(V) 15 positive when vertex is in view of camera by
XPP (V) « SCRLEX (CRMERA)+XCC/ZCC; COMMENT ¢ SCALEX = -FOCAL/POX 1}
YPP (V) « SCALEY(CRMERR)xYCC/2CC; COMMENT (SCRLEY =« -FOCRAL/POY)3
i ZPP (V) « SCRLEZ(CRMERR) /2CC) COMMENT (SCALEZ = -FOCAL/POZ)3
i RETURN (V)

ENO "PROJECT";

The perspective projection transformation is a 3-D to 3-D mapping; the third component, ZPP, allows

the hidden line eliminator to perform orthographic depth comparisons. The perspective projection

.43 -

3.5 Image Analysis: Interface to CRE. GEOMED.

quite literally is taking the whole world model and crushing it into a slanty space between the camera
lens center and the camera focal plane. The camera scales are defined in terms of the ficticious 3-D
pixel dimensions PDX, POY, PDZ and the physical camera focal plane distance, FOCAL. The pixel
dimensions are arbitrarily defined as PDY=PDZ=40 microns and PDX=AR*PDY where AR is the aspact
ralio of the camera; the aspect ratio can be directly measured by taking the ratio of the width to
haight of the image of a large black sphere on a white background, AR is usually almost one. The focal
plane distance is lypically betwoeen 10 and 50 millimeters and is derived from dafinition

(FOCAL=FR*PDY) of the focal ratio, FR, which can be simply measured as explained in Section 9.1,

The term clipping refers 1o the process of computing which paris of the world model are in view
of the camera. In GEOMED there are several clipper routines: one for fast transparent refresh, three
for hidden line elimination and one more for clipping the contents of 2-D display windows that may be
scrolled about. Three dimensional clipping can be faclored into a Z-clipper and an XY-clipper. The
Z-clipper determines which portions of the model are in the visible 3-D halfspace and splits edges and
faces that cross the focal plane. The XY-clipper determines which portion of a 2-D perspeclive edge
is within a given 2=D rectangular window (with sides parallel to the coordiate axes). The XY=-clip is
done by first applying an easy oulsider test: endpoints of the edga both below, above, left or right of
the window; followed by an easy insider test: endpoints of the edge both inside the window; followed
by the avaluation of four polynomials of the form AX«BxY+C where AB,C are the edge coefficants
and X,Y are the locus of corners of the clip window. If all four polynomials have the same sign the
edge is a hard outsider, otherwise the intersection of a side of the window and the edge can be
detected from alternating signs and the locus of intersection can be computed from the edge

coefficients.
3.5 Image Analysis: Interface to CRE.
Although there are no actual honest image analysis routines currently implemented in GEOMED,

the internal GEOMED environment was designed for image based model synthesis and model

verification. The routine INCRE(FILENAME) inputs from a disk file a CRE node structure that consisis of

a film of contour images, contour images consist of levels, levels consist of polygons and polygons

[ReweEER
.

pRreRE el

[

35 Image Analysis: Interface to CRE. GEQMED. l

consist of vectors. In GEOMED, the CRE polygons becon:e two=faced lamina bodies; the contour levels
hierarchy becomes a parts free structure; and a new kind of GEOMED node called an image is

introducad.

The root of the GEOMED data structure is a universe node, which is the head of a ring of world

nodes. World nodes have a ring of body nodes and a ring of camera nodes each camera represents a

physical camera so that there might be at most three or four camera nodes. Each camera has two rings
of images: a ring of perceived images and a corresponding ring of simulated images. The perceived
image ring is created by INCRE and the simulated image ring is created by the hidden line eliminator,
thus providing a environment for the development of polygon based imag‘o analysis. This completes the

general description of the geometric modeling system called GEOMED.

40 Introduction to Hidden Line Elimination, OCCULT

SECTION 4.

HIDDEN LINE ELIMINATION FOR COMPUTER VISION.

4.0 Introduction to Hidden Line Elimination.

4.1 Initialization and Culling.

4.2 Hide Marking a Coherent Object.

43 Edge-Edge and Face-Vertex Comjaring.

44 Recursive Windowing.

4.5 Photometric Modeling and Video Generation.
46 Performance ot OCCULT and Related Work.

4.0 Introduction to Hidden Line Elimination.

Hidden line elimination refers to the process of simulating the appearance of opaque three
dimensional chjects. The phrase hidden line elimination dates from when the problem only involved
deleling the undesired, that is the hidden lines, from a line drawing (Figure 4.1); today the phrase
persists bul connotes the wider problem of synthesizing realistic images using a computer. The
present discussion is about techniques which have been implemented in a particular hidden line
eliminator named OCCULT, trom the Latin word occultare meaning to hide. OCCULT illustrates novel
solutions 1o the graphics problems of exploiting object coherence and image coherence, of combining

image space with model space techniques, and of sorting taces, edges and vertices in two dimensions.

OCCULT is further characterized by its intended application to computer vision and robotics. The
distinguishing design requirement ot a hidden line eliminator intended tor vision is that it must maintain
back pointers from the final 2-D images to the initial 3-D models so that the identity of teatures can be

recovered. In computer graphics, the results of hidden line eliminztion are intended tor human viewing

- 46 -

4.0 Introduction to Hidden Line Elimination. OCCULT

s0 the correspondence between the image and the model is not usually retained (unless image based
model editing is being attempted). Another design goal for OCCULT was to oulput a connected graph
vt rugions, edges and vertices that covers the image with no holes missing, no regions overlapping and
no dangling edges. It was naively assumed that such a highly structured image representation, called a

mosaic imagr, would provide a suitable basis for deriving features such as the location and orientation

of high contrast edges without having to generate video images.

FIGURE 4.1 - EXAMPLE OF HIDDEN LINE ELIMINATION.

BEFORE

Hidden line eliminators appear in two previous vision systems: one by Roberts (63) and the
other by Falk (70); the present system is a direct heir of the work of Falk in that the last version of
tnw Falk system contained one of the first versions of OCCULT (installed by Richard Orban). As with

image analysis, image synthesis (i.e. hidden line elimination), is a parennial research problem because

it cannot be fully isolated from physical modeling. Metaphorically, hidden line elimination is the visible
tip of the iceberg of physical simulation. The weaknesses of the underlying model literally show up in
passing through the process of image synthesis. The present day collection of techniques is still quite

lacking in realism, economy, flexibility and even reliability.

OCCULT is not a simple hidden line eliminator. In overall structure it is a combination of five
tecomiques, Box 4.1, The first method, called culling, eliminates portions of the model which are
hidden because of some easy to compute heuristic reason. The cull heurlstics (detailed in Section 4.1)

‘nelnde: elimination by clipping planes, elimination by face vectors, elimination by inspection of concave

!
|
|
i
i

e . T N S S, . S

 —

et

4,1 Initialization and Culling. OCCULT

corners, and elimination by previous occultation. After the culls have been applied, the next three
techniques are arranged in a three level heirarchy which comprises the main part of OCCULT. At the
outermost level there is a Warnock (68) like recursive windowing method, which calls an edge-edge
comparing method on small enough windows, which in turn calls a coherent object tracing method to
split off and mark the portions of an objact that are hidden. The methods are explained in bottom-up
order: hide tracing in Section 4.2, edge-edge comparing in Section 4.3 and recursive windowing in
Soction 4.4, The fifth technique is a face=verfex compare method that is occasionally required to solve
a particular class of cases that are missed by the edge-edge compare. The difficult part in building an
OCCULT like hidden line eliminator lies in getting all the unruly beasts in harness together; the

mystery being that no one beast is sufficiently strong to carry the whole burden by itself.

BOX 4.1 THE FIVE HIDDEN LINE ELIMINATION TECHNIQUES OF OCCULT.
1. Initialization Hide Culling.
2. Recursive Windowing.
3. Coherent Object Hide Tracing.
4. Edge-Edge Comparing.
5. Face-Vertex Comparing.

4.1 |Initialization and Culling.

A substantial part of sophisticated hidden line elimination lies in careful attention to initial
preparations. As it has now stood for the past two years, OCCULT has two input restrictions imposed
for the sake of execution speed: no conflicting bodies are allowed and no concave faces are allowed.
Conflicting bodies are those that occupy the same space at the same time; concave faces are faces with
interiors containing a pair of points such that the line segment between the points is not contained in
the face. The rational for both these restrictions is based on the optimization technique of getting
computations out of inner loops; conflicting bodies and concave faces can be eliminated by employing
certain polyhedral construction primitives prior to hidden line elimination. The restrictions are not
inherent limitations of any of the techniques in OCCULT, so thal a less restricted but slower

implementation is feasible.

4.1 Initialization and Culling. OCCULT

OCCULT is a marking algorithm, the temporary marking bits are listed in Box 42. The
combination (POTENT and -VISIBLE) means potentially visible; (~POTENT and VISIBLE) means actually
visible; (~POTENT and -VISIBLE) means hidden; and the combination (POTENT and VISIBLE) is an unused

state that happens to be interprated as VISIBLE.

(sox 42 STATUS BITS FOR OCCULT MARKINGS. \
(0] 21\ (ST Potentially Visible Entity.
VISIBLE ..oorreecirinriirnsienss Actually Visible Entity.
PZZ...ooovrinerieessisisssiansisnes Behind the camera image plane, Positive Zcc.
NZZooooereresnsisseessise csneenns Before the camera image plane, Negative Zcc.

TMPBITTemporary Split edge of vertex.
FOLDED.....cooecevvmrencriannnnnsd Edge with only one POTENT face.

JOTBIT..ovrcrres s Joint over T veriex.
k JUTBIT o Joint under T verlex. ‘

The initialization is performed in three steps: (l). vertex marking and verlex perspective

projection; (2). face marking, face Z-clipping, and computation of face coefficients; and (3). edge
marking and computation of edge coefficients. Two cull heuristics are done during the inilialization:
clipping and backside face elimination; and the other two culls are done immediately aflerwards:

concave corners check and the hide last hidden check.

Vertex initialization includes the prespective projection of every vertex in the model and the
marking of every vertex that is in front of the camera as POTENT (potentially visible) if its perspective
projected Z coordinate, ZPP(V), is greater than the simulated image plane distance, FOCAL. Two
further status bits, named PZZ and NZZ, indicate positive ZCC (camera coordinates) or negalive ZCC

are inclusive ORed into all the faces and edges of each vertex for the sake of the Z=clipper.

Face initialization consists of Z-clipping: if a face has only ils NZZ bit turned on, then it is
completely behind the camera and is immediately dropped from all futher condsideration (i.e. culled
out); if the face has both its P2Z and its NZZ turn on then it is Z-clipped by using the camera's image
plane as a culting plane. Next for faces in view of the camera, the 3-D perspeclive projected face
coefficients are compuled (equations given below) and the faces with their backsides lowards the
camera are culled out (Figure 4.2); faces surviving 1o this point are marked as POTENT and are placed

into a list of faces of the first window of the recursive window sort.

.49 -

4.1 Initialization and Culling. OCCULT

Edge inilialization consists of computing the normalized 2-D edge coefficients {aquation given
below) and of marking the edge as FOLDED or ~FOLDED depending on whether it has one face POTENT
or two faces POTENT, respectively. FOLDED edges are then inverted if necessary so that the POTENT
face is the PFACE. Folded edges are illustrated in the rightmost panel of Figure 42. The folded
edges are called contour edges by Appel(71) and Sutherland(73). The folded bit is passed along to

(inclusive ORed into) the verlices of folded edges.

BOX 4.3 Normalized 3=D Face Coeificients: \
E » PED(FI;V1 o VCHIE,F142 VCCM(E,F), E = ECCHIE,F);V3 « VCCHIE,F);
KK(F) = XPP V1)< (ZPP (V21 :¥PP (V3] -¥PP (V2):TPP (V3))
o YPP (V1)< (¥PP (V2] TFP (Y31-2PP (VD) < XPP (VID)
+ ZPPIVI)alYPR VD) aPPIVI)- a‘PPtV"it\‘PP(V}H
RAF) « (PP (V1) (YPP(V2I-YPP(V3)) o ZPP(V2)e(YPP (V3)-YPP(VI)) & ZPP(VI)a(YPR U]} +2P (02 1y,
BB(F) « (XPPIVI) & (ZPP(V2I-TPPIVI)) « APPIV2) s (ZPPIVI)-ZPP (VL)) & XPP(VI & (ZPP(V])-TPP(V2 1),
CCF) = (XPPIVI)#(YPP(VI)-YPR(V2)) + XPP(V2)s(YPP(VI)-YPP(V3)] & XPP(V3) s (YPP(V2)-¥YPP{VIi));
THP « 1/50RT(RR(EITD « BBIFI12 + CC(FIT2);
RA(F) » THPERA(F);BBIF) « THP:BR(F);CCIF) « THPSCCIF);

Normalized 2-D Edge Coefficiants:
RA(E) » YPP(PYT(E)) - YPPINVTIED);
BBE) » XPPINVT(E)) - XPP(PVTIE));
CC(EY « XPP(PVT(E)1sYPP (NVT(E)) — XPPINVT(E))aYPP(PVTIE));

THP + SORT(RAIEITY + BBIEITD);
\ RA(E) « RAR(E)/THP; BBIF) ~ BBIE)/TAP; CCIE) « CCIE}/TRP;)

FIGURE 4.2 - FRONT FACES AND FOLDED EDGES.

After face, edge and vertex initialization two culls are applicable. The concave corner cull
checks folded vertices of valence four or more for edges of the vertex tha! are hidden by a face of the

same vertex; the corner marked by a heavy dot in Figure 4.3 is a concave corner with two folded

-50 -

T

42 Hide Marking a Coherent Object OCCULT

adgas that are easily discovered to be hidden (i.e the end of the edge that is connecled to the corner
15 hidden by a face of that corner). The second cull is applicable when hidden line elimination is being
done on a sequence of images which are not changing very much from one picture to the next. By
saving a painter to the orerfuce that covered each hidden vertex in the immediately preceding hidden
line elimination, the previous overface can be quickly checked to see if it still covers the vertex. In the
case of arm animalion (example #2, Section 3.0) this form of exploiting frame-roherence realized a

iwenty-five parcent savings in computation time (under timesharing, but with no other user programs}.

FIGURE 4.3 - FRONT FACES AND FOLDS OF A CONCAVE CORNER.

-

ll'...-‘-' i

inspite of the complexity explained so far, still further measures could be taken to make the
hiddan line eliminator even faster, For example more 3=D clipping or spatial recusive cell soiting would

ailow lhe earliar slimination of objects that are out of sight.

4.2 Hide Marking a Coherent Object.

QCCULT marks the facos, edges and vertices of a polyhedral scene as being either visible or
hidden with respoct to a simulated camera. Edges that were at first partially visible are spiit into
pieces so that each piece is either fully visible or fully hidden. All splits are undone and ali OCCULT
bits are cleared by a fixup routine named UNCULT. In a modeling environment that provides coherent
polyhedra that can be easily traveled and modified, the simple technique of hide marking the neighbors
of entities already hidden can be used to do almost all of the actual hiding, once a starting piace has

been found.

In OCCULT, the two innermost routines, EHIDE and VHIDE, perform this kind of marking and
splitting. The routine VHIDE takes two arguments: the vertex, V, which is to be marked as hidden and

the tece, F, that is known to hide V; the rouline then simply calls EHIDE for each potentially visible

-5} -

Lesmaka A

43 Edge-Edge and Face=-Vertex Comparing, OCCILT

edge of V's perimeter. EHIDE in turn takes three arguments: an overface, F, an edze, F, and one
vartex, V, of that edge which is known to be hidden by F. EHIDE then checks to see wnather or not E
leaves its overface, F, there are three basic cases: (i) E does nol leave F, so it 18 marked as hidden
and VHIDE is applied to the vertex OTHER(E,\V); (ii) E does leave overface F by crossing under 2
~-FOLDED edge which provides a new overface for EHIDE to check; or (iii) E ieaves F by crossing under
a folded edge, so EHIDE splits the original edge, E, and the folded edge to form a T-joint {explained
below) marking the hidden portion of E as hidden and leaving the remaining portion of E potentially

visible.

A T=joint occurs in the image, when a folded edge hides a second edge that i furthar away
from the camera. When OCCULT discovers a T=joint, both edges are ESPLIT and twa naw varticar 2rq
created the further one is called the JUT, Joint-Under=T, vertex the nearer one 15 calted the JOT,

Joint-Over=T, vertex. Juts and Jots point at each other using a temporary link field named TJOINT.

FIGURE 4.4 - T-JOINT DIAGRAM.

(The diagram 1s a view from shghtly to the left and below the camera from which JOT and JUT anpear concidert

FOLD

There are several techniques for finding hidden starting places, tha major techriques involve
doing an edge-edge or a face-vertex compare using all the potentially visible faces, edgas and
vertices; the minor ‘echniques include the concave corner cull and the hidden on last hide cull

4.3 Edge-Edge and Face-Vertex Comparing.

in OCCULT, two particular compares stand out as most basic, the aedge-ndga compara and the

face-vertex compare which are implemented ir procedures named COMPEE and COMPFV, respactively.

43 Edge-Edge and Face-Vertex Comparing. OCCuULT

The edge-edge compare routine, COMPEE, determines whether or not two edges intersect in the 2-D
image coordinatos, XPP and YPP. The basic edge-edge intersection test requires passing two
opposition conditions: the ends of one edge must be in the opposite halfplane with raspact to the line
containing the other edge and vice versa. Halfplane opposition is chacked by two evaluating the normal
equation of the line using the edge coefficients AA, BB, CC and the vertex coordinates XPP and YPP.
Consequently, it can be assumed thal the two edges cross if the following expressions both return
negative values:
FLAG] - (RR(ELIXPP (PVT(E2)) + BB(EL}4YPP(PVT(E)) + CCIELD)
YOR (RA(E1) ¢XPP (NVT(E2)) + BB(EL)#YPF (NVT(E2)) + CCIELN);
FLAGZ + (RA(E2)«XPP(PVTIEL)) + BB(E2)3YPP (PYTI(EL)) + CCHE2N)
XOR (RA(E2) #XPP(NVT(EL)) + BBIEQ)#YPP (NVT(EL)) + CCIE2Y)
The infix operator XOR (exclusive OR) is for toggling the sign bits in the same fashion as a

multiplication would in more conventional ALGOL. When the crossing condition is true, the locus of

intersection can be computed by sclving two equations in two unknowns:

e . (RR(EL) .RB(E2) - RR(EDIBBIEL));
PPEVY . (CC(EL) *BB(L2) - CCIEZ)<BBI(EL))/THP;
YPP(V) « (RR(E1Y :CCED) - RA(E2):CC(EL)}/THP;

An alternate edge-edgo compare method would be to solve the two equations in two unknowns
first and then to see whether the intersection locus is interior to the line segments of both edges.
Sinco, disjoint pairs of edges occur much more frequently than intersecting edges, the alternate method
requires more floating arithmetic on the average than the first method which can discover about half of
the disjoint cases by computing FLAGL. Furthermore the alternate method does not lend itself to
distinguishing the almost touching cases which must be nudged to be disjoint. The OCCULT design
depends on coercing edgas to intersect at one unique point or not at all, the steps listed in Box 4.4
handle the spacial cases requiste to such a crossing discipline. The nudge is done in image coordinatas,

so the accuracy of world coordinates is maintained.

BOX 4.4 Edge-Edge Compare Steps.
i. Tast for Idantity: same edge twica.
ii. Test for Topological connection: Edges with vertex or T=joint in common.
iii. Test for span Overlap in XPP and YPP: To prevent nasty collinear cases.
iv. Compare for crossing: Opposition Tests and Crossing Solver.
v. Nudge {Move off line, towards right and down).

-53 «

i
¢

-

“ L ¢ .

43 Edge-Edge and Face-Vertex Comparing. OCCULT

The face-verfex compare routine, COMPFV has fwo parfs: Z-depth compare for verfex under
the plane of the face, and 2-1) within compare for vertex enclosure by fhe face perimeter The first
compare is done by evaluafing fhe Z-depth of the vertex with respect to the plane of the face. The
cecond compare tests whother the vertex falls outside of the face with respect to any of the edges of
the face perimefer, since faces are convex and since polyhedra are orienfed fhe o-eriy directed

edges coefficient are available. The Z-depth fest is performed first because it is quicke .

Two very simple buf imporfanf kinds of hidden line eliminafors (fhaf almost work) are based on
combining edge-edge comparing or face-verfex comparing with coherenf object hiding. In fhe
edge-edge compare mefhod all the edges (or even merely all fhe folded edges) of the image are
compared wifh each ofher, Nx(N=1)/2 compares, for crossings; when a crossing is found a T=joinf is
made and fhe hidden porfion of fhe under edge is given fo an EHIDE roufine. In the face-vertex
compare mefhod all fhe vertices are compared with all fhe faces, (tace counf)*(vertex counf) compares,
for enclosure and covering; whan a verlex is found hidden under and within a tface iIf is given fo a
VHIDE routine. Together the EE-compare method and fhe FV-compare mefhod form one slow buf sure
hidden line olimination algorithm; alono the EE-method fails to detect hidden objects with edges that
don't intersect any edges of the occluding object as in the left panel of Figure 4.5 which shows fwo
bricks of the same size but one behind fhe other. Likewise the FV-method fals fo delect hidden
objects in scenes where no verfex of the object is surround or covered by a face, right panel of

Figure 45.

In OCCULT, the edge-edge compare is done alter recursive windowing has isolated a reasnnably
small number of edges (fwaelve). A face-vertex compare is done only if any pofenfially visible verfices
remain affer all fhe other techniques have finished; in particular face=vertex comparing is only done

when the case illustrated in the left panel of Figure 4.5 actually occurs and the set ot faces that are

used are only fhe faces that intersect the recursive window fhat confains the verfex.

4.4 Recursive Windowing. OCCuLY

FIGURE 4.5 - EE AND FV UNDETECTED HIDDEN OBJECT CASES.

EDGE-EDGE FAILURE CASE. FACE-VERTEX FAILURE CASE.

4.4 Recursive Windowing.

Recursive Windowing is a two dimansional spatial sorting technique for partitioning the faces,
edges and vertices associaled with a rectangular region called a window into two subwindows. The
technique is applied recursively until a desired condition is achieved. The usual termination condition is
that the population of entites in the window becomes sufficiently low or that the window becomes
extremely small. The idea is implement in a routine called ESORT which resembles the hidden line
oliminators of (Warnock 68) and (Sutherland 69). However ESORT is unique in that it maintains a data
structure which allows edges to be split during the sort. The potentially nasty fixups are accomplished
using a data structure that maintains a coherent image of both windows and edges. Metaphorically, the
data structure is a cloth with a warp of windows and a woof of edges, where each warp thread is

bound to a woof fiber by a bead.

Window Structure. The sort window itself is a twelve word node which contains data fields
named XLO, XHI, YLO and YHI which specify the boundary of the window and data fields named
PENCNT, SURCNT, EDGCNT and VCNT which specify the number of faces that penetrate the window,

the number of faces that surround the window, the number of edges that pass through the window and

the number of vertices that fall within the window, respectively. The window contains link fields to

;
.
i
l
|
I
|

<

4.4 Recursive Windowing. OCCULT

hold pointers to the head ci the pan-tace list (penetrating faces), the sur-tace list (surrounding faces),

the vertex list, the head and tail the edge list and a pointer to its antecedent window.

Bead Strueture. A bead is a two word node that contains four pointers and which represents
one instance of an edge passing through a window. Each edge has a list of beads representing an
ordered list of the windows through which it passes; and each window has a list of beads representing
a list of the odges it contains. The link fields named WND and EDG of a bead, point to the particular
window and the particular edge to which the bead belongs. The link fields named WNBL and EDBL of a

bead contain the necessary links for the window's bead list and for the edge's bead list.

BOX 45 RECURSIVE WINDOWING ROUTINES.
I MKSWN Make Sort Window.
2. PSHSWN Push Sort Window.
3 PENSUR Update penetrator and surrounder lists.
4 POPSWN Pop Sort Window.
5. BLED Bead List Edil.

The actual sort is composed of five routines (Box 4.5) which parform all the necessary creations
and alterations to the window/edge/bead data structure. Initialization is done by the make sort window
routine, MKSWN, which places all the potentially visible faces, edges and vertices into the first sort
window along with the population counts and the extreme location of vertices in the positive and

negative, XPP and YPP directions.

If the population counts of the window are too large, the pushdown sort windowing routine,
PSHSWN, creates a new window node, places the node into the sort-window pushdown list, halves the
original window's rectangle (spliting the longer sides) leaving the left {or upper) half of the rectangle
in the old window node and allocating the right (or lower) half to the new window node. Next the
vertex list is partitioned, each vertex falls into only one or the other window. Next the original
window's bead list of penetrating edge is scanned, each edge must fall into one or the other or both
windows. If an edge falls into both windows then a new bead is made and is placed in order into the

bead list of the edge so that the beads of every edge indicate window penetrations in order from

upper=left=most to lower=right-most. Finally PSHSWN applies PENSUR to each of the two windows.

44 Raecursive Windowing. OCCULT

The penetrator and surrounder face ro.tine, PENSUR, scans the new bead lists of penetrating edges of
the two subwindows and marks the faces oi those edges as penetrators and places them on the pen-list
of the new window; next the routine scans the old penetrator list of the parent window and tests {(and
clears) the markings. Unmarked faces must be either surrounders or outsiders; the surrounders are

placed in the sur-list of the new window.

If the populations of the window are sufficiently low the hidden line eliminator (or the body
intersector, Chapter 5) processes the window (does the adge-edpe compares) and cals the pop sorl
window routine, POPSWN. POPSWN zeroes the window field, WND, of beads of the window as an
indication that the window is dead and so are its beads; dead beads arw returned to free storage by
the BLED routine explained below. Next the POPSWN scans the vertices or the window and places the
pen-list and sur=list pointers of the window into temporary fields of each vertex; this trick preserves
the results of the recursive window sort for the sake of possible face-vertex comparing. Finally the

window node is popped off the pushdown window list and returned to free storage.

During both hidden line elimination and body intersection, edges are split in order to isolate the
portion that is hidden or in order to create face piercing points. When an edge is split its bead list of
windows is also split by means of the bead list edit routine, BLED. Since beads of an edge are ordered
upper-left to lower=right; the BLED routine scans the beads for the window into which the newly
:reated sphi vertex falls within; the vertex is then placed on that window's vertex list and a new bead
is created (since both the old and the new edges must have beads in the window that contains the split)
and the old bead list is split. Dead beads that are found while scanning the bead list are returned to

free storage.

Allhough the link manipulations are complicated to recite, the essential point is that both
windows and edges can be split without losing their topological connectedness, which gives one a tool
for reducing an Nesquared spatial computation info an N-log=N computation. The present
implementation is coded in PDP-10 machine code, an ALGOL publication version will appear in a

forthcoming technical report which is beyond the scope of this paper.

-57 -

. T L L Ty, AN U SRy 2

F

- Gi U G e e S e G s e S D B D W e o

45 Photometric Modaling and Video Generation

45 Photometric Modeling and Video Generation.

The light scattering properties of ordinary surfaces can be modeled by

thinking of the surface as composed of many liltle mirrors. The orientation of

FIGURE 46 - EXAMPLE OF VIDED SYNTHESIS.

£
5
=
E
=
=

OCCULT

each mirror is described by two angles, its tilt from the nermal vestor of the surface and its pan about

the normal vector with respect to a specified reference vector in the langent plane of the surface. For

a perfect reflecting surface all the differential mirrors have a zero pan and tilt: for isotropic

conventional surfaces the statistical distribution of pan orientations is flat and the distribution of tilt

orientations is a blip function; and for a perfect isotropic Lambert surfaces both the pan and tilt

distribulions are flat.

After the visible faces have been assigned intensity values, a conversion from an OCCULT mosaic

image to a raster image is done by an auxiliary program called MKVID, make video. MKVID resembles

a Gouraud (71) and Watkins(70) hidden line eliminalor in that it fills scan line by linear interpolation of

segments betveen edges of the mosaic which are in their turn linear interpolations batween vertices.

ST Y

6 Pertormance of QCCULT anc! Relaled Work. COCCULT

4.6 Performance of OCCULT and Related Work.

Ten hidden line elimination techniques were recently surveyed in (Sutherland, Sproull ‘and
Schumacker 1973), which afler emphasing that hidden line eliminatior can be viewed as a sorting
problem concluded with the romark thal future irsplemeniations should be based on exploiting frame
-oherence, object coherence and combinations of the existing techniques. However the survey paper
might be inadquate for a would-be implementer who should consull the textbook by (Sproull and
flewman 73) for detailed oxplainations of the Warnock method and the Watkins method Original
racaarch raeporls on hidden line elimators include: (Roberts 63), (Appal 67), (Warnoek 68), (Warnock

69), (Watkins 70) and (Archulela 72).

Inspite of all the aclivity and surveying of the literature, no quantitative commensurate study of
the differenl methods has been attempted In particular, the performance tables at the end of
(Sutherland et al 1973) are subjective evaluations rather than experimental results of benchmark
problems, as he authors clearly state. Conlinuing in the same subjective fashion, OCCULT is fast in
that it can generate simple scenes (200 edges) of blocks in less than a second; the arm animation (524
adpes) requires four 1o six seconds; the starship Enferprise (1230 sdges) requires ten o iwelve

seconds; and the largest scenes ' ** fit in core (4000 edges) take from thirty to sixty seconds.

-59 -

50 Introduction to Polyhedron Intorsection.

5.0
5.1
5.2
53
5.4
55
5.6

SECTION 5.

POLYHEDRON INTERSECTION.

Introduclion to Polyhedron Intersectior.

intersection Geometry.
Interseclion Topology.

Special Cases of Inlerseclion.
Face Convexity Coercion.

Body Cutting.

Performance and Related Work.

5.0 Introduction to Polyhedron intersection.

POLYHEDRON INTERSECTION.

The intersection, union, and sei differences of two solid polyhedra can be computed by

combining a body intersection procedure called BIN with the EVERT primitive, as Figure 5.1 iiiustrates.

The body intersection procedure is important for three reasons: first, it is a general and conceptually

elegant construction operator; second, it can be vsed for spatial modeling in collision detection and

trajactory planning for manipulators and vehicles; and third, it can be used fo localize an object in 3-D

space from a soquence of silhouotlo viows. The intersoction algorithm consists of two parts: first,

there is a geometric part in which all the faces and edges are compared with each other for potential

face/edge intersections called piercing points; and second, thera is a topoiogical part in which the

results are "copied off* of the given polyhedra; the resuits may consist ¢ zero, one or many

polyhedra. In the following, the term "operands” refers to the sets of polynedra given to BIN as

arguments and the term "result” refers to the set (possibly empty) of polyhedra produced by BIN.

Y S

- TP T T T

D\l SRR A L W"‘?nwvw Bl

50

Introduction lo Polyhedron intercachion

FIGURE 5.1 - POLYHEDRON INTERSECTION, UNION AND SUBTRACTION.

W0 POLYHEDRA

INTERSECTION
t’f“"‘—
SN
/ I‘i\ A
¥

BINISTARCY

|

TAR)EVERTI(C

\/ 1

POLYHEDRON INTERSECT

eN

BIN(EVERT(STAR),CYLN)

BIN(STAR,EVERT(CYLN))

—

———

g

POLYHEDRON INTERSECTION.

5.1 intersection Geometry.

5.1 Intersection Geometry.

Conceptually, the geomefric part of the polyhedron intersecfion algorithm, BIN, consists of
comparing each face of one oparand with every edge of the other operand and vice versa. In practice
the potentially N-squared compares are avoided by using the same recursive window partition sort that
was used in the hidden line eliminafor, OCCULT, Section 3. Ignoring the racursive windowing for a
moment, the innermost face-edge compare of BIN consists of four steps: opposition, intersaection,

enclosure and fission.

FIGURE 5.2 - FACE PIERCING GEOMETRY.

-

E

Piarcing Point Within F. Piercing Poinf Qutside F.

Opposition Test. Given a faco F and an odge E, first, the endpoints of ihe edge are checked to
see whethor they are in opposife halfspaces with respect to the plane of the face. In terms of vector
geometry, the dot product of the face vecfor and each vertex vector is taken and the signs compared;
different signs indicate that the vertices are in different halfspaces. The opposition tesf requires six

multiplications. [utersection Locus. The locus of the point where the edpe pierces fhe plane of the

face is computed (four multiplications). Enclnsnre Test. Next the edge is tested to see if 1t actually
passes thru the interior of the face. In BIN, this test exploits the face convexify restriction The fest
consists of crossing neighboring pairs of vectors radiating from the face-plane piercing=-point fo each
vertex of the given face and testing for a sign change, Figure 5.2. Since only one componant of the
cross product needs fo be evaluated, the fest requires only two multiplicafions par ndga of the face
whoes piane is pierced. [dge Fission. If the edge pierces the face, then the edpe 15 spht (using fhe
ESPLIT and BLED routines) forming a new varfex, called a face piercing verfex A femporary link of
the vertex node (field CW, left half of word 7) is set to point at the face that was pierced and the PEC

link of the new vertex is set to point at fhe one of its two edges that is external to the surface.

260 =

5.2 intarsection Topology. POLYHEDRON INTERSECTION.

5.2 Intersection Topology.

After the face=-pisrcing vertices have been made (assuming no pathological cases, Section 5.3),
the edges and vertices of the result can be created in relation 1o the faces, edges, and vertices of the
oporands. The relation between the operands and the results is established in terms of two kinds of
edges: interior edges and surface edges as illustrated in Figure 5.3. Surface edges correspond to the
intersections of pairs of operand faces and interior edges correspond to edges of one cperand that are
enclosed inside the surface of the other operand. Surface edges always form connected [oops. In
Figure 5.3, two solid prisms are being intersected, on the lefl the surface edges of the intersection (a

surface loop) is intensified in heavy lines, on the right the interior edges are intensified.

FIGURE 5.3 - THE SURFACE AND INTERIOR EDGES OF INTERSECTION.

1

\ | L |
| b
\ .

i i I
- | L
| \

Surface Edges of intersection. Interior Edges of Intersection.

]
|
l"w/
J

In similar fashion there are surface vertices and interior verlices of the resull. Each
face=-piercing vertex of the operands has a corresponding surface vertex in the result which is always
a trihedral corner. The operand/result correspondence is maintained in a temporary link field named
ALT: the alternate vertices and edges that belong to the resu't are created by two topological trace
routines: the make surface, MKSURF routine, which creates surface edges and vertices of the resuit by

tracing surface loops starfing from an “un-AlLTered" face piercing vertex. At each face-piercing
vertex, MKSURF applies the ETRACE routine to the single interior edge of the trihedral corner.
ETRACE creates edges and vertices interior to the result by tracing the edge graph bounded by

face-piercing vertices. The now result edges are temporarily linked (PFACE and NFACE) to the old

-63 -

N 2

s

i,.a

5.2 Intersection Topology.

POLYHEDRON INTERSECTION.

operand faces. The MKSURF and ETRACE routines are followed by three steps that fix up tha surface
wings, interior wings and face nodes so that a complete winged edge polyhedral result 15 legally

formed.

The interior trace routine is irivial = all the links are readily accessed using the ECCW and
OTHER primitives on the operand poly“edra. The surface trace routine is made easy by implementing a
procedure, NEXTPV, fo refrioeve the nex! face-piercing vertex about a surface loop. The NEXTPV
procedure, given below, is based on the obseraviion that the intersection of two convex faces is one
line segmen! and either one face is piarced twice by two different edges of the other face; or each

face is pierced once by one edge ci the other face, Figure 5.4,

FIGURE 5.4 - FETCH NEXT FACE-PIERCING VERTEX.

Fl Fl
.{'_ V2 Vi V2
F2 2
(S _/ o

Edge of F1 pierces F2 al V2,

Edge of F2 pierces F| at V2.

COMMENT PETURN THE NEXT FRCE PIERCING VEXT OF R SURFACE LOOP;
INTEGER PROCEOURE NEXTPV (INTEGER F2,V1);
BEGIN "NEXTPV®
INTEGER F1,VZ;
Fi « CHIVD), COMMENT FACE PIERCEO BY VI
COMMENT OOES AN EDGE DF Fi PIERCE F2 RT THE OTHER PIERCE-VERTEX VZ;
E « EO « PED(F1);
00 IF F2 = CH(V2VCCWI(E,F1)) THEN RETURN(V2) UNTIL EP - (EECCHIE,F1)),
COMMENT OOES AN EOGE OF F2 PIERCE F1 AT THE OTHER PIERCE-VERTEX V2,
E « E0 « PEOUF);
00 IF F1 = CH(V2.VCCHI(E,F1}) » V2=Vl THEN RETURN(V2) UNTIL EO = (FeLCCUIE F2)),
COMMENT FRTAL CONSISTENCY ERROR - SOMETHING WRONG IN FRCE/EOGE CCHPARE PASS;
RETURN (D) ;
ENO "NEXTPV";

Fix up step-| places vertex and wing pointers in all the interior edges. An intericr edge is
distinguished by its non-zero ALT link. The new vertices are provided with a first edge, PED(VNEW),

it it be lacking. Fix up step-2 wings together the surface vertex tridedral corners Since by good luck

- 64 -

53 Special Cases of Intersection POLYHEDRON INTERSECTION.

all surface verlices are necessarily trihedral, the edges can be passed to the WING primitive for
oriented linking, in any order. The two surface wings of a surface verlex were stored in the NED and
PED links by MKSURF; the inward wing can be relrieve as the FED(ALT(U)). Surface verlices are
distinguished by their ALT verio« being marked as a piercing vertex. Fix up slep-3 replaces the alien
faces of the result with native faces. This is done by scanning the edge ring of the body, testing the
two faces of each edge to see if they belong o the resuit body, and if a face doesn't belong it is
replaced by a new one. Faco replacemenl, as ususal, requires clocking around a face perimeler and
changing the appropriate face link in each edge. A final marking {race assigns one body node to each

separate connected graph of faces, edgos and vertices.

FIGURE 5.5 - EXAMPLE GF A FACE HOLE FIXUP.

5.3 Special Cases of Intersection.

In order of difficulty from easy to hard, the four special cases thal must be ian-lled are
non-intersection, extremely shorl edges, face holes and coincident entities. Nan-lntersection. When
the face-edge compare (by recursive window space sort) returns no piercing points, it implies that the
surfaces of the given polyhedra do not intersect and that a further test is needed to determine
whether the operands are disjoint (and so the intersection be empty) or whether one operand contains
the other. I'arr loles. Because EVERTed solids are allowed, one polyhedron can cut a hole in a face
of the other without inlersecting any ot the eodges of that face, which would fool the copy-irace. So as
a preliminary step to BIN, all the surface loops are traced and checked to make certain they cross
more than one face. f a one face surface-loop is found, the face is pyramided to a vertex interior to

the surface=loop. A face hole tix up s illusirated in Figure 5.5, the middle pane! of the figure shows

-65 «

iy

55 Body Cutting. POLYHEDRON INTCRSECTION.

that two faces of the cubic prism ware pyramided, the right panel of the figure shows the result afier

facae-convexity coercion. Short I'd;cs. An application of BIN can create adges with almost zero length,

which require an exira pass fo find and delete. Coincident lntities. An occasional edge that lies

axactly in the plane of a face can be nudged off the plane a litlle resulting in extremsly short edges
which are laler removed. Although it is meaningful to iry to intersect polyhedra which have many
faces, adges and vertices that are exactly coincident, the present implementation loses track of inlarior

and exterior when too many nearly zero length edges are made.

5.4 Face Convexity Coercion.

Since, both the body intersecier, BIN, and the hidden line eliminator, OCCULT, are restrictad to
convex faced polyhdera; it is essential to have a routine that detects and subdivides the concave faces
of a given polyhedron. The make convex routine, MKCNVX, reduces the concave faces of a body into
reasonably small number of convex faces The method consists of two sleps: first, the face is broken
down into triangles and second, lhe longest unnecessary newly made edges are removed. Tha
reduction to triangles step is recursive: the pointiest extrema vertex of a face, V0, is lopped off, if no
other vertices of the face are on the same side of the line segment belween VO's immediate
neighboring vertices: OTHER(ECCW(VO,F),V0) and OTHER(ECW(VO,F),V0). Otherwise the face is split,
MKFE, using the vertex closest o VO that violates VO's potential lop line. An extrema verlex is one
that touchs the smallest circumscribed rectangle whose sides are parellel to the coordinate axes; the

pointiest vertex is the one with the largest cosine.

FIGURE 5.6 - EXAMPLES OF FACE CONVEXITY COERCION.

5.5 Body Cutting.

Body cutling is the operalion of dividing an arbitrary polyhedron info sels of parts above and

-66 -

56 Performance and Related Work. POLYHEDRON INTERSECTION.

below a given cutting plane, as has already been illustrated in Figure 3.8. Although body cutting might
be done by subtracting a very large thin rectangular prism, the process is sufficiently important to
merit a separate implementation which neveriheless resembles the subtraction. First, all the edges of
the given body are compared with the given cutling plane and piercing vertices are formed in pairs
(one vertox tor each side ot the cut). Between the culling=plane vertex=pairs are zerc length edges
which are placed into a special temporary list. Next, pairs of cutting=plane vertices (belonging to the
came face and dest ed to be in the same halt-space) are MKFEed together splitting the faces with
culting-plane edge pairs (one edge tor each side of the cut). Between the culting-plane edge-pairs
are zero area faces. Finally all the zero length cutting plane edges are KLFEed it their PFACE and
NFACE are difterent or UNGLUEed if their PFACE and NFACE are the same. In this circumstance an
ecge having the same NFACE and PFACE is a wasp edge. The simplicity of the body cutling

implementation is do to the power ot the UNGLUE Euler primitive.

5.6 Performance and Related Work.

Curious to relate, | have tound no example in the literature of a genaral polyhedron intersection
method. Maruyama's (72) method is a collision detector rather than a intersector, because he does not
attompt 1o genorate the polyhadra of intersection; however, his algorithm does resembie the geometric
tirst prase ot BIN and might have been extended for generating new solids. The intersection methods
of Braid (73) are restricted to particular combinations of six volume elements which comprise a useful

subset of cases for mechanical drawing.

The version of BIN is implemented on a PDP-10 (with 2 microsecond core memory) can
construct the intersection of simple objects such as a pair of cubes in less than a quarter of a second;
the intersection of a couple ot twenty sided cylinders in about two seconds; the intersection of two
horse silhouatte cones takes (chapter 9) about fifteen seconds; and the intersection of two silhouette

cone intersactions can take up to a minute.

.67 -

- —

6.1 A Geometric Feedback Vision System. VISION THEORY.

SECTION 6.

COMPUTER VISION THEORY.

6.0 Introduction to Computer Vision Theory.
6.1 A Geometric Feedback Vision System.
6.2 Vision Tasks.

6.3 Vision System Design Arguments.

6.4 Mobile Robot Vision.

6.5 Summary and Related Vision Work.

6.0 Introduction to Computer Vision Theory.

Computar vision concerns programming a computer to do a task that demands the use of an
image forming light sensor such as a television camera. The theory | intend to elaborate is that
general 3-D vision is a continuous process of keeping an internal visual simulator in sync with
perceived images of the external reality, so that vision tasks can be done more by reference to the
simulator's model and less by reference to the original images. The word theory, as used here, means
simply a set of statements presenting a systematic view of a subject; specifically, | wish to exclude the
connolation that the theory is a natural theory of vision. Perhaps there can be such a thing as an

artificial theory which extends from the philosophy thru the design of an artifact.
6.1 A Geometric Feedback Vision System.
Vision systems mediate between images and world models; these two extremes of a vision

system are called, in the jargon, the hottom and the top respectively. In what follows, the word

image will be used to refer to the notion of a 2-D data structure representing a picture; a picture

-68 -

6.] A Geometric Feedback Vision System. VISION THEORY.

being a rectangle taken from the pattern of light formed by a thin lens on the nearly flat photoelectric
surface of a lelevision camera's vidicon. On the other hand, a world inodel is a data structure which is
supposed to represent the physical world for the purposes of a task processor. In particular, the main
point of this thesis concerns isolating a portion of the world model (called the 3-D geometric world
model) and placing it below most of the ofher entities that a task processor has to desl with. The

vision hierarchy, so formed, is illusirated in box 6.1.

ﬁa?)x 6.1 VISION SYSTEM HIERARCHY. \

Task Processor

|
Task World Model

The Top -]
3-D Geometric Model

I
k The Bottom — 2-D Images ‘

Between the top and the bottom, between images and the task world model, a general vision

systeam has three distinguishable modes of operation: recognition, verification and description.
Recognilion vision can be characterized as bottom up, what is in the picture is determined by exiracting
2 set of features from the image and by classifing them with respect {0 prejudices which must be
tgught. Verificalion vision is top down or model driven vision, and involves predicling an image
followed by comparing the predicted image and a perceived image for differences which are expected
but not yet measured. Descriplive vision is bottom up or data driven visicn and involves converting the
image into a representalion that makes it pocsihle (or easier) to do the desired vision task. | would
like to call this third kind of vision "revelation vision" at times, although the phrase "descriptive vision"

is the term used by most membaers of the compuler vision community.

Box 6.2 THREE BASIC MODES OF VISION.

1. Recognition Vision = Fealure Classification. (bottom up into a prejudiced top).
2. Verification Vision = Model Driven Vision. (nearly pure tcp down vision).
3. Descriptive Vision = Data Driven Vision. (nearly pure bottom up vision).

There are now enough concepis to outline a feedback system. By placing a 3-D geometric

model between top and botlom; recognition vision can be dose mapping 3=D (rather than 2-D) festures

h

e

6.1 A Geometric Feedback Yision System. VISION THEOQRY.

into the task world model with descriptive vision and verification vision linking the 2-D and 3-D models
in a relatively dumb, mechanical fashion. Previous attempts to use recognition vision, to bridge directly
the gap between 2-D images (of 3=D objects) and the task world model, have been frustrated because
the characleristic 2-D image features of a 3-D objec! are very dependent on the 3-D physical
processes of occultation, rotation and illumination. It is these processes that will have to be modeled
and understood before the features relevant to the task processor can be deduced from the pe:ceived

images. The arrangement of these elements is diagramed below.

ﬁ)x 6.3 BASIC FEEDBACK VISION SYSTEM DESIGN. \

Task World Model

t

RECOGNITION
t

3=D geometric model
t l
DESCRIPTION VERIFICATION
t {

\ 2-D images)

The lower part of the above diagram is the feedback loop of the 3-D geometric vision system.

Depending on circumstances, the vision system may run almost entirely top-down (verification vision)
or bottom=up (revelation vision). Verification vision is all that is required in a well known predictable
anvironment; whereas, revelation vision is required in a brand new (tabula rasa) or rapidly changing
environment. Thus revelation and verification form a loop, bottom=up and top-down. First, there is
revelation that unprejudically builds a 3-D model; and second, the model is verified by testing image
features predicted from the model. This loop like structure has been noted before by others; it is a
form of what Tenenbaum (71) called arcommodation and it is a form of what Falk (69) called heuristic
vision; however | will go along with what | think is the current majority of vision workers who call it

feedhack vision.

Completing the design, the images and worlds are constructed, manipulated and compared by a
variety of processors, the topmost of which is the task processor. Since the task processor is expected

to vary with the application, it would be expedient if it could be isolated as a user program that calls

6.2 Vision Tasks. VISION THEORY.

on utility routines of an appropriate vision sub=system. Immediately below the task processor are the

3-D recognition routines and the 3-D modeling routines. The modeling routines underlie most

everything because they are used to create, aller and access the models.

Box 6.4 PROCESSORS OF A 3-D VISION SYSTEM.
0. The task processor. 4, Image analyser.
1. 3=D recognition. 5. Image synthesizer.
2. 3-D modeling routines. 6. Locus solvers. f
3. Reality simulator. 7. Comparators: 2D and 3D.

The remaining processors include the reality simulator which does mechanics for modeling
motion, collision and gravily. Also there are image analyzers, which do image enhancement and
' conversions such as converling video rasters info line drawings. There is an image synthesizer, which

does hidden line and surface elimination, for verificalion by comparing synthetic images from the model

v -

with perceived images of reality. There are three kinds of locus solvers that compule numerical
descriptions for cameras, light sources and physical objects. Finally, there is of course a large number

of (at least ten) different compare processors for confirming or denying correspondences among

entities in each of the different kinds of images and 3=0 models.

6.2 Vision Tasks.

The 3-D vision research problem being discussed is that of finding out how to write programs

that can see in the real world. Related vision problems include: modeling human perceplion, solving

visual puzzles (non-real world), and developing advanced automation techniques {ad hoc vision). In
order to approach the problem, specific programming tasks are proposed and solutions are sought,
however a programming lask is different than a reseach problem hecause many vision tasks can be

done without vision. The vision solution to be found should be able to deal with real images, should

I include the continuity of the visual process in time and space, and should be more general purpose and
less ad hoc. These three requirements {realily, confinuity, and generality) will be developed by

surveying six examples of computer vision tasks.

6.2 Vision Tasks. VISION THEORY.
BOX 6.5 SIX EXAMPLES OF COMPUTER VISION TASKS.
Cart Related Tasks. Table Top Related Tasks.
1. The Chauffeur Task. 4. Turntable Task.
2. The Explorer Task. 5. The Blocks Task.
3. The Soldier Task. 6. Machine Assembly Tasks.

First, there is the robot chauffour task. In 1969, John McCarthy asked me to consider the vision
requirements of a compuler controlled car such as he depicted in an unpublished essay. The idea is
that a user of such an automatic car would request a destination; the robot would select a route from
an internaily stored road map; and it would then proceed to its destination using visual data. Tha
problem involves representing the road map in the computer and establishing the correspondence
between the map and the appesrance of the road as the automatic chautfeur drives the vehicle along
the selected route. Lacking a computer controlled car, the problem was abstracted to that of tracing a
roule along the driveways and parking lots that surround the Stanford Al. Laboratory using a
television camera and transmitter mounted on a radio controlled electric cart. The robot chauffeur task
could be solved by non-visual means such as by railroad like guidance or by inertial guidance; to
preserve the vision aspect of the problem, no parlicular artifacts should be required along a route

(landmarks must be found, not placed); and the extent of inertial dead reckoning should be noted.

Second, there is the task of a robot explorer. In (McCarthy 1964) there is a description of a
robot for exploring Mars. The robot explorer was required o run for long periods of time without
human intervention because the signal fransmission lime to Mars is as greal as twenly minutes and
because the 23.5 hour Martian day would place the vehicle out of Earth sight for twelve hours at a
time. (This latter difficully could be avoided at the expense of having a sel of communication relay
satellites in orbit around Mars.) The task of the explorer would be to drive around mapping the
surface, looking for interesting features, and doing various experiments. To be prudent, a Mars
explorer should be able to navigate without vision; this can be done by driving slowly and by using a

lactile collision and crevasse detector. |' the television system fails, the core samples and so on can

sli'l be collected at different Martian sites without unusual risk o the vehicle due 1o visual blindness.

6.2 Vision Tasks. VISION THEORY.

I |

The third vision task is that of the robot soldier, tank, sentry, pilot or policeman. The problem

has several forms which are quite similar to the chauffeur and the explorer with the additional goal of

doing something to coerce an opponent. Although this vision task has not yet been explicitly attempted
at Stanford, to the best of my knowledge, the reader should be warned that a thorough solution to any

of the other tasks almost assures the Orwellian technology to sclve this one.
Fourth, the turntable task is to construct a 3-D model from a sequence of 2-D television images
taken of an object rotated on a turntable. The turntable task was selected as a simplification of the

explorer task and is an example of a nearly pure descriptive vision task. y

Fifth, the classic blocks vision task consists oi two parts: first convert a video image into a line

drawing; second, make a selection from a set of predefined prototype models of blocks that accounts
for the line drawing. In my opinion, this vision task emphasizes three pitfalls: single image vision, line
drawings and blocks. The greatest pitfall, in the usual blocke vision task, is the presumption that a
single image is lo be solved; thus diverting attention away from the two most important depth
perception machanisms which are motion rarallax and sterec parallax. The second pitfall is that the
usual notion of a perspective line drawing is not a natural intermediata state; but is rather a very
sophisticated and platonic geometric idea. The perfect line drawing lacks photometric information; even
a line drawing with perfect shadow lines included will not resemble anything that can readily be gotten
by processing real television pictures. Curiously, the lack of success in deriving line drawings from
real television images of real blocks has not dampened interest in solving the second part of the
problem. The perfect line drawing puzzle, was first worked on by Guzman (68) and extended to
perfect shadows by Waltz (72); navertheless, enough remains so that the puzzle will persist on its own
merits, without being closely relevant to real world computer vision, Even assuming that imperfect line
drawings are given, the blocks themselves, have lead such researchers as Falk (69) and Grapa (73) to
corcentrate on vertex/edge classification schemes which have not been extended beyond the blocks
domain. The blocks task could be rehabilitated by concentrating un photometric modeling and the use

multiple images for depth percaption.

-73 =

ol

6.3 Vision System Design Arguments. VISION THEQRY.

Sixth, the Stanford Artificial Intelligence Laboratory has recuntly (1974) begun work on a
National Science Foundation Grant supporting research in automatic machine assembly. In particular,
effort will be directed fo developing techriques that can be demonstrated by automatically assembling a
chain saw gasoline engine. Two vision questions in such a machine assembly lask are, where is the
part and where is the hole; these questions will be initially handled by composing ad hoc part and hols

detectors for each vision step required for the assembly.

The point of this task survey was to illustrate what is and is not a task requiring real 3-D vision;
and to noint out that caution has fo be laken to preserve the vision aspects of a given task. in the
Jsual course of vision projects, a single task or a single ool unfortunately dominates the research; my
work is no exception, the one tool is 3-D modeling, and the task that dominated the furmative stages of
the rasearch is that of the robot chauffeured cart. A better undersianding of the ultimate nature of

computer vision can be obtained by keeping the several tasks and the several tools in mind.

6.3 Vision System Design Arguments.

The physical information most directly relevant fo vision is the location, extent and iight
scatiering properties of soiid opaque objects; the location, orientation and projection of the camera that
takes the pictures; and the location and nature of the light that illuminates the world The
transformation rules of the everyday world that a programmer may assume, a priori, are the laws of
physics. The arpuments against geometric modnling divide into two categories: the reasonable and ke
intuit ve. The reasonable arguments altack 3-D geometric modeling by comparing it to another
modeling allernative, some of which are listed in Box 6.6. Actually, the domains of efliciency of the
possible kinds of models do not greatly overiap; and an artificial intellect will have some portion of

each kind. Nevertheless, | feel that 3-D geometric modeling is superior for the task at hand, and that

the o2the: models are less relevant to vision.

6.3 Vision System Design Arguments. VISION THEORY.

/ BOX 6.6 Alternatives to 3-D Geomatric Mode! ng in a Visicn System. \

. Image memory and with only the came-a model in 3-D.
. Statistical world model, e.g. Duda & Hart.

. Procedural Knowledge, a.g. Hewitt & Winograd.

. Semantic knowledge, e.g Wilkes & Shank.

. Formal Logic models, c.g McCarthy & Hayes.

. Syntactic models. ‘

Perhaps the best alternative to 2 3-D geometric model is to have a library of little 2-D images

W N —

-

describing the appearance of various 3-D loci from given directions. The advantage would be that a

sophisticated image predictor would not be required; on the other hand the ir-age library is potentially
l quite large and that even with a huge data base naw views and lighting of familiar objects and scenes

cannot be anlicipated. A second alternative is the statistical world model used in the pattern

-

recognition paradigm. Such modeling might be added to the g ometric model; however, alone the

statistical abstraction of world features in the presence of occultation, rotation and illumination seems as

)
]
i
g
|
|
|
?.
l
l_

hopeless as the abstraction of a man's personality from the pattern of tea leaves in his cup.

Procedural knowledge models represenl the world in terms of routines (or actors) which either {
hnow or can compute the answer to a question about the world. Semantic models represent the world
B in term of a data structure of conceptual stalemerts; and formal logic models represent the world in l
| terms of first order predicate calculus or in terms of a situation calculus. The procedural, semantic and
/ formal logic world models are all genaral enough to represent a vision model and in a theoretical sense
} they are merely other notations for 3-D geomotric modeling. However in practice, these three

modeling regimes are not efficiont holders and handlers of quantitative geometric data; but are rather

braremens

intended for a higher level of abstract reasoning. Another allegad advantage of these higher models is

—

that they can represent partial knowledge and uncertainty, which in a geomairic model is implicit, in
l that structures are missing or incomplete. For example, McCarthy and Feldman demand that when a

robot has only seen the front of an office desk that it should be atle to draw inferences from its raodel]
| about the back of the desk; | feel that this so called advantage is not required by the protiem and that

' basic visual modeling is on a more agnostic level.

A

i
i
i
!
l
!

S

6.3 Vision System Design Arguments. VISION THEORY.

The syntaclical approach to descriptive vision is that an image is a sentence of a picture
grammar and that consequently the image description should be given in terms of a sequence of
grammar transformations rules. Again this paradigm is valid in principle but impractical for real images
of 3-D objects because simple replacement rules cannot readily express rotation, perspective, and
photometric transformations. On the other hand, the syntactical model has been used to describe

perfect line drawings of 3D objects, (Gips 74).

The intuitive arguments include the opinions that geometric modeling is too numerical, too exact,
or too non-human 1o be relevant for compuler vision research. Against such infuitions, | wish to pose
two fallacies. First, there is the natural mimicry fallacy, which is that it is false to insist that a machine
must mimic nature in order {o achieve ils design goals. Boeing 747's are not covered with feathers;
trucks do not have legs; and computer vision need not simulate human vision. The advocates of the
uniquenaess of natural infelligence and perception will have to come up with a rather unusual uniquenaess
proof to establish their conjecture. In the meantime, one should be open minded about the potential

forms a perceptive consciousness can take.

Second, there is the selt introspection fallacy, which is that it is “alse to insist that one's
introspections about how he thinks and sees are direct observations oi thought and sight. By
introspaction some conclude that the visual models (even on a low lavel) are essentially qualitative
rather than quantitative. My belief is that the vision processing of the brain is quite quantitative and
only passes into qualities at a higher level of processing. In either case, the exact details of human

visual processing are inaccessible to conscious self introspection.

Although describing the above iwo fallacies might soffen a person's prejudice against numerical
geometric modeling, some important argument or idea is missing that would be convincing short of the
final achievement of computer vision. Contrariwise, | have not heard a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>