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Abstract 

This paper present the model analysis for the 

predicating the behaviour of inflatable membrane 

structure of general L-shape with a thickness in 

millimetre using the various smart material which 

optimally within structural member subjected to pre-

stressed rather than bending or moments. A numerical 

solution for membranes may also be found using the 

finite element method. In this paper flat thin membrane 

choose to analysis the behavioural effect of the 

membranes using the properties of different smart 

material and compare their results in terms of 

frequency and generalized mass with mode shape. This 

analysis makes more effective to selects the smart 

material in the space technology. Geometrically non-

linear Vibration analysis of arbitrary L-shape 

membrane is also done using a finite element package, 

ABAQUS. The analysis shows good agreement between 

finite element and analytical solutions. 

 
Keywords: Boundary condition, pre-stressed, natural 

frequency, material property, membrane shape, static 

displacement, mode shape, finite element. 

1. Introduction  

In the field of Engineering and Architecture, 

membrane structures play a vital role in many ways  

Examples include textile covers and roofs, aircraft and 

space structures, parachutes, automobile airbags, sails, 

windmills, human tissues and long span structures. 

They are typically built with very light materials which 

are optimally used. These structures are characterized 

because they are only subjected to in-plane axial forces. 

Even in the field of architectures and civil engineering, 

both pre-stressed membranes and cable networks 

constitute a very remarkable group. A membrane is 

essentially a thin shell with no flexural stiffness. 

Consequently a membrane cannot resist any 

compression at all. However, membrane theory 

accounts for tension and compression stresses, and the 

need for a computational procedure that takes into 

account tension stresses only is needed. In membrane 

theory only the in-plane stress resultants are taken into 

account. A numerical solution for membranes may be 

found using the finite element method [1–3]. 

The deployable space structures consist of thin 

polymer films that offer a wider range of packaging 

configurations than structures with traditional 

deployment mechanisms. Due to the flexibility of such 

deployable structure like shell or membrane shows 

greater importance for space application and hold great 

promise. The material constitutive behaviour and the 

analytical tools to analyze them are required to make 

advances in building cheaper, lighter and more reliable 

structures. Many structures are in the developing stage 

and the materials that are meant to serve to make these 

applications possible are not yet within reach. Future 

missions depend much on new discoveries, mainly in 

material manufacturing. There are several different 

space applications in which the use of thin membrane 

structures are used or being considered. Due to their 

light weight, high strength-to-weight ratio and ease of 

stowing and deploying, membranes are especially 

attractive for space applications. Inflatable reflectors, 

space-based radar, space based communication systems 

such as antennae and solar power collection panels on 

spacecraft, etc are the examples included. [4–5].  

The membrane material used in the numerical 

analysis was assumed inextensible and its weight was 

neglected in the determination of the equilibrium 

shape. They found that the membrane‟s mass density is 

of little influence on the computed natural frequencies. 

Other researchers used finite elements and boundary 

elements to model and compute natural frequencies and 

mode shapes of a single-anchor inflatable dam [6]. This 

study makes impact on finding the vibration aspect on 

the flat membrane using the various smart materials. 

The pressure in an inflatable structure can also play a 

critical role in the suppression of vibration [7]. 

Literature that exists on „pure‟ structural membrane 

components has concentrated mostly on inflated 
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components such as beams [8], torus (Main), and 

inflated lenticular concentrators [9]. The dynamics of 

the membrane themselves are of great interest though, 

as it is the membrane itself that is performing the 

„useful‟ work, and in some applications they could be 

attached to more traditional aerospace structures. 

Therefore improving understanding the behaviour of 

the membranes appears to be important. A membrane is 

essentially a thin shell with no flexural stiffness. 

Consequently a membrane cannot resist any 

compression at all. However, membrane theory 

accounts for tension and compression stresses. In 

membrane theory only the in-plane stress resultants are 

taken into account [10].  

This paper present the model analysis for the 

predicating the behaviour of various inflatable 

membrane structure of general L-shape with a thickness 

in millimetre using the various smart material which 

optimally within structural member subjected to pre-

stressed rather than bending or moments. A numerical 

solution for membranes may be found using the finite 

element method. Finite element analysis of membrane 

structures for small deformations can be found in [11] 

but with only single material. In this paper, the L-

shaped general sketch of flat thin membrane is chosen 

& analysis the behavioural effect of the membranes 

using different properties for different smart material. 

Comparing the various parameters like frequency, 

Eigen values, displacement, etc. This analysis is more 

effective in future to selects the suitable smart material 

in the design of the space technology. The 

geometrically non-linear vibration due to pre-stressed is 

modelled and analysed using finite element package, 

ABAQUS [12]. A numerical solution is also presented. 

 

2. Membrane material Properties   

Membrane structures consist of thin membrane or 

fabric as a major structural element. A membrane has 

no compression or bending stiffness, therefore it has to 

be pre-stressed to act as a structural element [13]. The 

analysis, design and construction of such structures are 

a field that has developed very considerably during the 

last 30 years. The type of structures that is of interest in 

the present study is high-precision deployable for 

spacecraft, where is a growing requirement for furlable 

reflecting surfaces for antennae, reflectors and solar 

arrays. The conjurations that are being considered 

include at pre-stress membrane panels and parabolidal 

pre-stressed membranes formed by contiguous 

cylindrical pieces.  

The performance efficiency of these reflective 

surfaces depends not only on the geometric accuracy of 

the surface but also on its vibration characteristics. The 

vibrations of lightweight structures are afflicted 

considerably by the surrounding medium. Thus, 

spacecraft structures should be tested in a vacuum 

chamber, but this would be too costly for a large 

structure. The efficiency and stability of the membrane 

structures depends on their dynamic controls in the 

deployed configuration, thus it is necessary to have a 

detailed understanding of vibration characteristics of 

these membrane structures. 

 

Material 
Kevlar 

[14] 

Kapton 

[15] 

Mylar 

[14] 

Density [ρ] (Kg/m
3
) 1450 1420 1070 

Young‟s Modulus[E] 

(N/m
2
) 

131e9 2.5e9 3.5e9 

Poisson‟s ratio [µ] 0.30 0.34 0.35 

Thickness [t] (mm) 0.1 0.1 0.1 

Table 1: Membrane material properties 

3. Governing Equation 

The plate in which the ratio a/h ≥ 80,....100., where 

„a‟ is a typical dimension of a plate in a plane and „h‟ is 

a plate thickness is maintained such plates are referred 

to as membranes and they are devoid of flexural 

rigidity. Membranes carry the lateral loads by axial 

tensile forces N (and shear forces) acting in the plate 

middle surface as shown in Fig. 1. These forces are 

called membrane forces; they produce projection on a 

vertical axis and thus balance a lateral load applied to 

the plate membrane. The fundamental assumptions of 

the linear, elastic, small-deflection for thin membrane 

structure may be stated as the material of the plate is 

elastic, homogeneous, isotropic and initially remain 

flat. The deflection of the mid-plane is very small 

compared to that of membrane thickness. Middle 

surface remains unstrained even after bending, since 

the deflection is too small.  

 

 

Figure 1(a):  A load free membrane 

To derive the equation of motion of a membrane, 

consider the membrane to be bounded by a plane curve 

S in the XY plane, as shown in fig 1(b). Let f (x, y, t) 

denote the pressure loading acting in the Z direction 
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and P the intensity of tension at a point that is equal to 

product of the tensile stress and the thickness of the 

membrane. 

 

 

Figure 1(b):  Geometry and pre-stress of L-shaped 

 

The magnitude of P is usually constant throughout the 

membrane. If we consider an elemental area dx dy.  

Forces of magnitude Pdx and Pdy act on the sides 

parallel to the Y and X axes respectively as shown in 

figure 1(b).  

The net forces acting along the Z direction due to these 

forces are 

   and    (1) 

The pressure force along the Z direction is f(x, y, t) 

dxdy and the inertia force is 

 (2) 

where,  is the mass per unit area. The equation of 

motion for free transverse vibration of the membrane 

can be obtained as 

 (3) 

The above equation can be expressed as, 

 (4) 

where,   is the Laplacian operator.  

 

4. Initial and boundary condition 

Since the equation of motion Eq. (3) involves second 

order partial derivatives with respect to each of t, x and 

y. we need to specify two initial conditions and four 

boundary condition to find a unique solution of the 

problem. Usually, the displacement and velocity of the 

membrane at t=0 are specified as w0(x, y) and  (x, 

y). Hence the initial conditions are given by, 

w (x, y, 0) = w0 (x, y) (5) 

 (4) 

The boundary conditions are as follows: 

1. If the membrane is fixed at any point (x1, y1) on a 

segment of the boundary, we have 

  (7) 

2. If the membrane is free to deflect transversely (in 

the z direction) at a different point  

(x2,y2) of the boundary, then the force component in the 

Z direction must be zero. 

  (8) 

where,  represents the derivative of w with respect to 

a direction n normal to the boundary at point (x2, y2). 

The free vibration solution of the thin flat membrane 

can be obtained by using the method of separation of 

variables w(x, y, t) can be assumed as 

w(x, y, t) = W(x, y) T(t) = X(x) Y(y) T(t)  (9) 

By using the equation of motion Eq. (3), we obtain, 

    (10) 

 

  (11) 

 

  (12) 

Where and   are constants related to  as follows: 

     and                                        (13) 

The solutions of the above Eq. (10) to Eq. (12) are 

given by; 

X(x) =C1 Cos x + C2 Sin x 

Y(y) =C3 Cos y + C4 Sin y 

T(t) = A Cos t + B Sin t 

 

Where, the constants C1, C2, C3, C4 and A, B can be 

determined from the boundary conditions; 

 

Table 2:  Constant values for (xi, yi), i = 1, 2, 3… 

x y   

0 0.1 -  

0 0.2 -  

0.1 0.1   

0.1 0.2   

 

5. Finite element method 

The geometric model with orientation is shown in fig. 

1(a) The orientation of the element normal has to be 

representative for the whole element. The number of 

elements was set approximate to 1000 elements and it 
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is concluded. The flat membranes having square have 

been analyzed using the FE package. The L-shaped flat 

membrane has a side length of 0.2 m and a thickness of 

0.1 mm; it is supported on knife edges, which act as 

simple supports along all six edges. Different plan 

stress elements are available in ABAQUS to model the 

membrane structure. Since the M3D4 membrane 

element having 4 nodes quadrilateral elements are more 

dominant than the M3D3 membrane element which is a 

3 node triangular element. Hence, M3D4 is chosen for 

the modelling analysis. These elements are surface 

elements that transmit in-plane forces only (no 

moments) and have no bending stiffness. This means 

that it is necessary to pre-stress these elements before 

any vibration analysis is carried out. The various 

different materials are taken whose properties are 

tabulated in Table 1.  

The meshing is shown below fig. 1(a) consisting 

quadrilateral elements. The meshing element set aprox. 

to 1000 for general L-shaped flat thin membrane. The 

variation in frequency or other variables have been 

obverse due to higher computation times. The 

following boundary conditions opt: The nodes along 

the edge AB are restrained in the „y‟ direction to 

simulate simple supports. The nodes along the edges 

BC, CD, DE & EF restrained in the „z‟ direction to 

simulate simple supports. The nodes along the edges 

FA restrained in the „x‟ direction to simulate simple 

supports. All other nodes have three degrees of 

freedom. The pre-stress of 10 N/m is applied along the 

nodes of all the edges of the L-shaped flat membrane. 

 

6. Results and Discussion: 

When the pre-stressed of 10 N/m is applied to the three 

material membranes the various obtained result are 

given below in Table 3 and 4. The graphical 

comparison between the three materials (Kevlar, Mylar 

and Kapton) is corresponding to Natural frequency; 

Mode shape and its generalised mass are shown in the 

Figure 2 and 3.  

 

Table 3:   Natural Frequency and Mode shapes. 

Mode No. Kevlar (Hz) Kapton (Hz) Mylar (Hz) 

 1 14.55 11.03 11.32 

2 22.60 17.34 17.99 

3 24.40 18.83 19.62 

4 30.93 24.16 25.45 

5 31.83 24.82 26.10 

6 38.44 30.30 32.15 

7 38.88 30.58 32.41 

8 44.71 35.30 37.44 

9 45.10 35.69 37.99 

10 48.43 36.91 38.07 

 

Table 4: Generalised mass and Mode shapes 

Mode No. Kevlar (kg) Kapton (kg) Mylar (kg) 

1 0.00027 0.00051 0.00052 

2 0.00054 0.00099 0.00100 

3 0.00023 0.00039 0.00038 

4 0.00036 0.00065 0.00064 

5 0.00009 0.00016 0.00015 

6 0.00023 0.00041 0.00040 

7 0.00006 0.00010 0.00010 

8 0.00005 0.00005 0.00003 

9 0.00006 0.00017 0.00029 

10 0.00004 0.00024 0.00031 

 

Low frequency stabilizes the oscillation for the data 

transmission in the space technology and hence the 

Kapton membrane possesses the lower natural 

frequency range as compared to others as shown in the 

fig. 2. The generalised mass acting on the membrane 

node corresponding to the different mode shapes which 

helps to stabilise the entire model due to the pre-

stressed of 10 N/m. Here also, Kapton membrane plays 

the major role (fig. 3). 
 

 

Figure – 2: Frequency Vs Mode Shape 

 

Figure – 3: Generalised mass vs Mode Shape 

The few mode shape(s) variation of the flat thin 

membrane material under the given pre-stressed of 10 

N/m within the prescribed boundary condition are 

shown below which have been evaluated from FE tool 

as:  
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Figure 4: Mode shapes (Kevlar)  

 

Figure 5: Mode shapes (Kapton) 

 

Figure 6: Mode shapes (Mylar) 

The results obtain from the finite element method 

(FEM) for flat thin flat membrane is being validated 

using the analytical method. The few results validation 

is shown below in the tabulated form for various 

membrane materials. 

Table 5: Results (Kevlar material) 

SN 
Mode 

Shape 

Analytical 

solution 

FEM 

solution 

Absolute 

error 

1 1 18.148 14.54 3.608 

2 2 23.748 22.60 1.148 

3 5 32.718 31.82 0.898 

4 6 39.073 38.44 0.633 

5 8 45.088 44.70 0.388 

Table 6: Results (Kapton material) 

SN 
Mode 

Shape 

Analytical 

solution 

FEM 

solution 

Absolute 

error 

1 1 13.269 11.03 2.239 

2 2 17.805 17.34 0.465 

3 5 25.359 24.92 0.439 

4 6 30.446 30.30 0.146 

5 8 35.619 35.38 0.239 

Table 7: Results (Mylar material) 

SN 
Mode 

Shape 

Analytical 

solution 

FEM 

solution 

Absolute 

error 

1 1 13.411 11.32 2.091 

2 2 18.531 17.99 0.541 

3 5 26.506 26.10 0.406 

4 6 32.415 32.15 0.265 

5 8 37.99 37.44 0.550 

 

7. Conclusion 

In the field of engineering application, thin membrane 

structures with very light materials are demandable due 

to non flexural stiffness and optimally within structural 

member subjected to pre-stressed rather than bending 

or moments. In this paper, the dynamic behaviour of 

the L-shaped flat thin membrane is being analyzed in 

terms of the mode shape and natural frequency using 

the different types of smart materials such as Kevlar, 

Kapton and Mylar. Using the pre-stressed of 10 N/m to 

the outer edges along the plane is applied and the 

encaster boundary condition to the inner edges of the 

flat L-shaped membrane shows the symmetric 

variation. This analysis makes more effective to selects 

the smart material in the space technology. The analysis 

shows good agreement between FEM and analytical 

solutions as shown in Table 5 to 7. 
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