
Geometric Numerical Integration

(Ernst Hairer, TU München, winter 2009/10)

Development of numerical ordinary differential equations

• Nonstiff differential equations (since about 1850), see [4, 2, 1]

Adams (1855), multistep methods, problem of Bashforth (1883)

Runge (1895) and Kutta (1901), one-step methods.

• Stiff differential equations (since about 1950), see [5, 2, 1]

Dahlquist (1963), A-stability of multistep methods

Gear (1971), backward differentiation code.

• Geometric numerical integration (since 1986), see [3, 7, 6]

structure-preserving integration of differential equations,

Hamiltonian, reversible, divergence-free, Poisson systems.

Provisional contents of the lectures

• Hamiltonian systems

– symplectic transformations, theorem of Poincaré
– generating functions

• Symplectic numerical integrators

– Störmer–Verlet method
– symplectic Runge–Kutta methods
– composition and splitting methods

• Backward error analysis

– long-time energy conservation
– perturbed integrable Hamiltonian systems

• Hamiltonian systems on manifolds

– constrained mechanical systems (DAE’s)
– numerical integrator RATTLE

• Differential equations with highly oscillatory solutions

– Fermi–Pasta–Ulam type problems
– modulated Fourier expansion
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1 Hamiltonian system (double well potential)

Consider a differential equation

q̈ = −∇U(q)

which can also be written as

q̇ = p

ṗ = −∇U(q)
or

q̇ = ∇pH(p, q)

ṗ = −∇qH(p, q)
with H(p, q) =

1

2
pTp + U(q).

We have energy conservation along exact solutions:

H
(
p(t), q(t)

)
= Const

Numerical experiment with U(q) = (q2−1)2 , taken from http://sma.epfl.ch/∼vilmart/

11/22/09 2:18 PMA quartic Hamiltonian system (double well)
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init 0.0p(0)= H?0.01q(0)= 0.05stepsize h=

 Start      x  1speed=   30 mssleep=    order 1: Symplectic Euler

Explicit Euler
qn+1 = qn + h pn

pn+1 = pn − h∇U(qn)

Symplectic Euler

qn+1 = qn + h pn

pn+1 = pn − h∇U(qn+1)
or

qn+1 = qn + h pn+1

pn+1 = pn − h∇U(qn)
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2 N-body problem (planetary motion)

For pi, qi ∈ R
3 we consider the Hamiltonian (kinetic plus potential energy)

H(p, q) =
1

2

N∑

i=1

1

mi

pT

i pi +
∑

1≤i<j≤N

Uij

(
‖qi − qj‖

)

with the gravitational potential

Uij(r) = −G
mi mj

r

Illustration: sun – jupiter – saturn (http://sma.epfl.ch/∼vilmart/)

11/22/09 5:46 PMThe three body problem Sun-Jupiter-Saturn
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3stepsize h=  order 1: Explicit Euler

 Start   restart  x 50speed=     40 mssleep=

Conserved quantities (first integrals):

• Hamiltonian (total energy) H(p, q)

• linear momentum P (p, q) =
N∑

i=1

pi

• angular momentum L(p, q) =
N∑

i=1

qi × pi
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3 N-body problem (molecular dynamics)

N-body problem as before, but with Lennard–Jones potential

Uij(r) = 4 εij

((σij

r

)12

−
(σij

r

)6
)

Numerical simulation with initial configuration (left picture) and solution after

sufficiently long time (right picture), see http://sma.epfl.ch/∼vilmart/

11/22/09 6:20 PMMolecular dynamics simulation: Lennard-Jones potential
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0.05stepsize h=  order 2: Stormer-Verlet

 Start   restart  x  1speed=     40 mssleep=

11/22/09 5:47 PMMolecular dynamics simulation: Lennard-Jones potential
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0.05stepsize h=  order 2: Stormer-Verlet

 Start   restart  x  1speed=     40 mssleep=

4 Idea of backward error analysis

For a differential equation ẏ = f(y) consider a numerical solution obtained by a

one-step method yn+1 = Φh(yn).

Find a modified differential equation ẏ = fh(y) of the form

ẏ = f(y) + hf2(y) + h2f3(y) + . . . ,

such that its solution ỹ(t) satisfies (formally) yn = ỹ(nh) .
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Numerical experiment with double well potential.

The following pictures show the exact solution (in phase space (q, p)) and solu-

tions of the modified equation for various numerical integrators.

exact solution explicit Euler

symplectic Euler symplectic Euler

explicit in p, implicit in q explicit in q, implicit in p

Modified differential equation for explicit Euler:
(

q̇
ṗ

)
=

(
p

−U ′(q)

)
+

h

2

(
U ′(q)

U ′′(q)p

)
+

h2

4

(
−2 U ′′(q)p

2 U ′U ′′ − U ′′′p2

)
+ . . .

Modified differential equation for symplectic Euler (expl. in q, impl. in p):
(

q̇
ṗ

)
=

(
p

−U ′(q)

)
+

h

2

(
−U ′(q)
U ′′(q)p

)
+

h2

12

(
2 U ′′(q)p

−2 U ′U ′′ − U ′′′p2

)
+ . . .

this modified equation is Hamiltonian with

H̃(p, q) =
1

2
p2 + U(q) −

h

2
U ′(q)p +

h2

12

(
U ′(q)2 + U ′′(q)p2

)
+ . . .
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5 Constrained mechanical system

Graphics: J.-P. Eckmann & M. Hairer

Position of corners

qi ∈ R
3, i = 0, . . . , 5

(6 × 3 = 18 variables)

Constraints

• motion of one piece (red) is

prescribed, i.e., q0, q1, q2 are

fixed (9 conditions),

• distances between neighbor

corners is unity (4 conditions),

• orthogonality between neigh-

bor edges (qn−1 − qn) ⊥
(qn+1 − qn) (5 conditions).

Dynamics (red piece is fixed, corners have equal mass one, massless edges)

H(p, q) =
1

2

5∑

i=3

pT

i pi +
5∑

i=3

qiz,

where qiz is the vertical component of qi.

We obtain a differential-algebraic equation (DAE)

q̇i = ∇pi
H(p, q)

ṗi = −∇qi
H(p, q) − GT(q)λ

0 = g(q)

Here, q is the vector composed by q3, q4, q5 , p = q̇ is the velocity, g(q) = 0
represents the 9 constraints for q, and G(q) = g′(q) (matrix of dimension 9 × 9).
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6 Euler’s equations of motion for a free rigid body

The angular momentum vector y = (y1, y2, y3)
T satisfies

ẏ1 = (I−1

3 − I−1

2 ) y3 y2

ẏ2 = (I−1

1 − I−1

3 ) y1 y3

ẏ3 = (I−1

2 − I−1

3 ) y2 y1

or




ẏ1

ẏ2

ẏ3


 =




0 −y3 y2

y3 0 −y1

−y2 y1 0







y1/I1

y2/I2

y3/I3




Hamiltonian: H(y) =
1

2

(y2
1

I1

+
y2

2

I2

+
y2

3

I3

)
, Casimir: C(y) =

1

2

(
y2

1 +y2

2 +y2

3

)

1st picture: integration with explicit Euler

2nd picture: trapezoidal rule with projection onto the sphere

3rd picture: implicit midpoint rule
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