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Abstract— Our task is 3D pose estimation for on-line application in in-
dustrial robotics and machine vision. It involves the estimation of object
position and orientation relative to a known model. Since most man made
objects can be approximated by a small set of quadratic surfaces, in this
paper we focus on pose estimation of such surfaces. Our optimization is of
an error measure between the CAD model and the measured data. Most
existing algorithms are sensitive to noise and occlusion or only converge
linearly. Our optimization involves iterative cost function reduction on the
smooth manifold of the Special Euclidean Group, SE3. The optimization
is based on locally quadratically convergent Newton-type iterations on this
constraint manifold. A careful analysis of the underlying geometric con-
straint is required.

I. INTRODUCTION

Quadratic surfaces, also known as quadrics, are commonly
occurring shapes in man made objects. Accurate and fast local-
ization of quadrics or surfaces consists of quadric patches from
measurement data is important in many industrial robotics and
machine vision tasks as well as a step towards developing a flex-
ible manufacturing system.

Two main strategies towards solving this problem in the lit-
eratures are the feature based method and the model based
method. The feature based method is based on the geometric
relation between a set of 3D feature correspondences extracted
from the actual surface data and the surface model stored in the
database. This approach has been well studied in the literature,
[1], [7], [9].

The model based approach, which we adopt in this paper,
minimizes the error between the data measured on an actual sur-
face and the CAD model of that surface, see [3], [5], [8], [10],
[2], [4], [6]. As opposed to the feature based method, this ap-
proach does not require 3D data preprocessing such as feature
extraction and explicit correspondences. The only information
required from the database are the equation of the surface.

In this paper, we propose a new geometric approach based
on Newton-type iterations on the constraint manifold. Our
optimization involves iterative cost function reduction on the
smooth manifold of the Special Euclidean Group, SE3. The op-
timization is based on locally quadratically convergent Newton-
type iterations on this constraint manifold. To achieve this, care-
ful analysis of the underlying geometric constraint is required.

The proposed algorithm has the following features: There is
local convergence at a quadratic rate. There is robustness to
additive Gaussian noise and occlusion. The algorithm works for
arbitrary rotations and translations and the algorithm iteration is
data independent.

Section II presents some background knowledge about the ge-
ometry of Special Euclidean Group and Section III formulates
the problem mathematically in differential geometry framework.

We proposes a geometric approach to address the problem in
Section IV and the initialization of the algorithm in Section V.
Implementation of the algorithm is outlined in Section VI. The
convergence properties of the algorithm are given in section VII
and a series of simulations are presented in Section VIII, fol-
lowed by a conclusion section.

II. GEOMETRY OF SPECIAL EUCLIDEAN GROUP

A. Special Euclidean Group

Rigid body motions in R
3 can be represented by the special

Euclidean group, denoted SE3,

SE3 :=
{
(R, t)

∣∣R ∈ SO3, t ∈ R
3
}

= SO3 × R
3. (1)

Here SO3 is the group of 3 × 3 orthogonal matrices with deter-
minant +1, which represent the rotations and t is the translation
vector. Both SO3 and SE3 are Lie groups. Associated with ev-
ery Lie group is its Lie algebra. For SO3, its Lie algebra so3

can be identified with the set of 3× 3 skew symmetric matrix of
the form

Ω : R
3 → so3, Ω(ω) =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 , (2)

and the Lie algebra of SE3, denoted se3 is the set of 4×4 matrix
of the form

ζ : R
6 → se3 ζ(x) =

[
Ω(ω) v

0 0

]
, x :=

[
ω,

v

]
(3)

where Ω(w) ∈ so3 and v ∈ R
3.

B. Tangent Space of SE3

The tangent space of SE3 at T is

TT SE3 = {Tζ | ζ ∈ se3} (4)

and the affine tangent space is

T aff
T SE3 = {T + Tζ | ζ ∈ se3} (5)

C. Local Parameterization of SE3

Let N (0) ⊂ R
6 denote a sufficiently small open neighbour-

hood of the origin in R
6, and let T ∈ SE3. Then the exponential

mapping

µ : N (0) ⊂ R
6 → SE3, x 7→ Teζ(x), (6)

is a local diffeomorphism from N (0) onto a neighbourhood of
T in SE3. More details of the exponential map can be found in
[11].
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Fig. 1. Local parameterization and cost function

III. PROBLEM FORMULATION

In what follows, vec is an operator which creates a column
vector from a matrix A by stacking the column vectors of A

below one another, ⊗ represents the Kronecker product: A⊗B

denotes a matrix with the elements of A, denoted aij replaced
by aijB. Recall that (A ⊗ B)> = A> ⊗ B>, (A ⊗ B)(C ⊗
D) = (AC ⊗ BD), vec(ABC) = (C> ⊗ A) vec(B), and
(A ⊗ B)−1 = (A−1 ⊗ B−1) when the inverses exist.

A. Quadratic Surface

Quadratic surfaces are defined by the zero set of degree
2 polynomials in 3 variables, as {m̃ ∈ R

3 | m̃>Q11m̃ +
2m̃>Q12 + Q22 = 0}. Equivalently, using homogeneous co-
ordinates, a quadratic surface is given by

m>Qm = 0, m :=

[
m̃

1

]
, Q :=

[
Q11 Q12

Q>
12 Q22,

]
(7)

where Q is the symmetric surface coefficient matrix. Without
loss of generality, we take tr(Q>

11Q11) = 1. Some Examples of
quadrics is illustrated in Figure 1.
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Fig. 2. (a) Elliptic Paraboloid, (b) Hyperbolic Paraboloid, (c) Elliptic Hyper-
boloid of One Sheet, (d) Elliptic Hyperboloid of Two Sheets, (e) Ellipsoid

Now, consider the quadric being rotated by a matrix R ∈ SO3

and translated by a vector t ∈ R
3. Each point on the transformed

quadric p̃ ∈ R
3 is given by,

{
p =

[
p̃

1

]
∈ R

4

∣∣∣∣ p>A(R, t)p = 0

}
. (8)

Here A(R, t) := T (R, t)>QT (R, t) is the surface coefficient of
the transformed quadric, and

T (R, t) :=

[
R t

0 1

]
∈ SE3. (9)

is the 3D rigid body transformation matrix.

B. The Cost Function

Given surface measurement data pi ∈ R
4 and known sur-

face coefficient Q, the task is to find the transformation matrix
T (R, t) ∈ SE3 that satisfies (8). We work with the cost function
that penalizes the algebraic distance of the measurement data to
the quadric,

f : SE3 → R,

f(T ) =
1

n

n∑

i=1

(p>i T>QT>pi)
2 =

1

n

n∑

i=1

tr(pip
>
i T>QT>)2.

Exploiting the relationship between the trace and vec operators,
we can reformulated the cost function as

f(T ) = ‖Bvec(T>QT )‖2, B :=
1√
n




vec>(p1p
>
1 )

...
vec>(pnp>n )


 . (10)

A modification of this cost function taking into account noise
statistics is considered in a later section. A geometric cost func-
tion gives improved results, but our techniques are more acces-
sible for algebraic cost function, and space does not permit here
a solution of the perhaps more useful geometric results.

C. 2-jet of the cost function expressed in local parameter space

The 2-jet (second order Taylor approximation) of f about the
point T ∈ SE3 expressed in local parameter space using the
smooth local parameterization µ is given as

j
(2)
0 (f ◦ µ) : N (0) ⊂ R

6 → R,

x 7→
(

(f ◦ µ)(tx) +
d

dt
(f ◦ µ)(tx) +

1

2

d2

dt2
(f ◦ µ)(tx)

)∣∣∣∣
t=0

.

The mapping consists of
(i) a constant term,

(f ◦ µ)(tx)|t=0 = ‖Bvec(A)‖2, (11)

(ii) a linear term,

d

dt
(f ◦ µ)(tx)

∣∣∣∣
t=0

= 2vec>(Aζ(x) + ζ>(x)A)B>Bvec(A),

= 2x>∇(f ◦ µ)(0). (12)

By denoting vec(ζ(x)) := Gx, vec(ζ>(x)) := Jx, then G, J

are 16 × 6 matrices consisting of 1, -1, 0, and

C := B[(I ⊗ A) (A ⊗ I)]

[
G

J

]
.

The explicit formula for the gradient of f ◦ µ evaluated at 0 is

∇(f ◦ µ)(0) = C>Bvec(A), (13)

(iii) a quadratic term which consists of a sum of two terms. The
first term is given as

‖Bvec
(
Aζ(x) + ζ>(x)A

)
‖2 = x>Ĥ(f◦µ)(0)x, (14)



and the second term is

vec>(A)B>Bvec
(
Aζ2(x) + 2ζ>(x)Aζ(x) + ζ>

2

(x)A
)

,

= x>H̃(f◦µ)(0)x. (15)

Thus, the Hessian of f ◦ µ evaluated at zero is

H(f◦µ)(0) = Ĥ(f◦µ)(0) + H̃(f◦µ)(0), (16)

and denoting vec(D) := B>Bvec(A), we have

Ĥ(f◦µ)(0) = C>C ≥ 0,

H̃(f◦µ)(0) =
[
G> J>

] [
(D> ⊗ A) (D>A ⊗ I)
(AD ⊗ I) (A ⊗ D>)

] [
G

J

]
.

(17)

IV. THE ALGORITHM

The proposed algorithm consists of the iteration,

s = π2 ◦ π1 : SE3 → SE3, (18)

where π1 maps a point T on the manifold SE3 to an element
in the affine tangent space that minimizes j

(2)
0 (f ◦ µ)(0) and π2

projects that element back to SE3 by means of the parametriza-
tion µ.
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A. Optimization in Local Parameter Space, π1

The optimization in parameter space consists of two steps,
first calculate a suitable descent direction and then search for a
step length that ensures reduction in cost function, as described
by the mapping

π1 = πb
1 ◦ πa

1 : SE3 → R
4×4. (19)

Here πa
1 is used to obtain a descent direction,

πa
1 : SE3 → R

4×4, T 7→ T + ζ(xopt(T )),

where

xopt : SE3 ⊃ µ(N (0)) → N (0) ⊂ R
6,

xopt(µ(x)) = arg min
y∈N (0)

j
(2)
0 (f ◦ µ)(x).

(20)

The Newton direction is given by,

xopt(µ(x)) = −H−1
(f◦µ)(x)∇(f ◦ µ)(x), (21)

or a Gauss direction,

xopt(µ(x)) = −Ĥ−1
(f◦µ)(x)∇(f ◦ µ)(x). (22)

Once an optimal direction is computed, a one dimensional
line search is carried out in this direction. An exact one dimen-
sional line search will find the minimizer of the cost function
along this line, but this is not feasible in this case. We proceed
with an inexact search that ensure the cost function is reduced at
every step. Here we use backtracking line search. Since we are
using a descent direction, for sufficiently small step size, the cost
function will go downhill. Backtracking line search first tries a
step size of 1, if this is unacceptable, it reduces the step size until
an acceptable step length is found. Details of the approach can
be found in [12]. Thus,

πb
1 : R

4×4 → R
4×4, (23)

T + Tζ(xopt) 7→ T + Tζ(λoptxopt), (24)

where λopt is the step length that reduces the cost function in
direction xopt, and is found using the simple backtracking line
search.

B. Projecting back via parametrization µ

Once the descent direction and downhill step size has been
obtained, we project it back to the manifold via the parametriza-
tion µ,

π2 : R
4×4 → SE3,

T + Tζ(λoptxopt) 7→ Teζ(λoptxopt). (25)

V. ALGORITHM INITIALIZATION

For initialization of the algorithm, we use a two steps least
squares approach that gives closed form solution. In this ap-
proach, the pose estimation problem is split up into two subprob-
lems, namely the surface fitting problem to recover the surface
coefficient followed by pose estimation. Details of this strate-
gies can be found in [2]. We summarize the steps used to es-
timate the pose in closed form and add in few new results that
help in pose computation.

A. Recovering surface coefficient

Consider the transformed surface coefficient A := T>QT .
This belongs to the class of symmetric matrices S4×4. We now
consider an associated cost function,

φ : S4×4 → R, S 7→ ‖Bvec(S)‖2. (26)

This cost function specializes as f on {S | S = T>QT, T ∈
SE3}. Consider the mapping, with a = [a1 a2, · · · , a10]

>,

ν : R
10 → S4×4, ν(a) =




a1 a2 a3 a7

a2 a4 a5 a8

a3 a5 a6 a9

a7 a8 a9 a10


 . (27)

It is clear that this mapping is bijective. Now,

φ ◦ ν : R
10 → R, a 7→ ‖Bvec(ν(a))‖2 = ‖BKa‖2, (28)



where K is a matrix consisting of elements 1 and 0 so that
Ka = ν(a). The vector a∗ that minimizes the cost (28) subject
to constraint ‖a‖ = 1 is the right singular vector corresponding
to the zero singular value of the matrix BK. Of course, when
the data has noise, then a∗ is the right singular vector associ-
ated with the minimum singular value of matrix BK. However,
to achieve Euclidean invariance, it is usual to constrain solution
such that tr(A>

11A11) = tr(Q>
11Q11) = 1, i.e

ā>Cā = 1, ā = [a1 · · · a6], C := diag(1, 2, 2, 1, 2, 1).
(29)

Once a∗ is obtained, then since the map ν is bijective, the opti-
mum A ∈ S is A∗ = ν(a∗).

B. Recovering Motion Parameters

Once the surface coefficient of the transformed quadric is de-
termined, we can obtain R ∈ SO3 and t ∈ R

3 as follow. We
know that

κT (R, t)>QT (R, t) = A, for some scalar κ, (30)

and since Q11, A11 are symmetric, singular value decomposi-
tion of both matrices will give,

Q11 = VQΣQV >
Q , A11 = VAΣAV >

A , (31)

where VQ, VA ∈ O3 and ΣQ, ΣA are diagonal matrices with
diagonal elements decreasing in magnitude, then we have

{Ri = VQΓiV >
A ∈ SO3}, (32)

where Γi is a diagonal matrix with diagonal elements ±1. There
are 23 = 8 possible Γi matrices. We claim here that the optimal
rotation is the one associated with minimum cost and minimum
distance from the original position, i.e.,

i∗ = argmini‖Ri − I‖2 = argmaxi tr(Ri). (33)

Once optimal R∗ := Ri∗ is found, we can compute an optimal
t∗ from,

t∗ = Q−1
11 (κ−1RA12 − Q12), κ =

1

3
tr(ΣAΣ−1

Q ). (34)

Note that when Q11 is singular, such as in the case of paraboloid
surfaces, the solution is not unique, so a pseudo inverse is used
to recover one optimal solution t∗.

VI. ALGORITHM IMPLEMENTATION

Start with an initial estimate of the rigid body transformation
matrix T obtained from initialization algorithm.
Step 1: Carry out the optimization step,
• Compute the gradient∇(f ◦µ)(0) and the Hessian H(f◦µ)(0)

via (12), (16) respectively.
• If H(f◦µ)(0) > 0,

compute the Newton step, xopt = H−1
(f◦µ)(0)∇(f ◦ µ)(0),

otherwise compute the Gauss step xopt = Ĥ−1
(f◦µ)(0)∇(f◦µ)(0).

• Compute the optimum step size λopt in direction xopt using
backtracking line search.
Step 2: Carry out the projection step, T̂ = Teζ(λoptxopt)

Step 3: Set T = T̂ , go back to Step 1 if ‖∇(f ◦ µ)(0)‖ > ε, a
prescribed accuracy.

VII. CONVERGENCE ANALYSIS OF THE ALGORITHM

A. Local Convergence

A.1 Local Quadratic Convergence

Theorem VII.1: Consider the proposed algorithmic mapping

Tk+1 = s(Tk), (35)

and denote T∗ = µ(0) as belonging to the set of local minima of
j
(2)
0 (f ◦ µ)(x). Further assume that T∗ is an isolated minimum

in that H−1
(f◦µ)(0) exists. Then s converges locally quadratically

to T∗.
Due to space limit, details of the proof will be omitted here.

B. Global Convergence

The proposed algorithm achieves local quadratic convergence
rates. However, the algorithm does not address the issue of es-
caping local minima. From implementation of the algorithm,
convergence to local minima is particularly frequent for ellip-
tic hyperboloid, hyperbolic paraboloid and hyperboloid of two
sheets. Simulations suggest that the simplest approach is to ini-
tialize the algorithm randomly at different points on the mani-
fold, and select the one with lowest cost.

VIII. SIMULATIONS

A series of simulations were performed on artificially gener-
ated uniformly distributed points on quadric surface. Our pro-
posed geometric approach (GA) has been compared with the
2 steps closed form least squares solutions presented under al-
gorithm initialization (LS) and the cyclic coordinate descent
method (CCD).

Cyclic coordinate descent is a variant of our proposed ap-
proach. It exploits the property that SE3 is the product manifold
SO3 ×R

3. At each iteration, we first freeze the rotation and op-
timize only the translation, then next freeze the translation and
optimize only the rotation. The motivation for this is that we can
carry out analytic geodesic searches in SO3, requiring the solu-
tion of an 8th order polynomial. Likewise, in a line search for
t ∈ R

3 a 3rd order polynomial is solved. The advantage of this
approach is that it can potentially escape from a local minimum,
not the global minimum in a few iterations, without any random
reinitializations. The algorithm is not useful after the first few
iterations since it converges only linearly and the analyzed line
search has not then add value.

Performances of the different techniques are evaluated by
comparing the relative Euclidean distance between the pose pa-
rameters. All simulations are implemented using Matlab.

A. Robustness Analysis

Here we investigate the robustness of the algorithms as the
measured data are corrupted with increasing amount of additive
Gaussian noise and when only partial views of the surface are
available.

Simulations show both CCD and GA have the same perfor-
mance accuracy when the noise level and size of the surface
are varied. Thus, only results for GA and LS are plotted. Fig-
ure 1 indicates that GA is far less sensitive to additive Gaussian
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(a)Relative pose error for ellipsoid.
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(b)Relative pose error for elliptic paraboloid.

Fig. 4. Robustness of the algorithms against additive Gaussian noise: closed form least squares approach (solid line), geometric approach without restart (◦),
geometric approach with 5 random restart (×)

noise and than LS. Interestingly, for an ellipsoid, the initializa-
tion achieves the global minimum in the presence of high noise
level (Fig.1.a) since random restart converges to the same min-
imum. Similar results are also observed for an elliptic hyper-
boloid of one sheet. However, for elliptic paraboloid (Fig. 1.b),
hyperboloid of two sheets and hyperbolic paraboloid, we ob-
serve the presence of many local minima, thus random reinitial-
izations of the algorithm or initial CCD iterations are required
to achieve ‘global’ minimum.

Figure 2 shows the performance of GA and LS when part of
the surface are occluded. It clearly indicates that GA is far more
robust to occlusion than LS. Likewise, for relative translation
error.
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(a)Least squares approach
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(b)Geometric approach

Fig. 5. Robustness against occlusion: whole surface (solid line), half surface
(◦), quarter surface (M), small patch (�)

B. Speed of local convergence

Figure 3 illustrates that GA converges at a local quadratic
rate and CCD always converges very quickly at its first few
iterations, but then converges linearly. It may make‘ sense to
use CCD for the first few iterations then switch to the Newton
method. Also, the local quadratic convergence rate GA is also
better than the approach presented in [10] which claims to con-
verge at an exponential rate.

IX. CONCLUSION

We have presented a new geometric approach based on
Newton-type iterations on special Euclidean group SE3 that is
able to locate the 3D position and orientation of a quadratic sur-
face quickly and accurately. The proposed algorithm is fast be-
cause each iteration is data independent and it converges locally
quadratically fast to a minimum. It is robust to additive Gaus-
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Fig. 6. Rate of local convergence

sian noise and occlusion. The notion of random initializations
have been adopted to assist in escaping local minima. All these
features have been demonstrated in simulations.
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