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The ground state and transport properties of the Lieb lattice flat band in the presence of an attractive

Hubbard interaction are considered. It is shown that the superfluid weight can be large even for an isolated

and strictly flat band. Moreover the superfluid weight is proportional to the interaction strength and to the

quantum metric, a band structure quantity derived solely from the flat-band Bloch functions. These

predictions are amenable to verification with ultracold gases and may explain the anomalous behavior of

the superfluid weight of high-Tc superconductors.
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A flat band is a Bloch band with constant energy
dispersion εnk ≈ εn (n is the band index) as a function of

quasimomentumk and is composed of localized eigenstates.
In the absence of disorder and interactions the ground state of
a flat band is insulating at any filling [1]. However, inter-

actions and disorder lead to a reconstruction of the ground
state whose properties are often hard to predict. Bands that
are nearly flat and/or feature a nontrivial topological invari-

ant, similar to Landau levels producing the quantum Hall
effects [2–4], have been considered in recent theoretical
works [5–12] and can be realized in ultracold gas experi-

ments [13–15]. Flat-band ferromagnetism has been studied
first by Lieb [16] and, subsequently, by Tasaki and Mielke
[17–20]. More recently it has been shown that the high

density of states of flat bands enhances the superconducting
critical temperature [21,22]. Indeed, for fixed interaction
strength, the flat-band dispersion provides the maximal

critical temperature within mean-field BCS theory [23].

Flat bands, or quasiflat bands, can be realized in bipartite

lattices [16] and other models [6–8,20,24]. A simple

bipartite lattice featuring a strictly flat band is the Lieb

lattice [Fig. 1(a)]. Recent studies on models defined on the

Lieb lattice focus on the ferromagnetic and topological

properties [25–31], while superconductivity has been

studied in Refs. [28,32]. On the experimental side, a highly

tunable Lieb lattice has been realized with ultracold gases

[33]. Intriguingly, the CuO2 planes responsible for the

exotic properties of high-Tc cuprate superconductors have

the Lieb lattice structure. Thus a Hubbard model on the

Lieb lattice [34–36] is a natural, and possibly indispen-

sable [37–39], extension of the single-band Hubbard model

more commonly used [40].
The important question of whether an isolated strictly

flat band can support superfluid transport is open. Its
answer is of interest for ongoing ultracold gas experiments
and may have important implications for the theory of

superconductivity. The Meissner effect and dissipationless
transport are manifestations of a finite superfluid weight

that in conventional superconductors at zero temperature

reads Ds ¼ np=meff , with np the particle density and meff

the band effective mass. Interestingly, the superfluid weight

of a flat band is not necessarily vanishing, as suggested by

meff → þ∞, but proportional to the quantum metric [41].

Flat bands with nonzero Chern number C (the topological

index of Landau levels) have nonzero superfluid weight

due to the bound Ds ≥ jCj. For a large class of

Hamiltonians defined on the Lieb lattice the flat band

has C ¼ 0 [42]. Lower bounds on Ds are not available at

present for topologically trivial bands or bands character-

ized by other topological invariants than the Chern number.

FIG. 1. (a) The Lieb lattice and its unit cell (gray box) are

shown. The orbitals in the unit cell are labeled by α ¼ A, B, C.
The thick lines represent nearest-neighbor hoppings with

energy ð1þ δÞJ, while the hopping energy corresponding to

the thin lines is ð1 − δÞJ with 0 ≤ δ ≤ 1 parametrizing the

staggered hopping. (b)–(c) The energy dispersion as a function

of quasimomentum k for δ ¼ 0 (b) and δ ¼ 0.3 (c), respectively.

The middle band is strictly flat ε0k ¼ 0 for any value of δ

while the upper and lower band have dispersions ε�;k ¼
�2 J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ δ2 þ ð1 − δ2Þðcos kxaþ cos kyaÞ=2
q

.
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Here we consider a tight-binding model with attractive

Hubbard interaction on the Lieb lattice. This model features

a strictly flat band with C ¼ 0. We show that the total

superfluid weight tensor receives contributions from the flat

band, Dsjf:b:, and from the other bands, Dsjo:b:, that is,
Ds ¼ Dsjf:b: þDsjo:b:. We find that Dsjf:b: depends on the

flat-band Bloch functions through the quantummetric. This

is called a “geometric” contribution distinct from the

“conventional” contribution, which depends only on the

derivatives of εnk [41]. Only the latter is accounted for

when evaluating the superfluid weight of known super-

conductors [43,44]. Importantly, the energy scale of the

geometric contribution is the coupling constant U, at odds

with the conventional result Ds ¼ np=meff ∝ J, where J is

the characteristic hopping energy in a tight-binding

Hamiltonian. We identify the regimes where Dsjf:b: domi-

nates over the termDsjo:b:, which includes the conventional
and geometric contributions of other bands. These results

are obtained with mean-field BCS theory. The validity of

BCS theory is rigorously justified by showing that, in the

isolated flat-band limit, the BCS wave function is exact for

any bipartite lattice. Furthermore, we compare the BCS

predictions for the pairing order parameters and the super-

fluid weight, respectively, with dynamical mean-field

theory (DMFT) and exact diagonalization (ED), finding

good agreement even when the flat band is not isolated.

Hubbard model on the Lieb lattice.—The Hamiltonian

Ĥ ¼ Ĥkin þ Ĥint − μN̂ defined on the Lieb lattice com-

prises the chemical potential term −μN̂ (N̂ is the particle

number operator), the attractive Hubbard interaction Ĥint

defined below and the kinetic term Ĥkin ¼
P

k;σ ĉ
†

kσHkĉkσ
with staggered nearest-neighbor hopping [Fig. 1(a)]

Hk ¼ 2J

0

B

@

0 ak 0

a�k 0 bk

0 b�k 0

1

C

A
; ð1Þ

where ak¼cosðkxa=2Þþiδsinðkxa=2Þ, bk ¼ cosðkya=2Þþ
iδ sinðkya=2Þ, and a is the lattice constant. The fermion

operators are defined as ĉkσ ¼ ðĉAkσ; ĉBkσ; ĉCkσÞT and

ĉαkσ ¼ ð1= ffiffiffiffiffiffi

Nc

p Þ
P

ie
−ik·riα ĉiασ , where Nc is the number

of unit cells, riα is the position vector of the α orbital in the

ith unit cell [i ¼ ðix; iyÞT], and the operator ĉiασ annihilates
a fermion with spin σ ¼ ↑;↓ in the orbital centered at riα.

By solving the eigenvalue problem Hkjgnki ¼ εnkjgnki
one obtains the Bloch functions jgnki and the band

dispersions εnk (n ¼ 0, �). The middle band is strictly

flat (εn¼0;k ¼ 0) for any value of the staggered-

hopping parameter δ and isolated from the other bands

by an energy gap Egap ¼
ffiffiffi

8
p

Jδ. The Hubbard interaction

Ĥint ¼ −U
P

i;αðn̂iα↑ − 1=2Þðn̂iα↓ − 1=2Þ, where U > 0

and n̂iασ ¼ ĉ†iασ ĉiασ, is approximated by mean-field pairing

Δα ¼ −Uhĉiα↓ĉiα↑i and Hartree potentials nα ¼ hn̂iασi

Ĥint ≈
X

i;α

ðΔαĉ
†

iα↑ĉ
†

iα↓ þ H:c:Þ þ U
X

i;α;σ

�

nα −
1

2

�

n̂iασ: ð2Þ

The equivalence of orbitals A and C implies ΔA ¼ ΔC and

nA ¼ nC. From the zero-temperature gap equations at half

filling ν ¼
P

αnα ¼ 3=2 one finds ΔA ¼ U=4 and ΔB ¼ 0

at leading order in U=J [45].

Exactness of BCS wave function for a flat band.—The

Lieb theorem [16] states that the ground state at half filling

of a bipartite lattice with repulsive Hubbard interaction has

total spin S ¼ NcNf:b:=2, where Nf:b: is the number of flat

bands and Nc the number unit cells. The Lieb lattice has

Nf:b: ¼ 1 and ifU ≪ Egap, the completely filled lower band

can be neglected at half filling. The ferromagnetic wave

functions jFerroi ¼
Q

kðud†0k↓ þ vd†
0k↑Þj∅i, parametrized

by u, v with juj2 þ jvj2 ¼ 1, have total spin S and therefore

are the only ground states. Here the operator d†n¼0;kσ creates

a fermion within the flat band. A repulsive Hubbard model

on a bipartite lattice can be mapped by a particle-hole

transformation into an attractive one [51]. Under this

transformation the state jFerroi is mapped into a BCS

wave function jBCSi ¼ Q

kðuþ vd†
0k↑d

†

0ð−kÞ↓Þj∅i and the

spin operator along the z axis Ŝziα ¼ 1

2
ðn̂iα↑ − n̂iα↓Þ into the

operator Δ̂z
iα ¼ 1

2
ðn̂iα↑ þ n̂iα↓ − 1Þ. The expectation value

hPαΔ̂
z
iαi ¼ ν − 3=2 gives the filling ν. Therefore, the BCS

wave function is the exact ground state for arbitrary flat

band filling. This result is easily extended to any bipartite

lattice. Consistently with this result, the numerical data

obtained with DMFTand ED converge to the predictions of

BCS theory for small U and a partially filled flat band, as

we show below and in Ref. [45].

Comparison with DMFT.—To investigate the accuracy

of BCS theory also for a nonisolated flat band, we compare

it in Fig. 2 against DMFT with respect to the pairing

potentials (order parameters) ΔA [Fig. 2(a)] and ΔB

[Fig. 2(b)] as a function of δ at half filling. We use cellular

dynamical mean-field theory [52,53] with a continuous-

time interaction-expansion impurity solver [54,55], which

FIG. 2. Order parameters ΔA=J (left) and ΔB=J (right) as a

function of δ obtained with DMFT and mean-field BCS theory at

temperatures kBT ¼ 5 × 10−3 and 10−2 J, filling ν ¼ 1.5 and

coupling strength U ¼ 0.4 J. At these temperatures, significantly

lower than the BCS critical temperature kBTc;BCS ≈

ΔA=2 ¼ U=8 ¼ 5 × 10
−2 J, the BCS results are indistinguish-

able from the zero temperatures ones.
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treats correlations exactly within the three-site unit cell and

goes beyond mean-field BCS theory. For small δ, DMFT is

in good agreement with BCS, especially regarding ΔA. The

results for large δ are discussed below. In particular, both

methods show that, even when δ ¼ Egap ¼ 0, pairing is

dominated by the flat band and the effect of the other bands

is small.

Superfluid weight.—The superfluid weight is defined as

the change in free energy density Δf ¼ 1

8
DsðℏqÞ2 due to

the winding with wave vector q of the order parameter

phaseΔðrÞ ¼ Δe2iq·r. The superfluid weight obtained from
multiband BCS theory is shown in Fig. 3 as a function of

coupling U and filling ν for zero temperature and δ ¼ 10−3

[45]. The Hartree term of Eq. (2) is needed for preserving

the SUð2Þ symmetry that allows us to calculate Ds for

arbitrary flat band fillings [32]. This symmetry corre-

sponds, under the particle-hole transformation, to the spin

rotational symmetry of the repulsive Hubbard model.

For δ ≠ 0, the superfluid weight tensor acquires nonzero

off-diagonal components ½Ds�x;y ¼ ½Ds�y;x. However, this

effect is small and we focus only on the diagonal components

½Ds�x;x ¼ ½Ds�y;y ≈Ds.

A striking feature of Fig. 3 is that, for partially filled

dispersive bands, Ds is finite and roughly constant as a

function of U, while the superfluid weight within the flat

band depends strongly on U and has a nonmonotonic

behavior [see also Fig. 4(a)]. This is consistent with the fact

that superconductivity in the dispersive bands emerges

from a metallic state with nonzero Drude weight which is

the U → 0 limit of Ds at zero temperature [56,57]. On the

contrary, superconductivity in the flat band smoothly

emerges with increasing U from an insulating state with

zero Drude weight. Notably, the superfluid weight of a

topologically trivial flat band can be nonzero and larger

than the one of dispersive bands in the same model.

This peculiar behavior is a consequence of the geometric

origin of flat-band superfluidity. The total superfluid weight

can be split in conventional and geometric contributions

Ds ¼ Ds;conv þDs;geom. The conventional contribution

Ds;conv ∝ J depends only on the derivatives of the disper-

sions εnk while the geometric one Ds;geom ∝ ΔA includes

derivatives of the Bloch functions jgnki [45]. Obviously the
flat band does not contribute to the conventional term, while

Ds;geom ¼ Ds;geomjf:b: þDs;geomjo:b: can be further split into a
term originating purely from the flat band Ds;geomjf:b: ¼
Dsjf:b: and the remaining partDs;geomjo:b:, which includes the
geometric effect of the other bands. All three terms

Ds;conv; Ds;geomjf:b: andDs;geomjo:b: are invariant with respect
to the gauge freedom consisting in the multiplication of the

Bloch functions by an arbitraryk-dependent phase factor and

are thus well defined. In our model the flat-band termDsjf:b:
at half filling has the form

½Ds�i;jjf:b: ¼
4

πℏ2

Δ
2

A

U
MR

ijjf:b: ≈
U

4πℏ2
MR

ijjf:b:; ð3Þ

where MR
ijjf:b: ¼ ð2πÞ−1

R

B:Z: d
2kReBijðkÞjf:b: is the

Brillouin-zone integral of the flat-band quantum metric

ReBijðkÞjf:b:. The quantum metric is defined as the real part

of the quantum geometric tensor [1,58,59]

BijðkÞjf:b: ¼ 2h∂ki
g0kjð1 − jg0kihg0kjÞj∂kj

g0ki: ð4Þ

FIG. 3. Diagonal components of the superfluid weight tensor

½Ds�x;x ¼ ½Ds�y;y ≈ Ds as a function of interactionU=J and filling

ν for δ ¼ 10
−3 and at zero temperature. The superfluid weight for

partially filled flat band (1 ≤ ν ≤ 2) depends strongly on U in

contrast to the other bands.

FIG. 4. (a)–(b) Conventional superfluid weight Ds;conv (blue area) compared with the geometric one Ds;geom (red area) for ν ¼ 1.5 (a)

and ν ¼ 2.5 (b). Here T ¼ 0 and δ ¼ 10
−3. Also the Drude weight D obtained from ED is shown. Squares and circles correspond to the

12 sites and 18 sites clusters, respectively. Data for the 24 sites cluster at ν ¼ 2.5 (shown in Ref. [45]) do not deviate significantly with

respect to 18 sites. (c)–(d) Various superfluid weight contributions for half-filled flat band, small U ≤ 0.2 J, δ ¼ 5 × 10
−3

(c), δ ¼ 0.1 (d).

PRL 117, 045303 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
22 JULY 2016

045303-3



The same quantity MR appears in the theory of the

polarization [1,60] and current [61] fluctuations in band

insulators.

The strong dependence of Ds on U for a partially filled

flat band originates from the geometric term as shown in

Figs. 4(a)–4(b), whereDs;conv andDs;geom are presented as a

function of U for half-filled flat band [ν ¼ 1.5, Fig. 4(a)]

and half-filled upper band [ν ¼ 2.5, Fig. 4(b)]. For ν ¼ 1.5

the term Ds;geom dominates Ds;conv, while for ν ¼ 2.5

Ds;geom is negligible at weak coupling.

In order to confirm the behavior of Ds observed in the

mean-field calculations, we compute the Drude weight D
by using ED on periodic finite-size clusters of 12, 18, and

24 sites [45,62]. In the bulk limit D is equivalent to Ds for

gapped systems [56,57,63]. Figures 4(a)–4(b) show thatDs

from BCS theory is in good agreement with ED results. In

particular, at half filling (ν ¼ 1.5), the sharp increase of D
for 0 ≤ U ≲ 4 J becomes clearer with increasing cluster

size. It is also peaked at U ∼ 4 J and decreases when U
further increases, confirming the overall behavior of the

mean-field Ds. The drastic difference between ν ¼ 1.5 and

2.5, namely,Ds approaching zero vs being a finite constant,

respectively, in the small U limit is also confirmed by ED.

The finiteD for ν ¼ 2.5 at small coupling shows very weak

dependence on U for cluster size up to 24 sites.

Note that Ds scales in a way similar to the pair structure

factor Ps obtained in Ref. [32] with determinant quantum

Monte Carlo calculations. At fixed U ¼ 4 J the values

Ps ∼ 0.1 and Ps ∼ 0.05 for ν ¼ 1.5 and ν ¼ 2.5, respec-

tively, can be compared to our results Ds ∼ 0.33 J=ℏ2 and

Ds ∼ 0.16 J=ℏ2. Furthermore at fixed ν ¼ 1.5 the values

Ps ∼ 0.10 (U ¼ 4 J) and Ps ∼ 0.07 (U ¼ 8 J) correspond

to Ds ∼ 0.33 J=ℏ2 and Ds ∼ 0.23 J=ℏ2, respectively.

In Figs. 4(c)–4(d) we compare the conventional term

Ds;conv, the flat-band contribution Dsjf:b: and the geometric

contribution due to the other bandsDs;geomjo:b: at half filling
ν ¼ 1.5 and for small U ≤ 0.2 J. Two values of δ are

shown: δ ¼ 5 × 10−3 [Fig. 4(c)] and δ ¼ 0.1 [Fig. 4(d)]. In

both cases Ds;conv is negligible due to the vanishing density

of states of the dispersive bands, while Dsjf:b: gives the

dominant contribution, linear in U. The term Ds;geomjo:b: is
negative and less relevant when the flat band becomes more

isolated for larger δ. When U increases, the negative

contribution of Ds;geomjo:b: becomes more prominent and

for very large U it cancels the positive term Dsjf:b: [see
Fig. 4(a)]. This means that pairing has to occur in a subset

of all bands for Ds;geom to manifest, and it explains the

decreasing trend of Ds in Figs. 4(a)–4(b). As shown in

Fig. 5, the invariant MR
ijjf:b: diverges at δ ¼ 0; thus, the

slope ofDs as a function ofU is infinite atU ¼ 0. However

for any nonzero U we have verified that this divergence is

cured by Ds;geomjo:b:. Thus, for δ ¼ 0 superfluidity has a

truly multiband character. In the opposite limit δ → 1 one

eigenvalue of MR
ijjf:b: becomes zero and superfluidity is

lost, consistently with the fact that the unit cells become

decoupled [see Fig. 1(a)]. In contrast to mean-field theory,

DMFT captures this behavior already at the level of the

order parameter, as seen in Fig. 2.

Discussion.—The main result of this work is that

topologically trivial flat bands are promising for high-Tc

superconductivity, in the same way as topologically non-

trivial ones. Indeed, a flat band allows us to optimize not

only the BCS critical temperature [23], but also the

superfluid weight [see Figs. 4(a)–4(b)]. The superfluid

weight affects the critical temperature in two dimensions

through the Berezinsky-Kosterlitz-Thouless (BKT) transi-

tion. We show that the superfluid weight has geometric

origin; i.e., it is proportional to the quantum metric of the

flat band [Eqs. (3)–(4)]. The fingerprint of the geometric

origin is the strong dependence of Ds on the coupling

constant U, possibly observable in ultracold gases where

interactions are tunable.

Achieving the superfluid phase of an ultracold gas in an

optical lattice is difficult, due to the still too high temper-

atures (specific entropies) currently attainable [64,65]. We

find the BKT transition temperature in the Lieb lattice to be

kBTc;BKT ¼ πℏ2DsðTc;BKTÞ=8 ¼ 0.133 J [45] at the opti-

mal coupling U ≈ 4 J [Fig. 4(a)], to be compared with the

quantum Monte Carlo estimate kBTc;BKT ∼ 0.10–0.13 J at

U ¼ 4 J for the 2D simple square lattice [66] (for three

dimensions see Ref. [67]). Therefore lattices with flat bands

whose integrated quantum metric MR is large are a

promising path to achieve higher critical temperature in

ultracold gases.

In the solid state context the geometric contribution to

the superfluid weight is expected to be larger for super-

conductors with high Tc and provides a possible explan-

ation of the linear relation between superfluid weight and

critical temperature in cuprates (Uemura relation [68,69])

sinceDs;geom ∝ Δ ∝ Tc. We expectDs;geom to be significant

in models with nontrivial Bloch functions also with the

different pairing symmetries found in high-Tc supercon-

ductors, whose incorporation to our theory for the super-

fluid weight is an important topic of future research.
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