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1. INTRODUCTION

Particle swarm optimization (PSO) is a relatively recently de-
vised population-based stochastic global optimization algo-
rithm [1]. PSO has many similarities with evolutionary al-
gorithms, and has also proven to have robust performance
over a variety of difficult optimization problems. However,
the original formulation of PSO requires the search space to
be continuous and the individuals to be represented as vec-
tors of real numbers.

There is a number of extensions of PSO to combinato-
rial spaces with various degrees of success [2, 3]. (Notice that
applications of traditional PSO to combinatorial optimiza-
tion problems cast as continuous optimization problems are
not extensions of the PSO algorithm.) However, every time
a new solution representation is considered, the PSO algo-
rithm needs to be rethought and adapted to the new repre-
sentation. In this article, we extend PSO to richer spaces by
making use of a rigorous mathematical generalization of the
notion (and motion) of particles to a general class of spaces.
This approach has the advantage that a PSO can be derived in
a principled way for any search space belonging to the given
class.

In particular, we show formally how a general form of
PSO (without the inertia term) can be obtained by us-

ing theoretical tools developed for evolutionary algorithms
with geometric crossover and geometric mutation. These are
representation-independent operators that generalize many
pre-existing search operators for the major representations,
such as binary strings [4], real vectors [4], permutations [5],
syntactic trees [6], and sequences [7]. (The inertia weight was
not part of the original proposal of PSO, it was later intro-
duced by Shi and Eberhart [8].)

Firstly, we formally derive geometric PSOs (GPSOs) for
Euclidean, Manhattan, and Hamming spaces and discuss
how to derive GPSOs for virtually any representation in a
similar way. Then, we test the GPSO theory experimentally:
we implement the specific GPSO for Euclidean, Manhattan,
and Hamming spaces and report extensive experimental re-
sults showing that GPSOs perform very well.

Finally, we also demonstrate that GPSO can be special-
ized easily to nontrivial combinatorial spaces. In previous
work [9], we have used the geometric framework to design an
evolutionary algorithm to solve the Sudoku puzzle and ob-
tained very good experimental results. Here, we apply GPSO
to solve the Sudoku puzzle.

In Section 2, we introduce the geometric framework and
introduce the notion of multiparental geometric crossover.
In Section 3, we recast PSO in geometric terms and general-
ize it to generic metric spaces. In Section 4, we apply these
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notions to the Euclidean, Manhattan, and Hamming spaces.
In Section 5, we discuss how to specialize the general PSO
automatically to virtually any solution representation using
geometric crossover. Then, in Section 6, we report experi-
mental results with the GPSOs for Euclidean, Manhattan,
and Hamming spaces, and we compare them with a tradi-
tional PSO. In Section 7, we apply GPSO to Sudoku, and
we describe the results in Section 8. Finally, in Section 9, we
present conclusions and future work.

2. GEOMETRIC FRAMEWORK

Geometric operators are defined in geometric terms using
the notions of line segment and ball. These notions and the
corresponding genetic operators are well defined once a no-
tion of distance in the search space is defined. Defining search
operators as functions of the search space is opposite to the
standard way [10] in which the search space is seen as a func-
tion of the search operators employed.

2.1. Geometric preliminaries

In the following, we give necessary preliminary geometric
definitions and extend those introduced in [4]. For more de-
tails on these definitions, see [11].

The terms distance and metric denote any real valued
function that conforms to the axioms of identity, symmetry,
and triangular inequality. A simple connected graph is natu-
rally associated to a metric space via its path metric: the dis-
tance between two nodes in the graph is the length of a short-
est path between the nodes. Distances arising from graphs
via their path metric are called graphic distances. Similarly,
an edge-weighted graph with strictly positive weights is nat-
urally associated to a metric space via a weighted path metric.

In a metric space (S,d), a closed ball is a set of the form
B(x; r) = {y ∈ S | d(x, y) ≤ r}, where x ∈ S and r is a posi-
tive real number called the radius of the ball. A line segment is
a set of the form [x; y] = {z ∈ S | d(x, z)+d(z, y) = d(x, y)},
where x, y ∈ S are called extremes of the segment. Metric
ball and metric segment generalize the familiar notions of
ball and segment in the Euclidean space to any metric space
through distance redefinition. In general, there may be more
than one shortest path (geodesic) connecting the extremes
of a metric segment: the metric segment is the union of all
geodesics.

We assign a structure to the solution set by endowing it
with a notion of distance d. M = (S,d) is, therefore, a solu-
tion space and L = (M, g), where g is the fitness function, is
the corresponding fitness landscape.

2.2. Geometric crossover

Definition 1 (geometric crossover). A binary operator is a ge-
ometric crossover under the metric d if all offsprings are in
the segment between its parents.

The definition is representation-independent and, there-
fore, crossover is well defined for any representation. Being

based on the notion of metric segment, crossover is a function
only of the metric d associated with the search space.

The class of geometric crossover operators is very broad.
For vectors of reals, various types of blend or line crossovers,
box recombinations, and discrete recombinations are geo-
metric crossovers [4]. For binary and multary strings, all
homologous crossovers are geometric [4, 12]. For permu-
tations, PMX, Cycle crossover, merge crossover, and others
are geometric crossovers [5]. We describe this in more de-
tail in Section 2.3 since we will use the permutation rep-
resentation in this paper. For syntactic trees, the family of
homologous crossovers are geometric [6]. Recombinations
for several more complex representations are also geometric
[4, 5, 7, 13].

2.3. Geometric crossover for permutations

In previous work, we have studied various crossovers for per-
mutations, revealing that PMX [14], a well-known crossover
for permutations, is geometric under swap distance. Also,
we found that Cycle crossover [14], another traditional
crossover for permutations, is geometric under swap distance
and under Hamming distance (geometricity under Ham-
ming distance for permutations implies geometricity under
swap distance, but not vice versa). Finally, we showed that
geometric crossovers for permutations based on edit moves
are naturally associated with sorting algorithms: picking off-
spring on a minimum path between two parents corresponds
to picking partially sorted permutations on the minimal sort-
ing trajectory between the parents.

2.4. Geometric crossover landscape

Geometric operators are defined as functions of the distance
associated with the search space. However, the search space
does not come with the problem itself. The problem con-
sists of a fitness function to optimize and a solution set, but
not a neighbourhood relationship. The act of putting a struc-
ture over the solution set is part of the search algorithm de-
sign and it is a designer’s choice. A fitness landscape is the
fitness function plus a structure over the solution space. So
for each problem, there is one fitness function but as many
fitness landscapes as the number of possible different struc-
tures over the solution set. In principle, the designer could
choose the structure to assign to the solution set completely
independently from the problem at hand. However, because
the search operators are defined over such a structure, doing
so would make them decoupled from the problem at hand,
hence turning the search into something very close to ran-
dom search.

In order to avoid this, one can exploit problem knowl-
edge in the search. This can be achieved by carefully design-
ing the connectivity structure of the fitness landscape. For
example, one can study the objective function of the prob-
lem and select a neighbourhood structure that couples the
distance between solutions and their fitness values. Once this
is done, the problem knowledge can be exploited by search
operators to perform better than random search, even if the
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search operators are problem independent (as in the case of
geometric crossover and mutation).

Under which conditions is a landscape well searchable by
geometric operators? As a rule of thumb, geometric mutation
and geometric crossover work well on landscapes where the
closer pairs of solutions are, the more correlated their fitness
values. Of course this is no surprise: the importance of land-
scape smoothness has been advocated in many different con-
texts and has been confirmed in uncountable empirical stud-
ies with many neighborhood search metaheuristics [15, 16].
To summarize, consider the following.

(i) Rule of thumb 1: If we have a good distance for the
problem at hand, then we have good geometric muta-
tion and good geometric crossover.

(ii) Rule of thumb 2: A good distance for the problem at
hand is a distance that makes the landscape “smooth.”

2.5. Product geometric crossover

In recent work [12], we have introduced the notion of prod-
uct geometric crossover.

Theorem 1. Cartesian product of geometric crossover is geo-
metric under the sum of distances.

This theorem is very useful because it allows one to
build new geometric crossovers by combining crossovers that
are known to be geometric. In particular, this applies to
crossovers for mixed representations. The elementary geo-
metric crossovers do not need to be independent, to form
a valid product geometric crossover.

2.6. Multiparental geometric crossover

To extend geometric crossover to the case of multiple parents,
we need the following definitions [17].

Definition 2. A family X of subsets of a set X is called con-
vexity on X if

(C1) the empty set ∅ and the universal set X are in X,
(C2) D ⊆X is nonempty, then

⋂
D ∈X, and

(C3) D ⊆X is nonempty and totally ordered by inclu-
sion, then

⋃
D ∈X.

The pair (X , X) is called convex structure. The members
of X are called convex sets. By the axiom (C1), a subset A of
X of the convex structure is included in at least one convex
set, namely, X .

From axiom (C2), A is included in a smallest convex set,
the convex hull of A:

co (A) =
⋂
{C | A ⊆ C ∈X}. (1)

The convex hull of a finite set is called a polytope.
The axiom (C3) requires domain finiteness of the convex

hull operator: a set C is convex if it includes co (F) for each
finite subset F of C.

The convex hull operator applied to a set of cardinal-
ity two is called segment operator. Given a metric space

M = (X ,d), the segment between a and b is the set [a, b]d =
{z ∈ X | d(x, z) + d(z, y) = d(x, y)}. The abstract geodetic
convexity C on X induced by M is obtained as follows: a sub-
set C of X is geodetically convex, provided [x, y]d ⊆ C for all
x, y inC. If co denotes the convex hull operator of C, then for
all a, b ∈ X : [a, b]d ⊆ co {a, b}. The two operators need not
to be equal: there are metric spaces in which metric segments
are not all convex.

We can now provide the following extension.

Definition 3 (multiparental geometric crossover). In a mul-
tiparental geometric crossover, given n parents p1, p2, . . . , pn,
their offspring are contained in the metric convex hull of the
parents co ({p1, p2, . . . , pn}) for some metric d.

Theorem 2 (decomposable three-parent recombination).
Every multiparental recombination RX(p1, p2, p3) that can be
decomposed as a sequence of 2-parental geometric crossovers
under the same metric GX and GX ′, so that RX(p1, p2, p3) =
GX(GX ′(p1, p2), p3), is a three-parental geometric crossover.

Proof. Let P be the set of parents and co (P) their metric
convex hull. By definition of metric convex hull, for any
two points a, b ∈ co (P), their offspring are in the con-
vex hull [a, b] ⊆ co (P). Since P ⊆ co (P), any two parents
p1, p2 ∈ P have offspring o12 ∈ co (P). Then, any other par-
ent p3 ∈ P, when recombined with o12, produces offspring
o123 in the convex hull co (P). So the three-parental recom-
bination equivalent to the sequence of geometric crossover
GX ′(p1, p2) → o12 and GX(o12, p3) → o123 is a multiparental
geometric crossover.

3. GEOMETRIC PSO

3.1. Canonical PSO algorithm and geometric crossover

Consider the canonical PSO in Algorithm 1. It is well known
[18] that one can write the equation of motion of the particle
without making explicit use of its velocity.

Let x be the position of a particle and v its velocity. Let
x̂ be the current best position of the particle and let ĝ be the
global best. Let v′ and v′′ be the velocity of the particle and
x′ = x + v and x′′ = x′ + v′ its position at the next two time
ticks. The equation of velocity update is the linear combina-
tion: v′ = ωv + φ1(x̂ − x′) + φ2(ĝ − x′), where ω, φ1, and φ2
are scalar coefficients. To eliminate velocities, we substitute
the identities v = x′ − x and v′ = x′′ − x′ in the equation of
velocity update and rearrange it to obtain an equation that
expresses x′′ as function of x and x′ as follows:

x′′ = (1 + ω− φ1 − φ2

)
x′ − ωx + φ1x̂ + φ2ĝ . (2)

If we set ω = 0 (i.e., the particle has no inertia), x′′ be-
comes independent on its position x two time ticks earlier. If
we call w1 = 1−φ1−φ2, w2 = φ1, and w3 = φ2, the equation
of motion becomes

x′′ = w1x
′ +w2x̂ +w3ĝ . (3)

In these conditions, the main feature that allows the mo-
tion of particles is the ability to perform linear combinations
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(1) for all particle i do
(2) initialize position xi and velocity vi
(3) end for
(4) while stop criteria not met do
(5) for all particle i do
(6) set personal best x̂i as best position found so far by the particle
(7) set global best ĝ as best position found so far by the whole swarm
(8) end for
(9) for all particle i do
(10) update velocity using equation

vi(t + 1) = κ(ωvi(t) + φ1U(0, 1)(ĝ(t)− xi(t)) + φ2U(0, 1)(x̂i(t)− xi(t))),
where, typically, either (κ = 0.729, ω = 1.0) or (κ = 1.0, ω < 1)

(11) update position using equation
xi(t + 1) = xi(t) + vi(t + 1)

(12) end for
(13) end while

Algorithm 1: Standard PSO algorithm.
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Figure 1: Geometric crossover and particle motion.

of points in the search space. As we will see in the next sec-
tion, we can achieve this same ability by using multiple (geo-
metric) crossover operations. This makes it possible to obtain
a generalization of PSO to generic search spaces.

In the following, we illustrate the parallel between an
evolutionary algorithm with geometric crossover and the
motion of a particle in PSO (see Figure 1). Geometric
crossover picks offspring C on a line segment between par-
ents A and B. Geometric crossover can be interpreted as a
motion of a particle: consider a particle P that moves in the
direction of a point D reaching, in the next time step, posi-
tion P′. If one equates parentAwith the particle P and parent
B with the direction pointD, the offspring C is, therefore, the
particle at the next time step P′. The distance between par-
ent A and offspring C is the magnitude of the velocity of the
particle P. Notice that the particle moves from P to P′: this
means that the particle P is replaced by the particle P′ in the
next time step. In other words, the new position of the parti-
cle replaces the previous position. Coming back to the evolu-
tionary algorithm with geometric crossover, this means that
the offspring C replaces its parent A in the new population.
The fact that at a given time all particles move is equivalent
to say that each particle is selected for “mating.” Mating is a
weighted multirecombination involving the memory of the
particle and the best in the current population.

In the standard PSO, weights represent the propensity
of a particle towards memory, sociality, and cognition. In

the GPSO, they represent the attractions towards the parti-
cle’s previous position, the particle’s best position, and the
swarm’s best position.

Naturally, particle motion based on geometric crossover
leads to a form of search that cannot extend beyond the con-
vex hull of the initial population. Mutation can be used to
allow nonconvex search. We explain these ideas in detail in
the following sections.

3.2. Geometric interpretation of linear combinations

Definition 4. A convex combination of vectors v1, . . . , vn is a
linear combination a1v1 + a2v2 + a3v3 + · · · + anvn, where all
coefficients a1, . . . , an are nonnegative and add up to 1.

It is called “convex combination” because when vectors
represent points in space, the set of all convex combinations
constitutes the convex hull.

A special case is n = 2, where a point formed by the
convex combination will lie on a straight line between two
points. For three points, their convex hull is the triangle with
the points as vertices.

Theorem 3. In a PSO with no inertia (ω = 0) and where ac-
celeration coefficients are such that φ1 + φ2 ≤ 1, the next po-
sition x′ of a particle is within the convex hull formed by its
current position x, its local best x̂, and the swarm best ĝ.

Proof. As we have seen in Section 3.1, whenω = 0, a particle’s
update equation becomes the linear combination in (3). No-
tice that this is an affine combination since the coefficients of
x′, x̂, and ĝ add up to 1. Interestingly, this means that the new
position of the particle is coplanar with x′, x̂, and ĝ. If we re-
strictw2 andw3 to be positive and their sum to be less than 1,
(3) becomes a convex combination. Geometrically, this means
that the new position of the particle is in the convex hull formed
by (or more informally, is between) its previous position, its lo-
cal best, and the swarm best.
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(1) for all particle i do
(2) initialize position xi at random in the search space
(3) end for
(4) while stop criteria not met do
(5) for all particle i do
(6) set personal best x̂i as best position found so far by the particle
(7) set global best ĝ as best position found so far by the whole swarm
(8) end for
(9) for all particle i do
(10) update position using a randomized convex combination

xi = CX
((
xi,w1

)
,
(
ĝ,w2

)
,
(
x̂i,w3

))

(11) mutate xi
(12) end for
(13) end while

Algorithm 2: Geometric PSO algorithm.

In the next section, we generalize this simplified form of
PSO from real vectors to generic metric spaces. As mentioned
above, mutation will be required to extend the search beyond
the convex hull.

3.3. Convex combinations in metric spaces

Linear combinations are well defined for vector spaces: alge-
braic structures endowed with scalar product and vectorial
sum. A metric space is a set endowed with a notion of dis-
tance. The set underlying a metric space does not normally
come with well-defined notions of scalar product and sum
among its elements. Therefore, a linear combination of its
elements is not defined. How can we then define a convex
combination in a metric space? Vectors in a vector space can
easily be understood as points in a metric space. However, the
interpretation of scalars is not as straightforward: what do
the scalar weights in a convex combination mean in a metric
space?

As seen in Section 3.2, a convex combination is an alge-
braic description of a convex hull. However, even if the no-
tion of convex combination is not defined for metric spaces,
convexity in metric spaces is still well defined through the
notion of metric convex set that is a straightforward gener-
alization of traditional convex set. Since convexity is well de-
fined for metric spaces, we still have hope to generalize the
scalar weights of a convex combination trying to make sense
of them in terms of distance.

The weight of a point in a convex combination can be
seen as a measure of relative linear “attraction” toward its
corresponding point, versus attractions toward the other
points of the combination. The closer a weight to 1, the
stronger the attraction to the corresponding point. The point
resulting from a convex combination can be seen as the equi-
librium point of all the attraction forces. The distance be-
tween the equilibrium point and a point of the convex com-
bination is, therefore, a decreasing function of the level of at-
traction (weight) of the point: the stronger the attraction, the
smaller its distance to the equilibrium point. This observa-
tion can be used to reinterpret the weights of a convex com-

bination in a metric space as follows: y = w1x1 +w2x2 +w3x3

with w1, w2, and w3 greater than zero and w1 + w2 + w3 = 1
is generalized to mean that y is a point such that d(x1, y) =
f (w1), d(x2, y) = f (w2), and d(x3, y) = f (w3), where f is a
decreasing function.

This definition is formal and valid for all metric spaces,
but it is nonconstructive. In contrast, a convex combination
not only defines a convex hull, but also tells how to reach all
its points. So how can we actually pick a point in the convex
hull respecting the above distance requirements? Geometric
crossover will help us with this, as we show in the next sec-
tion.

To summarize, the requirements for a convex combina-
tion in a metric space are as follows.

(1) Convex weights: the weights respect the form of a con-
vex combination: w1,w2,w3 > 0 and w1 +w2 +w3 = 1.

(2) Convexity: the convex combination operator combines
x1, x2, and x3 and returns a point in theirmetric convex
hull (or simply triangle) under the metric of the space
considered.

(3) Coherence between weights and distances: the distances
to the equilibrium point are decreasing functions of
their weights.

(4) Symmetry: the same value assigned to w1, w2, or w3

has the same effect (e.g., in a equilateral triangle, if the
coefficients have all the same value, the distances to the
equilibrium point are the same).

3.4. Geometric PSO algorithm

The generic GPSO algorithm is illustrated in Algorithm 2.
This differs from the standard PSO (Algorithm 1), in that:

(i) there is no velocity,

(ii) the equation of position update is the convex combi-
nation,

(iii) there is mutation, and

(iv) the parametersw1,w2, andw3 are nonnegative and add
up to one.
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The specific PSOs for the Euclidean, Manhattan, and
Hamming spaces use the randomized convex combination
operators described in Section 4 and space-specific muta-
tions. The randomization introduced by the randomized
convex combination and by the mutation are of different
types. The former allows us to pick points at random ex-
clusively within the convex hull. The latter, as mentioned in
Section 3.1, allows us to pick points outside the convex hull.

4. GEOMETRIC PSO FOR SPECIFIC SPACES

4.1. Euclidean space

The GPSO for the Euclidean space is not an extension of the
traditional PSO. We include it to show how the general no-
tions introduced in the previous section materialize in a fa-
miliar context. The convex combination operator for the Eu-
clidean space is the traditional convex combination that pro-
duces points in the traditional convex hull.

In Section 3.3, we have mentioned how to interpret the
weights in a convex combination in terms of distances. In the
following, we show analytically how the weights of a convex
combination affect the relative distances to the equilibrium
point. In particular, we show that the relative distances are
decreasing functions of the corresponding weights.

Theorem 4. In a convex combination, the distances to the
equilibrium point are decreasing functions of the correspond-
ing weights.

Proof. Let a, b, and c be three points in Rn and let x = waa +
wbb + wcc be a convex combination. Let us now decrease wa

to w′a = wa − Δ such that w′a, w′b, and w′c still form a convex
combination and that the relative proportions of wb and wc

remain unchanged: w′b/w
′
c = wb/wc. This requires w′b and w′c

to bew′b = wb(1+Δ/(wb+wc)) andw′c = wc(1+Δ/(wb+wc)).
The equilibrium point for the new convex combination is

x′ = (wa − Δ
)
a +wb

(
1 + Δ/

(
wb +wc

))
b

+wc
(
1 + Δ/

(
wb +wc

))
c.

(4)

The distance between a and x is

|a− x| = ∣∣wb(a− b) +wc(a− c)
∣
∣, (5)

and the distance between a and the new equilibrium point is

∣
∣a− x′∣∣ = ∣∣wb

(
1 + Δ/

(
wb +wc

))(
a− b)

+wc
(
1 + Δ/

(
wb +wc

))
(a− c)∣∣

= (1 + Δ/
(
wb +wc

))|a− x|.
(6)

So when wa decreases (Δ > 0) and wb and wc maintain the
same relative proportions, the distance between the point a
and the equilibrium point x increases (|a − x′| > |a − x|).
Hence, the distance between a and the equilibrium point is a
decreasing function of wa. For symmetry, this applies to the
distances between b and c and the equilibrium point: they are
decreasing functions of their corresponding weights wb and
wc, respectively.

The traditional convex combination in the Euclidean
space respects the four requirements for a convex combina-
tion presented in Section 3.3.

4.2. Manhattan space

In the following, we first define a multiparental recombina-
tion for the Manhattan space and then prove that it respects
the four requirements for being a convex combination pre-
sented in Section 3.3.

Definition 5 (box recombination family). Given two parents
a and b in Rn, a box recombination operator returns off-
spring o such that oi ∈ [min (ai, bi), max (ai, bi)] for i =
1, . . . ,n.

Theorem 5 (geometricity of box recombination). Any box
recombination is a geometric crossover under Manhattan dis-
tance.

Proof. Theorem 5 is an immediate consequence of the prod-
uct geometric crossover (Theorem 1).

Definition 6 (three-parent box recombination family).
Given three parents a, b, and c in Rn, a box recom-
bination operator returns offspring o such that oi ∈
[min (ai, bi, ci), max (ai, bi, ci)] for i = 1, . . . ,n.

Theorem 6 (geometricity of a three-parent box recombi-
nation). Any three-parent box recombination is a geometric
crossover under Manhattan distance.

Proof. We prove it by showing that any multiparent box re-
combination BX(a, b, c) can be decomposed as a sequence of
two simple box recombinations. Since the simple box recom-
bination is geometric (Theorem 5), this theorem is a simple
corollary of the multiparental geometric decomposition the-
orem (Theorem 2).

We will show that o′ =BX(a, b) followed by BX(o′, c)
can reach any offspring o = BX(a, b, c). For each i,
we have oi ∈ [min(ai, bi, ci), max (ai, bi, ci)]. Notice that
[min (ai, bi), max (ai, bi)] ∪ [min (ai, ci), max (ai, ci)] =
[min (ai, bi, ci), max (ai, bi, ci)]. We have two cases: (i)
oi ∈ [min (ai, bi), max (ai, bi)] in which case oi is reach-
able by the sequence BX(a, b)i → oi,BX(o, c)i → oi;
(ii) oi /∈ [min (ai, bi), max (ai, bi)], then it must be in
[min (ai, ci), max (ai, ci)] in which case oi is reachable by the
sequence BX(a, b)i → ai,BX(a, c)i → oi.

Definition 7 (weighted multiparent box recombination).
Given three parents a, b, and c in Rn and weights wa, wb, and
wc, a weighted box recombination operator returns offspring
o such that oi = waiai + wbibi + wcici for i = 1, . . . ,n, where
wai , wbi , and wci are a convex combination of randomly per-
turbed weights with expected values wa, wb, and wc.

The difference between box recombination and linear
recombination (Euclidean space) is that in the latter, the
weights wa, wb, and wc are randomly perturbed only once
and the same weights are used for all the dimensions, whereas
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the former one has a different randomly perturbed version of
the weights for each dimension.

The weighted multiparent box recombination belongs to
the family of multiparent box recombination because oi =
waiai + wbibi + wcici ∈ [min (ai, bi, ci), max (ai, bi, ci)] for i =
1, . . . ,n, hence, it is geometric.

Theorem 7 (coherence between weights and distances). In
weighted multiparent box recombination, the distances of the
parents to the expected offspring are decreasing functions of the
corresponding weights.

Proof. The proof of Theorem 7 is a simple variation of that
of Theorem 4.

In summary, in this section, we have introduced the
weighted multiparent box recombination and shown that it
is a convex combination operator satisfying the four require-
ments of a metric convex combination for the Manhattan
space: convex weights (Definition 6), convexity (geometric-
ity, Theorem 6), coherence (Theorem 7), and symmetry (self
evident).

4.3. Hamming space

In this section, we first define a multiparental recombination
for binary strings, that is, a straightforward generalization of
mask-based crossover with two parents and then prove that
it respects the four requirements for being a convex combi-
nation in the Hamming space presented in Section 3.3.

Definition 8 (three-parent mask-based crossover family).
Given three parents a, b, and c in {0, 1}n, generate randomly
a crossover mask of length n with symbols from the alphabet
{a,b,c}. Build the offspring o filling each position with the
bit from the parent appearing in the crossover mask at the
corresponding position.

The weights wa, wb, and wc of the convex combination
indicate, for each position in the crossover mask, the proba-
bility of having the symbols a, b, or c.

Theorem 8 (geometricity of three-parent mask-based
crossover). Any three-parent mask-based crossover is a geo-
metric crossover under Hamming distance.

Proof. We prove it by showing that any three-parent mask-
based crossover can be decomposed as a sequence of two
simple mask-based crossovers. Since the simple mask-based
crossover is geometric, this theorem is a simple corol-
lary of the multiparental geometric decomposition theorem
(Theorem 2).

Let mabc be the mask to recombine a, b, and c, produc-
ing the offspring o. Let mab be the mask obtained by sub-
stituting all occurrences of c in mabc with b, and let mbc be
the mask obtained by substituting all occurrences of a in
mabc with b. First, recombine a and b using mab obtaining b′.
Then, recombine b′ and c usingmbc where the b’s in the mask
stand for alleles in b′. The offspring produced by the second
crossover is o, so the sequence of the two simple crossovers

is equivalent to the three-parent crossover. This is because
the first crossover passes to the offspring all genes it needs
to take from a according to mabc, and the rest of the genes
are all from b; the second crossover corrects those genes that
should have been taken from parent c according to mabc, but
were taken from b instead.

Theorem 9 (coherence between weights and distances). In
the weighted three-parent mask-based crossover, the distances
of the parents to the expected offspring are decreasing functions
of the corresponding weights.

Proof. We want to know the expected distance from parent
p1, p2, and p3 to their expected offspring o as a function of
the weights w1, w2, and w3. To do so, we first determine, for
each position in the offspring, the probability of it being the
same as p1. Then from that, we can easily compute the ex-
pected distance between p1 and o. We have that

pr
{
o = p1

} = pr
{
p1 −→ o

}
+ pr

{
p2 −→ o

}·pr
{
p1 | p2

}

+ pr
{
p3 −→ o

}·pr
{
p1 | p3

}
,

(7)

where pr {o = p1} is the probability of a bit of o at a certain
position to be the same as the bit of p1 at the same position;
pr {p1 → o}, pr {p2 → o}, and pr {p3 → o} are the proba-
bilities that a bit in o is taken from parents p1, p2, and p3,
respectively (these coincide with the weights of the convex
combination w1, w2, and w3); pr {p1 | p2} and pr {p1 | p3}
are the probabilities that a bit taken from p2 or p3 coincides
with the one in p1 at the same location. These last two prob-
abilities equal the number of common bits in p1 and p2 (and
p1 and p3) over the length of the strings n. So pr {p1 | p2} =
1 − H(p1, p2)/n and pr {p1 | p3} = 1 − H(p1, p3)/n, where
H(·, ·) is the Hamming distance. So (7) becomes

pr
{
o = p1

} = w1 +w2
(
1−H(p1, p2

)
/n
)

+w3
(
1−H(p1, p3

)
/n
)
.

(8)

Hence, the expected distance between the parent p1 and
the offspring o is E(H(p1, o)) = n·(1 − pr {o = p1}) =
w2H(p1, p2) +w3H(p1, p3).

Notice that this is a decreasing function of w1 because
increasing w1 forces w2 or w3 to decrease since the sum of
the weights is constant, hence, E(H(p1, o)) decreases. Analo-
gously, E(H(p2, o)) and E(H(p3, o)) are decreasing functions
of their weights w2 and w3, respectively.

In summary, in this section, we have introduced the
weighted multiparent mask-based crossover and shown that
it is a convex combination operator satisfying the four re-
quirements of a metric convex combination for the Ham-
ming space: convex weights (Definition 8), convexity (geo-
metricity, Theorem 8), coherence (Theorem 9), and symme-
try (self evident).

5. GEOMETRIC PSO FOR OTHER REPRESENTATIONS

Before looking into how we can extend GPSO to other so-
lution representations, we will discuss the relation between
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the three-parental geometric crossover and the symmetry re-
quirement for a convex combination.

For each of the spaces considered in Section 4, we have
first considered (or defined) a three-parental recombina-
tion and then proven that it is a three-parental geometric
crossover by showing that it can actually be decomposed into
two sequential applications of a geometric crossover for the
specific space.

However, we could have skipped the explicit definition of
a three-parental recombination altogether. In fact, to obtain
the three-parental recombination, we could have used two
sequential applications of a known two-parental geometric
crossover for the specific space. This composition is indeed
a three-parental recombination (it combines three parents)
and it is decomposable by construction. Hence, it is a three-
parental geometric crossover. This, indeed, would have been
simpler than the route we took.

The reason we preferred to define explicitly a three-
parental recombination is that the requirement of symmetry
of the convex combination is true by construction: if the roles
of any two parents are swapped by exchanging in the three-
parental recombination both positions and the respective re-
combination weights, the resulting recombination operator
is equivalent to the original operator.

The symmetry requirement becomes harder to enforce
and prove for a three-parental geometric crossover obtained
by two sequential applications of a two-parental geometric
crossover. We illustrate this in the following.

Let us consider three parents a, b, and c with positive
weightswa,wb, andwc which add up to one. If we have a sym-
metric three-parental weighted geometric crossover ΔGX ,
the symmetry of the recombination is guaranteed by the
symmetry of the operator. So ΔGX((a,wa), (b,wb), (c,wc))
is equivalent to ΔGX((b,wb), (a,wa), (c,wc)). Hence, the re-
quirement of symmetry on the weights of the convex combi-
nation holds. If we consider a three-parental recombination
defined by using twice a two-parental genetic crossover GX ,
we have

ΔGX
((
a,wa

)
,
(
b,wb

)
,
(
c,wc

))

= GX
((
GX
((
a,w′a

)
,
(
b,w′b

))
,wab

)
,
(
c,w′c

)) (9)

with the constraint that w′a and w′b are positive and add up
to one, and wab and w′c are positive and add up to one. No-
tice the inherent asymmetry in this expression: the weights
w′a and w′b are not directly comparable with w′c because they
are relative weights between a and b. Moreover, there is the
extra weight wab. This asymmetry makes the requirement of
symmetry problematic to meet: given the desired wa,wb, and
wc, what values of w′a, w′b, wab, and w′c should we choose to
obtain an equivalent symmetric three-parental weighted re-
combination expressed as a sequence of two two-parental ge-
ometric crossovers?

For the Euclidean space, it is easy to answer this question
using simple algebra as follows:

ΔGX = wa·a +wb·b +wc·c

= (wa +wb
)
(

wa

wa +wb
·a +

wb

wa +wb
·b
)

+wc·c.
(10)

Since the convex combination of two points in the Euclidean
space is GX((x,wx), (y,wy)) = wx·x + wy·y, and wx,wy > 0
and wx +wy = 1, then

ΔGX
((
a,wa

)
,
(
b,wb

)
,
(
c,wc

))

=GX
[(

GX
((

a,
wa

wa +wb

)

,
(

b,
wb

wa +wb

))

,wa +wb

)

,
(
c,wc

)
]

.

(11)

However, the question may be less straightforward to an-
swer for other spaces, although, we could use the equation
above as a rule-of-thumb to map the weights of ΔGX and
the weights in the sequential GX decomposition to obtain a
nearly symmetric convex combination.

Where does this discussion leave us in relation to the ex-
tension of GPSO to other representations? We have seen that
there are two alternative ways to produce a convex combi-
nation for a new representation: (i) explicitly define a sym-
metric three-parental recombination for the new represen-
tation and then prove its geometricity by showing that it is
decomposable into a sequence of two two-parental geometric
crossovers (explicit definition), or (ii) use twice the simple ge-
ometric crossover to produce a symmetric or nearly symmet-
ric three-parental recombination (implicit definition). The
second option is also very interesting because it allows us to
extended automatically GPSO to all representations we have
geometric crossovers for (such as permutations, GP trees, and
variable-length sequences, to mention but a few), and virtu-
ally to any other complex solution representation.

6. EXPERIMENTAL RESULTS FOR EUCLIDEAN,
MANHATTAN, AND HAMMING SPACES

We have run two groups of experiments: one for the continu-
ous version of the GPSO (EuclideanPSO, or EPSO for short,
and ManhattanPSO, or MPSO), and one for the binary ver-
sion (HammingPSO, or HPSO).

For the Euclidean and Manhattan versions, we have com-
pared the performances with those of a continuous PSO
(BasePSO, or BPSO) with constriction and inertia, whose
parameters are as in Table 1. We have run the experiments for
dimensions 2, 10, and 30 on the following five-benchmark
functions: F1C Sphere [19], F2C Rosenbrock [19], F3C Ackley
[20], F4C Griewangk [21], and F5C Rastrigin [22]. The Ham-
ming version has been tested on the De Jong’s test suite [19]:
F1 Sphere (30), F2 Rosenbrock (24), F3 Step (50), F4 Quartic
(240), and F5 Shekel (34), where the numbers in brackets are
the dimensions of the problems in bits. All functions in the
test bed have global optimum 0 and are to be maximized.

Since there is no equivalent GPSO with φ1 = φ2 = 2.05
(φ1 + φ2 > 1, which does not respect the conditions in
Theorem 3), we have decided to set w1, w2, and w3 propor-
tional to ω, φ1, and φ2, respectively, and summing up to one
(see Table 2).

For the binary version, the parameters of population size,
number of iterations, and w1, w2, and w3 have been tuned on
the sphere function and are as in Table 3. From the param-
eters tuning, it appears that there is a preference for values
of w1 close to zero. This means that there is a bias towards
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Table 1: Parameters for BPSO.

Population size 20, 50 particles

Stop condition 200 iterations

Vmax = Xmax Max value-min value

κ 0.729

ω 1.0

φ1 = φ2 2.05

Table 2: Parameters for EPSO and MPSO.

Population size 20, 50 particles

Stop condition 200 iterations

Vmax = Xmax Max value-min value

Mutation uniform in [−0.5,0.5]

w1 ω/(ω + φ1 + φ2) = 1.0/5.10

w2 φ1/(ω + φ1 + φ2) = 2.05/5.10

w3 φ2/(ω + φ1 + φ2) = 2.05/5.10

Table 3: Selected parameters for HPSO.

Population size 100 particles

Iterations 400

Bitwise mutation rate 1/N

w1 = 0 w2 = w3 = 1/2

w1 = 1/6 w2 = w3 = 5/12

the swarm and particle bests, and less attraction towards the
current particle position.

For each set up, we performed 20 independent runs.
Table 4 shows the best and the mean fitness value (i.e., the
fitness value at the position where the population converges)
found by the swarm when exploring continuous spaces. This
table summarizes the results for the three algorithms pre-
sented, over the five test functions, for the two choices of
population size, giving an immediate comparison of the per-
formances. Overall the GPSOs (EPSO and MPSO), compare
very favourably with BPSO, outperforming it in many cases.
This is particularly interesting since it suggests that the in-
ertia term (not present in GPSO) is not necessary for good
performance.

In two dimensions, the results for all the functions (for
PSOs both with 20 and 50 particles) are nearly identical, with
BPSO and the two GPSOs both performing equally well. In
higher dimensions, it is interesting to see how dimensionality
does not seem to affect the quality of the results of GPSOs
(while there is a fairly obvious decline in the performance of
BPSO when dimension increases).

Also, EPSO’s and MPSO’s results are virtually identical.
Let us recall from Section 4.2 the difference between Eu-
clidean and Manhattan spaces, that is, “the difference be-
tween box recombination and linear recombination (Eu-
clidean space) is that in the latter, the weights are randomly
perturbed only once and the same weights are used for all the
dimensions, whereas the former one has a different randomly
perturbed version of the weights for each dimension.” The
results obtained show, therefore, that at least in this context,

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

Figure 2: Example of Sudoku puzzle.

randomly perturbing the weights once for all dimensions, or
perturbing them for each dimension, does not seem to affect
the end result.

Table 5 shows the mean of the best fitness value and the
best fitness value over the whole population for the binary
version of the algorithm. The algorithm compares well with
results reported in the literature, with HPSO obtaining near
optimal results on all functions. Interestingly, the algorithm
works at its best when w1, the weight for xi (the particle po-
sition), is zero. This corresponds to a degenerated PSO that
makes decisions without considering the current position of
the particle.

7. GEOMETRIC PSO FOR SUDOKU

In this section, we will put into practice the ideas discussed in
Section 5 and propose a GPSO to solve the Sudoku puzzle. In
Section 7.1, we introduce the Sudoku puzzle. In Section 7.2,
we present a geometric crossover for Sudoku. In Section 7.3,
we present a three-parental crossover for Sudoku and show
that it is a convex combination.

7.1. Description of Sudoku

Sudoku is a logic-based placement puzzle. The aim of the
puzzle is to enter a digit from 1 through 9 in each cell of a 9×9
grid made up of 3 × 3 subgrids (called “regions”), starting
with various digits given in some cells (the “givens”). Each
row, column, and region must contain only one instance of
each digit. In Figure 2, we show an example of Sudoku puz-
zle. Sudoku puzzles with a unique solution are called proper
Sudoku, and the majority of published grids are of this type.

Published puzzles often are ranked in terms of difficulty.
Perhaps surprisingly, the number of “givens” has little or no
bearing on a puzzle’s difficulty. This is based on the relevance
and the positioning of the numbers rather than the quantity
of the numbers.

The 9 × 9 Sudoku puzzle of any difficulty can be solved
very quickly by a computer. The simplest way is to use some
brute force trial-and-error search employing back tracking.
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Table 4: Test results for continuous versions: best and mean fitness values found by the swarm over 20 runs at last iteration (iteration 200).

BPSO EPSO MPSO

Dim. 2 10 30 2 10 30 2 10 30

Popsize = 20

F1C best −5.35e-14 −1.04 −59.45 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0

mean −6.54e-09 −20.75 −168.19 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0

F2C best 0.00 −36.18 −1912.05 −0.71 −8.98 −28.97 −0.66 −8.96 −28.97

mean −97.91 −979.56 −8847.44 −1.0 −9.0 −29.0 −1.0 −9.0 −29.0

F3C best −3.06e-05 −8.05 −18.09 0.0 0.0 0.0 0.0 0.0 0.0

mean −0.00 −14.86 −20.49 0.0 0.0 0.0 0.0 0.0 0.0

F4C best −0.31 −1.10 −6.67 −0.29 −1.0 −1.0 −0.29 −1.0 −1.0

mean −1.52 −2.98 −17.04 −0.29 −1.0 −1.0 −0.29 −1.0 −1.0

F5C best −0.33 −58.78 −305.11 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0

mean −10.41 −160.98 −504.62 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0

Popsize = 50

F1C best −3.67e-13 −0.60 −53.93 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0

mean −1.11e-08 −19.09 −176.07 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0

F2C best 0.00 −19.46 −1639.46 −0.57 −8.96 −28.96 −0.53 −8.95 −29.0

mean −56.04 −791.88 −9425.92 −1.0 −9.0 −29.0 −1.0 −9.0 −29.0

F3C best −1.81e-06 −6.78 −17.62 0.0 0.0 0.0 0.0 0.0 0.0

mean −0.00 −15.55 −20.43 0.0 0.0 0.0 0.0 0.0 0.0

F4C best −0.30 −1.05 −6.14 −0.29 −1.0 −1.0 −0.29 −1.0 −1.0

mean −1.63 −2.79 −17.79 −0.29 −1.0 −1.0 −0.29 −1.0 −1.0

F5C best −0.10 −53.67 −302.29 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0

mean −3.56 −159.76 −503.48 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0

Table 5: Test results for HPSO with selected parameters for De Jong’s test suite.

F1 F2 F3 F4 F5

ω = 0.0 best −0.000 15 −0.000 34 −0.0 3.451 70 −1.131 83

mean −5.515 40 −54.144 53 −2.594 −5.382 33 −142.678 53

ω = 1
6

best −0.000 125 −0.000 297 −0.0 3.273 980 −1.111 220

mean −5.375 902 −85.170 099 −2.949 −6.919 343 −167.283 327

Constraint programming is a more efficient method that
propagates the constraints successively to narrow down the
solution space until a solution is found or until alternate val-
ues cannot otherwise be excluded, in which case, backtrack-
ing is applied. A highly efficient way of solving such con-
straint problems is the Dancing Links Algorithm by Donald
Knuth [23].

The general problem of solving Sudoku puzzles on n2×n2

boards of n × n blocks is known to be NP complete [24].
This means that, unless P = NP, the exact solution meth-
ods that solve very quickly the 9 × 9 boards take exponen-
tial time in the board size in the worst case. However, it is
unknown whether the general Sudoku problem restricted to
puzzles with unique solutions remains NP complete or be-
comes polynomial.

Solving Sudoku puzzles can be expressed as a graph col-
oring problem. The aim of the puzzle in its standard form is
to construct a proper 9 coloring of a particular graph, given
a partial 9 coloring.

A valid Sudoku solution grid is also a Latin square.
Sudoku imposes the additional regional constraint. Latin

square completion is known to be NP complete. A further
relaxation of the problem allowing repetitions on columns
(or rows) makes it polynomially solvable.

Admittedly, evolutionary algorithms and meta-heuristics
in general are not the best techniques to solve Sudoku be-
cause they do not exploit systematically the problem con-
straints to narrow down the search. However, Sudoku is an
interesting study case because it is a relatively simple prob-
lem but not trivial since is NP complete, and the different
types of constraints make Sudoku an interesting playground
for search operator design.

7.2. Geometric crossover for Sudoku

Sudoku is a constraint satisfaction problem with four types
of constraints:

(1) fixed elements,
(2) rows are permutations,
(3) columns are permutations,
(4) and boxes are permutations.
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It can be cast as an optimization problem by choosing
some of the constraints as hard constraints that all solutions
have to respect, and the remaining constraints as soft con-
straints that can be only partially fulfilled, and the level of
fulfilment is the fitness of the solution. We consider a space
with the following characteristics:

(i) hard constraints: fixed positions and permutations on
rows,

(ii) soft constraints: permutations on columns and boxes,
(iii) distance: sum of swap distances between paired rows

(row-swap distance),
(iv) feasible geometric mutation: swap two nonfixed ele-

ments in a row, and
(v) feasible geometric crossover: row-wise PMX and row-

wise cycle crossover.

The chosen mutation preserves both fixed positions and per-
mutations on rows (hard constraints) because swapping el-
ements within a row, which is a permutation, returns a
permutation. The mutation is 1-geometric under row-swap
distance. Row-wise PMX and row-wise cycle crossover re-
combine parent grids applying, respectively, PMX and cy-
cle crossover to each pair of corresponding rows. In case of
PMX, the crossover points can be selected to be the same for
all rows, or be random for each row. In terms of offspring
that can be generated, the second version of row-wise PMX
includes all the offspring of the first version.

Simple PMX and simple cycle crossover applied to par-
ent permutations always return permutations. They also pre-
serve fixed positions. This is because both are geometric un-
der swap distance and, in order to generate offspring on a
minimal sorting path between parents using swaps (sorting
one parent into the order of the other parent), they have to
avoid swaps that change common elements in both parents
(elements that are already sorted). Therefore, also row-wise
PMX and row-wise cycle crossover preserve both hard con-
straints.

Using the product geometric crossover Theorem 1, it is
immediate to see that both row-wise PMX and row-wise cy-
cle crossover are geometric under row-swap distance since
simple PMX and simple cycle crossover are geometric under
swap distance. Since simple cycle crossover is also geometric
under Hamming distance (restricted to permutations), row-
wise cycle crossover is also geometric under Hamming dis-
tance.

To restrict the search to the space of grids with fixed posi-
tions and permutations on rows, the initial population must
be seeded with feasible random solutions taken from this
space. Generating such solutions can be done still very ef-
ficiently.

The fitness function (to maximize) is the sum of the
number of unique elements in each row plus the sum of the
number of unique elements in each column plus the sum of
the number of unique elements in each box. So for a 9 × 9
grid, we have a maximum fitness of 9·9 + 9·9 + 9·9 = 243
for a completely correct Sudoku grid, and a minimum fit-
ness little more than 9·1 + 9·1 + 9·1 = 27 because for each
row, column, and square, there is at least one unique element
type.

Mask:

p1:

p2:

p3:

o:

1 2 2 3 1 3 2

1 2 3 4 5 6 7

3 5 1 4 2 7 6

3 2 1 4 5 7 6

1 5 3 4 2 7 6

Figure 3: Example of multiparental sorting crossover.

It is possible to show that the fitness landscapes associ-
ated with this space is smooth, making the search operators
proposed a good choice for Sudoku.

7.3. Convex combination for Sudoku

In this section, we first define a multiparental recombina-
tion for permutations and then prove that it respects the four
requirements for being a convex combination presented in
Section 3.3.

Let us consider the example in Figure 3 to illustrate how
the multiparental sorting crossover works.

The mask is generated at random and is a vector of the
same length of the parents. The number of 1’s, 2’s, and 3’s
in the mask is proportional to the recombination weights w1,
w2, and w3 of the parents. Every entry of the mask indicates
to which parent the other two parents need to be equal to for
that specific position. In a parent, the content of a position is
changed by swapping it with the content of another position
in the parent. The recombination proceeds as follows. The
mask is scanned from the left to the right. In position 1, the
mask has a 1. This means that at position 1, parent p2 and
parent p3 have to become equal to parent p1. This is done by
swapping the elements 1 and 3 in parent p2 and the elements
1 and 3 in parent p3. The recombination now continues on
the updated parents: parent p1 is left unchanged and the cur-
rent parent p2 and parent p3 are the original parents p2 and
p3 after the swap. At position 2, the mask has 2. This means
that at position 2, the current parent p1 and current parent
p3 have to become equal to the current parent p2. So at posi-
tion 2, parent p1 and parent p3 have to get 5. To achieve this,
in parent p1, we need to swap elements 2 and 5, and in par-
ent p3, we need to swap elements 2 and 5. The recombination
continues on the updated parents for position 3 and so on, up
to the last position in the mask. At this point, the three par-
ents are now equal because at each position, one element of
the permutation has been fixed in that position and it is au-
tomatically not involved in any further swap. Therefore, after
all positions have been considered, all elements are fixed. The
permutation to which the three parents converged is the off-
spring permutation. This recombination sorts by swaps the
three parents towards each other according to the contents of
the crossover mask, and the offspring is the result of this mul-
tiple sorting. This recombination can be easily generalized to
any number of parents.

Theorem 10 (geometricity of three-parental sorting cross-
over). Three-parental sorting crossover is a geometric crossover
under swap distance.
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Proof. A three-parental sorting crossover with recombina-
tion mask m123 is equivalent to a sequence of two two-
parental sorting crossovers: the first is between parents p1

and p2 with recombination mask m12 obtained by substitut-
ing all 3’s with 2’s in m123. The offspring p12 so obtained is
recombined with p3 with recombination mask m23 obtained
by substituting all 1’s with 2’s in m123. So for Theorem 2, the
three-parental sorting crossover is geometric.

Theorem 11 (coherence between weights and distances). In
a weighted multiparent sorting crossover, the swap distances of
the parents to the expected offspring are decreasing functions of
the corresponding weights.

Proof. The weights associated to the parents are propor-
tional to their frequencies in the recombination mask. The
more occurrences of a parent in the recombination mask,
the smaller the swap distance between this parent and the
offspring. This is because the mask tells the parent to copy
at each position. So the higher the weight of a parent, the
smaller its distance to the offspring.

The weighted multiparental sorting crossover is a con-
vex combination operator satisfying the four requirements
of a metric convex combination for the swap space: con-
vex weights sum to 1 by definition, convexity (geometricity,
Theorem 10), coherence (Theorem 11), and symmetry (self
evident).

The solution representation for Sudoku is a vector of per-
mutations. For the product geometric crossover theorem, the
compound crossover over the vector of permutations that
applies a geometric crossover to each permutation in the vec-
tor is a geometric crossover. Theorem 12 extends to the case
of a multiparent geometric crossover.

Theorem 12 (product geometric crossover for convex combi-
nations). A convex combination operator, applied to each en-
try of a vector, results in a convex combination operator for the
entire vector.

Proof. The product geometric crossover theorem (Theorem
1) is true because the segment of a product space is the Carte-
sian product of the segments of its projections. A segment is
the convex hull of two points (parents). More generally, it
holds that the convex hull (of any number of points) of a
product space is the Cartesian product of the convex hulls
of its projections [17]. The product geometric crossover then
naturally generalizes to the multiparent case.

8. EXPERIMENTAL RESULTS FOR SUDOKU

In order to test the efficacy of the GPSO algorithm on the Su-
doku problem, we ran several experiments in order to thor-
oughly explore the parameter space and variations of the al-
gorithm. The algorithm in itself is a straightforward imple-
mentation of the GPSO algorithm given in Section 3.4 with
the search operators for Sudoku presented in Section 7.3.

The parameters we varied were swarm sociality (w2) and
memory (w3), each of which were in turn set to 0, 0.2, 0.4,
0.6, 0.8, and 1.0. Since the attraction to each particle’s posi-

Table 6: Average of bests of 50 runs with population size 100, lattice
topology, and mutation 0.0, varying sociality (vertical) and memory
(horizontal).

Memory

Sociality 0.0 0.2 0.4 0.6 0.8 1.0

1.0 208 — — — — —

0.8 227 229 — — — —

0.6 230 233 235 — — —

0.4 231 236 237 240 — —

0.2 232 239 241 242 242 —

0.0 207 207 207 207 207 207

Table 7: Average of bests of 50 runs with population size 100, lattice
topology, and mutation 0.3, varying sociality (vertical) and memory
(horizontal).

Memory

Sociality 0.0 0.2 0.4 0.6 0.8 1.0

1.0 238 — — — — —

0.8 238 237 — — — —

0.6 239 239 240 — — —

0.4 240 240 241 241 — —

0.2 240 241 242 242 242 —

0.0 213 231 232 233 233 233

tion is defined as w1 = 1− w2 −w3, the space of this param-
eter was implicitly explored. Likewise, mutation probability
was set to either 0, 0.3, 0.7, or 1.0. The swarm size was set to
be either 20, 100, or 500 particles, but the number of updates
was set so that each run of the algorithm resulted in exactly
100 000 fitness evaluations (thus performing 5000, 1000, or
200 updates). Further, each combination was tried with ring
topology, von Neumann topology (or lattice topology), and
global topology, which are the most common topologies.

As explained in Section 5, there are two alternative ways
of producing a convex combination: either using a con-
vex combination operator or simply applying twice a two-
parental weighted recombination with appropriate weights
to obtain the convex combination. Both ways to produce
convex combination operators, explicit and implicit, were
tried on preliminary runs and turned out to produce indis-
tinguishable results. In the end, we used the convex combi-
nation operator.

8.1. Effects of varying coefficients

The best population size is 100. The other two sizes we stud-
ied (20 and 500) were considerably worse. The best topology
is the lattice (von Neumann) topology. The other two topolo-
gies we studied were worse (see Table 9).

From Tables 6–8, we can see that mutation rates of 0.3
and 0.7 perform better than no mutation at all. We can also
see that parameter settings with w1 (i.e., the attraction of



Alberto Moraglio et al. 13

Table 8: Average of bests of 50 runs with population size 100, lattice
topology and mutation 0.7, varying sociality (vertical) and memory
(horizontal).

Memory

Sociality 0.0 0.2 0.4 0.6 0.8 1.0

1.0 232 — — — — —

0.8 232 240 — — — —

0.6 228 241 241 — — —

0.4 224 242 242 242 — —

0.2 219 234 242 242 242 —

0.0 215 226 233 233 236 236

Table 9: Success rate of various methods.

Method Success

GA 50/50

Hillclimber 35/50

GPSO-global 7/50

GPSO-ring 20/50

GPSO-von Neumann 36/50

the particle’s previous position) set to more than 0.4 gener-
ally perform badly. The best configurations generally havew2

(i.e., sociality) set to 0.2 or 0.4, w3 (i.e., memory) set to 0.4
or 0.6, and w1 set to 0 or 0.2. This gives us some indication
of the importance of the various types of recombinations in
GPSO as applied at least to this particular problem. Surpris-
ingly, the algorithm works at its best when the weight of the
particle position (w1) is zero or nearly zero. In the case of w1

set to 0, GPSO, in fact, degenerates to a type of evolutionary
algorithm with deterministic uniform selection, mating with
the population best with local replacement between parents
and offspring.

8.2. PSO versus EA

Table 9 compares the success rate of the best configurations
of various methods we have tried. Success is here defined as
the number of runs (out of 50) where the global optimum
(243) is reached. All the methods were allotted the same
number of function evaluations per run.

From the table, we can see that the von Neumann topol-
ogy clearly outperforms the other topologies we tested, and
that a GPSO with this topology can achieve a respectable suc-
cess rate on this tricky noncontinuous problem. However,
the best genetic algorithm still significantly outperforms the
best GPSO we have found so far. (Notice that this is true only
when considering GPSO as an optimizer. The approximation
behavior of the GPSO is very good: with the right parameter
setting, the GPSO reaches on average a fitness of 242 out of
243 (see Tables 6–8).) We believe this to be at least partly the
effect of the even more extensive tuning of parameters and
operators undertaken in our GA experiments.

9. CONCLUSIONS AND FUTURE WORK

We have extended the geometric framework with the notion
of multiparent geometric crossover, that is, a natural gener-
alization of two-parental geometric crossover: offspring are
in the convex hull of the parents. Then, using the geometric
framework, we have shown an intimate relation between a
simplified form of PSO (without the inertia term) and evo-
lutionary algorithms. This has enabled us to generalize, in a
natural, rigorous, and automatic way, PSO for any type of
search space for which a geometric crossover is known.

We specialized the general PSO to Euclidean, Manhat-
tan, and Hamming spaces, obtaining three instances of the
general PSO for these spaces, EPSO, MPSO, and HPSO, re-
spectively. We have performed extensive experiments with
these new GPSOs. In particular, we applied EPSO, MPSO,
and HPSO to standard sets of benchmark functions and ob-
tained a few surprising results. Firstly, the GPSOs have per-
formed really well, beating the canonical PSO with standard
parameters most of the time. Secondly, they have done so
right out of the box. That is, unlike the early versions of PSO
which required considerable effort before a good general set
of parameters could be found, with GPSO, we have done very
limited preliminary testing and parameter tuning, and yet
the new PSOs have worked well. This suggests that they may
be quite robust optimisers. This will need to be verified in
future research. Thirdly, HPSO works at its best with only
weak attraction toward the current position of the particle.
With this configuration, GPSO almost degenerates to a type
of genetic algorithm.

An important feature of the GPSO algorithm is that it al-
lows one to automatically define PSOs for all spaces for which
a geometric crossover is known. Since geometric crossovers
are defined for all of the most frequently used representa-
tions and many variations and combinations of those, our
geometric framework makes it possible to derive PSOs for all
such representations. GPSO is rigorous generalization of the
classical PSO to general metric spaces. In particular, it applies
to combinatorial spaces.

We have demonstrated how simple it is to specify the
general GPSO algorithm to the space of Sudoku grids (vec-
tors of permutations), using both an explicit and an implicit
definitions of convex combination. We have tested the new
GPSO on Sudoku and have found that (i) the communica-
tion topology makes a huge difference and that the lattice
topology is by far the best; (ii) as for HPSO, the GPSO on
Sudoku works better with weak attraction toward the cur-
rent position of the particle; (iii) the GSPO on Sudoku finds
easily near-optimal solutions but it does not always find the
optimum. Admittedly, GPSO is not the best algorithm for
the Sudoku puzzle where the aim is to obtain the correct so-
lution all the times, not a nearly correct one. This suggests
that GPSO would be much more profitably applied to com-
binatorial problems for which one would be happy to find
near-optimal solutions quickly.

In summary, we presented a PSO algorithm that has
been quite successfully applied to a nontrivial combinato-
rial space. This shows that GPSO is indeed a natural and
promising generalization of classical PSO. In future work, we



14 Journal of Artificial Evolution and Applications

will consider GPSO for even more challenging combinatorial
spaces such as the space of genetic programs. Also, since the
inertia term is a very important feature of classical PSO, we
want to generalize it and test the GPSO with the inertia term
on combinatorial spaces.
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