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Abstract. The object of this paper is to study how many essentially different 
common transversals a family of convex sets on the plane can have. In particular, 
we consider the case where the family consists of pairwise disjoim translates of a 
single convex set. 

1. Introduction 

We wish to count the number of  different ways that straight lines can intersect 
a family of  subsets o f  the plane. The following problem illustrates more clearly 
what is meant by "the number of different ways." 

Let C1, C 2 , . . . ,  Cn be mutually disjoint convex subsets of  the plane. Find the 
largest value of p such that: 

(i) there are p straight lines which intersect all of  the sets; 
(ii) each of  these p lines intersects the sets in a different order. 

I f  ~ is any finite family of  mutually disjoint convex subsets of  the plane, any 
straight line which intersects each member  of  ~ meets them in a definite order, 
determining two permutat ions--one being the reverse of  the other. The pair of  
permutations is called a geometric permutation of 3 ~, and the family of  all geometric 
permutations is denoted ~(~r). 

When ~ consists o f  three congruent circles,/~(~:) is either empty, or contains 
1, 2, or 3 members as shown in Fig. 1. Since the maximum number of  geometric 
permutations of  n sets is certainly no greater than n !/2, Fig. 1 completely solves 
the problem for three congruent circles. 

It is interesting to note that if  a fourth congruent circle is added to the problem, 
then the maximum number  of  geometric permutations would decrease. In other 
words, the maximum number of  geometric permutations of  n sets does not depend 
only upon n. 
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In what follows, ~ will always denote a nonempty family of  mutually disjoint 
convex subsets of  the plane. We will show that, even if the members of  ~ are 
all congruent, without further restrictions on the size or shape of the members 
o f  4, ~t(~:) can be made large by taking ~ to be sufficiently large. We will also 
show that the situation is radically different if all members of  ~ are translates 
o f  the same convex set. In this case/~ (~ )  can be no greater than 8 provided 
contains at least 11 members. 

If ~ is any family of subsets of the plane (not necessarily convex or pairwise 
disjoint), then a straight line that meets each member of ~3 is called a common 
transversal, or simply a transversal for ~g. The question: "When does ~3 have even 
one common transversal?" has not been fully solved (see [1] and [3] for a survey 
of  some of  the past results). In fact, it is this question that led us to consider the 
notion of  geometric permutations, and one of us (Katchalski) has recently been 
able to apply the results of this paper to settle a question of  Griinbaum [2] that 
was first raised almost 30 years ago. It should also be noted that the lower bound 
in Theorem 1 below has been improved to 2 n - 2  [4]. 

2.  G e o m e t r i c  P e r m u t a t i o n s  o f  Arbi trary  F a m i l i e s  

Theorem 1. For n >- 1, 

n - l - < m a x l ~ ( ~ ) [ - <  2 ' 

where the m a x i m u m  is taken over all famil ies  ~ o f  n pairwise to disjoint convex sets 
in the plane. 

To obtain the lower bound of  Theorem 1, for each n we will construct a family 
o f  n congruent line segments admitting at least n -  1 geometric permutations. 
(Figure 2 illustrates the case for n = 6 . )  P l a c e  n - 1 concurrent lines in the plane, 
labeling them 0, 1 . . . . .  n - 2  counterclockwise. Place line segment S o , . . . ,  S , -2 so 
that they are mutually disjoint with Sl extending from line i to line ( i+  n - 2 )  
m o d ( n - 1 ) .  Then place segment S,-1 so that it extends from the point of  
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concurrency along the line n - 2  away from the other segments. Then the labeled 
lines are transversals for {So, $1 . . . .  , S,-t} which determine n - 1  distinct 
geometric permutations. (A similar construction has been used in a different 
context in [7].) 

We will use T(F, G) to denote the collection of  all transversals for the subsets 
F and G, and T ( ~ )  to denote the family of  all transversals for 4.  

If t e T (4 ) ,  then Pt is the geometric permutation determined by t. For a given 
geometric permutation, p, Tp denotes the collection of all t E T ( 4 )  for which Pt = P. 

To obtain the upper bound of Theorem 1, it is convenient to use the notion 
of a symmetric twin, which is a symmetric subset of  the unit circle consisting of  
either two disjoint arcs or a pair of  antipodal points (see [4]). Symmetric twins 
arise in a natural way when considering common transversals: each transversal, 
t, for ~ determines the symmetric twin, ~, formed by interse~ing the unit circle 
with the line through its center parallel to t. We shall use T to denote the set 
{ 7: t E T}, where T is any family of  transversals for 4. 

Note that for F, G~ ~, T({F, G}) is a symmetric twin since F and G are 
connected sets. The following lemma is implicitly contained in [6], and its proof, 
which is based on Helly's theorem on the line (see [5]), is omitted here. 

Lemma 2. [~ (~ ) l / s  equal to the number of pairwise disjoint symmetric twins com- 
prising T( 4). 
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Proof We first note that T(:~) = U {Tp: P ~ #($:)}- We need to show that Tp is 
a symmetric twin for every p ~ ~(2~) and that for p, q ~ ~ (~ ) ,  Tp n Tq = O unless 
p = q. The latter statement follows easily since two parallel common transversals 
of ~: determining distinct geometric permutations would contradict the assump- 
tion that members of 3= are pairwise disjoint. 

Assume now that the first statement is false. Then there exists a, t s T v such 
that ; and Z are separated by two symmetric twins ; and f, not in T($:). Choose 
l ines / '  and ~ such that ~ c ~  and & c ; , .  We may assume that ~' and ,n are the 
usual x-axis and y-axis, respectively. 

Now C separates some pair of sets AL B ~ ~F and ,n separates C, D s ~. We 
may assume that A is above ~' and B below, while C is to the left of ~n and D 
to the right. In this setting, one of the common transversals, say a, is ascending 
from left to right while the other, t, is descending from left to right. Now a will 
cut B before A and C before D while t will also cut C before D but now A 
before B. This contradicts the fact that a and ~¢ both determine the same permuta- 
tion,/6. [] 

Lemmas 1 and 2 may be used to establish the upper bound of Theorem 1. By 

Lemma 1, f'(3~) is the intersection of ( 2 )  symmetric twins. Easy induction shows 

that the intersection of ~ symmetric twins is a union of at most g pairwise disjoint 

symmetric twins for any ~. It follows that T(3~) is a union of at most ( 2 )  pairwise 

disjoint symmetric twins. Hence ]~ (3~)]-< ( 2 )  by Lemma 2. 

3. Geometric Permutations of Translates 

Theorem 2. I f 3 ;  is a family of  at least 11 pairwise disjoint translates of a convex 
set, then ]/t (3~)[ < 8. 

To prove Theorem 2, we require four lemmas about the possible arrangements 
of common transversals for families of translates. 

Let E and ,n be two straight lines intersecting at a point O, dividing the plane 
into four quadrants. Let Q be one of these quadrants and S a convex set. We 
say that Scrosses Q if E n S n  Q ~ O ,  m n S n Q ~ O  and O is not in S. 

We first prove a preliminary result in the usual coordinate plane. 

Lemma 3. Let S be a convex set such that two translates S~ and $2 cross the first 
quadrant and two other translates $3 and $4 cross the second quadrant. Then either 
S~ n $2 # 0 or $3 n $4 ~ 0 .  

Proof. We may assume that the highest point where $1 u $2 u S3 u $4 intersects 
the positive y-axis belongs to S~. By translating it vertically upward if necessary, 
we may assume that $1 is tangent to the positive x-axis. Let O1 be a point of 
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tangency, A~ be the other point on the boundary of S~ directly above O~ and Ba 
be a point of  tangency to a supporting vertical line of  S~ on the right. We may 
assume that O~AIB1 is not a degenerate triangle. 

Let OAB be the translate of OIA~B~ with O at the origin. Let 03A3B3 be the 
triangle in $3 and 04A4B4 in $4 corresponding to OtA~B~ in Sin. Now 03A3B3 
must cross the second quadrant since $3 does, and it does not intersect the positive 
y-axis above A. Similar conditions hold for 04A4B4. Note that both B3 and B4 
are in OAK 

Suppose the two triangles are disjoint. Then it would be possible to separate 
them by a line ~¢, necessarily of  positive slope. We may assume that 03A3B3 is 
above / and 04A4B4 below. We now translate 03A3B3 vertically upward until 
B3 is on AB, and translate 04A4B4 horizontally to the right until B4 is on OR 

Since both triangles move away from ~¢, they remain disjoint. Now 0 0 3  = BB3 <- 
AB = A4B4, SO that 03B3 must intersect A4B4, a contradiction. It follows that $3 
and $4 are not d;.sjoint. [] 

Let two intersecting straight lines determine four quadrants and let S be a 
convex set. Two opposite quadrants are called major quadrants if it is possible 
for two disjoint translates of  S to cross one of them. Two opposite quadrants 
are called minor quadrants if it is impossible for two disjoint translates of  S to 
cross either of them. Note that major and minor quadrants are defined with 
respect to S, but since no confusion will result, we suppress this reference. 

Lemma 4. Let 3; be a family of at least six pairwise disjoint translates of a convex 
set with two nonparallel common transversals tl and •2. Then two opposite quadrants 
they determine must be major quadrants and the other two minor quadrants. 
Moreover, if ¢e 3 is another common transversal parallel to ~¢2 , then the major quadrants 
determined by l~ and 13 are in corresponding positions to those determined by I~ 
and ~2. 

Proof. By using an affine transformation if necessary, we may assume tha t /1  
and /2  are the usual coordinate axes. Now at most one translate can contain the 
origin. Hence at least two translates must cross some quadrant, say the first. By 
definition, the first and third quadrants are major quadrants. By Lemma 3, no 
two disjoint translates can cross the second quadrant. Using a reflection.along 
the line y = x, no two disjoint translates can cross the four quadrant either. 
Hence the second and fourth quadrants are minor quadrants. The second assertion 
of the lemma follows easily. [] 

Let 3; be a family of  pairwise disjoint translates of a convex set with two 
nonparallel common transversals l and m. Now the symmetric twins ~ and 
determine four arcs on the unit circle, giving rise to two nondegenerate symmetric 
twins. These correspond to the two pairs of  opposite quadrants determined by l 
and m. We shall denote by ~ / ( / ,  m) the symmetric twin corresponding to the 
major quadrants. By Lemma 4, M( l ,  m) is well defined if 3; contains at least six 
members. 
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[,emma 5. Suppose that ~al, ~¢2, *a3 are nonparallel transversals for 2T, and suppose 
that ~; contains at least 11 members. 

(i) I f  ~2~ 1~I(tl, ~3), then, 1PI(~1, ~3) = I~I(*el, ~ ) ~  I~I(E2, E3). 
(ii) In general M(gl ,  ga) ~ l~l(gt, g2) ~ J~t(g2, g~). 

Proof. (i) Translate ~'2 to ~'~ through the point of intersection O of gl and g3. 
Since g2 E ~/(gl,  g3), g~ intersects all translates which cross the major quadrants 
determined by gl and E3, as well as a translate which contains O. Since g2 is a 
common transversal for ~:, g~ can miss at most one translate F. Now gl, g~ and 
g3 are three concurrent common transversals for ~ - { F }  which has at least ten 
members. It follows that we must have /~(gl,  g3) = -M(gb g~) u ~/(~'~, 6) .  By 
Lemma 4, this is equivalent to statement (i). 

(ii) This istrue if, either g2 c / ~ / ( 6 ,  6 )  (by (i)), or if .~/(gl, 6 )  ~ ~:/(gl, 6 )  or 
~I(gl, g3) c M(g2, ~3). If  none of these cases occur, then all but at most three 
members cross the major quadrant determined by gl, g2, and all but at most three 
cross the major quadrant determined by g2, g3- Now consider the quadrants Q 
determined by gl and g3 that corresponds to M(gl,  g2) u 1~4(g2, E3). There must 
be at least ]~:[- (3 + 3)+ 1 members crossing this quadrant, for simple convexity 
considerations show that any member crossing the quadrants corresponding to 
M(gl ,  12) and M(g~, g3) must either cross one of  the quadrants Q or else contain 

Lemma 6. Let ~; be a family of  at least 11 pairwise disjoint translates of  a convex 
set with two nonparallel common transversals g and an, I f  ~ and ~n are in the same 
component o f  7"( 3;), then JVI ( ¢¢, ~n) c T( ~) .  

Proof. Using an afline transformation if necessary, we may assume that g and 
are the usual coordinate axes and let the second and fourth quadrants be the 

major quadrants. Suppose /~r(g,,n)¢ 27(~). Since g and ,n are in the same 
component of  T(~:), for every positive number ,, there is a common transversal 
for ~: with slope ,. 

Let I be such a common transversal. We claim that either/17/(g, t)  or/~7/(t, ,n) 
is contained in the first and thirdquadrants of  the unit circle. If  M ( t , / )  is not, 
then ~ hT/(g,/). By Lemma 5, M(g, 1,) = M ( g , , n ) u  JVl(/,,n) and it follows that 
M( / ,  , )  is. 

Let /1 be a common transversal for ~: with maximum positive slope ,1 such 
that h7/(¢, t l)  is contained in the first and third quadrants. Let  12 be a common 
transversal for ~: with minimum positive slope ,2 such that M(/2, ~ )  is contained 
in the first and third quadrants. 

I f  ,1 < *2, then there is a common transversal / such that neither h~r(g, l) nor 
hT/(/, m) is contained in the first and third quadrants. Hence ~a---*2. Now there 
is a common transversal t such that I ~ M(~¢, ,n) but/17/(g, ,n) ¢ M ( t , / )  u M(t ,  ~).  
This contradicts Lemma 5. [] 
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4. Proof of Theorem 2 

By Lemma 2,J ~ (~F)[ is given by the number of pairwise disjoint symmetric twins 
comprising T(~) .  Let 1=  For 1<-i<-t, let the ith symmetric twin be 
bounded by ~2i-~ and 32,. By Lemma 6, ~F(~:)=U{h~(g2,_l, E21): 1<-i<-1}. 
Denote by /~(C21,/2,+~) the symmetrictwin bounded by ~2~ and ~2~+~ which is 
not contained in 27(~). Since each of  L(12,-~, t2i) is a major quadrant, it cannot 
be that each of/~(~e2i, ¢e2i+t) is also a major quadrant, else by Lemma 5, none of 
the lines Ej, ~ would yield a minor quadrant. For definiteness, we will suppose 
that L(te~, ~e2L) corresponds to the minor quadrant determined by ~e~ and/'2~. 

Now there are at most three translates which can fail to cross the major 
quadrants determined by ~'~ and g2~, namely, F~ crossing one minor quadrant, 
F2 crossing the other and/73 containing the point of  intersection of  ~¢t and /2 t .  
By Lemma 3, using an affine transformation if necessary, at most two other 
translates G! and G2 can intersect l~ between l~ n F~ and ~1 n F2 or intersect/2~ 
between ¢'2~ n F~ and ~2~ c~ F2. 

The only pairs {F, G}, F, G e ~:, such that T({F, G}) do not contain AT/(~, g2t) 
are {Ft, G~}, {F~, G2}, {F2, Gt}, {F2, G2), {F~, F2}, {F~, F3} and {F2,/:3}. Now 
T(:T) is the intersection of  the above seven symmetric twins with 2~(~t, E2~). 
Hence J~(~:)]-< 8. [] 

5. Related Problems 

It may be of  interest to sharpen the results of  Theoretns 1 and 2. In Theorem 1, 

perhaps the gap between n - 1  and ( 2 ) c a n  be narrowed. In Theorem 2, one 

may seek a characterization of all finite numbers I for which ] ~ (~)1 = 1 for some 
family ~: of  convex sets in the plane with increasing without bound. Analogues 
of  Theorems 1 and 2 in Euclidean spaces of  higher dimensions may be developed. 

Finally, we raise a combinatorial problem. Given a family ~; of  permutations 
of  {1, 2 , . . . ,  n}, what are the conditions which will guarantee the existence of  a 
family ~: of  n pairwise disjoint translates of a convex set such that / i  c ~(~:)? 
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