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Geometric phases for mixed states in interferometry
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We provide a physical prescription based on interferometry for introducing the total phase of a
mixed state undergoing unitary evolution, which has been an elusive concept in the past. We define
the parallel transport condition that provides a connection-form for obtaining the geometric phase
for mixed states. The expression for the geometric phase for mixed state reduces to well known
formulas in the pure state case when a system undergoes noncyclic and unitary quantum evolution.
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When a pure quantal state undergoes cyclic evolution
the system returns to its original state but may acquire
a phase factor of purely geometric origin. Though this
was realized in the adiabatic context [1], the nonadia-
batic generalization was found in [2]. Based on Pan-
charatnam’s [3] earlier work, this concept was generalized
to noncyclic evolutions of quantum systems [4]. Subse-
quently, the kinematic approach [5] and gauge potential
description [6,7] of geometric phases for noncyclic and
non-Schrödinger evolutions were provided. The adiabatic
Berry phase and Hannay angle for open paths were in-
troduced [8] and discussed [9]. The noncyclic geometric
phase has been generalized to non-Abelian cases [10]. Ap-
plications of geometric phase have been found in molec-
ular dynamics [11], response function of many-body sys-
tem [12,13], and geometric quantum computation [14,15].
Noncyclic geometric phase for entangled states has also
been studied [16]. In all these developments the geomet-
ric phase has been discussed only for pure states. How-
ever, in some applications, in particular geometric fault
tolerant quantum computation [14,15], we are primarily
interested in mixed state cases. Uhlmann was probably
the first to address the issue of mixed state holonomy, but
as a purely mathematical problem [17,18]. In contrast,
here we provide a new formalism of geometric phase for
mixed states in the experimental context of quantum in-
terferometry.

The purpose of this Letter is to provide an opera-

tionally well defined notion of phase for unitarily evolving
mixed quantal states in interferometry, which has been
an elusive concept in the past. This phase fulfills two
central properties that makes it a natural generalization
of the pure case: (i) it gives rise to a linear shift of the in-
terference oscillations produced by a variable U(1) phase,
and (ii) it reduces to the Pancharatnam connection [3] for
pure states. We introduce the notion of parallel transport
based on our defintion of total phase. We moreover intro-
duce a concept of geometric phase for unitarily evolving

mixed quantal states. This geometric phase reduces to
the standard geometric phase [5–7] for pure states under-
going noncyclic unitary evolution.

Mixed states, phases and interference: Consider a
conventional Mach-Zehnder interferometer in which the
beam-pair spans a two dimensional Hilbert space H̃ =
{|0̃〉, |1̃〉}. The state vectors |0̃〉 and |1̃〉 can be taken as
wave packets that move in two given directions defined
by the geometry of the interferometer. In this basis, we
may represent mirrors, beam-splitters and relative U(1)
phase shifts by the unitary operators

ŨM =

(

0 1
1 0

)

, ŨB =
1√
2

(

1 1
1 −1

)

,

Ũ(1) =

(

eiχ 0
0 1

)

, (1)

respectively. An input pure state ρ̃in = |0̃〉〈0̃| of the in-
terferometer transforms into the output state

ρ̃out = ŨBŨM Ũ(1)ŨB ρ̃inŨ
†
BŨ

†(1)Ũ †
M Ũ †

B

=
1

2

(

1 + cosχ i sinχ
−i sinχ 1 − cosχ

)

(2)

that yields the intensity along |0̃〉 as I ∝ 1 + cosχ. Thus
the relative U(1) phase χ could be observed in the output
signal of the interferometer.

Now assume that the particles carry additional internal
degrees of freedom, e.g., spin. This internal spin space
Hi

∼= CN is spanned by the vectors |k〉, k = 1, 2, . . .N ,
chosen so that the associated density operator is initially
diagonal

ρ0 =
∑

k

wk|k〉〈k| (3)

with wk the classical probability to find a member of
the ensemble in the pure state |k〉. The density operator
could be made to change inside the interferometer

ρ0 −→ Uiρ0U
†
i (4)
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with Ui a unitary transformation acting only on the inter-
nal degrees of freedom. Mirrors and beam-splitters are
assumed to leave the internal state unchanged so that
we may replace ŨM and ŨB by UM = ŨM ⊗ 1i and
UB = ŨB ⊗ 1i, respectively, 1i being the internal unit
operator. Furthermore, we introduce the unitary trans-
formation

U =

(

0 0
0 1

)

⊗ Ui +

(

eiχ 0
0 0

)

⊗ 1i. (5)

The operators UM , UB , and U act on the full Hilbert
space H̃ ⊗ Hi. U correponds to the application of Ui

along the |1̃〉 path and the U(1) phase χ similarly along
|0̃〉. We shall use U to generalize the notion of phase to
unitarily evolving mixed states.

Let an incoming state given by the density matrix
̺in = ρ̃in ⊗ ρ0 = |0̃〉〈0̃| ⊗ ρ0 be split coherently by a
beam-splitter and recombine at a second beam-splitter
after being reflected by two mirrors. Suppose that U

is applied between the first beam-splitter and the mir-
ror pair. The incoming state transforms into the output
state

̺out = UBUMUUB̺inU
†
BU

†
U

†
MU

†
B . (6)

Inserting Eqs. (1) and (5) into Eq. (6) yields

̺out =
1

4

[(

1 1
1 1

)

⊗ Uiρ0U
†
i +

(

1 −1
−1 1

)

⊗ ρ0

+eiχ

(

1 1
−1 −1

)

⊗ ρ0U
†
i

+e−iχ

(

1 −1
1 −1

)

⊗ Uiρ0

]

. (7)

The output intensity along |0̃〉 is

I ∝ Tr
(

Uiρ0U
†
i + ρ0 + e−iχUiρ0 + eiχρ0U

†
i

)

∝ 1 + |Tr (Uiρ0) | cos [χ− arg Tr (Uiρ0)] , (8)

where we have used Tr(ρ0U
†
i ) = [Tr (Uiρ0)]

∗
.

The important observation from Eq. (8) is that the
interference oscillations produced by the variable U(1)
phase χ is shifted by φ = argTr (Uiρ0) for any internal

input state ρ0, be it mixed or pure. This phase difference
reduces for pure states ρ0 = |ψ0〉〈ψ0| to the Pancharat-
nam phase difference between Ui|ψ0〉 and |ψ0〉. These two
latter facts are the central properties for φ being a natural
generalization of the pure state phase. Moreover the vis-
ibility of the interference pattern is ν = |Tr (Uiρ0) | ≥ 0,
which reduces to the expected ν = |〈ψ0|Ui|ψ0〉| for pure
states.

The output intensity in Eq. (8) may be understood as
an incoherent weighted average of pure state interference
profiles as follows. The state k gives rise to the interfer-
ence profile

Ik ∝ 1 + νk cos [χ− φk] , (9)

where νk = |〈k|Ui|k〉| and φk = arg〈k|Ui|k〉. This yields
the total output intensity

I =
∑

k

wkIk ∝ 1 +
∑

k

wkνk cos [χ− φk] , (10)

which is the incoherent classical average of the above
single-state interference profiles weighted by the corre-
sponding probabilities wk. Eq. (10) may be written in
the desired form 1 + ν̃ cos(χ− φ̃) by making the identifi-
cations

φ̃ = arg

(

∑

k

wkνke
iφk

)

= argTr (Uiρ0) = φ,

ν̃ =

∣

∣

∣

∣

∣

∑

k

wkνke
iφk

∣

∣

∣

∣

∣

= |Tr (Uiρ0) | = ν. (11)

Parallel transport condition and geometric phase: Con-
sider a continuous unitary transformation of the mixed
state given by ρ(t) = U(t)ρ0U

†(t). (From now on, we
omit the subscript “i” of U .) We say that the state
of the system ρ(t) acquires a phase with respect to ρ0

if argTr[U(t)ρ0] is nonvanishing. Now if we want to
parallel transport a mixed state ρ(t) along an arbitrary
path, then at each instant of time the state must be
in-phase with the state at an infinitesimal time. The
state at time t + dt is related to the state at time t as
ρ(t + dt) = U(t + dt)U †(t)ρ(t)U(t)U †(t + dt). There-
fore, the phase difference between ρ(t) and ρ(t + dt) is
argTr[ρ(t)U(t+ dt)U †(t)]. We can say ρ(t) and ρ(t+ dt)
are in phase if Tr[ρ(t)U(t + dt)U †(t)] is real and posi-

tive. This condition can be regarded as a generalization
of Pancharatnam’s connection from pure to mixed states.
However, from normalization and Hermiticity of ρ(t) it
follows that Tr[ρ(t)U̇(t)U †(t)] is purely imaginary. Hence
the above mixed state generalization of Pancharatnam’s
connection can be met only when

Tr[ρ(t)U̇(t)U †(t)] = 0. (12)

This is the parallel transport condition for mixed states
undergoing unitary evolution. On the space of den-
sity matrices the above condition can be translated to
Tr[ρ dU U †] = 0, where d is the exterior derivative on
the space of density operators. However, ρ(t) determines
the N × N matrix U(t) (N being the dimension of the
Hilbert space) up to N phase factors, and the single con-
dition Eq. (12) while necessary is not sufficient to de-
termine U(t). These N phase factors are fixed by the N
parallel transport conditions

〈k(t)|U̇ (t)U †(t)|k(t)〉 = 0, k = 1, 2, . . .N, (13)

where the |k(t)〉’s are orthonormal eigenstates of ρ(t).
These are sufficient to determine the parallel transport
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operator U(t) if we are given a non-degenerate density
matrix ρ(t).

The parallel transport condition for a mixed state pro-
vides us a connection in the space of density operators
which can be used to define the geometric phase. Thus
a mixed state can acquire pure geometric phase if it un-
dergoes parallel transport along an arbitrary curve. One
can check that if we have a pure state density operator
ρ(t) = |ψ(t)〉〈ψ(t)| then the parallel transport condition
Eq. (12) reduces to 〈ψ(t)|ψ̇(t)〉 = 0 as has been discussed
in [2,4–7,19,20] which is both necessary and sufficient.

Now we can define a geometric phase for mixed state
evolution. Let the state trace out an open unitary curve
Γ : t ∈ [0, τ ] −→ ρ(t) = U(t)ρ0U

†(t) in the space of
density operators with “end-points” ρ(0) = ρ0 and ρ(τ),
where U(t) satisfies Eq. (12). The evolution need not
be cyclic, i.e. ρ(τ) 6= ρ0. We can naturally assign a
geometric phase γg[Γ] to this curve once we notice that
the dynamical phase vanishes identically. The dynamical
phase is the time integral of the average of Hamiltonian
and can be defined as

γd = − 1

h̄

∫ τ

0

dt Tr[ρ(t)H(t)]

= −i
∫ τ

0

dt Tr[ρ0U
†(t)U̇ (t)]. (14)

Since the density matrix undergoes parallel trans-
port evolution the dynamical phase vanishes identically.
Moreover, the parallel transport operator U(t) should ful-
fill the stronger condition Eq. (13). Thus the geometric
phase for a mixed state is defined as

γg[Γ] = φ = argTr[ρ0U(t)] = arg

(

∑

k

wkνke
iβk

)

, (15)

where exp(iβk) are geometric phase factors associated
with the individual pure state paths in the given ensem-
ble. The above geometric phase can be given a gauge
potential description such that the line integral will give
the open path geometric phase for mixed state evolution.
Indeed the mixed state holonomy can be expressed as

γg[Γ] =

∫

dt iTr[ρ0W
†(t)Ẇ (t)]

=

∫

Γ

iTr
[

ρ0W
†dW

]

=

∫

Γ

dΩ, (16)

where

W (t) =
Tr[ρ0U

†(t)]

|Tr[ρ0U †(t)]|U(t). (17)

and U(t) satisfies (13). The quantity Ω = iTr
[

ρ0W
†dW

]

can be regarded as a gauge potential on the space of den-
sity operators pertaining to the system.

The geometric phase defined above is manifestly gauge
invariant, does not depend explicitly on the dynamics

but it depends only on the geometry of the open unitary
path Γ in the space of density operators pertaining to the
system. It is also independent of the rate at which the
system is transported in the quantum state space. The
geometric phase Eq. (16) can also be expressed in terms
of an average connection form

γg[Γ] =

∫

Γ

∑

k

wki〈χk|dχk〉 =

∫

Γ

∑

k

wkΩk, (18)

where Ωk is connection-form and |χk(t)〉 = W (t)|k〉 is
the “reference-section” for kth component in the ensem-
ble. To be sure, what we have defined is consistent with
known results, we can check that this expression reduces
to the standard geometric phase [5–7]

γg[Γ] = arg〈ψ(0)|ψ(τ)〉 =

∫ τ

0

dt i〈χ(t)|χ̇(t)〉 (19)

for a pure state ρ(t) = |ψ(t)〉〈ψ(t)| when it satisfies par-
allel transport condition. Here, |χ(t)〉 is a reference state,
which gives the generalised connection one-form [6,7].

Purification: An alternative approach to the above re-
sults is given by lifting the mixed state into a purified
state |Ψ〉 by attaching an ancilla. We can imagine that
any mixed state can be obtained by tracing out some de-
grees of freedom of a larger system which was in a pure
state

|Ψ〉 =
∑

k

√
wk|k〉s|k〉a, (20)

where |k〉a is a basis in an auxiliary Hilbert space, de-
scribing everything else apart from the spatial and the
spin degrees of freedom. The existence of the above pu-
rification requires that the dimensionality of the auxiliary
Hilbert space is at least as large as that of the internal
Hilbert space. If |Ψ〉 is the state at time t = 0 and
it is transformed to |Ψ(t)〉 by a local unitary operator
U(t) = Us(t) ⊗ Ia then

|Ψ(t)〉 =
∑

k

√
wkUs(t)|k〉s|k〉a. (21)

The inner-product of initial and final state

〈Ψ(0)|Ψ(t)〉 =
∑

k

wk〈k|U(t)|k〉 = Tr(U(t)ρ0) (22)

gives the full description of the modified interference.
Indeed by comparing Eqs. (8) and (22), we see that
arg〈Ψ(0)|Ψ(t)〉 is the phase shift and |〈Ψ(0)|Ψ(t)〉| is the
visibility of the output intensity obtained in an interfer-
ometer.

The parallel transport condition, given by Eq. (12), fol-
lows immediately from the pure state case when applied
to any purification of ρ0, i.e.
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0 = 〈Ψ(t)|Ψ̇(t)〉 =
∑

k

wk〈k|U †(t)U̇(t)|k〉

= Tr[ρ0U
†(t)U̇(t)] = Tr[ρ(t)U̇ (t)U †(t)]. (23)

Thus a parallel transport of a density operator ρ(t)
amounts to a parallel transport of any of its purifications.

Example: Consider a qubit (a spin- 1
2 particle) whose

density matrix can be written as

ρ =
1

2
(1 + rr̂ · σ), (24)

where r̂ is a unit vector and r is constant for unitary evo-
lution. The pure states r = 1 define the unit Bloch sphere
containing the mixed states r < 1. Suppose that dur-
ing the time evolution r̂ traces out a curve on the Bloch
sphere that subtends a geodesically closed solid angle Ω
[19]. The two pure states |±; r̂ ·σ〉 acquire noncyclic geo-
metric phase ∓Ω/2 and identical visibility ν+ = ν− ≡ η.
Using Eq. (15) we obtain the geometric phase for Γ

φ = γg[Γ] = − arctan

(

r tan
Ω

2

)

. (25)

The visibility ν = |Tr (Uρ0) | is given by

ν = η

√

cos2
Ω

2
+ r2 sin2 Ω

2
. (26)

For cyclic evolution we have η = 1 but the mixed state
ν 6= 1 due to the square root factor on the right-hand side
of Eq. (26). Moreover Eqs. (25) and (26) reduce to the
usual expressions for pure states φ = −Ω/2 and ν = η
by letting r = 1.

In the case of maximally mixed states r = 0 we obtain
φ = arg cos(Ω/2) and ν = | cos(Ω/2)|. Thus the output
intensity for such states is

I ∝ 1 + | cos
Ω

2
| cos

[

χ− arg cos
Ω

2

]

= 1 + cos
Ω

2
cosχ. (27)

Early experiments [23–25] to test the 4π symmetry of
spinors utilized unpolarized neutrons. Eq. (27) show that
in these experiments the sign change for Ω = 2π is a con-
sequence of the phase shift φ = arg cosπ = π.

Note that γg[Γ] in Eq. (25) equals the geodesically
closed solid angle on the Poincaré sphere iff r = 1. In the
mixed state case the geometric phase factor is weighted
average of the solid angles subtended by the two pure
state paths on the Bloch sphere.

In conclusion, we have provided a physical prescription
based on interferometry for introducing a concept of total
phase for mixed states undergoing unitary evolution. We
have provided the necessary and sufficient condition for
parallel transport of a mixed state and introduced a con-
cept of geometric phase for mixed states when it under-
goes parallel transport. This reduces to known formulas

for pure state case when the system follows a noncyclic
and unitary quantum evolutions. We have also provided
a gauge potential for noncyclic evolutions of mixed states
whose line integral gives the geometric phase. We hope
this will lead to experimental test of geometric phases for
mixed states and further generalization of it to nonuni-
tary and nonlinear evolutions.

The work by E.S. was financed by the Swedish Nat-
ural Science Research Council (NFR). A.K.P. acknowl-
edges EPSRC for financial support and UK Quantum
Computing Network for supporting his visit to Centre
for Quantum Computation, Oxford. J.S.A. thanks Y.
Aharonov and A. Pines for useful discussions and NSF
and ONR grants for financial support.M.E. acknowledges
financial support from the European Science Foundation.
D.K.L.O. acknowledges financial support from CESG.

[1] M.V. Berry, Proc. R. Soc. London Ser. A 392, 45 (1984).
[2] Y. Aharonov and J.S. Anandan, Phys. Rev. Lett. 58,

1593 (1987).
[3] S. Pancharatnam, Proc. Indian Acad. Sci. A 44, 247

(1956).
[4] J. Samuel and R. Bhandari, Phys. Rev. Lett. 60, 2339

(1988).
[5] N. Mukunda and R. Simon, Ann. Phys. (N.Y.) 228, 205

(1993).
[6] A.K. Pati, Phys. Rev. A 52, 2576 (1995).
[7] A.K. Pati, J. Phys. A 28, 2087 (1995).
[8] A.K. Pati, Ann. Phys. 270, 178 (1998).
[9] G. Garćıa de Polavieja and E. Sjöqvist, Am. J. Phys. 66,
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