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Geometric potentials for subrecoil dynamics

P. M. Visser and G. Nienhuis
Huygens Laboratorium, Rijksuniversiteit Leiden, Postbus 9504, 2300 RA Leiden, The Netherlands

~Received 9 January 1998!

Quantum motion of atoms in light fields is described on the basis of adiabatic internal states. Forces arise
due to the spatial variation of these states, which is determined by the electric field polarization. In a dark state,
these are the only forces present. They are described by a geometric vector and a scalar potential. We give
analytical expressions for the geometric potentials in the dark states of a drivenj→ j 21 transition and the dark
state in the 1→1 system, for arbitrary electromagnetic fields. For systems with velocity selective trapping
states, the scalar geometric potential is inversely proportional to the field intensity squared. When the field has
nodes the potential diverges. In one dimension, this constitutes an exact realization of the Kronig-Penney
model.@S1050-2947~98!01806-X#

PACS number~s!: 32.80.Pj, 03.65.Ge, 42.50.Vk
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I. INTRODUCTION

In laser cooling situations, the random photon recoil of
atom at spontaneous emission increases the temperatu
order to cool below the recoil limit, spontaneous emissio
must be avoided. This can be achieved when stationary s
within the ground level exist. These dark states form the
ingredients for velocity-selective coherent population tra
ping ~VSCPT! @1#. This method allows cooling below reco
temperatures and spatial coherences larger than an op
wavelength. Another advantage of trapping atoms in d
states is that the long-range dipole-dipole interaction v
ishes. This becomes important at high densities, wh
quantum-statistical effects can be studied.

In general, atoms moving in a light-shift potential are a
subject to gauge forces, which arise from the adiabatic m
tion in light fields with polarization gradients@2#. The corre-
sponding potentials are of the order of the recoil energy
in most cases they can safely be ignored compared with
light shifts. In dark states, however, the light shift vanish
and the gauge potentials become important. They dep
only on the field pattern, not on the overall intensity or t
atom-light detuning. In this sense, the potentials have a g
metric nature.

The force arising from these potentials determines
atomic motion below the recoil limit. In this paper we stud
the general structure of the geometric potentials. We dem
strate that they can be used to confine atoms. More gener
the geometric potentials are the main ingredients for su
coil dynamics, which determines the final stage of VSCP

II. QUANTUM MOTION AND SEMICLASSICAL FORCE

A. Transformation to adiabatic states

We consider an atom in a classical monochromatic ra
tion field, which drives the transition between a degener
ground and excited level. In the absence of dissipation,
system is described by a fully quantum-mechanical Ham
tonian consisting of the center-of-mass kinetic energy and
effective interaction term
571050-2947/98/57~6!/4581~11!/$15.00
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H5
1

2m
p¢21V. ~2.1!

For a monochromatic fieldEW (xW ) driving a transition between
a degenerate ground and excited level, the interaction Ha
tonianV consists of the internal electronic energy levels a
the dipole interaction energy. In the rotating-wave appro
mation, the time dependence is transformed away. Then
interaction can be diagonalized at each position as

Vua i ,xW &5ua i ,xW &Vi~xW !, ~2.2!

where the internal statesua i&5ua i(xW )& are position-
dependent linear combinations of the atomic energy lev
As a function of position, the eigenvaluesVi(xW ) form effec-
tive energy potentials for a moving atom, which are know
as light-shift potentials. This has become the foundation
the interpretation of sub-Doppler laser cooling in terms
the Sisyphus mechanism. Often it is assumed that the a
has a well-localized wave packet and the motion is descri
semiclassically. We are interested in the quantum motion
cold atoms, where the semiclassical description is in
equate.

The spatial variation of the adiabatic states can be tra
formed away by the local transformation operatorT, defined
by

Tua i ,xW &5u i &uxW &.

Here the setu i & is a fixedxW -independent basis of the intern
state space. A natural choice would be to takeu i & as the state
corresponding toua i& in the limit of zero field at a fixed
position. This operator relates the new transformed stat
the original state according to

uc8&5Tuc&.

The original stateuc& and the transformed stateuc8& are
explicitly given in terms of the wave functions in the adi
batic component by
4581 © 1998 The American Physical Society
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uc&5(
i
E dxW ua i ,xW &c i~xW !,

uc8&5(
i

u i &E dxW uxW &c i~xW !. ~2.3!

The evolution of the transformed state is governed by
transformed Hamiltonian

H85THT†5
1

2m
~p¢1A¢ !21V8. ~2.4!

Here the scalar and vector potentials are position-depen
operators on the internal states, as described by

V85(
i

Vi~xW !u i &^ i u, A¢ 5(
i

(
j

AW i j ~xW !u i &^ j u,

with

AW i j ~xW !52 i ^a i u¹W ua j&5 i ~¹W ^a i u!ua j&. ~2.5!

The scalar potentialV8 is diagonal on the basis setu i &, but
the vector potentialAW has both diagonal and off-diagon
contributions. Notice that all these matrix elements serve
operators for the translational degrees of freedom. The
diagonal terms ofAW describe the nonadiabatic coupling b
tween different adiabatic states. For sufficiently low atom
velocities, this coupling is small compared to the energy d
ference between the light-shift potentialsVi(xW ) and can often
be neglected. The diagonal contributions, however, hav
be compared with the variations of a single potentialVi(xW ).
The internal states are determined up to a position-depen
phase factor. This phase factor fixes the gauge, which o
affects the diagonal elements of the vector potentialAW . For
this reason the vector potential is also called a gauge po
tial @2#.

B. Lorentz force and light-shift potentials

Generally, the force on an atom is described by the fo
operator. In the Heisenberg picture, where the opera
rather than the state vector evolve in time, the force oper
is

F¢5m
d2x¢

dt2
52¹W V .

The effect of the force operator is determined by its action
the adiabatic internal states, which is given by

F¢ ua i ,xW &52ua i ,xW &¹W Vi1 i(
j

ua j ,xW &~Vj2Vi !AW j i .

The diagonal elements are the gradients of the light-s
potentials. Since the off-diagonal elements are proportio
to the vector potentialAW , they are only present when th
internal states depend on position. They will contribute to
force if there exist coherences between different adiab
components.
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The transformationT to the adiabatic basis is a loca
transformation on the internal states. Therefore, the expe
tion value of the position, velocity, and acceleration is inva
ant under this transformation. Due to the appearance of
vector potential, the velocity and acceleration operato
however, have a different form. In the primed frame, t
velocity operator follows from the Heisenberg equation

p¢85m
dx¢8

dt
5p¢1A¢ .

The force operator is proportional to the acceleration

F¢ 85m
d2x¢8

dt2
52¹W V82

1

2

dx¢8

dt
3B¢ 1

1

2
B¢ 3

dx¢8

dt
.

Here the vector field operatorB¢ 5¹¢ 3A¢ , just as in the case o
a charged particle in a magnetic field. The vector operatoB¢
depends on position and acts on the atomic internal sta
The gradient of the potential operatorV8 does not couple
different internal states since

2¹W V8u i &uxW &52u i &uxW &¹W Vi .

C. Adiabatic approximation

In an electric field of high intensity, atoms experien
strong light shifts and the potentialsVi are separated. Whe
the potential curves are sufficiently different, the atoms c
be confined within a single adiabatic stateua i& with potential
Vi , as long as their velocity is not so fast that tunneling
other potentials becomes possible. Near a crossing, the a
batic approximation breaks down. When a single adiab
state ua i& is populated, the state is determined by a sin
wave function. Then the internal state is not a dynami
variable anymore, but a fixed quantity. The total stateuc&
and the transformed stateuc8& are explicitly given by this
single component in the state~2.3!

uc&5E dxW ua i ,xW &c~xW !, uc8&5u i &E dxW uxW &c~xW !.

~2.6!

The quantum-mechanical motion of atoms is then gover
by an approximate HamiltonianH i , which is basically the
projection ofH8 on the stateu i &. This effective Hamiltonian
is defined by its action on the wave functionc(xW ) in terms of
the full and the transformed Hamiltonians~2.1! and~2.4! by

H ic~xW !5^a i ,xW uHuc&5^ i u^xW uH8uc8&. ~2.7!

Thus the effective Hamiltonian is written explicitly in th
position representation as

H i5
1

2m
@2 i¹W 1AW i~xW !#21Ui~xW !1Vi~xW !,

where the momentum operator is represented as2 i¹W . The
vector and scalar potentials are
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AW i5AW i i , Ui5
1

2m(
j Þ i

uAW i j u2. ~2.8!

The vector potentialAW i is the diagonal matrix element of th
vector operator. The scalar potentialUi arises from the off-
diagonal terms inA¢ that contribute to the diagonal part o
H8. They describe the kinetic energy that can be associ
with the variation of the internal state. At positions where t
couplings fromu i & to all the other internal states is zero th
potentialUi vanishes. When the light-shift potentialsVi are
degenerate, the effective HamiltonianH i acts on the corre-
sponding subspace of statesu i & with the same potential. The
Ui andAW i should be replaced by operators on this subspa
Within this subspace, these operators are not necessaril
agonal.

Spontaneous emissions can put an atom into a super
tion of different internal adiabatic states~2.3! instead of a
single adiabatic state as in Eq.~2.6!. Then the evolution in
the adiabatic approximation is governed by an effect
Hamiltonian, which is simply the sum of Hamiltonians~2.7!
acting on the different components. For instance, the sc
potentials are described by the operatorU5( iUi u i &^ i u.

The magnetic fieldB¢ and the scalar potentialU are local
operators, i.e., they act on the internal states and are f
tions of the position operator, not of the momentum opera
This implies that it is possible to make a semiclassical
scription of the average force on the atom, which is va
when the wave functions are sufficiently localized. This i
bit surprising since these effects originate from the mom
tum operator in the Hamiltonian and thus can be conside
as pure quantum forces. In the adiabatic approximation,
semiclassical force on the atom is

FW 52¹W V2¹W U2
dxW

dt
3BW .

HereV, U, andBW are the local expectation values ofV, U,
and B¢ with respect to the internal-state density operat
When the rate of optical pumping is high compared to
field variation that the moving atom experiences, the inter
state will follow the local steady state. When the field var
appreciably over a wavelength, this requires that the pu
ing rate exceeds the Doppler width. Below the recoil lim
where the semiclassical description breaks down, the ste
state assumption is well justified. Simple analytical expr
sions for the internal steady state can be found in@3,4#. In the
subsequent sections, we consider delocalized wave f
tions.

D. Internal dark states

For intensities high enough to justify the adiabatic a
proximation, the effect of the light-shift potentialVi is usu-
ally considerably stronger than that of the geometric pot
tials AW i and UW i . Obviously, this is not true whenVi is
independent ofxW , which is the case for a dark state. Da
internal states are eigenstatesua0(xW )& of V that are linear
combinations of substates of the ground level. If one or m
dark states are present, a localized atom will eventually
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pumped into such a dark state. Insensitive to the light fi
and with no possible escape by spontaneous decay, an
will stay in the dark state until it moves nonadiabatically
other states. Very slowly moving atoms can be confined
the dark state for times long compared to the optical pum
ing time. This means that the adiabatic approximation
valid. In a dark state, the light-shift potential vanishes. T
translational dynamics of the atom in a dark state is entir
determined by the potentialsAW 0 andU0. We shall denote the
dark state with the indexi 50.

Since no light shifts occur, the adiabatic potential of
dark state is flat:V0(xW )50. Therefore, periodic optical lat
tices, trapping, and Sisyphus cooling in a dark state
thought not to be possible. So-called gray lattices have b
proposed@7# to create a periodic adiabatic potential b
means of adding a small magnetic field. Unfortunately, th
small excited state amplitudes are added and dark states
appear. However, it follows from the previous discussi
that position-dependent forcescan arise in dark adiabatic
states, due to the position dependence of the dark s
ua0(xW )&. Since the dark state is determined only by the fie
polarization and not by the field intensity or atom-light d
tuning, we call the vector and the scalar potentials for d
states geometric potentials.

The simplest model of a dark internal state is aL con-
figuration. For particular values of the two ground-state a
plitudes the coupling to the excited state is canceled by
structive interference@5#. In terms of an arbitrary elliptical
polarizationÊ, the dark states in aj→ j 8 transition can be
found by choosing the atomic quantization axis orthogona
the polarization plane. This implies that arrows coupling t
ground stateu j ,m,g& to the stateu j 8,m,e& with the samem
by linearly polarized light disappear@see Fig. 1~a!#. The re-
maining multipleL structure contains dark states provid

FIG. 1. Two dark states in thej→ j 21 transition.~a! Level
scheme when the orientation of the quantization axis is orthogo
to the plane of the polarization ellipse.~b! and~c! Situations where
the axis is determined by the cylinders on the polarization ellip



la

n

Eq

ct
a
i

o
he
i

rn
ss
o
e
n

n
r

t
pu
th
s
n

tr
-

the

sian
be

k

eld
nd
he

out
n

c-

d is

e

ic
c-

he
the

e

h.

4584 57P. M. VISSER AND G. NIENHUIS
that the ends of the wiggle are in the ground level.
When an atomic transition between levels with angu

momentumj and j 8 is driven by light with an arbitrary po-
larization, two dark states exist whenj 85 j 21. When j 8
5 j , there is a single dark state for integerj values. For
half-integer values ofj , a single dark state only exists whe
the polarization is circular@6#.

E. Black states

A full quantum-mechanical dark state is denoted as in
~2.6! with i 50 for an arbitrary wave functionc(xW ). Al-
though such dark states are eigenstates of the intera
Hamiltonian, they are stationary states only when they
also eigenstates of the kinetic energy and the full Ham
tonian~2.1!. Time evolution will dephase the components
the state with different kinetic energy or, equivalently, t
wave packet will be deformed. As a result, bright states w
become occupied. Hence atomic states in the dark inte
state can still decay. In the transformed basis, this proce
described by the operatorsAW i0, which couple the dark state t
bright states. Only in exceptional cases can a dark stat
stationary. These eigenstates of the complete Hamiltonia
the ground state will be called black states.

An exact black stateuc0& is found for an arbitrary field in
the transition between two levels withj 51 and two black
states are present in the 1→0 transition. In the one-
dimensional case, a black state occurs in the transitio
→1, since it contains a singleL, and two black states occu
in the transition 3/2→1/2, since it contains twoL ’s ~see Fig.
2!. These are the famous velocity-selective trapping sta
@1,8,9#. The recoil kick of a spontaneous emission can
the atom in the black state, where it is trapped. Hence
population inuc0& can only increase with time. The width
of the momentum distribution can become smaller tha
single recoil, resulting in very low temperatures.

III. A SINGLE DARK STATE

In order to demonstrate the importance of the geome
potentialsAW 0 andU0, we give explicit expressions in a num

FIG. 2. Black states in one-dimensional systems. MultipleL
structures contain a dark internal state. In a singleL ~plotted with
bold arrows! a full black state is found.~a! The 1→1 transition
contains one dark internal state and one black state.~b! The 1→0
transition contains two dark states: TheL has one black state, th
isolated state is completely black.~c! In 3/2→1/2 two L ’s are
present; hence there are two dark states with a black state eac~d!
In 2→1 there are two dark states, one with a black state.
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ber of specific cases of physical relevance in this and
following sections. We notice that on aj 51 level, there
exists a basis that transforms under rotations like a Carte
basisux̂&,u ŷ&,uẑ&. This implies that each internal state can
represented as a vector, which we denote as

uaW &5axux̂&1ayu ŷ&1azuẑ&.

We consider a 1→1 transition. In this case an exact blac
state is known to exist@8#. The two polarization vectorsaW

andbW of the ground and excited state are coupled by the fi
EW . The interaction operator acting on an arbitrary grou
stateuaW ,g& is then determined by the vector product of t
fields and atomic polarization vectors

^bW ,e,xW uVuaW ,g,xW &5kbW * •~EW 3aW !

since this is the only linear operation that forms a vector
of two vectors. Herek is a coupling constant. The interactio
with the light field vanishes withaW 5 Ê, whereÊ is the nor-
malized polarization vector andE is the real amplitude of the
electric fieldEW 5EÊ. This shows that dark states are chara
terized by the internal stateua0&5uÊ,g&.

A. Wave function of the black state

An exact black state

uc0&5E dxW uÊ,g,xW &c0~xW !

is obtained whenc0(xW ) is chosen such thatuc0& is an eigen-
state of the kinetic energyp¢2/2m. An obvious choice that
realizes this isc0(xW )5E(xW ), the electric field amplitude@8#.
This can be shown when one notices that the electric fiel
a solution of the Helmholtz equation

2¹W 2EW 5k2EW .

Then it follows that

Huc0&5
1

2m
p¢2uc0&5E0uc0&,

with energy eigenvalueE05k2/2m. It follows that the wave
function c0(xW ) is an exact eigenfunction of the effectiv
Hamiltonian~2.7! for the dark state

H0c0~xW !5^a0 ,xW uHuc0&5E0c0~xW !,

where we used the definition~2.6!. The wave functionc0
5E is equal to the electric field amplitude. If the electr
field has no nodes,c0 has no zeros and then this wave fun
tion must be the lowest-energy eigenstate ofH0. Unlike the
total stateuc0&, the corresponding wave functionc05E does
not have a well-defined kinetic energy. This explains t
presence of the geometric potential for the dark state in
driven 1→1 transition.
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B. Geometric potential in terms of the electric field

The vector and scalar potentials~2.8! in the adiabatic ap-
proximation as defined by Eq.~2.5! for the 1→1 transition
can be expressed in the field polarization vectors. The ve
potential is

AW 052 i Ê* ¹W Ê5 i ~¹W Ê* !Ê5
1

E2
Im EW * ¹W EW ~3.1!

and the scalar potential is

U05
1

2m
~ u¹W Êu22AW 2!5

1

2m
uÊ3¹W Êu2. ~3.2!

The notation needs some comment. Note that it follows fr
the definition~2.5! that the gradient operators always com
bine with gradient operators in inner or outer products a
field vectorsEW or Ê combine with field vectors. From th
second expression it can be seen that the component orth
nal to the field is picked out.

A monochromatic radiation field consists of a finite num
ber of plane traveling waves with wave vectorski and polar-
izationsEW i

EW ~xW !5(
i

EW ie
ikW i•xW.

The scalar potential can now be expressed in terms of
total electric field vectorEW or in terms of the amplitudesEW i
by

U05
1

2m

1

E4
uEW 3¹W EW u25

1

2m

1

E4U(i
(

j
kW jSW i j e

i ~kW i1kW j !•xWU2

~3.3!

in terms of the antisymmetric matrixSW i j 5EW i3EW j . The first
equality of Eq. ~3.3! can be verified after substitutin
EW 5EÊ, which produces Eq.~3.2!. Two different beams give
a contribution to the potential only if their polarizations a
different. This is understandable since the potential ar
from polarization gradients. When more than two beams
present, the plane wave factors in the summation can in
fere. One verifies that wherec0 has minima, indeed high
values of the potentialU0 can be expected. In the dark sta
optical lattices can be created whenU0 is periodic.

The vector operator~3.1! determines an effective mag
netic field. After some algebra one obtains in analogy to
~3.3!

BW 05¹W 3AW 05
2 i

E4
~EW 3¹W EW !* 3~EW 3¹W EW !.

Whereas the gradient operators have an inner product in
expressions forU0, in the expression forBW 0, the vector prod-
uct between gradient operators is taken.

According to Heisenberg’s uncertainty relations, an at
with a wave packet localized within a wavelength must ha
a momentum spread of more than one photon recoil. He
its energy is higher than one recoil energy. The geome
or

d
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nature of the scalar potential suggests that its strength i
the order of a single recoil energy. In optical lattices, t
widths of the potential wells is normally smaller than
wavelength and the question arises whether strong bindin
the scalar potential is possible. We show that in special c
figurations it can become sufficiently strong to supp
bound states in the potential minima.

C. The electric field

In order to see how the geometric potential depends
the polarization of the electric field, we expand a gene
field EW 5EÊ in terms of real basis vectorsû1 and û2 by

Ê5~ û1cos«1 i û2sin «! eiw. ~3.4!

The real amplitudeE, the complex amplitudeF, the phase
w, and the ellipticity« are determined by

E25EW * •EW , F25EW •EW 5E2e2iwcos 2«. ~3.5!

The orientation of the polarization ellipse is defined by t
axes û1 and û2. The vectorsû1 ,û2 are given explicitly in
terms of the field vectorEW by

û15
EW * F1F* EW

2EuFucos«
, û25

iEW * F2 iF * EW

2EuFusin «
. ~3.6!

In experimental situations, the field can be generated
superimposing counterpropagating traveling waves. In
case of two traveling waves in thez direction, the field de-
pends only on thez coordinate. The general form is

EW ~z!5~EW 1e1 ikz1EW 2e2 ikz!/A2. ~3.7!

The polarization ellipse now lies in thexy plane everywhere
and û15 ẑ. The polarization vector is entirely determined b
the ellipticity « and the phase as defined in Eq.~3.5! and the
orientation anglej. The gradient of this angle is determine
by

¹û15û2¹j. ~3.8!

A shift in the relative phases ofEW 6 is equivalent to a shift
of the spatial coordinate. Thus, without loss of generality,
can assume that the inner productEW 1* •EW 2 is real and nega-
tive, which will be advantageous in later use. The choice
phase ensures that the positions of minimal intensity are
cated atkz5np. The field intensity pattern has the univers
form

E2~z!5~12cos 2a cos 2kz!I ~3.9!

in terms of the average intensityI 5(E1
2 1E2

2 )/2. The pa-
rametersa and b are defined by the overlap and the cro
product of the two polarizations as

I cos 2a5uEW 1* •EW 2u, I sin 2b5uEW 13EW 2u.

Hence cos 2a50 when the two polarizations are normal
one another and cos 2a51 whenEW 152EW 2 . The two pa-
rameters are related according to



e
pa

n

-

n-
-

el

th

E

or
E

-
rn
th
t

al-
ge.

il-

is

r

n-

ress
t

ce
c

ntial

ate
the

at
nal

um
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cos22a1sin22b5E1
2 E2

2 /I 2.

D. The atomic system

When the field consists of two counterpropagating trav
ing waves, only two ground states and one excited state
ticipate in the dynamics. The light-shift potentials~2.2! are

V050, V152 1
2 d1 1

2 Ad21k2E2,

V252 1
2 d2 1

2 Ad21k2E2. ~3.10!

For large detuning, the excited-state population can be
glected and one has two ground states: the dark stateua0&
and the bright stateua1&. The scalar potentials of the two
dimensional space with basis statesu0& and u1& are equal.
With Eqs.~3.2! and~3.8! they are expressed in the positio
dependent angles« and j that determine the field polariza
tion ~3.4! by

U05U15U5
1

2m
@~¹j!2 cos22«1~¹«!2#. ~3.11!

By substitution of Eq.~3.7! in Eq. ~3.3! and using Eq.~3.9!,
we obtain an explicit expression in terms of the constant fi
parametersa,b,

U~z!5
k2

2mS sin 2b

12cos 2a cos 2kzD
2

. ~3.12!

With the proper choice of the phase of the bright state,
diagonal matrix elements of the vector potentialA00 andA11
are equal. They can be evaluated from the last identity in
~3.1!, with the field ~3.7!. With Eq. ~2.8! it follows that the
off-diagonal elementsA01 and A10 are determined by the
scalar potential up to a constant phase factor. Theref
these matrix elements can be chosen positive. With
~3.12! the result is

A005A115A5k
E1

2 2E2
2

E2
, A015A105k

I sin 2b

E2
.

~3.13!

The periodic potentialsV1, V2, U, andA,A01 have the lattice
constanta5p/k. The vector potentialA is only present
when the running waves have different strengths.

E. Gauge transformations

When we do not require that the amplitudeE is real, the
separation betweenE andÊ is defined apart from a position
dependent phase factor. This implies that the dark inte
state and the corresponding wave function also obtain
same phase factor. The transformations for the field and
wave function are

EW 5EÊ5E8Ê85EeiwÊ8, c85ceiw.

The vector and scalar potentials in the new~primed! repre-
sentation are related to the original potentials by

AW 85AW 2¹W w, U85U.
l-
r-

e-
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The potentialsAW ,U and AW 8,U8 respectively correspond to
the polarizationsÊ and Ê8.

In a one-dimensional system the vector potential can
ways be transformed away by choosing the proper gau
The gaugeA850 is a natural choice since then the Ham
tonian is real. It only contains the scalar potentialU. Hence
with Eq. ~3.13!, the equation for the phase is

¹w5A5p
sin 2a

12cos 2a cos 2kz
where p5k

E1
2 2E2

2

I sin 2a
.

The solution can be expressed as

tan
kw~z!

p
5

tan kz

tan a
. ~3.14!

In the primed gauge, the wave function of the black state
explicitly written in terms of the vector potentialA by

c08~z!5E~z! eiw~z!5AIp sin 2a

A~z!
exp S i E A~z!dzD .

~3.15!

It follows from the solution~3.14! that the phase shift ove
half an optical wavelength isw(a)2w(0)5pa. Hence the
state~3.15! satisfies Bloch’s theorem

c8~z1a!5c8~z! eipa

for eigenstates of the real Hamiltonian with a periodic pote
tial U, with the quasimomentump. The wave function lies in
the lowest Bloch band since it does not have zeros. We st
that the wave function~3.15! of the black state is an exac
solution of the effective HamiltonianH0 with potential
~3.12!, as can be verified explicitly. This is remarkable sin
the geometric potentialU is only present in the adiabati
approximation.

The phase factor in the Bloch state~3.15! can be consid-
ered as a Berry phase corresponding to the vector pote
A. Thus, in the periodic geometric potentialU, the Berry
phase describing the adiabatic following of the internal st
is precisely the quasimomentum times the period. When
potential is adiabatically translated over a perioda, the
Bloch state~3.15! also obtains a Berry phase factor. Th
Berry phase is determined by the gradient of the translatio
state, which turns out to be the expectation value^p& of the
momentum operator. The quasimomentump and the real
momentum~or group velocity! ^p& of a Bloch state of the
general form~3.15! are given by the simple relations

pa5E
0

a

A dz,
a

^p&
5E

0

adz

A
.

In the Bloch state~3.15! where A is determined by Eq.
~3.13!, the true momentum is

^p&5p sin 2a5k
E1

2 2E2
2

I
,

which is equal to the expectation value of the moment
operator in the original black stateuc0& and to the average
momentum of a photon in the field modeE.
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When the counterpropagating beams have equal inte
ties, the field and the black state have zero average mom
tum density. Then the anglesa5b coincide. In the gauge
where the amplitudeE is real, the vector potentialA van-
ishes. The ground state of the gauge potentialU is the Bloch
state withp50 in the lowest-energy band. This is precise
the black state. The potentialU and the wave functionc0 are
plotted in Fig. 3 in the case thatp50.

F. Examples

As an example we take the field generated by two trav
ing waves of equal intensity with linear polarizations und
angles6a with respect to theŷ axis. Then the field is ellip-
tically polarized with a fixed orientationj50. It is

EW ~z!5~ x̂ sin a coskz1 i ŷ cosa sin kz!A2I

5@~ x̂1 i ŷ !sin~a1kz!1~ x̂2 i ŷ !sin~a2kz!#AI /2.
~3.16!

The ellipticity and its gradient are given by

tan «~z!5
tan kz

tan a
, ¹«5k

sin 2a

12cos 2a cos 2kz
.

~3.17!

This field is linearly polarized when the intensity is minim
or maximal, which is at the location wherekz5np and
np1p/2. The field is purely circular whenkz5np1a and
np2a.

A field that is linearly polarized everywhere is

EW ~z!5~ x̂ sin a coskz1 ŷ cosa sin kz!A2I

5@~ x̂1 ŷ!sin~a1kz!1~ x̂2 ŷ!sin~a2kz!#AI /2.
~3.18!

It is generated by traveling waves with elliptic polarizatio
with ellipticities 6a with the same orientation. The position
dependent polarization anglej(z) is determined by

tan j~z!5
tan kz

tan a
, ¹j5k

sin 2a

12cos 2a cos 2kz
.

~3.19!

FIG. 3. Geometric potentialU and the ground-state wave func
tion c0 for the configuration~3.18! with a5p/10. The dashed
curves are the two standing-wave components.
si-
n-

l-
r

For small ellipticitiesa, the field is linearly polarized nea
the ŷ direction almost everywhere. Then the polarization
tates rapidly fromx̂ to ŷ2 x̂ and to x̂ at the intensity mini-
mum and then tox̂1 ŷ and back toŷ.

IV. TWO DEGENERATE DARK STATES

In a transition between a ground state with angular m
mentum j and an excited state with angular momentumj 8
5 j 21 two dark states exist. When the atomic quantizat
axis is alongû3, orthogonal to the local field polarizatio
~3.4!, the couplings between the states in the ground
excited level with the samem disappear. The level schem
consists of two multipleL ’s, each of which contains one
dark state.

By choosing a different quantization axis, it is also po
sible to eliminate the couplings fromm to m11 or from m
to m21 in the level scheme. The electric field can be e
pressed as a superposition of an orthogonal pair of a lin
and a circular polarization. The couplings of the third~circu-
lar! polarization disappear when the quantization axis is c
sen in the direction of the linear polarization@6#. The two
representations

Ê5~ v̂11 i û2!sin «1 v̂3Acos 2«

5~ŵ11 i û2!sin «1ŵ3Acos 2«,

correspond to the possibilities to use a left circular or a ri
circular component. This second coordinate frame is
tained by rotating the system about the axisû2 by an angleu.
When 0,«,p/4, this angle is determined by cosu5tan «.
Generally, for arbitrary values of«,

cosu5min~ utan «u,ucot «u!.

Geometrically, the cylinder that encloses the polarization
lipse determines the orientation of this basis as is depicte
Figs. 1~b! and 1~c!. In the basis of the quantization axisv̂3,
the right circular polarization is eliminated. For thej→ j
21 transition, this implies that the stateu j ,m51 j ,g& is iso-
lated. Hence it is a dark state.

We introduce statesuaW & defined as the stateu j ,1 j & in the
basis where the quantization axis is in the direction ofaW .
These states are called Bloch states since they maximize
length of the Bloch vector, which is the expectation value
the angular momentum operatorJW . ~They have no relation
with the stationary states of a periodic potential, which a
also called Bloch states.!

The Bloch statesuv̂3& and uŵ3& are dark. In terms of the
vectorsû2 and û3, these states are

uv̂3&5e2 iuJ¢•û2uû3&, uŵ3&5e1 iuJ¢•û2uû3&.

These two dark states are linearly independent, but not
thogonal. The inner product of the Bloch states is^v̂3uŵ3&
5c2 j with c5cosu. Note that the inner product of the tw
vectors isv̂3•ŵ35cos 2u.

The linear combinations
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ua1&5
uv̂3&1uŵ3&

A212c2 j
, ua2&5

uv̂3&2uŵ3&

A222c2 j
~4.1!

are orthogonal. In the basis where the atomic quantiza
axis is û3, the stateua1& is a superposition of the Zeema
substatesu j &,u j 22&,u j 24&, . . . and the stateua2& consists
of the statesu j 21&,u j 23&,u j 25&, . . . .

One-dimensional case

When the field consists of two counterpropagating pla
waves, the field is always polarized in thexy plane and the
system is essentially one dimensional. The atomic quant
tion axis û35 ẑ in which the linear couplings disappear
constant. In this frame, the two orthonormal dark states~4.1!
are given in terms of the dark Bloch states

uv̂3&5e2 i jJze2 iuJyu j ,1 j &, uŵ3&5e2 i jJze1 iuJyu j ,1 j &.

Since the spaceu j &,u j 22&,u j 24&, . . . that containsua1&
and excludesua2& now is fixed,A1250 and there is no cou
pling between the two dark states. The operatorU is diagonal
on the basis of the fixed internal statesu1& and u2& with the
potentialsU1 andU2 as diagonal elements.

The vector potentialsA1 and A2 are found by using the
relations

i ^v̂3u¹uv̂3&5^ẑueiuJy¹~jJz1uJy!e2 iuJyuẑ&5 jc¹j,

i ^v̂3u¹uŵ3&5^ẑueiuJy¹~jJz1uJy!e1 iuJyuẑ&5 jc2 j 21¹~j

2 ic !

in the definition~4.1!. The result is

A152 j
c1c2 j 21

11c2 j
¹j, A252 j

c2c2 j 21

12c2 j
¹j.

The scalar potentials of the two dark states are

U15
1

2m

~¹^v̂3u!¹~ uv̂3&1uŵ3&)

11c2 j
2

A1
2

2m
2

1

8m S ¹c2 j

11c2 j D 2

,

~4.2!

U25
1

2m

~¹^v̂3u!¹~ uv̂3&2uŵ3&)

12c2 j
2

A2
2

2m
2

1

8m S ¹c2 j

12c2 j D 2

.

The last term in the two expressions accounts for the cha
in the normalization constant. The first term inU1 andU2 is
determined by

~¹^v̂3u!~¹uv̂3&!5^ẑueiuJy@~¹jJz!
21~¹uJy!2e2 iuJyuẑ&,

~4.3!

~¹^v̂3u!~¹uŵ3&!5^x̂ueiuJy@~¹jJz!
22~¹uJy!2#e1 iuJyuẑ&.

The expectation values of the squares are

^ẑueiuJyJz
2eiuJyuẑ&5~ j 22 1

2 js2!c2 j 22,

^ẑueiuJyJy
2eiuJyuẑ&5~ 1

2 j 2 j 2s2!c2 j 22, ~4.4!
n

e

a-

ge

^ ẑueiuJyJz
2e2 iuJyuẑ&5 j 2c21 1

2 js2,

^ẑueiuJyJy
2e2 iuJyuẑ&5 1

2 j ,

Next to the cosinec5cosu5min(utan «u,ucot«u), we abbre-
viated the sines5sinu. The two potentialsU1 and U2 are
evaluated in terms of the field parametersj andc by using
Eq. ~4.4! in Eq. ~4.3! and substituting the result in Eq.~4.2!.
In turn, the field parameters are given by the expressi
~3.8!, ~3.6!, and~3.5! for an arbitrary field.

Now we turn to special fields that we choose as an
ample in Sec. III F. For a field with a fixed orientation lik
Eq. ~3.16!, j50. Then

U15
j

4mS 12c2 j 22

11c2 j 1
2 js2c2 j 22

~11c2 j !2 D ~¹u!2,

U25
j

4mS 11c2 j 22

12c2 j
2

2 js2c2 j 22

~12c2 j !2 D ~¹u!2.

We can use the explicit expressions~3.17! for the ellipticity.
From the results we found that also these potentials h
peaks at the intensity minima. The strengths of the pe
increase linearly withj . When j .1, extra peaks appear nea
the points where the field is circularly polarized. The pote
tials U1 andU2 are plotted in Fig. 4 for differentj values at
a5p/4 when the two linear polarizations of the light beam
are orthogonal. Then the field intensity is homogeneous
«(z)5kz so that the gradient¹«5k is constant. For intege
vales ofJ, the potentials have a periodicity ofa/2, a quarter

FIG. 4. The geometric potentialsU1 ~solid! andU2 ~dashed! in
the field with a fixed orientation and a uniformly varying ellipticity
The potential minima increase linearly withj . Top picture: integer
values j 51,2,3. Forj 51, U150; for j 51,2, U2 equalsk2/2m.
Bottom picture: half-integer valuesj 53/2,5/2.
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of an optical wavelength. For half-integerj values, the two
potentialsU1 andU2 have the periodicitya, and are identi-
cal apart from a spatial shift ofa/2.

According to Eq.~2.8!, the geometric potentials are pro
portional to the sum of the absolute squares of the nona
batic coupling constantsAi j . Hence optical pumping is
maximal at the potential maxima. In the case that the t
geometric potentials of the two dark states are different,
Sisyphus effect may be at work. When the atom is pum
from one dark state to the other dark state, most of the t
the kinetic energy decreases until the steady state is reac
With each optical pumping cycle this net loss is of the ord
of j times the recoil energy.

In the second example~3.18!, the field is purely linearly
polarized in each point. Thenc5«50. Such a field is of the
form ~3.18!, so that the polarization anglej(z) is given in
Eq. ~3.19!. The potentials~4.2! now reduce to

U15U25
j

4m
~¹j!2 if j .1.

For an arbitrary field in one dimension, whe
j 52, j 851, the potentialU2 equals Eq.~3.11!, so that is
explicitly given by Eq.~3.12! in terms of the field param
eters. In the casej 51, j 850, the potentialU1 equals Eq.
~3.11! and U2 vanishes because the stateua2& is constant.
This implies that the coupling to the other internal states
absent. A full quantum state with an arbitrary wave functi
c(z) in a dark state with a vanishing geometric potentia
black. There is no velocity selection so that cooling will n
occur. When the geometric potential of a dark state is c
stant but nonzero, there are no forces, but there still is ve
ity selection in the nonadiabatic coupling to the excited sta
In situations where finite families of states arise@10#, both
the light-shift potentials and the geometric potentials are fl
Like the driven 1→1 transition, the systems 1→0 and 2
→1 in one dimension contain a black state that is an eig
state of the geometric potential.

V. KRONIG-PENNEY MODEL

In a dark state, the geometric potentialU depends on the
polarization pattern and not on any other experimental
rameter such as the detuning or field intensity. Although
expression~3.3! is given in terms of the electric field, th
overall strength of the light field intensityI drops out. Apart
from the recoil factork2/2m that givesU the physical dimen-
sion of energy, it contains only geometrical variables of
electric field. This justifies the name geometric potential
U. Because the kinetic energy of a localized atom alw
exceeds the recoil energy, the effects of the geometric po
tial on the atomic motion are expected to be small. Howev
the geometric potential varies withz proportional to the in-
verse square of the local field intensityE4. Hence still large
values can be expected at the intensity minima.

In order to demonstrate this, we consider the dark stat
the L ’s of the 1→1, the 1→0, and the 2→1 transitions in
an arbitrary field in one dimension. Then, and for the case
j→ j 21 in purely linearly polarized light, the vector poten
tial is proportional to the function
a-

o
e
d
e
ed.
r

s

t
-

c-
e.

t.

n-

-
e

e
r
s
n-
r,

in

f

sin 2a

12cos 2a cos 2kz
5(

n

g

g21~kz1pn!2

5(
n

e2inkze22unug,

with the parameter tanh 2g5sin 2a. The summations ofn
extend over all integers. The scalar potential is proportio
to the square of this function. Hence the vector potentia
represented as a series of displaced Lorentz-type profile
space. For smalla,g!1, this function becomes a series
narrow peaks and the Fourier components exp(22unug) go to
the constant value 1. The peaks are located at the inten
minima of the field. The rapid variation of the polarizatio
causes large values of the geometric potential at these po

Dispersion relation

For small angles the light-shift potential in the bright sta
~3.10! and the geometric potentials~3.12! are approximated
by

V2~z!5
k2I

2d
sin2kz, U~z!5

k2

2m
S(

n
d~kz1np!.

This potential defines the well-known Kronig-Penney mod
It is the only known model for a periodic potential that ca
be solved analytically. This may be a mere toy model wh
applied to describe electronic waves in the solid state;
present case of cold atoms in a dark state constitutes a p
cal realization of this model. The strength ofU equalsS
5 j p/2a for the j→ j 21 transition in purely linear polarized
light and j .1 andS5pb2/a3 for the 1→1, 1→0, and 2
→1 systems. The geometric potential diverges when
field has nodes. This occurs whenEW 152EW 2 and a50.
However, whena50, the field polarization is fixed and onl
changes sign at the nodes. Then there is no geometric po
tial at all. The paradox is resolved by noting that whena
approaches zero, the light-shift potential of the bright st
V1 and of the dark stateV050 at the intensity minima be
come degenerate. Landau-Zener coupling can occur and
atomic internal state is no longer restricted to the dark st
However, as long as the Doppler shiftpk/m is small com-
pared to the minimal energy splittingk2E2(0)/d
52k2Ia2/d, the adiabatic approximation still holds. Eve
for small values ofa, the Rabi frequencyk2I /d can still be
made sufficiently large to fulfill this condition.

If we consider a plane atomic wave incident on a singld
peak of the periodic potential, the wave is partly transmit
and partly reflected. When the wave has the wave vectorq so
that the energy isE5q2/2m, the transmission and reflectio
coefficientst and r are determined by

1

t
5

1

11r
511

ikS

2q
.

The reflection coefficientr is close to unity ifq!kS, which
is the case in the present approximationa!1 for moderate
values ofq. Atoms are reflected at the points where the fie
almost has a node. Hence atoms can be confined betwee
nodal planes of the field. The potentialU has discrete
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maxima at the intensity minima. Periodic electric fields
more dimensions have nodal lines and points instead
nodal planes. Therefore, bound states do not seem to occ
optical lattices in more dimensions. Fields with curved no
planes are needed to trap in three dimensions. Possible
didates of such fields are Gaussian standing waves
spherical waves. This could be of interest for the study
collective effects. In order to confine atoms in the dark sta
a binding potential is needed to contain an atomic sampl
high density. When the atoms interact, the gauge poten
may be used for evaporative cooling. Also this cooli
mechanism is compatible with VSCPT since the ground s
is black.

In the limit of small angles, the peaks are very narrow a
strong. Periodic potentials, however, also give rise to a sp
trum with energy bands. The dispersion relation between
ergy E5q2/2m and the quasimomentump for the Kronig-
Penney model@12# is

cospa5cosqa2 1
2 pS sinc qa.

Real values forp can only be found whereqa5Np1« and
« of ordera. Then the energy bands are given explicitly

EN~p!5
k2

2mFN21
4N

pS
~2 !N cospaG .

Here p is the quasimomentum andN51,2, . . . is theband
number. The half-bandwidth is the rate at which localiz
Wannier states tunnel to the neighboring wells@12# and is
inversely proportional to the potential strengthS.

When the black state lies in a continuum of energy sta
as is the case whenU is periodic, then VSCPT cooling is
governed by Le´vy statistics @13#. The trapping process i
characterized by the very slow growth of populationAGt in
the black state, whereG is an effective escape rate. This
caused by the fact that, after a spontaneous emission
overlap of the atomic wave function with the black state
infinitesimal. In the presence of a binding potential, the
calized bound states have a discrete spectrum. Then the
lap with the black state after a photon emission is finite a
the trapped population is expected to increase exponent
to unity.

In the regime wherea is small, the bound Wannier state
are approximate eigenstates. We expect that trapping in
first Wannier state occurs exponentially fast. This is follow
by a process of tunneling and localization by spontane
emissions. This dynamics in the first energy band is mode
in @14#.

VI. CONCLUSIONS

When differences between light-shift potentials exce
the Doppler shift of a moving atom, the atomic state w
remain confined in a single position-dependent adiabatic
ternal state. Radiative forces do not arise only from the s
tially varying light shifts, but also from spatial gradients
the internal state. As shown in@2#, this effect is described by
a geometric scalar and vector potential in the adiabatic
proximation. We show that this can generally be describ
by a vector potential operator. This vector operator has s
of
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lar physical effects to an external magnetic field on a char
particle. In particular, it gives rise to a Lorentz-type for
and, for a quantum mechanical wave packet, to Berry’s
pological phase. For a periodic potential in one dimensi
this Berry phase determines the quasimomentum of
Bloch states.

In the adiabatic approximation, the internal state follo
the atomic position. Then the square term in the general v
tor operator gives rise to the scalar potential. This poten
energy can be interpreted as the kinetic energy containe
the spatial variation of the internal state.

Quantum motion becomes important when spatial coh
ences are of the order of an optical wavelength. In a d
internal state, coherences are preserved longer since sp
neous emission rates are small. Moreover, the subrecoil c
ing mechanism VSCPT creates large spatial coherence
the dark state. In a dark state, where the light-shift poten
vanishes, the geometric potential will be the dominant te
This implies that optical lattices will form naturally in a dar
state. For configurations with a dark state, an external m
netic field can create gray lattices based on the magn
optical potential. Whereas in gray lattices there is still
small coupling to the excited state, in a dark lattice, the
cited state is decoupled.

In the transition between two levels withj 51, a single
dark state exists for arbitrary polarization. We evaluate
dark geometric potentials for an arbitrary field in three
mensions. In one dimension, the geometric potential ha
universal shape, which is inversely proportional to the squ
of the field intensity pattern. It has peaks at the intens
minima. The black state, which is a dark eigenstate of
total Hamiltonian, is also an exact eigenstate of the adiab
Hamiltonian.

For a transitionj→ j 21, two dark internal states exis
We evaluate the two dark geometric potentials in one dim
sion for arbitraryj values. Apart from the peaks at the inte
sity minima, extra peaks appear at the points where the fi
is purely circularly polarized. The peak heights are prop
tional to j . In general, there will be a small velocity selectiv
coupling to the excited level in the dark state. Transitio
between the geometric potentials of two dark states can
to Sisyphus cooling, thereby putting the atoms in the lowe
energy states of the geometric potential.

Systems withj 85 j have a single dark state for integerj .
We have considered only the casej 51, but we expect a
nontrivial potential for large values ofj 85 j , just as for the
situation j 85 j 21 and j 85 j 51. Also a single dark state
may lead to cooling. If the detuningd is negative, all the
light-shift potentials are positive. Atoms can only leave t
dark state by moving nonadiabatically to the bright sta
@11#. When the Doppler shiftkp/m is small compared to the
bright potentialV1, this effect is a first-order correction t
the adiabatic approximation. Optical pumping from t
bright state with a large positive potential energyV11U1 to
the dark state with a small potential energyU0 will result in
a net loss of energy. This process can be seen as a kin
Sisyphus cooling via a Landau-Zener transition from t
dark to the bright state.

The geometric potential does not destroy the VSC
cooling mechanism. In fact, we show that when a full bla
state exists, it lies in the lowest-energy band of the perio
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geometric potential. Therefore, Sisyphus cooling can be
fective in the subrecoil domain, which would increase t
trapping in the black state. In one dimension, isolated bl
states are found in the 1→1, 3/2→1/2, and 2→1 systems.
The periodic geometric potentials of these systems are eq
In configurations with field nodes, it diverges. We show th
the adiabatic approximation can still be valid with intens
minima that are small compared to the intensity maxima
this situation, the atom-field configuration constitutes a re
C

-

t.
f-
e
k

al.
t

n
l-

ization of the Kronig-Penney model withd-peaked potential
barriers. The band structure is expressed in terms of the
parameters.
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