
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1978

Geometric Problems with Application to Hashing Geometric Problems with Application to Hashing

Douglas E. Comer
Purdue University, comer@cs.purdue.edu

Michael J. O'Donnell

Report Number:
79-303

Comer, Douglas E. and O'Donnell, Michael J., "Geometric Problems with Application to Hashing" (1978).
Department of Computer Science Technical Reports. Paper 233.
https://docs.lib.purdue.edu/cstech/233

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

GEOMETRIC PROBLEMS WITH
APPLICATION TO HASHING

Douglas Coiner
Michael J. O'Donnell

Computer Science Department
Purdue University

West Lafayette, IN 47907

CSD - TR 303

April 1979

1. Introduction:

Recently, researchers have found efficient algorithms for several geometric

problems [GRAH72, SHAM75, SHAM75a, JARV73, PREP77]. These include convex hull

in 2 and 3 dimensions as well as nearest neighbor problems. This paper presents

algorithms for two new geometric problems. Both problems have hashing applica-

tions; generalizations of one apply to graphics.

The first problem is motivated by Sprugnoli [SPRU77], who studies perfect

hashing functions for a static set of keys, proposing solutions which seem to

require large amounts of space. No analysis of the space requirements is given,

however, so a quantitative assessment is not available. Sprugnoli1s work suggests

the following problem: given a fixed set of keys S and two functions Hj, H2

which map S to Z+, find constants ci, eg. and C3 such that the hash function

hashing of S.

A related, practically motivated problem raised in [COTE79] also concerns

finding an optimum linear combination of two hashing functions. In this problem

the hashing function need not be perfect, however, we allow only k buckets in

the hash table (fixed k) and minimize cost based on the bucket sizes. Typical

cost functions might measure the maximum bucket size,the number of empty buckets,

or the uniformity of distribution.

Section 2 defines the geometric problems underlying the above hashing pro-

blems, section 3 and 4 present the basic algorithms and their analysis, and

section 5 discusses the applications in greater detail. Finally section 6 con-

cludes with a summary of open problems.

produces a minimum table size perfect

s

2

2. Definitions:

Def: Let S = { | x ^ , y ^ e R , 1 <_ i £n}, and let 0 £ [o,n} be called an

angle of projection. The projection of Ŝ at_ angle <3 is

Pg = { x.cos0 + y.sin0 | (x,y)eS }

where S is understood, we write as PA. The span of projection P is o o — 0

the resolution of projection P^ is

res CPn) = m n
 D C|u-v|D

and the length of projection PQ is

len (Pe) = span (PQD/res CPe) E Z 1

Intuitively, we think of S as a set of n points in 2-dimensional space

projected onto a line at angle 0. The resolution of a projection gives the

minimum distance between projected points along the line; the length gives the

distance between endpoints after the resolution has been normalized to unity.

Problem 1: Given S, a finite subset of R x R, find 0 e [0,11) which minimizes

lenCP6) •

In the second problem we think of a finite set of points in 2-dimensional

space projected onto a line. Using the minimum and maximum projected points to

determine a line segment, mark off k equal size buckets 0,1, k-1, such that

bucket 0 starts with the minimum projected value and bucket k-1 ends within e '

past the maximum projected value, where 0<e<<l. Some number of projected points

lie -within each bucket; this number is denoted by "size" in the definition.

The problem, then, is to find an angle of projection which minimizes the cost of

3

the resulting distribution according to the cost function C. For example, a

typical cost function might be the maximum number of objects in a bucket or the

number of nonzero buckets. In any case,T(k) denotes the complexity of computing

the cost function given the k bucket sizes. Usually, T(k) is small.

Def: Let S be a finite subset of R x R, let 0 e[0,JI) be an angle of projection,

let k e Z+, and let e e R where 0<e<<l. Using minCPQ) and max(P0) to de-

note the minimum and maximum elements in P„, the scale of P_ with k buckets o Q
is

scale[Pq,k) = (maxCPQ) + e - min CP0))A

The size of bucket i under projection P 0 scaled to k is size(Pg,k,i) =

{s|seP0 and s£[min(Pg) + scale (P0,k) i, min(Pg) + scale(P0,k).(i+1))}I

Note that size(P0,k,i)>O only if CKi<k. The distribution of projection

P- into k buckets is —t)
distr(Pe ,k) = {size(PQ,k,i)|0i<i<k}

k +
Let C:Z -t-Z be a cost function. Then the cost of a distribution is

cost(C,PQ,k) = CCdistrCPQ)k))

By convention, T(k) will denote the time complexity of computing C(distr(PQ,k))

given that distr(Pe,k) has been computed. |)

Problem 2: Given S a finite subset of R x T, k e Z+, c e R where 0<e«l, and a k + cost function C:Z -+Z , find 0 e [0,11) which minimizes cost (C,P0)k) .

•

4

3. Finding Minimum Length Projections:

This section presents an efficient algorithm foT problem 1. First we give

an overview of the algorithm and data structures. Then, we discuss each piece

in more detail. Finally, we show a simple lemma needed for correctness, and

conclude with a discussion of the algorithm^ complexity.

Basically, our algorithm forms two lists, SPANLIST and RESLIST, correspond-

ing to span(P0) and res(P), Elements in these lists, ordered by increasing

angle 0, consist of an angular interval [a,^]1 and a pair s^, s2 e S, with the

interpretation that for 0 e [a,$) the projections of Sj and s2 determine span(P^)

and res(P), respectively. From SPANLIST and RESLIST the algorithm forms a single

list, LENLIST, which is again ordered by angle. LENLIST contains enough informa-

tion to compute spanfP-J and res (P for each angle 0 e [O.JT), from which len(P0) O 0 0
can be determined.

Throughout the development we note the time complexity of each step, explain-

ing the analysis later, and summarizing at the end.
*

Algorithm 1:

input: S, a finite subset of R x R
output: 0 e [0,n) and len(PQ) such that len(PQ) is minimum
method:

SPANLIST can be formed by first extracting a convex hull and ordering the

points of the hull counterclockwise, with respect to an interior point. Start-

ing from an arbitrary point, search for another point of maximum separation to

1 the interval [a,6) is taken clockwise from a to g. Since lenfP } = lenfP) 0 0+n
we consider angles in [0,JIj instead of the usual [0,211), and all angle arithme-
tic is performed mod II.

1. compute SPANLIST
2. compute RESLIST
3. merge SPANLIST and RESLIST to form LENLIST
4. find an element of LENLIST for which len(P)

O(nlogn)

0

0(n2logn)
0(n2)
OCn2)

is minimum and output it.

5

get two points which appear in SPANLIST. From these first two points walk the

hull counterclockwise to determine the angle over which each pair of points

dominates. Finding the hull and ordering it requires O(nlogn) time [GRAH72];

walking takes Ofn) time and produces a SPANLIST of 0(n) entries.

Finding RESLIST is a bit more tricky and requires some explanation. The

key to understanding the algorithm lies in the following observation. Let L be

the set of all possible unordered pairs of points from S, and consider a parti-

cular pair (si,s2) e L. For some angle 0 e [0,n), s^ and s2 project to the

same point as shown in Figure 1. We call the angle for which s^ and s2 project

to the same point a zero angle for the pair.

If one thinks of the distance between projections of two points s^ and s2

as the angle of projection increases from 0 to IT as shown in Figure 2, we see

that it is essentially a reflected sine wave of period H and amplitude equal to

the distance from si to s2. When another pair of points (sj, s2) with larger

separation is added, the distance of their projection forms a reflected sine

wave with period II, greater amplitude, and different phase. "The distance be-

tween projections of Sj and s2 will be less than the distance between projector's

of si and s2 only around the zero angle of (si,s2). This fact, expressed in

Lemma 1, is the basis for computing RESLIST.

LEMMA 1: Let s.ls s2 be elements of S such that] | s!-s21 | is maximum, and let

0 be the zero angle for (si,s2). Then the angles 0 for which z
res(P g

S l , S 2^ is strictly minimum lie in an open interval (a,8)

containing with 8 - a < H/2.

PROOF:

First, let (s^s^ and (53,34) be two pairs of points with

d 1 2 =] | s2 - s2]| >]|s3 - si»|| = d31t. Let ©i2, 0 3 4 be the angles

of the segments Sis2, £35^ respectively. Then

6

res(p£Sl'S2>) = |d12-cos(0 - 012)|

resCP^3 S 4) = [d31t-cos(0 - 03It)!

Since the lengths of the projections of S1S2 and S3S4 depend only on the lengths

and directions of these segments, not their positions, we need only consider pro-
1 > jections of the vcctors S1S2 and 5354 positioned at the origin. The angles for

which res(PgSl'Sz* = r e s (P ^ 3 3 a r e the angles e [0,11) perpendicular to
i \ k a

the vectors sis2 - ŝ si* and S152 - 5^3 (see Figure 3).

Order 0 ,9' so that res (P*Sl'S2*) < res(p!;S35Sll} For 0 e (0„, 0'). Of e & y y c e
course, 0 E [0 , 0"). 0' - 0 < 11/2 may be proved geometrically from Figure z e e e e —

3. Intuitively, the longer segment sis2 must produce the longer projection for

at least one half of the angles in [0,n).
Now, the region over which r e s [P g S l i s minimum is the intersection of

all the intervals [0 ,0'] for all choices of (s 3,Si,.̂ . The intersection of open e e
intervals containing 02 of length <_ IT/2 must itself be such an interval | j .

From Lemma 1 we can form a procedure for computing RESLIST. Order the set L of

all pairs of points in S by increasing distance between the points in a pair.

To initialize, select a minimum distance pair,making its zero angle the origin

for measuring angles. Place the pair on RESLIST with interval [0,11).

Then, insert each pair Cs1jS2) from L into RESLIST by locating the inter- •

val(s) which include the zero angle of (si,s2) and updating RESLIST. Observe

that each new pair of points adds at most two intervals to RESLIST, and possibly

subsumes existing intervals. Thus RESLIST contains at most 0(n2) entries cor-

responding to n 2 pairs on L. By keeping the entries in the leaves of a balanced

tree during insertions, and linking the leaves in a list, one can find an inter-

val including a zero angle in 0(log n) time. Then, moving right and left in the

list, one can determine how many existing entries to delete. Note that while

deletion costs 0(log n), each entry will be added and deleted at most once, so

7

we charge it both the cost of its insertion and deletion. Therefore, the

running time is 0(log n2) per entry.

procedure compute RESLIST

1. Generate L, a list of all unordered pairs of points
From S ordered by increasing distance of separation
between points in the pair

2. for each pair Cs1js2) e L do {
3. find interval in RESLIST containing the zero angle

of (si,s2) using a balanced tree
4. update RESLIST possibly removing old intervals that

are subsumed and updating the balanced tree. }

0(n2 log n)

0(n2) iterations

0(log n)/iteration

(see note in
text)

Performing the merge of SPANLIST and RESLIST is straightforward and requires

at most 0(n2) time (since there is at most n 2 entries in RESLIST and 0(n) entries

in SPANLIST). The above analysis, combined with Lemma 1 allows us to conclude

the correctness and time complexity of Algorithm 1.

Thm I: Algorithm 1 solves Problem 1 in 0(n2 log n) time.

Proof: Immediate from the above discussion.

8

4. Finding Minimum Cost Distribution into Buckets:

This section presents an efficient algorithm for finding an angle of pro-

jection which minimizes the cost of a distribution. It relies heavily on the

reader's knowledge and intuition from the previous section, concentrating on

differences between the two algorithms. As before, we present an overview of

the solution first followed by a more detailed discussion of each piece. Also

as before, we note the complexity of each section as we present, it justifying

the claims later.

Our algorithm for finding a minimum cost distribution begins like Algorithm

1 by computing SPANLIST. Recall that SPANLIST, ordered by angle, contains angu-

lar intervals [a,EJ) and pairs of points S],s2 e S that define min(PQ) and

maxCPg) for 0 z [a,3). In terms of the distribution, si is the start of bucket

0 and s 2 + e is the end of bucket k-1 for 0 e [a,6). Assuming the special case

of colinear points has been taken care of, the algorithm proceeds as follows:

Algorithm 2 0 (kn2T(k) + kn2log(kn))

input: S, a finite, subset of R x R, an integer k > 0, e e R

where 0 < e « 1, and a cost function C : Z -*• Z+.

output: an angle of projection 0 e [0,H) and cost(C,Pg,k) such that

cost(C,PQ,k) is minimum. 0

method:

1. form SPANLIST
2. for each ([ct, B) , s i ,s2) e SPANLIST do {
3. mincost costfC.P ,k) a
4. find all distributions in [a,0).
5. for each distribution in [a,$) do

0(n log n)
0(n) iterations
0(T(k)}/iteration
0(kn log(kn))/iteration
0(kn) times/iteration

6. mincost -*- min(mincost,cost(C,PQ,k)) 0(TQO)kn times/iteration
>

7. output mincost and angle giving that cost 0(1)

9

Steps 4-6 each require further explanation; we begin with step 4.

The key to finding all distributions in an interval [a,3) lies in thinking

of a line of projection with k buckets marked off rotating from a to B as shown

in Figure 4. One can easily construct such a line at angle a by projecting all

points and marking off k equally spaced intervals between the smallest and lar-

gest.

Think of k interval marks as the projection of a set of k equally spaced

"dummy" points along a line from sj to Sj. As the imaginary line of projection

rotates from a to 3, the distribution changes whenever the projection of an

element from S crosses a projection of one of the k dummy points (i.e. a bucket

maTk). Thus, if D denotes the set of k dummy points, a crossing corresponds

to a zero angle of a pair from D x S. The algorithm simply forms a list,

CROSSLIST, consisting of kn triples (Q,d^,s^) where 0 is the zero angle between

d^ E D and s^ e S. Of course, only those triples with 0 e [a , a r e saved.

Sorting CROSSLIST requires 0(n-k-log(nk}) time, and produces a list of all in

[a,3) where the distribution changes, as well as a record of which point changes

buckets at that angle.

We summarize the procedure for step 4:

procedure step 4 find all distribution in [ct,B]

1. Form D, a set of equally spaced "dummy" 0(k)
points on the line sj to s2 where si
and s2 determine min(P) and max(P) for u 0
0 e [a,g)

2. Find size (PQ,k,i) for 0 <_ i < k 0(n)
3. Form CROSSLIST by finding all zero angles 0(nk logfnk))

for pairs in D x S and sorting

Given CROSSLIST steps 5-6 become simple: remove the next element (G,d^,sp

from CROSSLIST, update the appropriate bucket counts, compute the cost of the

new distribution, and record it in case the new cost is lower than the minimum

10

found so far. The 0(n-k) elements on CROSSLIST each require 0(T(k)

time to process yielding a bound of 0(n*k'T(k)). The loop in step 2 iterates

steps 4-6 for each of the 0(n) items in SPANLIST, however, so the total pro-

cessing in steps 5-6 requires 0(n2-k-T(k)). Similarly, step 4 requires a total

of 0(n2k log(nk)) because it is iterated 0(n) times. Thus, the total running

time of Algorithm 2 is 0(ri2k log(nk) + n2k T(k]]

Thrm 2: Algorithm 2 solves Problem 2 in 0(n2klog(nk) + ri2kT(k)) time.

Proof: Immediate from the above discussion.

11

5. Applications to Hashing:

This section describes how Algorithms land 2 apply to the hashing problems

mentioned in the introduction. The first problem, concerned with finding mini-

mum table size perfect hashing can be defined as:

Problem HI: Given K a set of n keys and two functions Hj and H2 which map k to

Z+, find constants- cj, c2, and C3 e R such that for

H(x) = |ci*Hi(x) + C 2 - H 2 (X) + C 3 J the following holds:

CI) Vk!,k2 e K, H(ki) = H(k2) iff ki = k2

(2) min(H(k)) = 0
kek

(3) max (H(k)) is minimized
kek

Property 1 guarantees that H is a perfect hashing, while properties 2 and 3

assure a minimum table size.

Problem Hi translates to the geometric problem of finding an angle of

projection such that the length of projection is minimized when projected points

are placed in different cells. Note, however, that Algorithm 1 does not always

produce such a minimum projection. Instead, it minimizes the length of projec-

tion while simultaneously placing the closest pair of projected points distance

1 apart.

To see the difference between the unit distance stipulation imposed by

Algorithm 1 and the distinct cell stipulation given in the problem statement,

consider three colinear points as shown in Figure 5. Trouble arises when an

integer separates two projected points p^ and p2. Using real arithmetic, one

could squeeze pi and p2 arbitrarily close together, forcing p3 to move close

to p2. Clearly, the optimum solution requires only 3 cells in a hash table.

Algorithm 1 which places pi and p 2 unit distance apart, requires more than 3

cells. Even using floating point hardware to approximate the real number solu-

tion may still lead to anomolies like the one in Figure 4 if the floating point

12

approximations for Sj ami s2 happen to lie on either side of an integer.

We take the view that while Algorithm 1 may not produce an optimum solu-

tion for problem Hj, it provides a sufficiently accurate approximation for most

applications. First, if one chooses c3 to translate the minimum projected point

to 0, special cases of an integer falling between two very close projections

may disappear. Such translation seems reasonable, even desirable, in practice.

Second, while different floating point representations may yield different mini-

mum solutions, Algorithm 1 is optimum in the sense that it produces a smallest

solution which is valid independent of floating point representation.

We can define the second hashing problem as:

Problem H2: Given K a set of n keys, m e Z+, e e R such that 0 < e « 1,

Hi and H2 which map K to Z+, find constants Ci, c2, and C3 e R

such that for H(x) - [c'i*Hi(x) +• c2*H2(x) + c3] the following holds:

(1) minH(k) = 0
kek

(2) max H(k) = m - 1 - e
k-f-k

k + (3) Let C(k) be a cast function s.t. C:Z Z , C(H(k)) is minimum.

Because of its more restrictive definition, Algorithm 2 applies better to

H2 than Algorithm 1 applies to HI. In particular, the problem formulated in

[C0ME79] requires finding a projection that distributed keys as uniformly as

possible into buckets. In the particular problem described, the cost of search-

ing a bucket with t entries is log t-1. Assuming that the complexity of comput-

ing log i for small integer i is constant, this yields a complexity of n

n2k log(nk) + nk2 for finding an optimum projection.

13'

6. Conclusions and further research:

In order to be used in graphics applications, the algorithms of this

paper must be adapted to find optimal projections from 3 dimensions to 2 dimen-

sions, instead of 2 to 1. A major component of the adapted algorithm, a solu-

tion to the 3-dimensional convex hull problem, is already known [PREP77]. The

major remaining difficulty is to find a higher-dimensional analogue to the

search tree representation of RESLIST.

Given two hashing functions hj and h2 and a fixed set of keys, the algo-

rithm of this paper may be used to choose a good hashing function of the form

(n) = a' iCn) + b- 2(n) + c- The question of how good is the best hashing

function in such a class is open. Very little is known about hashing with pre-

determined, static sets of keys; the only treatment of this problem seems to be

Sprugnoli's [SPRU77]. A combinatorial analysis should at least settle the

question of how large a class of hash functions is needed to guarantee a given

level of performance for any set of keys.

14

[COME79] D. Comer and V.Y. Shen, "Hash-Binary Search. A Fast Technique for
Searching an English Spelling Dictionary," Technical Report
TR-CSD-304, Dept. of Computer Science, Purdue University, West
Lafayette, IN, 1979.

[GRAH72] R.L. Graham, "An Efficient Algorithm for Determining the Convex
Hull of a Finite Planar Set," In for. Proc. Letters 1, (1972) 132-133.

[JARV73] R. Jarvis, "On the Identification of the Convex Hull of a Finite
Set of Points in the Plane," Infor. Proc. Letters 2, (1973) 18-21.

[PREP77] F. Preparata and S. Hong, "Convex Hulls of Finite Sets of Points
in Two and Three Dimensions," Comm. ACM 20:2 (Feb.1977), 87-93.

[SHAM75] M. Shamos, "Geometric Complexity," in Proc. 7th Annual ACM Sympo-
sium on Theory of Computing (1975) ACM NY, 224-233.

[SHAM75a] M. Shamos and D. Hoey, "Closest Point Problems," Proc 16th Ann
IEEE Symp. on Foundations of Computer Science, IEEE, NY, (1975)
151-162.

[SPRU77] R. Sprugnoli, "Perfect Hashing Functions: A Single Probe Retriev-
ing Method for Static Sets," Comm. ACM 20:11 (November 1977), 841-850.

Figure 1. The angle 0 such that the projections of Sj and S2 coincide. There
is such an angle for each pair of points.

Figure 2. The distance between the projection of two points as a function of the
angle of projection. The curve is a reflected sine wave of period tt
and amplitude j|Sj - S^ f1 -

Figure 3. Angles ©e and 0e where Sj S 2 and S S4 project to equal lengths. ez
is the zero angle for (S,, S2)

Figure 4. A lire i rotating from angle a to B with k buckets marked off.

Figure 5. A case where Algorithm l can produce a projection that is arbitrarily
far from the optimum hash table size. The points P ^ P2, and P,
are colinear.

i
I

\

PROJECTED
DISTANCE

ANGLE IT

i
i I

i

i

P1 P2
L a > ^ 4- k--2 k--1

w
P3

z

	Geometric Problems with Application to Hashing
	Report Number:
	

	tmp.1307986960.pdf.1F6n1

