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ABSTRACT
This tutorial concerns a method for solving a variety of cir-
cuit sizing and optimization problems, which is based on
formulating the problem as a geometric program (GP), or
a generalized geometric program (GGP). These nonlinear,
constrained optimization problems can be transformed to
convex optimization problems, and then solved (globally)
very efficiently.
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1. CIRCUIT SIZING AND OPTIMIZATION
We assume that a circuit topology has been selected, and

what remains is to choose appropriate sizes for the gates,
transistors, wires, and other components. It is also possible
to include other design variables such as threshold voltage,
supply voltage, and oxide thickness. In many practical cases,
some of these design variables are restricted to lie in discrete
sets of values; in other cases, they can be well modeled as
continuous variables.

The choice of these design variables determines various
top level circuit objectives, such as the total area of the
circuit, the total power it consumes, speed at which it can
operate (for a digital circuit), its bandwidth (for an analog
circuit), and other objectives such as noise tolerance, ro-
bustness to process and environment parameter variations,
and so on. These objectives can be very complex functions
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of the design variables. In addition, there are many con-
straints that must be satisfied. There are many approaches
to circuit sizing, including heuristics, and methods based on
circuit simulation coupled to a generic numerical optimiza-
tion method.

In this tutorial we focus on a particular approach, in which
the sizing problem is modeled (at least approximately) as
a geometric program (GP), a special type of mathematical
optimization problem. We refer the reader to the paper A
Tutorial on Geometric Programming [5] for an introduction
to geometric programming, some of the basic tricks used to
formulate problems in GP form, a number of examples, and
an extensive list of references.

Over the last ten years, efficient interior-point methods
for GP have been developed. Current implementations ap-
proach the efficiency of linear program (LP) solvers. Sparse
GPs with tens of thousands of variables, and hundreds of
thousands of constraints, can be reliably solved in minutes,
on a personal computer. For more on algorithms for solving
GPs, as well as the broader context of convex optimization,
we refer the reader to [6].

2. GP-BASED SIZING
GP-based circuit sizing is not new; it has been used for

digital circuits since the 1980s. In 1985 Fishburn and Dun-
lop [16] proposed a method for transistor and wire sizing,
based on Elmore delay, that was later found to be a GP.
Since then many digital circuit design problems have been
formulated as GPs or closely related optimization problems.
Work on gate and device sizing can be found in, e.g., [10,
22, 31, 31, 36, 37]. These are all based on gate delay mod-
els that are compatible with geometric programming; see
[22, 38, 33, 1] for more on such models. The logical effort
method, described in the influential book [38] by Sproull,
Sutherland, and Harris, does not explicitly rely on GP, but
is very closely connected. See [4, 35] for more on GP-based
digital circuit sizing.

Work on interconnect sizing related to GP includes [12,
13, 14, 17, 23, 25, 26, 34]; simultaneous gate and wire sizing
is considered in [21]. In some of these papers, the authors
develop custom methods for solving the resulting GPs, in-
stead of using general purpose interior-point methods (see,
e.g., [10, 41]). For some simple problems, analytic solutions
are available (see, e.g., [8, 17]). Other problems in digital
circuit design where GP plays a role include buffering and
wire sizing [8, 9], sizing and placement [7], yield maximiza-
tion [24, 30], parasitic reduction [32], and routing [2].

Geometric programming has also been used for the design
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of analog circuits [15, 19, 27, 39], mixed-signal circuits [11,
18] and RF (radio frequency) circuits [20, 29, 28, 40]. We
refer the reader to the tutorial material [3] for GP-based
sizing of analog and RF circuits.

3. GP MODELING
The tutorial focuses on the modeling of a variety of prob-

lems in GP form. There are several advantages to modeling
a problem, at least approximately, as a GP. The first is com-
putational: new methods can (globally) solve even large GP
problems efficiently. Even if these new methods are not ex-
ploited to solve the problem, the knowledge that a problem
is (approximately) a GP is useful. For example, it tells us
that a particular logarithmic transformation of the variables
and constraints yields a convex optimization problem, and
this can be exploited to develop a more efficient solution
method. In addition, we have the very useful conclusion
that any local solution of the problem is in fact global. If
an ad hoc solution method can be shown to find a local so-
lution, we can conclude that it finds a global solution. (For
more discussion of these issues, see [5, 6].)

Another advantage of expressing a sizing problem in GP
form is conceptual: we claim that GP serves as a unifying
standard form for circuit sizing problems, the same way that
linear programming (LP) serves as a unifying standard form
for a wide variety of simple resource allocation problems.

Like all methods, the GP modeling approach has advan-
tages and disadvantages. One advantage is that complex
interactions between the optimization variables are easily
accounted for, and additional constraints are easily added.
The method handles complex problems, such as joint op-
timization of devices sizes, threshold, and supply voltage;
robust design over corners or taking statistical variations
into account; and the design of circuits that operate in mul-
tiple modes (such as a low power and a high performance
mode). When compared with other methods based on nu-
merical optimization, methods based on GP (and interior-
point solution methods) have the advantage of not needing
an initial design, or any algorithm parameter tuning, and
always finding the global solution.

We can also list some shortcomings of the approach. The
method does not give much insight into why some set of
specifications cannot be achieved, nor does it suggest how
the designer might change the circuit topology to do better.
While solving GPs is fast, it is not as fast as methods that
choose sizes using simple rules, with a few passes over the
circuit.
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