
Geometric

Programming for

Communication

Systems

Full text available at: http://dx.doi.org/10.1561/0100000005



Geometric
Programming for
Communication

Systems

Mung Chiang

Electrical Engineering Department
Princeton University, Princeton

New Jersey 08544, USA

chiangm@princeton.edu

Boston – Delft

Full text available at: http://dx.doi.org/10.1561/0100000005



Foundations and Trends R© in
Communications and Information Theory

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
USA
Tel. +1 781 871 0245
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

A Cataloging-in-Publication record is available from the Library of Congress

Printed on acid-free paper

ISBN: 1-933019-09-3; ISSNs: Paper version 1567-2190; Electronic ver-
sion 1567-2328
c© 2005 M. Chiang

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, mechanical, photocopying, recording or otherwise, without prior
written permission of the publishers.

now Publishers Inc. has an exclusive license to publish this mate-
rial worldwide. Permission to use this content must be obtained from
the copyright license holder. Please apply to now Publishers, PO Box
179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/0100000005



Contents

1 Introduction 1

1.1 Geometric Programming and Applications 1
1.2 Nonlinear Optimization of Communication Systems 3
1.3 Overview 5
1.4 Notation 6

2 Geometric Programming 9

2.1 Formulations 9
2.2 Extensions 20
2.3 Algorithms 35

3 Applications in Communication Systems 47

3.1 Information Theory 47
3.2 Coding and Signal Processing 66
3.3 Network Resource Allocation 74
3.4 Network Congestion Control 96
3.5 Queuing Theory 107

v

Full text available at: http://dx.doi.org/10.1561/0100000005



vi Contents

4 Why Is Geometric Programming Useful for
Communication Systems 115

4.1 Stochastic Models 115
4.2 Deterministic Models 124

A History of Geometric Programming 131

B Some Proofs 133

B.1 Proof of Theorem 3.1 133
B.2 Proof of Corollary 3.1 135
B.3 Proof of Theorem 3.2 135
B.4 Proof of Proposition 3.3 137
B.5 Proof of Theorem 3.4 138
B.6 Proof of Theorem 3.5 139
B.7 Proof of Proposition 4.1 144
B.8 Proof of Proposition 4.2 145
B.9 Proof of Theorem 4.1 146

Acknowledgements 147

References 149

Full text available at: http://dx.doi.org/10.1561/0100000005



1

Introduction

1.1 Geometric Programming and Applications

Geometric Programming (GP) is a class of nonlinear optimization with
many useful theoretical and computational properties. Although GP
in standard form is apparently a non-convex optimization problem, it
can be readily turned into a convex optimization problem, hence a
local optimum is also a global optimum, the duality gap is zero under
mild conditions,1 and a global optimum can be computed very effi-
ciently. Convexity and duality properties of GP are well understood,
and large-scale, robust numerical solvers for GP are available. Further-
more, special structures in GP and its Lagrange dual problem lead to
computational acceleration, distributed algorithms, and physical inter-
pretations.

GP substantially broadens the scope of Linear Programming (LP)
applications, and is naturally suited to model several types of impor-
tant nonlinear systems in science and engineering. Since its inception

1 Consider the Lagrange dual problem of a given optimization problem. Duality gap is the

difference between the optimized primal objective value and the optimized dual objective
value.

1
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2 Introduction

in 1960s,2 GP has found applications in mechanical and civil engi-
neering, chemical engineering, probability and statistics, finance and
economics, control theory, circuit design, information theory, coding
and signal processing, wireless networking, etc. For areas not related
to communication systems, a very small sample of some of the GP
application papers include [1, 24, 29, 38, 43, 44, 53, 57, 64, 65, 58,
92, 93, 104, 107, 112, 123, 125, 128]. Detailed discussion of GP can
be found in the following books, book chapters, and survey articles:
[52, 133, 10, 6, 51, 103, 54, 20]. Most of the applications in the 1960s
and 1970s were in mechanical, civil, and chemical engineering. After a
relatively quiet period in GP research in the 1980s and early to mid-
1990s, GP has generated renewed interest since the late 1990s.

Over the last five years, GP has been applied to study a variety of
problems in the analysis and design of communication systems, across
many ‘layers’ in the layered architecture, from information theory and
queuing theory to signal processing and network protocols. We also
start to appreciate why, in addition to how, GP can be applied to a
surprisingly wide range of problems in communication systems. These
applications have in turn spurred new research activities on the theory
and algorithms of GP, especially generalizations of GP formulations
and distributed algorithms to solve GP in a network. This is a sys-
tematic survey of the applications of GP to the study of communica-
tion systems. It collects in one place various published results in this
area, which are currently scattered in several books and many research
papers, as well as a couple of unpublished results.

Although GP theory is already well-developed and very efficient
GP algorithms are currently available through user-friendly software
packages (e.g., MOSEK [129]), researchers interested in using GP still
need to acquire the non-trivial capability of modelling or approximating
engineering problems as GP. Therefore, in addition to the focus on the
application aspects in the context of communication systems, this sur-
vey also provides a rather in-depth tutorial on the theory, algorithms,
and modeling methods of GP.

2 Appendix A briefly describes the history of GP.
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1.2 Nonlinear Optimization of Communication Systems

LP and other classical optimization techniques have found important
applications in communication systems for several decades (e.g., as sur-
veyed in [15, 56]). Recently, there have been many research activities
that utilize the power of recent developments in nonlinear convex opti-
mization to tackle a much wider scope of problems in the analysis and
design of communication systems.

These research activities are driven by both new demands in the
study of communications and networking, and new tools emerging from
optimization theory. In particular, a major breakthrough in optimiza-
tion over the last two decades has been the development of powerful
theoretical tools, as well as highly efficient computational algorithms
like the interior-point methods (e.g., [12, 16, 17, 21, 97, 98, 111]), for
nonlinear convex optimization, i.e., minimizing a convex function sub-
ject to upper bound inequality constraints on other convex functions
and affine equality constraints:

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, 2, . . . ,m

Ax = c
variables x ∈ Rn.

(1.1)

The constant parameters are A ∈ Rl×n and c ∈ Rl. The objective
function f0 to be minimized and m constraint functions {fi} are convex
functions.

From basic results in convex analysis [109], it is well known that
for a convex optimization problem, a local minimum is also a global
minimum. The Lagrange duality theory is also well developed for con-
vex optimization. For example, the duality gap is zero under constraint
qualification conditions, such as Slater’s condition [21] that requires
the existence of a strictly feasible solution to nonlinear inequality con-
straints. When put in an appropriate form with the right data struc-
ture, a convex optimization problem is also easy to solve numerically
by efficient algorithms, such as the primal-dual interior-point methods
[21, 97], which has worst-case polynomial-time complexity for a large
class of functions and scales gracefully with problem size in practice.
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Special cases of convex optimization include convex Quadratic
Programming (QP), Second Order Cone Programming (SOCP), and
Semidefinite Programming (SDP), as well as seemingly non-convex
optimization problems that can be readily transformed into convex
problems, such as GP. Some of these are covered in recent books on
convex optimization, e.g., [12, 16, 17, 21, 97, 98]. While SDP and its
special cases of SOCP and convex QP are now well-known in many
engineering disciplines, GP is not yet as widely appreciated. This sur-
vey aims at enhancing the awareness of the tools available from GP in
the communications research community, so as to further strengthen
GP’s appreciation–application cycle, where more applications (and the
associated theoretical, algorithmic, and software developments) are
found by researchers as more people start to appreciate the capa-
bilities of GP in modeling, analyzing, and designing communication
systems.

There are three distinctive characteristics in the nonlinear optimiza-
tion framework for the study of communication systems:

• First, the watershed between efficiently solvable optimization
problems and intractable ones is being recognized as ‘convex-
ity’, instead of ‘linearity’ as was previously believed.3 This
has opened up opportunities on many nonlinear problems in
communications and networking based on more accurate or
robust modeling of channels and complex interdependency
in networks. Inherently nonlinear problems in information
theory may also be tackled.

• Second, the nonlinear optimization framework integrates var-
ious protocol layers into a coherent structure, providing a
unified view on many disparate problems, ranging from clas-
sical Shannon theory on channel capacity and rate distortion
[33] to Internet engineering such as inter-operability between
TCP Vegas and TCP Reno congestion control [119].

• Third, some of these theoretical insights are being put into
practice through field trials and industry adoption. Recent

3 In some cases, global solutions and systematic relaxation techniques for non-convex opti-
mization have also matured [101, 106].
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examples include optimization-theoretic improvements of
TCP congestion control [71] and DSL broadband access [118].

The phrase “nonlinear optimization of communication systems” in
fact carries three different meanings. In the most straightforward way,
an analysis or design problem in a communication system may be for-
mulated as either minimizing a cost or maximizing a utility function
over a set of variables confined within a constraint set. In a more subtle
and recent approach, a given network protocol may be interpreted as a
distributed algorithm solving an implicitly defined global optimization
problem. In yet another approach, the underlying theory of a network
control method or a communication strategy may be generalized using
nonlinear optimization techniques, thus extending the scope of appli-
cability of the theory. In Section 3, we will see that GP applications
cover all three categories.

1.3 Overview

There are three main sections in this survey. Section 2 is a tutorial of
GP: its basic formulations, convexity and duality properties, various
extensions that significantly broaden the scope of applicability of the
basic formulations, as well as numerical methods, robust solutions, and
distributed algorithms for GP. Although this section does not cover any
application topic, it is essential for modeling communication system
problems in terms of GP and its generalizations.4

Section 3 is the core of this survey, presenting many applications of
GP in the analysis and design of communication systems: the informa-
tion theoretic problems of channel capacity, rate distortion, and error
exponent in Subsection 3.1, construction of channel codes, relaxation
of source coding problems, and digital signal processing algorithms for
physical layer transceiver design in Subsection 3.2, network resource
allocation algorithms such as power control in wireless networks in Sub-
section 3.3, network congestion control protocols in TCP Vegas and its
cross-layer extensions in Subsection 3.4, and performance optimization
of simple queuing systems in Subsection 3.5.

4 For another very recent GP tutorial, readers are referred to a recent survey of GP for
circuit design problems [20].
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6 Introduction

These applications generally fall into three categories: analysis (e.g.,
GP is used to characterize and bound information theoretic limits),
forward engineering (e.g., GP is used to control transmit powers in
wireless networks), and reverse engineering (e.g., GP is used to model
congestion control or Highly Optimized Tolerance systems).

Then Section 4 explains why, rather than just how, GP can be
applied to such a variety of problems in communication systems. As
shown in Subsection 4.1, for problems based on stochastic models, GP
is often applicable because large deviation bounds can be computed by
GPs. As shown in Subsection 4.2, for problems based on determinis-
tic models, reasons for applicability of GP is less well understood but
may be due to GP’s connections with proportional allocation, general
market equilibrium, and generalized coding problems.

In the area of GP applications for communication systems, there are
three most interesting directions of future research in author’s view:
distributed algorithms and heuristics for solving GP in a network, a
systematic theory of using a nested family of GP relaxations for non-
convex, generalized polynomial optimization, and the connections of
GP with the theories of large deviation and general market equilibrium.
These issues are discussed throughout the survey.

Some subsections in these three sections present unpublished results
while most subsections summarize known results. In particular, Sub-
section 2.1 is partially based on [10, 21, 30, 52, 132], Subsection 2.2 on
[6, 7, 10, 20, 51, 52, 103, 133], Subsection 2.3 on [21, 60, 67, 78, 37],
Subsection 3.1 on [30, 33, 42, 82, 84, 120, 121, 122], Subsection 3.2
on [25, 30, 69, 75, 91], Subsection 3.3 on [37, 34, 35, 72, 73], Subsec-
tion 3.4 on [31, 88], Subsection 3.5 on [36, 68, 76], Subsection 4.1 on
[30, 42, 45, 52, 108], and Subsection 4.2 on [28, 49, 70].

A brief historical account of the development of GP is provided in
Appendix A and selected proofs are provided in Appendix B.

1.4 Notation

We will use the following notation. Vectors and matrices are denoted in
boldface. Given two column vectors x and y of length n, we express the
sum

∑n
i=1 xiyi as an inner product xTy. Componentwise inequalities
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1.4. Notation 7

on a vector x with n entries are expressed using the � symbol: x � 0
denotes xi ≥ 0, i = 1, 2, . . . , n. A column vector with all entries being 1
is denoted as 1. We use Rn

+ and Rn
++ to denote the non-negative and

strictly positive quadrant of n-dimensional Euclidean space, respec-
tively, and Z+ to denote the set of non-negative integers.

Sometimes a symbol has different meanings in different sections,
because the same symbol is widely accepted as the standard notation
representing different quantities in more than one field. For example,
P denotes channel transition matrix in Subsection 3.1.1 on channel
capacity, and denotes transmit power vector in Subsections 3.3.1 and
3.4.2 on wireless network power control. Such notational reuse should
not cause any confusion since consistency is maintained within any
single subsection.

All constrained optimization problems are written in this survey
following a common format: objective function, constraints, and opti-
mization variables. Constant parameters are also explicitly stated after
the problem statement in cases where confusion may arise.
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