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Theorems with Applications to Generalized

Vector Equilibrium Problems1
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Communicated by S. Schaible

Abstract. The present paper is divided into two parts. In the first part,

we derive a Fan-KKM type theorem and establish some Fan type geo-

metric properties of convex spaces. By applying our results, we also

obtain some coincidence theorems and fixed-point theorems in the set-

ting of convex spaces. The second part deals with the applications of our

coincidence theorem to establish some existence results for a solution to

the generalized vector equilibrium problems.

Key Words. Fan-KKM type theorem, coincidence theorems, fixed-

point theorems, generalized vector equilibrium problems, maximal

pseudomonotone maps.

1. Introduction

The present paper is divided into two parts. In the first part, we derive

a Fan–Knaster–Kuratowski–Mazurkiewicz (Fan-KKM) type theorem and

establish some Fan type geometric properties of convex spaces. By applying

our results, we also obtain some coincidence theorems and fixed-point

theorems in the setting of convex spaces. The second part deals with the

applications of our coincidence theorem to establish some existence results
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for a solution of generalized vector equilibrium problems with or without

maximal pseudomonotonicity and diagonality conditions.

2. Geometric Properties and Coincidence Theorems on Convex Spaces

In 1961, Fan (Ref. 1) established the following geometric result.

Theorem 2.1. Let X be a nonempty compact convex subset of a Haus-

dorff topological vector space E, and let A⊆XBX be a set such that:

(i) for each x∈X, (x, x)∈A;

(ii) for each y∈X, the set {x∈X: (x, y)∈A} is closed in X;

(iii) for each x∈X, the set {y∈X: (x, y)∉∈A} is convex or empty.

Then, there exists a point x0∈X such that {x0}BX⊆A.

Since then, numerous generalizations with their applications have been

studied in the literature; see for example Refs. 2–6 and references therein.

In 1980, Ha (Ref. 2) generalized Theorem 2.1 by relaxing the compactness

assumption on X. In this section, we derive a Fan-KKM type theorem and

extend Theorem 2.1 in various directions. By applying our results, we estab-

lish also some coincidence theorems and fixed-point theorems in the setting

of convex spaces.

We mention some preliminaries which will be used in the sequel. We

denote by 2K the family of all subsets of the set K and by 〈K〉 the class of

all finite subsets of K. Let K be a nonempty subset of a topological space

E; then, we shall denote by K̄ or cl K the closure of K and by int K the

interior of K. If K is a nonempty subset of D⊆E, then intDK denotes the

interior of K in D. For K a nonempty subset of a vector space, we denote

by coK the convex hull of K.

Let P: X→2Y be a multivalued map from a space X to another space

Y. The graph of P, denoted by G (P), is

G (P)G{(x, y)∈XBY: x∈X, y∈P(x)}.

The inverse P−1 of P is also a multivalued map from the range of P to X

defined by

x∈P−1(y), if and only if y∈P(x).

Let X and Y be topological spaces. A multivalued map P: X→2Y is

called:

(i) closed if G (P) is a closed subset of XBY;

(ii) compact if P(X ) is a compact subset of Y;
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(iii) upper semicontinuous if P−1(A)G{x∈X: P(x)∩A ≠∅} is closed

in X for each closed subset A of Y;

(iv) u-hemicontinuous if, for any x, y∈K and t∈[0, 1], the mapping

t→P(yCt(xAy)) is upper semicontinuous at 0C;

(v) transfer closed (Ref. 7) if, for any x∈X and y∉P(x), there exists

x̃∈X such that y∉P(x̃);

(vi) transfer open (Ref. 7) if, for any x∈X and y∈P(x), there exists

x̃∈X such that y∈int P(x̃).

A subset B of Y is said to be compactly open (respectively, compactly

closed) if, for each compact subset D of Y, the set B∩D is open (respect-

ively, closed) in D.

The following characterization lemma for a transfer-open multivalued

map is given in Ref. 8.

Lemma 2.1. Let X and Y be two topological spaces, and let

P: X→2Y be a multivalued map. Then, the following two statements are

equivalent.

(i) P−1 is transfer open and P(x) is nonempty for all x∈X.

(ii) XG∪{int P−1(y): y∈Y}.

Remark 2.1. Let X and Y be two topological spaces, and let

P: X→2Y be a multivalued map such that P−1(y) is open for all y∈Y; then,

P−1 is transfer open. But the converse is not true. Wu and Shen (Ref. 9)

gave an example which shows that the transfer-open property is more gen-

eral than the open-fiber property, that is, P−1(y) is open for all y∈Y.

A convex space (Ref. 10) X is a nonempty convex set in a vector space

with any topology that induces the Euclidean topology on the convex hulls

of its finite subsets.

Let X be a convex space, and let Y be a Hausdorff topological space.

If S, T: X→2Y are multivalued maps such that

T (coN )⊆ S(N ), for each N∈〈X〉,

then S is said to be generalized KKM mapping w.r.t. T (Ref. 11). The

multivalued map T: X→2Y is said to have the KKM property (Ref. 11) if

S: X→2Y is a generalized KKM mapping w.r.t. T such that the family

{S(x): x∈X} has the finite intersection property.

We denote by KKM(X, Y) the family of all multivalued maps having

the KKM property.

Recall that a nonempty space is acyclic if all of its reduced Cěch hom-

ology groups over rationals vanish. In particular, any contractible space is

acyclic, and thus any nonempty convex or star-shaped set is acyclic.
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We denote by V(X, Y) the family of all upper semicontinuous multi-

valued maps with compact acyclic values. Then, V(X, Y )⊆KKM(X, Y ); see

for example Ref. 11.

The following lemmas will be used in the sequel.

Lemma 2.2. See Ref. 12. Let X be a convex space, and let Y be a

Hausdorff topological space. Let T∈KKM(X, Y ) be compact, and let

G: X→2Y be a multivalued map. Assume that, for each x∈X, G(x) is com-

pactly closed in Y and, for any N∈〈X〉, T (coN )⊆G(N ). Then, T (X )∩

) {G(x): x∈X} ≠∅.

Lemma 2.3. See Ref. 12. Let X be a convex subset of a topological

vector space, Y a topological space, A a nonempty convex subset of X, and

T∈KKM(X, Y ). Then, T �A∈KKM(A, Y ).

Lemma 2.4. See Ref. 13. Let X and Y be topological spaces, and let

P: X→2Y be a multivalued map. If Y is compact and P is closed, then P is

upper semicontinuous.

Lemma 2.5. Let X and Y be topological spaces, and let P: X→2Y be

a multivalued map. Then:

(i) P is transfer closed if and only if )x∈XP(x)G)x∈XP(x); see Ref.

14.

(ii) P is transfer open if and only if G: X→2Y, defined by

G(x)GY \P(x) for all x∈X, is transfer closed; see Ref. 7.

Now, we present the main results of this section. In the rest of the

paper, all topological spaces are assumed to be Hausdorff. The following

result follows immediately from Lemma 2.2.

Theorem 2.2. Let X be a convex space, let Y be a topological space, and

let T∈KKM(X, Y ) be compact. Assume that G: X→2Y is transfer closed

and, for any N∈〈X〉, T (coN )⊆G(N ). Then, T (X )∩) {G(x): x∈X} ≠∅.

Proof. We define a multivalued map S: X→2Y by S(x)GG(x). Then,

all the conditions of Lemma 2.2 are satisfied and hence,

T (X )∩) {S(x): x∈X} ≠∅.

Since G is a transfer-closed multivalued map, it follows from Lemma 2.5 (i)

that

) {G(x): x∈X}G) {G(x): x∈X}G) {S(x): x∈X}.
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Therefore,

T (X )∩) {G(x): x∈X} ≠∅. �

By using Theorem 2.2, we establish the following geometric properties

of convex spaces.

Theorem 2.3. Let Y be a convex space, let X be a topological space,

and let T∈KKM(Y, X ) be compact. Let A and B⊆XBY satisfy the follow-

ing conditions:

(i) for all y∈Y and x∈T (y), (x, y)∈B;

(ii) the multivalued map P−1: Y→2X is transfer open, where

P: X→2Y is defined by P(x)G{y∈Y: (x, y)∉A} for all x∈X;

(iii) for all x∈X, the set {y∈Y: (x, y)∉A} is convex;

(iv) B⊆A.

Then, there exists a point x̄∈T (Y ) such that (x̄, y)∈A for all y∈Y.

Proof. Define a multivalued map G: X→2Y by

G(x)G{y∈Y: (x, y)∈A}, for all x∈X.

Since P−1 is transfer open, by Lemma 2.5 (ii), G−1 is transfer closed. We

want to show that, for each NG{y1 , . . . , yn}∈〈Y 〉,

T (coN )⊆G−1(N )G*
n

iG1

G−1(yi).

Suppose to the contrary that there exist a finite set NG{y1 , . . . , yn}∈〈Y 〉,

a point ŷ∈coN, and x̂∈T (ŷ) such that x̂∉*n
iG1 G−1(yi). Then,

x̂∉G−1(yi), for all iG1, . . . , n.

This implies that

(x̂, yi)∉A, for all iG1, . . . , n.

Since P(x) is convex for all x∈X,

(x̂, û)∉A, for all û∈coN.

Since B⊆A,

(x̂, û)∉B for all û∈coN.

This is a contradiction of condition (i). Hence, by Theorem 2.2,

T (Y )∩) {G−1(y): y∈Y} ≠∅,

that is, there exists a point x̄∈T (Y ) such that (x̄, y)∈A for all y∈Y. �
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Remark 2.2. If XGY, AGB, T (y)G{y} for all y∈Y, and P−1(y) is

open for all y∈Y, then Theorem 2.3 reduces to Theorem 2.1.

By using Theorem 2.3, we have the following result.

Theorem 2.4. Let Y be a convex space, and let X be a topological

vector space. Let A⊆XBY satisfy the following conditions:

(i) the multivalued map P−1: Y→2X is transfer open, where

P: X→2Y is defined by P(x)G{y∈Y: (x, y)∉A} for all x∈X;

(ii) for all x∈X, the set {y∈Y: (x, y)∉A} is convex;

(iii) there exist a compact set D⊆X and a closed set B⊆A such that,

for each y∈Y, T (y)_{x∈D: (x, y)∈B} is a nonempty acyclic

subset of D.

Then, there exists a point x̄∈T (Y ) such that (x̄, y)∈A for all y∈Y.

Proof. Let (y, x)∈G (T ). Then, there exists a net {(yα , xα)} in G (T )

such that (yα , xα)→ (y, x). Since (yα , xα)∈G (T ), we have xα∈D and

(xα , yα)∈B. Since D is compact and B is closed, x∈D and (x, y)∈B. This
implies that x∈T (y) and (y, x)∈G (T ). Therefore, T is closed. It is easy to

show that, for each y∈Y, T ( y) is a closed set. Thus, for each

y∈Y, T (y)⊆D is compact. By Lemma 2.4 and condition (iii), T is an upper

semicontinuous multivalued map with compact acyclic values. Then,

T∈V(Y, X )⊆KKM(Y, X ) is compact and the conclusion follows from

Theorem 2.3. �

From Theorem 2.4, we derive the following result on the sets with

convex sections due to Ha (Ref.2).

Corollary 2.1. Let X and Y be nonempty convex subsets of topologi-

cal vector spaces E and W, respectively, and let A⊆XBY be a set such

that:

(i) for each y∈Y, the set {x∈X: (x, y)∈A} is closed in X;

(ii) for each x∈X, the set {y∈Y: (x, y)∉A} is convex or empty;

(iii) there exist a compact convex subset D of X and a closed set

B⊆A such that, for each y∈Y, the set {x∈D: (x, y)∈B} is non-

empty and convex.

Then, there exists a point x̄∈X such that {x̄}BY⊆A.
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Proof. By (i), P−1(y)_{x∈X: (x, y)∉A} is open in X and therefore,

P−1 is transfer open. By (iii), for each y∈Y, T (y)_{x∈D: (x, y)∈B} is non-

empty convex, and so nonempty acyclic. The conclusion follows from

Theorem 2.4. �

Remark 2.3. Theorems 2.3 and 2.4 generalize Theorem 3 in Ref. 2.

By using Theorem 2.3 with AGB, we derive the following coincidence

theorems.

Theorem 2.5. Let Y be a convex space, let X be a topological space,

and let T∈KKM(Y, X ) be compact. Let P: X→2Y be a multivalued map

such that, for all x∈X, P(x) is convex and XG* {int P−1(y): y∈Y}. Then,

there exists (x̄, ȳ)∈XBY such that x̄∈T (ȳ) and ȳ∈P(x̄).

Proof. We define

AG{(x, y)∈XBY: (x, y)∉G (P)}.

Suppose to the contrary that, for all x∈X, P(x)∩T−1(x)G∅. Then, for all

y∈Y, x∈T (y) implies y∉P(x), and therefore (x, y)∈A. From the definition

of A, it follows that

P(x)G{y∈Y: (x, y)∉A}.

Since

XG* {int P−1(y): y∈Y}

and by Lemma 2.1, P−1: Y→2X is transfer open and for all x∈X, P(x) is

nonempty. Since for all x∈X, P(x) is convex, we have that the set

{y∈Y: (x, y)∉A} is convex for all x∈X.

By Theorem 2.3 (with AGB), there exists x̂∈T (Y ) such that (x̂, y)∈A for

all y∈Y. Therefore, P(x̂)G∅. This contradicts the fact that P(x) ≠∅ for all

x∈X. Hence, there exist x̄∈X and ȳ∈Y such that x̄∈T (ȳ) and ȳ∈P(x̄). �

Remark 2.4. Following the arguments of Theorem 1 in Ref. 15, it is

easy to derive the fixed-point theorem of Chang and Yen (Ref. 11) by using

Theorem 2.5.

When T is not necessarily compact, we have the following result.

Theorem 2.6. Let Y be a convex space, let X be a topological space,

and let T∈KKM(Y, X ). Let P: X→2Y be a multivalued map such that, for
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each x∈X, P(x) is convex, XG* {int P−1(y): y∈Y} and, for each compact

subset A of X, T (A) is compact. Assume that there exist a nonempty com-

pact subset D of X and, for each N∈〈Y 〉, a compact convex subset LN of Y

containing N such that T (LN) \D⊆ * {int P−1(y): y∈LN}. Then, there

exists (x̄, ȳ)∈XBY such that x̄∈T (ȳ) and ȳ∈P(x̄).

Proof. Since

D⊆XG* {int P−1(y): y∈Y},

there exists a finite set NG{y1 , . . . , yn}∈〈Y 〉 such that

D⊆ *
n

iG1

int P−1(yi). (1)

By hypothesis, there exists a compact convex subset LN of Y containing N

such that

T (LN) \D⊆* {int P−1(y): y∈LN}. (2)

By (1), we get

T (LN)∩D⊆* {int P−1(y): y∈N}⊆* {int P−1(y): y∈LN}. (3)

From (2) and (3), we have

T (LN)⊆* {int P−1(y): y∈LN}.

Therefore,

T (LN)G* {intT (LN)P
−1(y): y∈LN}.

Since Y is a convex space and LN is a compact convex subset of Y, LN is a

convex space. By hypothesis, T (LN) is compact and thus T �LN
is compact.

Since T∈KKM(Y, X ) and LN is a nonempty convex subset of Y, it follows

from Lemma 2.3 that T∈KKM(LN , X ). By Theorem 2.5, there exist

x̄∈T (LN)⊆X and ȳ∈LN ⊆Y such that x̄∈T �LN
(ȳ)GT (ȳ) and ȳ∈P(x̄). �

As a simple consequence of Theorem 2.6, we have the following fixed-

point result.

Corollary 2.2. See Ref. 8. Let X be a convex space, and let

P: X→2X be a multivalued map such that, for each x∈X, P(x) is convex

and XG* {int P−1(y): y∈Y}. Assume that there exist a nonempty compact

subset D of X and, for each N∈〈X〉, a compact convex subset LN of X

containing N such that LN \D⊆* {int P−1(y): y∈LN}. Then, there exists a

point x̄∈X such that x̄∈P(x̄).
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Proof. The conclusion follows from Theorem 2.6 by letting T (x)G{x}

for all x∈X. �

Theorem 2.7. Let Y be a convex space, and let X be a topological

space. Let P: X→2Y be a multivalued map such that, for all x∈X, P(x) is

convex and XG* {int P−1(y): y∈Y}. Assume that there exist a compact

set D⊆Y and a closed set B⊆XBY such that, for each y∈Y, the set

T (y)_{x∈D: (x, y)∈B} is a nonempty acyclic subset of X. Then, there

exist x̄∈X and ȳ∈Y such that x̄∈T (ȳ) and ȳ∈P(x̄).

Proof. Using the same argument as in the proof of Theorem 2.4, we

see that

T∈V(Y, X )⊆KKM(Y, X )

is compact and the conclusion follows from Theorem 2.5. �

Now, by using coincidence Theorem 2.6, we derive the following geo-

metric property theorem for convex spaces.

Theorem 2.8. Let Y be a convex space, let X be a topological space,

and let T∈KKM(Y, X ). Let A⊆XBY satisfy the following conditions:

(i) for all y∈Y, x∈T (y), (x, y)∈A;

(ii) P−1: Y→2X is transfer open, where P: X→2Y is defined by

P(x)G{y∈Y: (x, y)∉A} for x∈X;

(iii) for all x∈X, {y∈Y: (x, y)∉A} is convex;

(iv) for each compact subset C of Y, T (C ) is compact;

(v) there exists a nonempty compact subset D of X and, for each

N∈〈Y 〉, a compact convex subset LN of Y containing N such that

T (LN)∩) {{x∈X: (x, y)∈A}: y∈LN}⊆D.

Then, there exists a point x̄∈X such that (x̄, y)∈A for all y∈Y.

Proof. Suppose that, for each x∈X, there exists a point y∈Y such

that (x, y)∉A. Then, for each x∈X, P(x) ≠∅. By (ii) and Lemma 2.1,

XG* {int P−1(y): y∈Y}.

From condition (v), we have

T (LN)∩) {X \ int P−1(y): y∈LN}⊆D.

By (iii), for each x∈X, P(x) is convex. Therefore, all the conditions of

Theorem 2.6 are satisfied; hence, there exist x̄∈X and ȳ∈Y such that
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x̄∈T (ȳ) and ȳ∈P(x̄), that is, x̄∈T (ȳ) such that (x̄, ȳ)∉A, a contradiction of

(i). Hence, there exists x̄∈X such that (x̄, y)∈A for all y∈Y. �

3. Generalized Vector Equilibrium Problems

Let K be a nonempty convex subset of a topological vector space X.

For a given bifunction f: KBK→� such that f (x, x)¤0 for all x∈K, the

equilibrium problem (EP) is to find x̄∈K such that

f (x̄, y)¤0, for all y∈K. (4)

This problem contains optimization, Nash equilibrium, fixed-point, com-

plementarity, variational inequality, and many other problems as special

cases; see for example Refs. 6, 16–22, and references therein.

If we replace � by a topological vector space Z with ordered cone C,

that is, a closed and convex cone with int C ≠∅, where int C denotes the

interior of C, then one possibility to generalize (4) can be in the following

way:

f (x̄, y)∉−int C, for all y∈K. (5)

In this case, (EP) is called the vector equilibrium problem (VEP), which

includes vector optimization problems, noncooperative vector equilibrium

problems, vector complementarity problems, and vector variational

inequality problems as special cases. For a more general form of the VEP,

we replace the ordered cone C by a moving cone. We consider a multivalued

map C: K→2Z such that, for each x∈K, C (x) is a closed and convex cone

with int C (x) ≠∅; then, the VEP can be written so as to find x̄∈K such that

f (x̄, y)∉Aint C (x̄), for all y∈K. (6)

For further details on the VEP, we refer to Refs. 23–30 and references

therein.

Further, if we replace the bifunction f by a multivalued map

F: KBK→2Z \{∅}, then the VEP is known as the generalized vector equilib-

rium problem (GVEP), which is to find x̄∈K such that

F (x̄, y)⊆� −int C (x̄), for all y∈K. (7)

It is considered and studied in Refs. 31–36 and contains generalized implicit

vector variational inequality problems and generalized vector variational

and variational-like inequality problems as special cases; see for example

Ref. 36. For further details on generalized vector variational and vari-

ational-like inequality problems, we refer to Ref. 25 and references therein.
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A problem closely related to the GVEP (7) is to find x̄∈K such that

F (y, x̄)⊆� int C (x̄), for all y∈K. (8)

It is termed the dual generalized vector equilibrium problem (DGVEP) by

Konnov and Yao (Ref. 33). For the different forms of the GVEP, we refer

to Refs. 37–39.

If we replace the multivalued map F by another multivalued map

G: KBK→2Z \{∅}, then the DGVEP (8) becomes the problem of finding

x̄∈K such that

G(y, x̄)⊆� int C (x̄), for all y∈K. (9)

Throughout this section, we denote by Kp, Kd
F , and Kd

G the solution sets of

the GVEP (7), DGVEP (8), and DGVEP (9), respectively.

The motivation of this section is to provide some applications of our

coincidence theorem (Theorem 2.6) to establish some existence results for a

solution to the GVEP (7) with or without maximal pseudomonotonicity and

diagonality conditions. First, we prove that Kp
GKd

G (in particular,

Kp
GKd

F under certain conditions); then, we apply our result to prove that

Kp is nonempty.

Let K be a convex space, and let Z be topological vector space. Let

F, G: KBK→2Z \{∅} and C: K→2Z be multivalued maps such that, for

each x∈K, C (x) is a closed and convex cone with int C (x) ≠∅. Then, F is

called:

(i) G-pseudomonotone if, for all x, y∈K,

F (x, y)⊆� −int C (x) implies G(y, x)⊆� int C (x);

(ii) maximal G-pseudomonotone if F is G-pseudomonotone and, for

all x, y∈K, G(z, x)⊆� int C (x), for all z∈]x, y] implies F (x, y)⊆�
−int C (x), where ]x, y]G{z∈K: zGtyC(1At)x, t∈(0, 1]} is a line

segment in K joining x and y but not containing x.

Remark 3.1. When F and G are single-valued maps, definition (ii)

reduces to the definition of maximal G-monotonicity used by Oettli (Ref.

29).

Let K, Z, C be the same as above. A multivalued map

F: KBK→2Z \{∅} is called:

(i) Cx-quasiconvex-like (Ref. 31) if, for all x, y1 , y2∈K and t∈[0, 1],

we have either

F (x, ty1C(1At)y2)⊆ F (x, y1)AC (x)
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or

F (x, ty1C(1At)y2)⊆ F (x, y2)AC (x);

(ii) explicitly δ (Cx)-quasiconvex (Ref. 33), if, for all y1 , y2∈K and

t∈(0, 1), we have either

F (yt , y1)⊆ F (yt , yt)CC (y1)

or

F (yt , y2)⊆ F (yt , yt)CC (y1),

and in case F (yt , y1)AF (yt , y2)⊆ int C (y1), for all t∈(0, 1), we

have

F (yt , y1)⊆ F (yt , yt)Cint C (y1),

where ytGty1C(1At)y2 .

Proposition 3.1. Let K be a convex space, let Z be a topological vector

space, and let C: K→2Z be a multivalued map such that, for each

x∈K, C (x) is a proper, closed, and convex cone with int C (x) ≠∅. Let

F, G: KBK→2Z \{∅} be multivalued maps such that:

(i) for all x, y∈K, F (y, y)⊆C (x);

(ii) F is explicitly δ (Cx)-quasiconvex and G-pseudomonotone;

(iii) for all x, y∈K, F (y, x)⊆ int C (x) implies G(y, x)⊆ int C (x);

(iv) for all y∈K, the multivalued map x > F (x, y) is u-hemi-

continuous.

Then, F is maximal G-pseudomonotone.

Proof. It is similar to the proof of Lemma 2.1 in Ref. 33. �

To prove the main results, we define a multivalued map P: K→2K by

P(x)G{y∈K: G(y, x)⊆ int C (x)}, for all x∈K.

Theorem 3.1. Let K be a convex space, and let Z be a topological

vector space. Let T∈KKM(K, K ) such that, for each compact subset A of

K, T (A) is compact. Let F, G: KBK→2Z \{∅}, and C: K→2Z be multi-

valued maps such that, for each x∈K, C (x) is a pointed, closed, and convex

cone with int C (x) ≠∅. Assume that:

(i) for all y∈K, x∈T (y), F (x, y)⊆� −int C (x);

(ii) P−1: K→2K is transfer open;

(iii) for each x∈K, the set P(x) is convex;
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(iv) F is maximal G-pseudomonotone;

(v) there exists a nonempty compact subset D of K and, for each

M∈〈K〉, a compact convex subset LM of K containing M such

that T (LM) \D⊆ * {int P−1(y): y∈LM}.

Then, the GVEP (7) has a solution x̄∈K and Kp
GKd

G .

Proof. Let x̄∈Kd
G ; then,

G(y, x̄)⊆� int C (x̄), for all y∈K.

For any y∈K, [x̄, y]⊆K. Therefore,

G(z, x̄)⊆� int C (x̄), for all z∈]x̄, y].

Since F is maximal G-pseudomonotone,

F (x̄, y)⊆� −int C (x̄).

Hence,

x̄∈Kp and Kd
G⊂Kp.

So, it is sufficient to show that the DGVEP (9) has a solution.

Suppose to the contrary that the DGVEP (9) does not have any solu-

tion. Then, for each x∈K,

P(x)G{y∈K: G(y, x)⊆ int C (x)} ≠∅.

By (ii) and Lemma 2.1,

KG* {int P−1(y): y∈K}.

By Theorem 2.6, there exist x̄∈K and ȳ∈Y such that x̄∈T (ȳ) and ȳ∈P(x̄).

Thus, by (i), F (x̄, ȳ)⊆� −int C (x̄) and G(ȳ, x̄)⊆ int C (x̄), because ȳ∈P(x̄).

Since F is maximal G-pseudomonotone, F is G-pseudomonotone; therefore,

F (x̄, ȳ)⊆� −int C (x̄) implies G(ȳ, x̄)⊆� int C (x̄), a contradiction.

Since F is maximal G-pseudomonotone, F is G-pseudomonotone and

the relation Kp⊂Kd
G follows from the definition of the G-pseudomonotone

property. Therefore, Kp
GKd

G . �

Remark 3.2.

(i) If T: K→2K is a multivalued map defined as T (x)G{x}, for all

x∈K, then condition (i) of Theorem 3.1 can be replaced by the diagonality

condition F (x, x)⊆� −int C (x), for all x∈K.

(ii) If F is Cx-quasiconvex-like, then for each x∈K, P(x) is convex; see

for example the proof of Theorem 2.1 in Ref. 31.
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(iii) For each y∈K, if G(y, · ) is upper semicontinuous with compact

values on K and if the multivalued map W: K→2K defined as

W(x)GZ \ int C (x), for all x∈K, is upper semicontinuous, then the set

{x∈K: G(y, x)⊆� int C (x)}GK \P−1(y)

is closed; see for example the proof of Theorem 2.1 in Ref. 31. This shows

that, for each y∈K, P−1(y) is open. Suppose that x∈P−1(y); then,

x∈int P−1(y)Gint P−1(ȳ), with ȳGy.

Therefore, P−1: K→2K is transfer open and (3) implies (ii).

Now, we establish some existence results for a solution to the GVEP

without the maximal pseudomonotonicity or pseudomonotonicity

assumption.

We define a multivalued map Q: K→2K by

Q(x)G{y∈K: F (x, y)⊆Aint C (x)}, for all x∈K.

Theorem 3.2. Let K, Z, C, T be the same as in Theorem 3.1. Let

F: KBK→2Z \{∅} be a multivalued map such that, for all y∈K, x∈T (y),

F (x, y)⊆� −int C (x), and let Q−1: K→2K be transfer open and Q(x) be convex

for all x∈K. Assume that there exist a nonempty compact subset D of K

and, for each M∈〈K〉, a compact convex subset LM of K containing M such

that T (LM) \D⊆ * {int Q−1(y): y∈LM}. Then, the GVEP (7) has a solution.

Proof. Suppose that the conclusion of this theorem does not hold.

Then, for each x∈K, the set Q(x) ≠∅. By Lemma 2.1,

KG* {int Q−1(y): y∈K}.

By Theorem 2.6, there exist x̄∈K and ȳ∈K such that x̄∈T (ȳ) and ȳ∈Q(x̄).

Then, F (x̄, ȳ)⊆� −int C (x̄), while ȳ∈Q(x̄) implies F (x̄, ȳ)⊆Aint C (x̄), a con-

tradiction. �

Remark 3.3. The assumption ‘‘Q−1 is transfer open’’ of Theorem 3.2

can be replaced by the condition that ‘‘for each y∈K, F ( · , y) is upper

semicontinuous with compact values on K together with the condition that

the graph of the multivalued map W: K→2Z, defined as W(x)G

Z \{−int C (x)}, for all x∈K, is closed’’; see for example the proof of

Theorem 2.1 in Ref. 31.
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