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Abstract. We study different geometric properties on infinite graphs, related to
the weak-type boundedness of the Hardy-Littlewood maximal averaging operator. In
particular, we analyze the connections between the doubling condition, having finite
dilation and overlapping indices, uniformly bounded degree, the equidistant com-
parison property and the weak-type boundedness of the centered Hardy-Littlewood
maximal operator. Several non-trivial examples of infinite graphs are given to illus-
trate the differences among these properties.

1. Introduction

Let G = (VG, EG) be a simple and connected graph, with vertices having finite
degrees 1 ≤ dx < ∞ (conditions that we will always assume from now on), where VG is
the set of vertices and EG is the set of edges between them. Unless otherwise stated,
we will only consider the case of infinite graphs.

For a function f : VG → R, the (centered) Hardy-Littlewood maximal operator is
defined as

MGf(x) = sup
r≥0

1

|B(x, r)|

∑

y∈B(x,r)

|f(y)|.

Here, B(x, r) denotes the ball of center x and radius r on the graph, equipped with the
metric dG induced by the edges in EG. That is, given x, y ∈ VG the distance dG(x, y)
is the number of edges in a shortest path connecting x and y, and

B(x, r) = {y ∈ VE : dG(x, y) ≤ r}.

Similarly, we define the sphere

S(x, r) = {y ∈ VE : dG(x, y) = r}.

Observe that B(x, r) = B(x, [r]), where [r] denotes the integer part of r. Hence,
B(x, r) = {x}, for 0 ≤ r < 1, and B(x, r) = {x} ∪ NG(x), for 1 ≤ r < 2, where
NG(x) = S(x, 1) is the set of neighbors of x; i.e., all vertices adjacent to x. Also, given
a finite set A ⊂ VG we denote its cardinality by |A|. Thus, dx = |NG(x)|. It is clear
that, since the vertices’ degrees are finite, all balls are finite sets. We refer to [5, 6] for
standard notations and terminology on graphs.
Since the distance dG introduced above only takes natural numbers as values, the

radius r ≥ 0 considered in the definition of the Hardy-Littlewood maximal operator
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can be taken to be a natural number r ∈ N = {0, 1, 2, . . . }:

MGf(x) = sup
r∈N

1

|B(x, r)|

∑

y∈B(x,r)

|f(y)|.

The relevance of the Hardy-Littlewood maximal operator is well-known. It is a key
tool in the study of averages of functions, and in particular in their limiting behavior,
since it yields applications to differentiation theorems, among others. We refer the
reader to the book by E. Stein [23] as a reference for maximal operators and their
use in analysis. The Hardy-Littlewood maximal operator in metric measure spaces
has been mainly considered in a doubling setting (cf. [12]). In non-doubling spaces a
natural modification of the maximal operator has also been studied (see [19, 21, 25]).

It should be pointed out that in the last 30 years there has been a growing interest in
analyzing discrete analogues of many problems arising in harmonic analysis. After the
seminal work of J. Bourgain in [7], several discrete versions of averaging functions have
been studied [14, 24], as is the case, in particular, of the Hardy-Littlewood maximal
operator (see for instance [1, 9]).

Motivated by the results of A. Naor and T. Tao [18], for the case of the infinite
k-regular tree, as well as our previous work [22], for finite graphs, our aim in this
paper is to study weak-type (1, 1) boundedness for MG in terms of the geometry of
the graph; that is, estimates of the form

(1) | {x ∈ VG : MGf(x) > λ} | ≤
CG

λ
‖f‖L1(G),

for all f ∈ L1(G) and λ > 0, where CG is a constant depending only on G. This
inequality is usually written as

MG : L1(G) → L1,∞(G),

where
‖f‖1,∞ = sup

λ>0
λ| {x ∈ VG : |f(x)| > λ} |,

and it is denoted as the weak-type (1,1) boundedness of MG.
For our purpose, we will consider in Section 2 dilation and overlapping indices,

Dk(G) and O(G), and the ECP property (see Definition 2.6), related to estimate
(1), and show some preliminary results, in particular the boundedness on the Dirac
deltas (Proposition 2.10). In Section 3, we will study the different relationships among
all these tools, and we will compute the explicit values of these indices for some
relevant examples of infinite graphs, allowing us to show concrete counterexamples to
the necessity or sufficiency of these properties. We summarize in Table 1 below the
different connections and independencies between these properties (to read the table,
we indicate at a given entry whether the statement on the first column implies the
corresponding one on the first row).

Finally, in Section 4, we follow the ideas used in [18] to analyze the case of the
closely related spherical maximal function

M◦
Gf(x) = sup

r∈N

1

|S(x, r)|

∑

y∈S(x,r)

|f(y)|.

Since every ball is the union of disjoint spheres, we have the point-wise estimate

MGf(x) ≤ M◦
Gf(x).
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=⇒ Dk(G) < ∞ O(G) < ∞ ECP ∆G < ∞ Weak-type

Dk(G) < ∞ −
No

Prop. 3.5
Yes

Rem. 2.7
No

Prop. 3.1
Yes
(3)

O(G) < ∞
No

Prop. 3.2
−

No
Prop. 3.2

No
Prop. 3.1

Yes
(3)

ECP
No

Prop. 3.3
No

Prop. 3.3
−

No
Prop. 3.1

True on deltas
Prop. 2.10

∆G < ∞
No

Prop. 3.3
No

Prop. 3.3
No

Prop. 3.4
−

No
Prop. 3.4

Weak-type
No

[18] & Prop. 3.3
No

[18] & Prop. 3.3
No

Prop. 3.2
No

Prop. 3.1
−

Table 1. All different relations between the main parameters and prop-
erties considered in this paper.

In Theorem 4.1, we will show how expander properties of the underlying graph G
could be used to find weak-type (1, 1)-estimates for M◦

G, and, as a consequence of the
previous estimate, also for MG.

2. Geometrical properties

In order to study the analogous results of the classical weak-type (1, 1) bounds for
the Hardy-Littlewood operator on R

n, we introduced in [22] two numbers associated
to a graph G: the dilation and the overlapping indices. The dilation index of a graph
is related to the so called doubling condition, and measures the growth of the number
of vertices in a ball when its radius is enlarged in a fixed proportion.

Definition 2.1. Given a graph G, for every k ∈ N, k ≥ 2, we define the k-dilation
index as

Dk(G) = sup

{

|B(x, kr)|

|B(x, r)|
: x ∈ VG, r ∈ N

}

.

Remark 2.2. Given k ≥ 2, one can easily compute the k-dilation index of some
relevant finite graphs: For n ∈ N, n ≥ 2, let Kn be the complete graph, and Sn the
star graph with n vertices (i.e., Sn is a graph with one vertex of degree n − 1, and
n− 1 leaves, or vertices of degree 1). Then we have

Dk(Kn) = 1 and Dk(Sn) =
n

2
.

Also, for Ln, the linear tree with n vertices, we have that Dk(Ln) < k, for all n ∈ N,
and limn→∞ Dk(Ln) = k. For the case of infinite graphs, see Section 3.

It is easy to see that if k, k′ ∈ N, with 2 ≤ k < k′, then

Dk(G) ≤ Dk′(G) ≤ Dk(G)

[

log k′

log k

]

+1.

In particular, if for a certain graph G, there is k0 ≥ 2 such that Dk0(G) < ∞, then for
every k ≥ 2, Dk(G) < ∞.

The dilation index is very much related to the following property: A metric measure
space (X, dX , µ) satisfies the doubling condition (cf. [12]) if there is K > 0 such that,
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for every r > 0 and every x ∈ X, we have that

(2) µ(B(x, 2r)) ≤ Kµ(B(x, r)).

However, the fact that we only need to consider r ∈ N makes the k-dilation index
more suitable, and less restrictive, as the following result shows. Before, let us recall
that the maximum degree of a graph G is defined as

∆G = sup{dx : x ∈ VG}.

Proposition 2.3. Let G be a graph and denote

K(G) = sup

{

|B(x, 2r)|

|B(x, r)|
: x ∈ VG, r > 0

}

.

Then,

max
{

D2(G), 1 + ∆G

}

≤ K(G) ≤ D2(G)(1 + ∆G).

In particular, a graph G satisfies the doubling condition (2) if and only if both ∆G and
D2(G) are finite.

Proof. It is clear that K(G) ≥ D2(G). Also, for any x ∈ VG we have that

K(G) ≥
|B(x, 1)|

|B(x, 1/2)|
= 1 + dx.

Hence, K(G) ≥ 1 + ∆G.
Conversely, for 0 < r < 1 we have

|B(x, 2r)| ≤ |B(x, 1)| ≤ 1 + ∆G ≤ D2(G)(1 + ∆G).

While for r ≥ 1 we have

B(x, [r] + 1) =
⋃

y∈B(x,[r])

S(y, 1).

Hence,

|B(x, 2r)| ≤ |B(x, 2([r] + 1)| ≤ D2(G)|B(x, [r] + 1)| ≤ D2(G)|B(x, r)|∆G.

In conclusion, in any case we get that K(G) ≤ D2(G)(1 + ∆G). �

We will see in Proposition 3.1 an example of a graph G for which ∆G = ∞ but
Dk(G) is finite, and Proposition 3.3 provides another graph where ∆G is finite and
Dk(G) = ∞ (hence, in both cases K(G) = ∞). This shows that the conditions on
Proposition 2.3 are actually independent.

We now recall the overlapping index of a graph G, which represents the smallest
number of balls that necessarily overlap in any covering of G.

Definition 2.4. Given a graph G, we define its overlapping index as

O(G) = min

{

m ∈ N : ∀{Bj}j∈J , Bj a ball in G, ∃ I ⊂ J,

⋃

j∈J

Bj =
⋃

i∈I

Bi and
∑

i∈I

χBi
≤ m

}

.
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The overlapping index of the following families of finite graphs can be easily com-
puted:

O(Kn) = 1, n ≥ 1; O(Sn) = n− 1, n ≥ 2;

O(Ln) =

{

1, 1 ≤ n ≤ 2,
2, n ≥ 3;

O(Cn) =

{

1, n = 3,
2, n ≥ 4,

where Cn is the cycle with n vertices. Examples for infinite graphs will be given in
Section 3.

Remark 2.5. The definition of the overlapping index suggests some connection with
dimension theory. Recall that for a metric space (X, d), its asymptotic dimension
asdim(X) is the smallest n ∈ N such that, for every r > 0, there is D(r) > 0 and a
covering of X with sets of diameter smaller than D(r), such that every ball in X of
radius r intersects at most n+ 1 members of the covering (cf. [11, page 29]).

Note that if a graph G has finite overlapping index, then for every r > 0 we can
always find a collection of balls of radius r, (Bi)i∈I such that

∑

i∈I

χBi
≤ O(G).

Hence, we always have
asdim(G) ≤ O(G)− 1.

Analogous estimates hold for other notions of dimension considered in the metric set-
ting (such as Assouad-Nagata dimension, cf. [17].) Note however, that for the k-regular
tree Tk we have asdim(Tk) = 1, while O(Tk) = ∞, for k ≥ 3 (see Proposition 3.3).

The dilation and overlapping indices were used in [22] to obtain an upper bound for
the weak-type (1, 1) norm of the maximal operator of a finite graph. The proof also
works for infinite graphs, yielding the estimate

(3) ‖MG‖1,∞ ≤ min
{

D3(G),O(G)
}

.

We will introduce next a new property concerning the size of balls on equidistant
points, and we will also study its relation with the boundedness of MG.

Definition 2.6. A graph G has the equidistant comparability property (ECP, in short)
if there is a constant C ≥ 1 such that, for every x, y ∈ VG

1

C
|B(x, d(x, y))| ≤ |B(y, d(x, y))| ≤ C|B(x, d(x, y))|.

In this case, we define the ECP constant of G as

C(G) = sup

{

|B(x, d(x, y))|

|B(y, d(x, y))|
: x, y ∈ VG

}

.

After a preliminary version of this paper was completed we learned that the ECP was
also considered in a more general context in [3], under the name of local comparability
condition, and it was also implicit in [18].

Remark 2.7. Every vertex-transitive graph G (i.e., for every x, y ∈ VG there is an
automorphism ofGmapping x to y) has the ECP. In particular, every Cayley graph has
the ECP. Also if every pair of balls in the graph with equal radius are comparable, then
G has the ECP. For instance, the infinite k-regular tree Tk satisfies that |B(x, r)| =
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|B(y, r)|, for every x, y ∈ V and r ≥ 0, and hence the ECP holds with C(Tk) = 1 (for
more information, see Proposition 3.3).

Observe also that, since for any pair of vertices x, y in a graph G, we have that
B(x, d(x, y)) ⊂ B(y, 2d(x, y)), then the dilation condition implies the ECP. In fact,

C(G) ≤ D2(G).

Other important estimates relating these indices are given in the following result.

Proposition 2.8. Suppose G is a graph with the ECP and O(G) < ∞. Then,

D2(G) ≤ 1 +O(G)C(G).

Proof. Fix x ∈ VG and r ∈ N. Since O(G) < ∞, if we consider the collection of balls
{B(y, r) : y ∈ S(x, r)}, we can find a subset F ⊂ S(x, r) such that

⋃

y∈S(x,r)

B(y, r) =
⋃

y∈F

B(y, r),

with the additional property that
∑

y∈F

χB(y,r) ≤ O(G)

(observe that since G is an infinite graph, then S(x, r) 6= ∅). Note that x ∈ B(y, r),
for every y ∈ F ⊂ S(x, r), and we have that

|F | =
∑

y∈F

χB(y,r)(x) ≤ O(G).

Now, since G has the ECP, for every y ∈ S(x, r) we have |B(y, r)| ≤ C(G)|B(x, r)|.
Hence, since

B(x, 2r) =
⋃

y∈S(x,r)

B(y, r) ∪ B(x, r),

we get

|B(x, 2r)| ≤

∣

∣

∣

∣

⋃

y∈F

B(y, r)

∣

∣

∣

∣

+ |B(x, r)| ≤
∑

y∈F

|B(y, r)|+ |B(x, r)|

≤
(

1 +O(G)C(G)
)

|B(x, r)|,

which proves the result. �

Remark 2.9. Arguing in a similar manner one can show that if a graph G has the
ECP and ∆G < ∞, then G satisfies the so-called local doubling condition; i.e., for
every r ∈ N, there exists Dr < ∞ such that for every x ∈ VG, |B(x, 2r)| ≤ Dr|B(x, r)|
(cf. [8]). Indeed, since

B(x, 2r) =
⋃

y∈S(x,r)

B(y, r) ∪ B(x, r),

we have

|B(x, 2r)| ≤
∑

y∈S(x,r)

|B(y, r)|+ |B(x, r)| ≤ |S(x, r)|C(G)|B(x, r)|+ |B(x, r)|

≤
(

1 + ∆r
GC(G)

)

|B(x, r)|.
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It is well known that, in a continuous setting, the maximal operator corresponding
to a sequence of convolution operators on L1(R

d), for any d ∈ N, is of restricted weak-
type (1,1) precisely when it is of weak-type (1,1) [16]. Also, weak-type (1, 1) estimates
for maximal operators are equivalent to the boundedness on linear combinations of
Dirac deltas [15]. However, in the discrete setting, these equivalences are no longer
true [2]. The following result shows that ECP implies the weak-type (1,1) boundedness
of MG on the Dirac deltas (this should be compared to [22, Lemma 2.5]):

Proposition 2.10. If G has ECP, then

sup
x∈VG

‖MGδx‖1,∞ ≤ C(G).

Proof. For any x ∈ VG and 0 < λ < 1, if we set

rx = max
{

d(x, y) : |B(x, d(x, y))| <
C(G)

λ

}

,

then we have that B(x, rx) =
{

y ∈ VG : |B(x, d(x, y))| < C(G)
λ

}

and

|{y ∈ VG : |MGδx(y)| > λ}| =

∣

∣

∣

∣

{

y ∈ VG : |B(y, d(x, y))| <
1

λ

}∣

∣

∣

∣

≤

∣

∣

∣

∣

{

y ∈ VG : |B(x, d(x, y))| <
C(G)

λ

}∣

∣

∣

∣

= |B(x, rx)| <
C(G)

λ
.

Therefore,

‖MGδx‖1,∞ = sup
λ>0

λ |{y ∈ VG : |MGδx(y)| > λ}| ≤ C(G).

�

3. Examples of graphs

The purpose of this section is to study the relations between the geometric conditions
introduced in Section 2 and the weak-type estimates for MG, illustrating, by means
of several examples, the differences between boundedness of ‖MG‖1,∞, ECP, dilation
and overlapping conditions, and the maximum degree.

3.1. The direct sum of complete graphs: ⊕Kn. Let

V⊕Kn
= {(m,n) ∈ N

2 : m ≥ 2, 1 ≤ n ≤ m− 1}.

We set two vertices (m1, n1), (m2, n2) in V⊕Kn
to be adjacent as follows

(m1, n1) ∼⊕Kn
(m2, n2) ⇔







m1 = m2 + 1, n1 = 1; or,
m2 = m1 + 1, n2 = 1; or,

m1 = m2.
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Proposition 3.1. The following properties hold for the graph ⊕Kn:

(i) ∆⊕Kn
= ∞.

(ii) O(⊕Kn) = 2.
(iii) D2(⊕Kn) ≤ 48.
(iv) C(⊕Kn) ≤ 48.
(v) M⊕Kn

: L1 → L1,∞ is bounded, with norm not exceeding 2.

Proof. It is clear that for m ≥ 2, d(m,1) = (m − 1) + (m − 2) = 2m − 3, and hence
∆⊕Kn

= ∞.
To describe the balls of this graph, we are going to think of ⊕Kn as the union of all

complete graphs with a common cut vertex vj between Kj and Kj+1, j = 1, 2, . . . (we
will write vj = (j + 1, 1) ∈ Kj ∩Kj+1). All the other vertices v in Kj will be referred

as interior vertices (v ∈ K̊j). Now, it is easy to see that, if r = 1, 2, . . . , and we define
[m]1 = max{m, 1}, then

(4) B(v, r) =































j+r
⋃

l=[j−r]1

Kl, if v ∈ Kj ∩Kj+1,

j+r−1
⋃

l=[j−r+1]1

Kl, if v ∈ K̊j.

Thus, if we consider any 3 balls B1, B2, and B3 with common intersection, and Bp is
the one with the largest index lmax and Bq is the one with the smallest lmin, for the
complete graphs Kl appearing in (4), then

B1 ∪B2 ∪ B3 = Bp ∪ Bq.

Therefore, by a simple inductive argument, we deduce that O(⊕Kn) = 2, which is (ii).
Using (4) again, it is a straightforward calculation to show that, if v ∈ Bj, then we
have

|B(v, r)| ∈















[jr

2
, 6jr

]

, if j ≥ r ≥ 1,

[r2

2
, 6r2

]

, if 1 ≤ j < r.

Thus,

|B(v, 2r)|

|B(v, r)|
≤ 48,

which proves (iii). Remark 2.7 and (iii) prove also (iv).
Finally, the boundedness in (v) follows from (3) and (ii). This finishes the proof. �

r r

r

r

r

r

r r

r r

r

r

r r

rr

r ♣ ♣ ♣

Figure 1. The graph ⊕Kn.
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3.2. The upwards shift direct sum of complete graphs: L∞ ⊕ Kn. Let us
consider the following variation of ⊕Kn:

VL∞⊕Kn
= {(m,n) ∈ N

2 : m ≥ 2, 0 ≤ n ≤ m},

with adjacent vertices as follows

(m1, n1) ∼L∞⊕Kn
(m2, n2) ⇔















|m1 −m2| = 1, n1 = n2 = 0; or,
m1 = m2, n1 = 0, n2 = 1; or,
m1 = m2, n2 = 0, n1 = 1; or,
m1 = m2, n1, n2 ≥ 1.

✲s

s

s

s

s

s s

s

s

s

s s

s

s

s s

s s

s

s

s s

s s

s

♣ ♣ ♣

Figure 2. The graph L∞ ⊕Kn.

Proposition 3.2. The following properties hold for the graph L∞ ⊕Kn:

(i) ∆L∞⊕Kn
= ∞.

(ii) O(L∞ ⊕Kn) = 5.
(iii) D2(L∞ ⊕Kn) = ∞.
(iv) C(L∞ ⊕Kn) = ∞.
(v) ML∞⊕Kn

: L1 → L1,∞ is bounded, with norm not exceeding 5.

Proof. Since d(m,1) = m we clearly have ∆L∞⊕Kn
= ∞.

That O(L∞ ⊕Kn) ≥ 5 follows from the fact that for m ≥ 4, (m, 0) belongs to the
intersection of the balls

B
(

(m− 2, 0), 2
)

∩B
(

(m− 1, 1), 2
)

∩B
(

(m, 1), 1
)

∩B
(

(m+1, 1), 2
)

∩B
(

(m+2, 0), 2
)

,

while the union of these five balls cannot be covered by only four of them. For the
converse, let us consider the following:

Claim: Suppose (Bi)
6
i=1 is a collection of balls in L∞ ⊕Kn, with

⋂6
i=1 Bi 6= ∅. Then,

for some i0 ∈ {1, . . . , 6}, we have
⋃

i∈{1,...,6}

Bi =
⋃

i∈{1,...,6}\{i0}

Bi.

Once this is proved, an inductive application of this argument shows that, in fact,
O(L∞ ⊕Kn) ≤ 5, proving (ii).

In order to prove the claim, for 1 ≤ i ≤ 6, let (mi, ni) and ri denote respectively the
center and radius of Bi. If ri ≤ 1, for some i = 1, . . . , 6, it is easy to see, by simple
inspection, that for some i0 ∈ {1, . . . , 6} we have

⋃

i∈{1,...,6}

Bi =
⋃

i∈{1,...,6}\{i0}

Bi.
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Hence, without loss of generality, we can assume that ri ≥ 2, for each i = 1, . . . , 6.
Observe that if for some 1 ≤ i, j ≤ 6, it holds that mi = mj, then necessarily Bi ⊂ Bj

or Bj ⊂ Bi. Hence, we can suppose that m0 < m1 < m2 < m3 where (m0, n0) ∈
⋂6

i=1 Bi. For each i = 1, 2, 3, let us denote

li = min{m ≥ 2 : (m, 0) ∈ Bi} and ui = max{m ≥ 2 : (m, 0) ∈ Bi}.

Now, if l2 < l1, then B1 ⊂ B2. Similarly, if u2 > u3, then B3 ⊂ B1. Otherwise, we
have l1 ≤ l2 and u2 ≤ u3, and in this case we get B2 ⊂ B1 ∪ B3. Therefore, the claim
is proved.

In order to see (iii), note that, for m ≥ 3, we have that |B
(

(m, 0), 1
)

| = 4, while

|B
(

(m, 0), 2
)

| = m+ 7. Hence, D2(L∞ ⊕Kn) = ∞.

As for (iv), for m ≥ 3, we find that d
(

(m, 0), (m, 1)
)

= 1 and |B
(

(m, 0), 1
)

| = 4,

while |B
(

(m, 1), 1
)

| = m+ 1. Hence, C(L∞ ⊕Kn) = ∞.
Finally, the boundedness in (v) follows from (3) and (ii). This finishes the proof. �

3.3. The k-regular tree: Tk. We consider now the infinite regular tree of degree k
(for k ≥ 2). The main non-trivial result regarding this graph is the weak-type (1,1)
boundedness of MTk

, with a norm estimate independent of k, [18, Theorem 1.5] (see
also [10, 20]). In the following proposition we complete the information about the
remaining properties.

s

s

s

s

s

s

s

s

s

s

s

s

s

s s

s

Figure 3. The graph Tk, with k = 3.

Proposition 3.3. The following properties hold for the graph Tk:

(i) ∆Tk
= k.

(ii) O(Tk) = ∞, for k ≥ 3.
(iii) D2(Tk) = ∞.
(iv) C(Tk) = 1.
(v) [18, Theorem 1.5] MTk

: L1 → L1,∞ is bounded, with norm uniformly on k.

Proof. Condition (i) is trivial and (v) is [18, Theorem 1.5]. A simple calculation shows
that |B(x, r)| = (kr+1 − 1)/(k − 1), which proves (iv). Similarly,

|B(x, 2r)|

|B(x, r)|
=

k2r+1 − 1

kr+1 − 1
−→ ∞, as r → ∞.

Hence, D2(Tk) = ∞.
To finish, fix a vertex x ∈ Tk and consider the set of points y ∈ S(x, r), the sphere of

radius r = 1, 2, . . . Then, x belongs to all balls in the family Br =
{

B(y, r)
}

{y∈S(x,r)}
,

and for each y ∈ S(x, r) there exists a point xy ∈ B(y, r) which is in no other ball of
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Br (it suffices to consider xy such that d(xy, x) = 2r and y belongs to the unique path
joining x and xy). Since for k ≥ 3, |Br| → ∞, as r → ∞, then O(Tk) = ∞. �

3.4. The infinite comb: X∞. Let VX∞
= {(j, k) : j ∈ Z, k ∈ N}. Given two ver-

tices (j1, k1), (j2, k2) in VX∞
we define them to be adjacent according to the following

(j1, k1) ∼X∞
(j2, k2) ⇔

{

|j1 − j2| = 1, and k1 = k2 = 0; or,
j1 = j2, and |k1 − k2| = 1.

✲✛♣♣♣ ♣ ♣ ♣

✻

r

r

r

♣

♣

♣

✻

r

r

r

♣

♣

♣

✻

r

r

r

♣

♣

♣

✻

r

r

r

♣

♣

♣

✻

r

r

r

♣

♣

♣

✻

r

r

r

♣

♣

♣

✻

r

r

r

♣

♣

♣

✻

r

r

r

♣

♣

♣

✻

r

r

r

♣

♣

♣

✻

r

r

r

♣

♣

♣

Figure 4. The infinite comb graph X∞.

Proposition 3.4. The following properties hold for the graph X∞:

(i) ∆X∞
= 3.

(ii) O(X∞) = ∞.
(iii) D2(X∞) = ∞.
(iv) C(X∞) = ∞.
(v) MX∞

: L1 9 L1,∞ is not bounded (even on Dirac deltas).

Proof. It is clear that the degree of a vertex (j, k) is

d(j,k) =

{

3, if k = 0,
2, otherwise.

This proves (i). It is easy to check that for (j, k) ∈ VX∞
and r ∈ N we have

|B((j, k), r)| =

{

2r + 1, if r < k,
(r − k + 1)2 + 2k, if r ≥ k.

Let o = (0, 0). For any (j, k) ∈ VX∞
we have that d(o, (j, k)) = |j|+ k. In particular,

|B((j, k), |j|+ k)| = (|j|+ 1)2 + 2k.
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Now, given λ ∈ (0, 1) we have

|{(j, k) : |MX∞
δo(j, k)| > λ}| =

∣

∣

∣

∣

{

(j, k) : (|j|+ 1)2 + 2k <
1

λ

}∣

∣

∣

∣

=
∑

j,k

χ{(|j|+1)2+2k< 1
λ
}(j, k) =

∑

k∈N
2k< 1

λ
−1

∑

j∈Z
(|j|+1)2< 1

λ
−2k

1

≥

1
2λ

−2
∑

k=0

∣

∣

∣

∣

{

j ∈ Z : (|j|+ 1)2 <
1

λ
− 2k

}∣

∣

∣

∣

≥

1
2λ

−2
∑

k=0

2

(

√

1

λ
− 2k − 2

)

≥ 2

∫ 1
2λ

−1

0

(

√

1

λ
− 2s− 2

)

ds

≥
3

2λ
3
2

−
2

λ
+ 2.

Therefore, we get that

‖MX∞
δo‖1,∞ = sup

λ>0
λ|{(j, k) : |MX∞

δo‖1,∞δo(j, k)| > λ}|

≥ sup
λ∈(0,1)

(

3

2λ
1
2

− 2 + 2λ

)

= ∞.

This proves (v). Using (v) and (3), we get (ii) and (iii). Also by Proposition 2.10, we
get (iv). �

3.5. The steplike dyadic tree: Υ∞
2 . Let us consider the set of vertices

VΥ∞

2
=
⋃

n∈N

{(2n, k) : 0 ≤ k ≤ 2n} ∪ {(j, 0) : j ∈ N, j 6= 2n, n ∈ N}.

Given two vertices (j1, k1), (j2, k2) in VΥ∞

2
we define them to be adjacent according to

the following

(j1, k1) ∼Υ∞

2
(j2, k2) ⇔

{

|j1 − j2| = 1, and k1 = k2 = 0; or,
j1 = j2, and |k1 − k2| = 1.

Proposition 3.5. The following properties hold for the graph Υ∞
2 :

(i) ∆Υ∞

2
= 3.

(ii) O(Υ∞
2 ) = ∞.

(iii) D2(Υ
∞
2 ) < ∞.

(iv) C(Υ∞
2 ) < ∞.

(v) MΥ∞

2
: L1 → L1,∞ is bounded.

Proof. It is clear that ∆Υ∞

2
= 3.

In order to see (ii), let us consider for n ≥ 1 the ball Bn with center (2n, 1) and
radius 2n. It is clear that (1, 0) ∈

⋂

n≥1 Bn. Moreover, for each m ≥ 1 we have

(2m, 2m) ∈ Bm\
⋃

n 6=m

Bn.
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r r r r r r r r r r r r r r r r
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r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

✲ · · ·

Figure 5. The graph Υ∞
2 .

This shows that O(Υ∞
2 ) = ∞.

The rest of the proof will follow from the following:

Claim: For every x ∈ VΥ∞

2
and r ∈ N

r ≤ |B(x, r)| ≤ 24r.

Once this is proved, it is clear that D2(Υ
∞
2 ) ≤ 48, C(Υ∞

2 ) ≤ 24 and by (3) we get
‖MΥ∞

2
‖1,∞ ≤ 72.

The proof of the claim will be split into several steps:

(a) Suppose first x = (2n, 0) for some n ∈ N.
(a.1) Let us consider rj = 2n − 2j, for some 0 ≤ j < n. In this case, the ball

B(x, rj) contains 2rj+1 points of the form (m, 0) and can only have points
of the form (2i, k), with k 6= 0, whenever j + 1 ≤ i ≤ n. Thus, we have
that

(5) |B((2n, 0), rj)| ≤ 2rj +
n
∑

i=j+1

2i = 2rj + (2n+1 − 2j+1) = 4rj.

(a.2) Consider now rj = 2j − 2n, for some j ≥ n + 1. In this case, the ball
B(x, rj) consists of all the points of the form (m, 0) for 1 ≤ m ≤ 2j and
those of the form (2i, k), with 0 < k ≤ 2i for i < j. Hence,

|B((2n, 0), rj)| ≤ 2j +

j−1
∑

i=0

2i ≤ 2j+1.

Note that for j ≥ n+ 1, we have 2j−1 ≤ 2j − 2n, so we get that

(6) |B((2n, 0), rj)| ≤ 4rj.

(a.3) Let us consider now arbitrary r ≥ 1. For 1 ≤ r < 2n−1, we have

|B((2n, 0), r)| = 3r + 1.
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For 2n−1 ≤ r < 2n, there is some 0 ≤ j < n− 1 such that 2n − 2j+1 < r ≤
2n − 2j. Since for j < n− 1 we have 2j < 2n − 2j+1, and using (5), we get

|B((2n, 0), r)| ≤ |B((2n, 0), 2n − 2j)| ≤ 4(2n − 2j)

= 4(2n − 2j+1) + 2j+2 ≤ 8(2n − 2j+1) ≤ 8r.

Finally, for r ≥ 2n, there is j ≥ n+1 such that 2j −2n ≤ r < 2j+1−2n. In
particular, for such j we have 2j ≤ 2(2j − 2n). Hence, using (6), we have

|B((2n, 0), r)| ≤ |B((2n, 0), 2j+1 − 2n)| ≤ 4(2j+1 − 2n)

= 4(2j + 2j − 2n) ≤ 12(2j − 2n) ≤ 12r.

Therefore, for any r ≥ 1 we have

|B((2n, 0), r)| ≤ 12r.

(b) Let x = (2n, k). For r ≤ k we clearly have |B((2n, k), r)| = 2r+1. While for r > k,
all the vertices in B((2n, k), r), except at most r vertices of the form (2n,m), belong
to the ball B((2n, 0), r). Thus,

|B((2n, k), r)| ≤ |B((2n, 0), r)|+ r ≤ 13r.

(c) Let x = (j, 0) with j 6= 2n for any n ∈ N. In particular, there is m ∈ N such that
2m < j < 2m+1, and we clearly have B((j, 0), r) ⊂ B((2m, 0), r) ∪ B((2m+1, 0), r).
Hence,

|B((j, 0), r)| ≤ |B((2m, 0), r)|+ |B((2m+1, 0), r)| ≤ 24r.

�

4. Expander type bounds for the spherical maximal function

In this section we will consider the spherical maximal function

M◦
Gf(x) = sup

r∈N

1

|S(x, r)|

∑

y∈S(x,r)

|f(y)|,

where S(x, r) denotes the sphere

S(x, r) = {y ∈ G : d(x, y) = r}.

Note that if the graph G is infinite, then S(x, r) is never empty.
The spherical maximal function has been considered in a different discrete setting

(Zd, with euclidean metric) in [14]. See also [13] for the corresponding endpoint esti-
mates.

Since every ball can be written as the disjoint union of spheres, we have the point-
wise estimate

MGf(x) ≤ M◦
Gf(x).

Therefore, a weak-type (1, 1)-estimate for M◦
G implies a similar estimate for MG.

We will need to control the size of the spheres of a graph, so for r ∈ N let

SG(r) = sup
x∈VG

|S(x, r)|.

In all what follows we impose that the graph satisfies SG(r) < ∞ for every r ∈ N.
Notice that we can compute the degree of a vertex as dx = |S(x, 1)|, therefore ∆G =
maxx∈VG

dx = SG(1). In particular, the following requires ∆G < ∞.
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Motivated by the ideas in [18], for a graph G, we introduce the function

EG(r) = sup
A,B⊂VG,
|A|,|B|<∞

1

|A||B|

(

∑

x∈B

|A ∩ S(x, r)|

|S(x, r)|

)2

.

This function is related to the expander properties of G. Indeed, given finite subsets
A,B ⊂ VG, let us consider

E(A,B) = |{(x, y) ∈ A× B : d(x, y) = 1}| .

This quantity can be thought of as a measure for the size of common boundary between
A and B. Following [4, Section 9.2] (see also [26]), a finite graph G = (VG, EG) is called
an (n, d, c)-expander provided |VG| = n, the maximum degree ∆G = d and for every set
of vertices W ⊂ VG with cardinality |W | ≤ n/2, the neighbor set N(W ), consisting of
those vertices in VG\W adjacent to some vertex in W , has cardinality |N(W )| ≥ c|W |.
The expander properties of a graph are closely related to the spectral properties of
its adjacency matrix, and in particular to the spectral gap between the largest two
eigenvalues (cf. [4, Corollary 9.2.2]). If G were a k-regular expander, then the number
E(A,B) would behave approximately as what one would expect in a random graph
(see [4, Corollary 9.2.5] for details). Moreover, for k-regular G we always have

EG(1) =
1

k2
sup

A,B⊂VG,
|A|,|B|<∞

E(A,B)2

|A||B|
.

In particular, for the k-regular infinite tree Tk it is shown in [18, Lemma 5.1] that
ETk

(r) ∼ 1/kr.
Note also that EG(r) provides a lower estimate for the size of the spheres on the

graph. Indeed, for every x ∈ VG, if we consider A = {x} and B = S(x, r), we get

|S(x, r)| ≥ EG(r)
−1.

The following is a slight generalization of [18, Theorem 1.5].

Theorem 4.1. Let G be an infinite graph such that SG(r) < ∞ for every r ∈ N.

‖M◦
G‖L1(G)→L1,∞(G) . sup

n∈N∪{0}

2
n
2

∑

r∈N∪{0}
SG(r)≥2n−1

EG(r)SG(r)
1
2 .

For each r ≥ 0, let A◦
r denote the spherical averaging operator

A◦
rf(x) =

1

|S(x, r)|

∑

y∈S(x,r)

|f(y)|.

Thus M◦
Gf(x) = supr≥0 A

◦
rf(x). Following [18, Lemma 5.2], let us start with a distri-

butional estimate on A◦
r.

Lemma 4.2. Let f ∈ L1(G), r > 0 and λ > 0. Then

| {A◦
rf ≥ λ} | .

∑

n∈N∪{0}
1≤2n≤2SG(r)

2
3n
2 EG(r)SG(r)

1
2 |
{

|f | ≥ 2n−1λ
}

|.



16 JAVIER SORIA AND PEDRO TRADACETE

Proof. We may take f to be non-negative, and by dividing f by λ we may take λ = 1.
For n ∈ N, let us consider the set

En =
{

x ∈ VG : 2n−1 ≤ f(x) < 2n
}

.

Let n(r) ∈ N be such that 2n(r) ≤ SG(r) < 2n(r)+1.
Since we have

f ≤
1

2
+

n(r)
∑

n=0

2n1En
+ f1{f≥2n(r)},

we can also bound,

A◦
rf ≤

1

2
+

n(r)
∑

n=0

2nA◦
r (1En

) + A◦
r

(

f1{f≥2n(r)}

)

.

Note that
{

x ∈ VG : A◦
r

(

f1{f≥2n(r)}

)

(x) 6= 0
}

⊂
⋃

f(y)≥2n(r)

S(y, r),

so in particular we have
∣

∣

{

x ∈ VG : A◦
r

(

f1{f≥2n(r)}

)

(x) 6= 0
}∣

∣ ≤ SG(r)
∣

∣

{

x ∈ VG : f(x) ≥ 2n(r)
}∣

∣ .

Thus, putting these together we have

|{x ∈ VG : A◦
rf(x) ≥ 1}| ≤

∣

∣

∣

∣

∣

∣







x ∈ VG :

n(r)
∑

n=0

2nA◦
r (1En

) (x) ≥
1

2







∣

∣

∣

∣

∣

∣

+ SG(r)
∣

∣

{

x ∈ VG : f(x) ≥ 2n(r)
}
∣

∣ .

Note that if x ∈ VG satisfies

n(r)
∑

n=0

2nA◦
r (1En

) (x) ≥
1

2

then, for some 0 ≤ n ≤ n(r), we necessarily have

A◦
r (1En

) (x) ≥
1

2n+4

(

2n

SG(r)

)1/4

.

Indeed, otherwise we would have

1

2
≤

n(r)
∑

n=0

2nA◦
r (1En

) (x) ≤
1

16

n(r)
∑

n=0

(

2n

SG(r)

)1/4

≤
21/4SG(r)

1/4 − 1

16SG(r)1/4 (21/4 − 1)
<

1

2
,

which is a contradiction.
Now, for 0 ≤ n ≤ n(r) let us consider the set

Fn =

{

x ∈ VG : A◦
r (1En

) (x) ≥
1

2n+4

(

2n

SG(r)

)1/4
}

,
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which is clearly finite and satisfies

|Fn|

2n+4

(

2n

SG(r)

)1/4

≤
∑

y∈Fn

A◦
r (1En

) (y) ≤
∑

y∈Fn

|En ∩ S(y, r)|

|S(y, r)|

≤ (|En||Fn|EG(r))
1
2 .

Hence, for 0 ≤ n ≤ n(r) we have

|Fn| ≤ 2
3n
2
+8EG(r)SG(r)

1
2 |En|.

Finally, this estimate together with the fact that SG(r)
1/2 ≤ 2

3(n(r)+1)
2 and that

EG(r) ≥ 1 (since G is infinite) yield

|{x ∈ VG : A◦
rf(x) ≥ 1}| ≤

n(r)
∑

n=0

|Fn|+ SG(r)
∣

∣

{

x ∈ VG : f(x) ≥ 2n(r)
}∣

∣

.
∑

n∈N∪{0}
1≤2n≤2SG(r)

2
3n
2 EG(r)SG(r)

1
2

∣

∣

{

x ∈ VG : f(x) ≥ 2n−1
}∣

∣ .

�

Proof of Theorem 4.1. Since M◦
Gf = supr≥0 A

◦
rf , Lemma 4.2 implies that

|{x ∈ VG : M◦
Gf(x) ≥ λ}| ≤

∞
∑

r=0

|{x ∈ VG : A◦
rf(x) ≥ λ}|

.

∞
∑

r=0

∑

n∈N∪{0}
1≤2n≤2SG(r)

2
3n
2 EG(r)SG(r)

1
2

∣

∣

{

x ∈ VG : |f |(x) ≥ 2n−1λ
}∣

∣

=
∑

x∈T

∞
∑

n=0

∑

r∈N∪{0}
SG(r)≥2n−1

EG(r)SG(r)
1
22

3n
2 1{|f(x)|≥2n−1λ}

.

(

sup
n∈N∪{0}

2
n
2

∑

r∈N∪{0}
SG(r)≥2n−1

EG(r)SG(r)
1
2

)

∑

x∈T

∞
∑

n=0

2n1{|f(x)|≥2n−1λ}

.

(

sup
n∈N∪{0}

2
n
2

∑

r∈N∪{0}
SG(r)≥2n−1

EG(r)SG(r)
1
2

)

∑

x∈T

1

λ
|f(x)|,

as desired. The proof of Theorem 4.1 is complete. �

Remark 4.3. Applicability of Theorem 4.1 is rather complicated, since it is heavily
based on the behavior of the function EG(r). It would be interesting to find other
non-trivial examples of graphs for which this function can be estimated, besides the
infinite k-regular tree Tk mentioned above.

The following argument provides some flexibility of the previous results for product
of graphs. Given two graphs G1 = (VG1 , EG1), G2 = (VG2 , EG2), let us consider
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the product graph G1 ⊗ G2 = (VG1⊗G2 , EG1⊗G2) where VG1⊗G2 = VG1 × VG2 and for
(x1, x2), (y1, y2) ∈ VG1⊗G2 we set

(x1, x2) ∼G1⊗G2 (y1, y2) ⇔

{

x1 ∼G1 y1, or
x1 = y1 and x2 ∼G2 y2.

Proposition 4.4. Let G1, G2 be two graphs with G2 finite. For r ≥ 3 we have

EG1⊗G2(r) ≤ |G2|
2EG1(r).

Proof. Let us consider P1 : VG1 × VG2 → VG1 the canonical projection P1(x1, x2) = x1.
Note that for A ⊂ VG1⊗G2 we have

(7) |P1(A)| ≤ |A| ≤ |P1(A)||G2|.

Given (x1, x2) ∈ VG1⊗G2 and r ≥ 3, we have

S((x1, x2), r) = {(x, y) ∈ VG1⊗G2 : x ∈ S(x1, r)}.

In particular, |S((x1, x2), r)| = |S(x1, r)||G2|, and for A ⊂ VG1⊗G2 , if (x1, x2) ∈ A ∩
S((y1, y2), r), then x1 ∈ P1(A) ∩ S(y1, r). Hence, for finite subsets A,B ⊂ VG1⊗G2 we
have

∑

x∈B

|A ∩ S(x, r)|

|S(x, r)|
=

∑

x1∈P1(B)

∑

x2∈VG2
,

(x1,x2)∈B

|A ∩ S((x1, x2), r)|

|S((x1, x2), r)|

≤
∑

x1∈P1(B)

∑

x2∈VG2

|P1(A) ∩ S(x1, r)||G2|

|S((x1, x2), r)|

≤ |G2|
∑

x1∈P1(B)

|P1(A) ∩ S(x1, r)|

|S(x1, r)|
.

Therefore, using (7), we have

1

|A||B|

(

∑

x∈B

|A ∩ S(x, r)|

|S(x, r)|

)2

≤ |G2|
2 1

|P1(A)||P1(B)|

(

∑

x1∈P1(B)

|P1(A) ∩ S(x1, r)|

|S(x1, r)|

)2

≤ |G2|
2EG1(r).

Since this holds for arbitrary finite subsets A,B ⊂ VG1⊗G2 , the conclusion follows. �
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