
Journal of Statistical Physics, VoL 60, Nos. 5/6, 1990 

Geometric Properties of Random Disk Packings 

Boris D.  Lubaehevsky 1 and Frank H. Stillinger 1 

Received January 9, 1990; final March 27, 1990 

Random packings of N~<2000 rigid disks in the plane, subject to periodic 

boundary conditions on a square primitive cell, have been generated by a con- 

current construction which treats all disks on an equal footing, as opposed to 

previously investigated sequential constructions. The particles start with random 

positions and velocities, and as they move about they grow uniformly in size, 

from points to jammed disks. The collection of packings displays several striking 

geometric features. These include (for large N) typically polycrystalline textures 

with irregular grain boundaries and linear shear fractures. The packings occa- 

sionally contain monovacancies and trapped but unjammed "rattler" disks. The 

latter appear to be confined to the grain boundaries. The linear shear fractures 

preserve bond orientational order, but disrupt translational order, within the 

crystalline grains. A new efficient event-driven simulation algorithm is employed 

to generate the histories of colliding and jamming disks. On a computer which 

can process one million floating-point instructions per second the algorithm 

processes more than one million pairwise collisions per hour. 

KEY WORDS: Rigid disks; rigid spheres; random packings; rattlers; grain 

boundaries; vacancies; hexatic phases. 

1. I N T R O D U C T I O N  

Rigid disks and  spheres have long enjoyed popu la r i t y  a m o n g  m a n y - b o d y  

physicists,  mater ia l s  scientists, and  physical  chemists,  who have used them 

to expla in  s t ruc tura l  and  kinet ic  p roper t ies  of  mat ter .  (7'11'13'16) In  par t icular ,  

r a n d o m  packings  of spheres in three d imensions  have been p r o p o s e d  as a 

represen ta t ion  for the shor t - range  a tomic  o rde r  present  in var ious  

a m o r p h o u s  solids, (12) and  they are also re levant  to the a r r angemen t  of 

col lo idal  part icles  in dense, glassy depos i t s / s )  Analogous ly ,  d isk  configura-  

t ions in the p lane  have been advanced  as a s imple mode l  for the 
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arrangements of particles adsorbed on smooth surfaces, (6'26) and they may 

provide a helpful way to interpret experimental observations of monolayer 

colloidal suspensions confined between narrowly spaced glass plates/z~ 

Under rapid lateral compression or irreversible adsorption these two- 

dimensional systems can achieve states approximated by random disk 

packings. But in spite of the long scientific history of such connections and 

applications, many fundamental questions remain about the geometric 

nature of rigid sphere and disk packings. (25~ 

In the present paper, we study some novel aspects of random disk 

packings. This project has been facilitated by recent advances in program- 

ming techniques for event-driven simulations. (18~ The approach used is 

readily applicable to random sphere packings in three dimensions as well, 

but that is reserved for later study. 

The earliest examinations of random disk and sphere packings 

involved often clever, but imprecise and unsystematic, mechanical analog 

simulations. (5'19'24'27) More recently, construction algorithms for random 

packings utilizing digital computers have been implemented. (4'1~ While the 

latter are precise and systematic, they use an intrinsically sequential model 

in which spheres are added one by one to an initial seed structure and the 

final aggregate, though possibly large, possesses a free surface. The packing 

model investigated herein is intrinsically concurrent and involves no free 

surface; it is consequently closer in spirit to the quenching or compres- 

sional procedures that are normally used experimentally to create 

amorphous solids. At least for the rigid disk case considered at length 

below, several unusual properties of the random packings generated have 

been identified, which we suspect would not readily appear with a sequen- 

tial construction model. One of these properties is the presence of 

"rattlers," disks only loosely imprisoned by a ring of seven or more tightly 

jammed neighbors. This possibility had been previously postulated, (29) but, 

to the best of our knowledge, had not been observed directly prior to this 

study. 

Section 2 provides some basic background information about the 

accessible configuration space for rigid disks and spheres. This is followed 

by a description in Section 3 of our dense packing model. Section 4 

presents the results of experimenting with our model. Section 5 provides 

some discussion. Two appendices provide an outline of the algorithm ~18) 

used to realize our model computationally. 

2. S O M E  B A S I C  C O N C E P T S  

In its most  general version, our inquiry would concern nonoverlapping 

arrangements of D-dimensional spheres, D = 1 , 2 ,  3 ..... confined to a 
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"rectangular" region /2D of size L 1 x L 2 x - . .  X LD. We shall suppose that 

periodic boundary conditions apply; that is, /2D and its contents are 

periodically replicated in all directions to fill Euclidean D-space. 

If its diameter is a, then the content of a D-dimensional sphere is (14) 

sD(a) = 7ZD/2aD/2DF(1 + D/2) 

Consequently, if N nonoverlapping such spheres inhabit the interior of/2D, 

the fraction { of that region covered by those spheres is 

= Nso(a)//29 

In the limit of large /2D, explicit tight upper bounds are known for 1 and 

2 dimensions and strongly conjectured in 3 dimensions (23'25) 

rc 

~<2~ (D=2) 

~<- -  (D=3) 

The bounds are attained, respectively, with the gapless linear array (D = 1 ), 

the triangular lattice (D = 2), and the face-centered cubic array (D = 3). 

Let the center positions of the N spheres in/2D be denoted by the set 

of vectors rl . . .  rN-- R. The nonoverlap condition on all pairs of D-spheres 

and their periodic images, when the diameters are a, requires the DN- 

dimensional configuration vector R to belong to some subset ~(a)  of the 

set of all possible center positions, /2v x/2 0 x .. .  x/2D ~ 6(0). We shall 

refer to ~(a)  as the "available configuration space" for the N non- 

overlapping D-spheres in region /2D' 

It is obvious that increasing a decreases the positional "freedom" of 

the N spheres, i.e., the content C [ ~ ( a ) ]  of the available configuration 

space is a continuous nonincreasing function of a. Indeed, beyond some 

am~x (generally dependent on D, N, and the shape of/2D) C [ ~ ( a ) ]  will 

vanish: 

C [ ~ ( a ) ]  > 0 (0 -N< a < a m a x )  

= 0 (amax <~ a) 

That is, ama x is the largest diameter of the N spheres for which nonoverlap- 

ping positions in/2D still exist. 
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~(a) undergoes a dimensional reduction as a increases to ama x. For all 

a <  area x the dimension is DN; otherwise C[~(a)]  could not be positive. 

The dimension of ~(amax) is necessarily less than DN; this is a mathemati- 

cal consequence of close packing. The specific value of the reduced dimen- 

sion depends on D, N, and the shape of OD, but the presence of periodic 

boundary conditions and the implied free translation of any sphere packing 

assures that the reduced dimension must be at least D. 

The connectivity of ~(a) and its variation with a<ama x is a 

fundamental issue for the present study. This property is simple only for 

D = 1, where for all 0 < a < area x the region ~(a) consists of those ( N -  1)! 

equivalent disconnected portions corresponding to particle permutations 

on a line that are not interconvertible by overall translation. (28) When 

D > 1, ~(a) will be connected, provided a is sufficiently small, for then any 

nonoverlap configuration could be continuously deformed into any other 

one while easily avoiding overlaps. However, as a increases for D > 1 one 

expects ~(a) to undergo a sequence of disconnections as the nonoverlap 

conditions impose more and more severe constraints on available sphere 

rearrangements. The presumption is that ~(a) should shed disconnecting 

portions that correspond to various nearly jammed and configurationally 

trapped sphere packings, the majority of which for large N have irregular 

structures. Each such disconnected portion would undergo its own dimen- 

sional reduction as increasing a caused it to reach its jamming limit, say at 

ap for the packing denoted by p. Obviously 

a m a  x = max (ap) 
P 

Any jammed packing p belongs to a set of ( N -  1)! equivalent packings 

that differ only by permutation of spheres (recall that free translations per- 

mitted by periodic boundary conditions automatically permit groups of N 

permutations to be freely accessed from one another, even at jamming). 

Our primary interest, however, concerns geometrically distinguishable 
packings that are not permutation-equivalent. When D > 1, the number M 

of such distinguishable packings can be expected to rise exponentially 
with N, (29) 

lnM(D,N, 12D)=tcN+o(N), x>O 

The objective of most random-sphere-packing inquiries concerns average 

values of selected properties for the collection of packings, subject to some 

appropriate weighting. Let q be an index for the M geometrically dis- 

tinguishable packings, and let w(q) be a set of normalized weights: 

Z w(q)= 1 
q 
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Then, if F(q) stands for the value of some property defined for the 

packings, its mean value is 

(F5 = S w(q) F(q) 
q 

In particular, mean values of powers of the jamming diameters ((aq) n) a r e  

defined this way, and the mean covering fraction for the random packings 

becomes 

( ~ ) = [NzcD/2/ZDF(1 + 0/2) •D] ((aq) D ) (2.1) 

The set of weights w(q) will depend on the method of preparation of the 

D-sphere packings. The next section provides a specific family of such 

methods. 

3. M O D E L  

Our generation procedure begins by placing the desired number N of 

points randomly and with a uniform distribution within the periodic unit 

cell g2 o. The N points are assigned initial velocities whose components are 

independently distributed at random between - 1  and + 1. In the absence 

of subsequent collisions each of these N points would continue to move at 

its initial velocity along a straight line that threads through an infinite 

sequence of image cells. 

At the outset, time t = 0, the points are infinitesimal. However, they 

begin to grow at a common rate into elastic D-spheres with diameters 

given for t ~> 0 by some function a(t). We require that a(0) = 0 and that a(t) 

be continuous nondecreasing function with a ( t ) ~  + oo for t ~ + oo. As a 

result of the particle "growth," collisions become possible for positive 

times, and will increase in frequency as a(t) increases. 

The intention is to sample initial configurations and velocities statisti- 

cally by generating many starting points and using a common a(t). We 

permit time to progress in any realization until the system jams up, at 

which point the collision rate in principle must diverge. The final packing 

achieved obviously depends on the specific combination of initial con- 

figuration of the N points, their initial velocities, and the nature of the 

time-dependent collision diameter a(t). After averaging over the initial 

conditions, the weights w(q) with which the distinguishable packings q are 

sampled still depend on a(t). 

The conventional collision dynamics of elastic D-spheres with constant 

diameters conserves kinetic energy. However, that is not the case when 

diameters change with time. The collision dynamics now must be altered in 
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a way that is indicated for each pair encounter by Fig. 1. Suppose particles 

numbered 1 and 2 for convenience have respective velocities vl and v2 just 

before collision. As shown in Fig. 1, these velocities can be resolved into 

components parallel (p) and transverse (t) to the line of centers: 

v~ = v~)  + v~'~ 

V2 ~--- v(2P) Ar V (t) 

w h e r e  v l P ) . v l ~ ) - - 0  a n d  vl t). ( r 2 - r l ) = 0 ,  i =  1, 2. The transverse velocity 

components are unchanged by collision, whereas the parallel components 

are exchanged and modified in magnitude by an additive h. If v* and v* 

are the velocities just after impact (occurring at t~), then 

V~ = I-V(2 p) "4- hU12 3 + V~ t) 

(3.1) 
v~ = [v~p~+ hu2~] + v~' 

where u12 is the unit vector: 

u12 = (rl - r2)/irl - r2t = -1121 (3.2) 

If 2h exceeds the diameter growth rate a'(tc), then collisions occur at 

discrete isolated times. For  results reported in Section 4 we take 

h = a ' ( t c )  

The difference in kinetic energies for the pair after and before the collision 

is proportional to 

�89 + Iv*l 2 - Iv,I 2 - Iv212) 

- h t ,~p> - ,~p)~  + h z (3.3) - -  "~---[ "2 I"i1121 

V2 

Fig. 1. Pair collision dynamics for growing /)-spheres. Velocities are resolved into com- 
ponents parallel and transverse to the line of centers. Equations (3.1) and (3.2) specify how 
these components change upon impact. 
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The existence of the collision requires 

(v(P)-- v(P)~ �9 > 0  
" 1  " 2  ] U21 

Consequently, the difference in Eq. (3.3) is strictly positive, since h > 0 .  

Hence, total kinetic energy in the system increases with each collision. 

The work described below is restricted to the case D = 2, i.e., rigid 

disks in the plane. Furthermore, the diameter growth rate is taken to be 

constant: 

a(t)=aot ( ao>0 )  (3.4) 

so that jamming always occurs at a finite time. The sampling weights w(q) 
for the jammed disk packings depend on the a0 choice. As a general rule 

(at least for large N), jamming occurs in an irregular structure if ao is large 

compared to the mean initial particle speed. For  very small ao, however, 

the more extended collision dynamics in principle permits the system to 

rearrange into a more nearly regular crystalline packing. Indeed, the limit 

a o --* 0+  should result in achieving the packing with area x with high 

probability. The sampling weights w(q) thus will depend on ao in such a 

) ~ ~ i r i i ~ i i ~ i/i �84 i~ ~~ ~, .... ii 'iL!i 

!!!!i i!iiiiiii i!i!iiiii i ii!i!i! !ii!iiiii!ili iii iii iii! iiii!!iii!iiiii!i!i!ii i! !!i 
ii!l !i !!ii!ii!i!ii! ! i i i i ill iiii! iiiii i !i! ii! i! iiiii if!i! i i!! iiiiiiiii!iii!ii ii!ll ii 

Fig. 2. An initial random configuration of 2000 points. 
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way that the mean covered area fraction (~ ) ,  Eq. (2.1), will be a mono- 

tonically increasing function of ao. 

For the results reported in the next section, 

ao = 3.2 

This value of ao has been chosen by the following procedure. For 

2000 disks, we doubled ao five times starting with a o = 0.1: with a o -3 .2 ,  

irregular packings resulted from any initial random configuration we tried, 

while with ao=0.1, 0.2, 0.4, 0.8, and 1.6, irregular packings were not 

generated or were generated seldom. 

The series of Figs. 2-5 represents four snapshots of 2000 disks expand- 

ing with speed a0 = 3.2; these are qualitatively typical of the system evolu- 

tion under these growth conditions. In all of our rigid-disk packing calcula- 

tions we have taken the primitive cell 02 to be a square (Lx = L y ) .  This 

choice excludes the occurrence of a perfect triangular lattice, the maximum 

density packing arrangement for disks. However for some choices of the 

integer N, specifically those of the form 

N = / ' l l / 7  2 

Fig. 3. Depiction of 2000 disks at t = 2.9576 after 2 x 104 pairwise collisions (20 impacts per 

disk). The covering fraction is ~ = 0.5628. The starting configuration is shown in Figure 2. 
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Fig. 4. Depiction of 2000 disks at t = 3.3901 after 2 x 105 pairwise collisions (200 impacts 
per disk). The covering fraction is ~=0.7394. This shows a continuation initiated in 
Figs. 2 and 3. 

where the ratio of integer factors nl and n 2 closely approximates the 

irrational value 

nl /n2 ~_ 31/2/2 

a slightly strained version of the triangular lattice can be fitted into f22 with 

its principal directions aligned with the sides of g22. Since our primary 

interest concerns irregular disk packings and our choice of ao would 

discriminate against the regular lattice anyway, the square shape chosen 

for ~2 is reasonable. 

Collision rates increase without bound as the jammed packing limit is 

approached. This results, first, from the diminishing mean distance that 

particles must travel between successive collisions. Second, it has been 

pointed out that kinetic energy (hence the particle mean speed) increases 

for elastic collisions with growing disks. For practical reasons we set all 

particle velocities to zero repeatedly during late stages of the dynamics to 

alleviate (but not eliminate) the collision rate divergence problem. This 
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Fig. 5. Depiction of 2000 disks at t = 3.6733 after 2 x 10 6 pairwise collisions (2000 impacts 
per disk). The covering fraction is ~ = 0.8681. This shows a continuation initiated in Figs. 2-4. 

action is utilized only after the disks have become so nearly jammed that 

virtually no influence on the final packing distribution is expected to occur. 

Numerically, we identify the jammed state as having occurred when 

the seven significant digits of the disk diameter stabilize despite continuing 

collisions. Note that the computations are carried out with double preci- 

sion, i.e., with precision at least 10-~4. While further lengthy computation 

with even higher precision could reduce this remaining looseness some- 

what, we believe that nothing new would be learned thereby. 

As an alternative to our method of producing jammed packings, one 

might have utilized particles of fixed size and reduced the system area. Two 

variants would be possible: (a) impenetrable boundaries, and (b) periodic 

boundary conditions. The former has the undesirable property of produc- 

ing an anomalous boundary region with properties that presumably differ 

from those of bulk packings. The latter requires decision about momentum 

discontinuity to be required when a periodic cell boundary is crossed. Both 

variants might be implemented with particle accelerations between colli- 

sions in the spirit of "constant pressure molecular dynamics" as introduced 

by Andersen. ~2) Our simple particle growth method avoids these issues. 
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4. DISK PACKING RESULTS 

As a simple introduction to the complex behavior with larger numbers 

of disks, we first consider the specific case N = 27. With a square primitive 

cell and periodic boundary conditions, only two fundamentally distinct 

families of packings occur. These are illustrated in Figs. 6 and 7. Aside from 

the possibility of overall free translation and rotations by integer multiples 

of 90 ~ these types of patterns have been repeatedly generated from the 

random initial conditions. 

The configuration presented in Fig. 6 is completely jammed. Every 

disk is tightly constrained by at least three neighbors with which it is in 

contact. No continuous rearrangement of the pattern is possible without 

violating the disk nonoverlap condition. Consequently, the limiting reduced 

dimension of the disconnected manifold for this completely jammed 

packing is 2. 

The disk packing exhibited in Fig. 7 possesses a distinctive charac- 

teristic, namely the presence of a "rattler" disk. Twenty-six of the disks are 

tightly jammed against one another, and can only translate as a rigid 

whole, thanks to the periodic boundary conditions. The 27th disk, as the 

figure clearly shows, is free to move Within a rigid cage of eight jammed 

neighbors. As a result, the limiting reduced dimension of this packing's 

disconnected manifold is 4. 

. . . . . . . . . . .  S 

: 5 7 

6 9 

Fig. 6. Completely jammed random packing formed from 27 disks in a square domain, with 

periodic boundary conditions. The covering fraction is r = 0.83007. 
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Fig. 7. Random packing for 27 disks showing the occurrence of an unjammed rattler. 
Periodic boundary conditions apply to the square domain used. The covering fraction 
is ~ = 0.82974. 

Notice that the jammed subset of 26 disks in Fig. 7 appears to possess 

a reflection symmetry parallel to the diagonals of the square primitive cell 

~2. No such symmetry applies to Fig. 6. 

While numerical experiments with relatively small systems suffice to 

show the existence of rattlers, other attributes of random disk packings 

become clear only for large N. Some of these attributes are illustrated in 

Fig. 8, the final configuration of the 2000-disk experiment whose early 

stages were shown in Figs. 2-5. To aid visualization, all disks have been 

shaded except for four rattlers. 

The predominant texture of the configuration shown in Fig. 8 can be 

described as polycrystalline. Individual crystalline domains are separated 

by grain boundaries across which crystal orientation changes. These 

grain boundaries exhibit a high incidence of pentagonal holes, i.e., gaps 

surrounded by five disks. Note that the four rattlers all reside within 

grain boundaries. 

Figure 8 also reveals the presence of linear shear fractures that run 

across crystal grains. These run parallel to the primary crystallographic 

directions of the affected grains. They seem to appear only in the final 

stages of the numerical experiment, producing sequences of virtually identi- 

cal quadrilateral holes. It is important to realize that intragrain transla- 
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tional long-range order is disrupted by these shear fracture lines, whereas 

orientational long-range order (directions of nearest-neighbor pairs) is 

preserved. This observation relates to the existence of "hexatic" phases of 

two-dimensional systems with just this property: long-range order in the 

orientational, but not translational, degrees of freedom. (2~) However, the 

accepted description of hexatic phases involves unbonded dislocations, not 

linear shear fractures. (21~ Whether or not linear shear fractures could be a 

significant structural feature in real hexatic systems must remain an open 

question for now. 

A monovacancy is obvious near the center of Fig. 8. That only one 

arises in a 2000-disk packing suggests that they have low occurrence 

probability under the packing formation conditions used. 

In order to analyze more deeply the local geometric properties of the 

random packings, we have found it instructive to classify disks according 

to their values of a dimensionless "jamming" parameter ?: 

7 = S / 3 a  (4.1) 

Fig. 8. Depiction of 2000 disks at t = 3.6840 after 21 x 106 pairwise collisions (21,000 impacts 

per disk). The covering fraction is ~ =0.8732. Significant rattlers are not  shaded. This is the 

final configuration in the series whose beginning is in Fig. 2. Notice the monovacancy near the 

center of the pattern, whose precursor was clear in Fig. 5. 
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Here S is the sum of the distances to the three closest neighbors of the disk 

under consideration, and a is the final common value of the disks' 

diameters. Figure 9 reproduces the configuration shown in Figure 8, but 

with four 7 ranges visually distinguished. The four rattlers continue to 

stand out with large values of 7/> 10 1. The surprising result is that a sub- 

stantial fraction of the disks seem to enjoy a small, but distinguishably 

positive, motional freedom, with jamming parameter values in the range 

10-7~< T ~< 10-1. These slightly loose particles are not randomly arranged 

over the pattern, but, like the obvious rattlers, tend to accumulate at grain 

boundaries. This observation suggests that the limiting dimension of ~(a)  

for most random packings is of order N. 

Figure 10 presents a magnified view of the rattler and its seven 

neighbors that has been highlighted with a small square in Fig. 9. 

Construction and comparison of many jammed structures, sampling 

initial conditions uniformly, is necessary to assign significance to the 

properties discussed thus far. With this in mind, we have generated several 

other random packings of 2000 disks. Figure 11 shows the final configura- 

Q) T < 10 -7 (1786 disks) 

@ 10 4 <_ T < 10 I (115 disks) 

Q 10-7 < T < 10-4 (95 disks) 

@ 10 I < y (4 disks) 

Fig. 9. The configuration shown in Fig. 8 with disks classified according to the "jamming" 
defined in Eq. (4.1). 



Fig. 10. A magnified fragment near the center of Fig. 9 (it is marked with a square in Fig. 9). 

The magnification clearly reveals a rattler. 

O Y < 10 7 (1823 disks) Q 10-7 < 7 < 10-4 (86 disks) 

10-4 -< 7 < 10 -I (91 disks) @ 10 -I -< y (0 disks) 

Fig. 11. Another jammed configuration of 2000 disks started with a different random 

configuration. It jammed at t = 3.7013 after 23 x 106 pairwise collisions (23,000 impacts per 

disk). The covering fraction is r = 0.8814. 

822/60/5-6-4 
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tion of one of these other numerical experiments, with 7 classification of 

disks. Our results have consistently shown polycrystalline textures, with 

frequent linear shear fractures. The relatively scarce monovacancies and 

loose (7/> 10-1) rattlers may or may not occur in any particular instance, 

as would be expected statistically, but in any case their concentrations 

remain quite low. 

5. D I S C U S S I O N  

The principal conclusion to be drawn from the present work is that 

our concurrent construction procedure produces random disk packings 

with several surprising characteristics that are unlikely to emerge from 

standard sequential construction procedures. These characteristics include 

the presence of rattlers, vacancies, and linear shear fractures. In particular, 

we have found that obvious rattler disks tend to concentrate at grain boun- 

daries. Although it is possible for a sequential method to produce packings 

with grain boundaries (specifically by starting with an irregular seed cluster 

of a few disks), it seems unlikely that an isotropic distribution of such 

boundaries would arise in an extended packing created this way. 

Several nontrivial extensions of our study deserve future consideration. 

One would involve mistures of two or more species of disks with an 

arbitrary symmetric matrix of collision distances aij(t) for species i and j. 

This would be particularly fascinating in light of recent advocacy of two- 

disk-size models for quasicrystalline order in two dimensions, u~'3~) Another 

direction for generalization would be to consider more elaborate particle 

shapes, such as hard ellipses,/3~ for which random packings will doubtless 

display interesting patterns of local particle orientational order. 

We have carried out a few exploratory calculations designed to 

observe the effect of changing ao in Eq. (3.4) on packing properties. As 

mentioned earlier, we expect that the slower the growth rate, the less defec- 

tive should the packings tend to be. Indeed, this is the trend observed. The 

most irregular packings were produced with the largest growth rate, 

ao = 1000, and have covering fraction ~ approximately 0.85; the most 

regular packings were achieved with the slowest growth rate, ao=0.001, 

and have covering r just over 0.90 (maximum = 0.9069). Further computa- 

tion would be required to yield precise results for the way that ao affects 

the mean and variance of r 

The most obvious direction for extension of the present study is 

toward packing of rigid spheres in three dimensions. A natural question is 

whether "rattlers" would continue to be found inhabiting cages of 

neighbors comprising no fewer than 13 spheres. Some preliminary calcula- 

tions have been performed, which seem to answer that question in the 
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affirmative: not only do the rattlers appear in random sphere packings, but 

they occur apparently with higher probability than in the corresponding 

disk case. 

Finally, we express the hope that the results of our numerical 

experiments will stimulate rigorous mathematical analysis of the properties 

of random disk and sphere packings. 

APPENDIX  A. A L G O R I T H M  

Let state of a sphere i at time t be the vector si(t) = (ri(t), v~(t)), where 

r~(t) is the center position vector of sphere i, and vi(t) is the velocity vector. 

The global state S(t) of the system at time t is the set sl(t), s2(t),..., SN(t ). 
A "naive" serial algorithm advances the global state S(t) from event to 

event, where an event is either a collision of two spheres or a boundary 

crossing by a center of a sphere. All N states s~(t), s2(t) . . . . .  SN(t ) are 

examined and updated at times to ~< tl ~< t2 ~< . . . ,  where to is the initialization 

time and t~+~ is the nearest next event time seen at time ti. The naive 

scheme is inefficient for large N because (a) the same event is repeatedly 

scheduled an order of N times until it occurs, and (b) at a typical cycle, 

most spheres are not participating in events; still, they are examined by the 

algorithm as potential participants. 

Aside from problems (a) and (b), there exists the problem (c) of 

finding an inexpensive method of determining the nearest collision for a 

chosen sphere. A straightforward method is to compare the chosen sphere 

with all N - 1  others. The standard improvement in this method is the 

division of the region OD into an order of N rectangular sectors co(k), 

(2D = U CO(k), CO (k) n CO(l) = ~ ,  if k r l 
k 

Only spheres in the neighboring sectors have to be checked to determine 

the immediate next collision. For each sector r (k), a membership list of 

spheres whose centers belong to co(k) is maintained. The overhead of the 

method results from examining additional boundary crossing events when 

spheres change sector membership. Despite of the overhead, the method 

reduces the work from O(N) to O(1) per one collision scheduled. 

A natural idea for improvement in (a) and (b) is to postpone 

examining and updating a sphere state until the event actually occurs. 

Implementing this idea does not appear as easy as it might seem. As the 

simulation progresses, a scheduled collision of a given sphere may require 

rescheduling. The need for such rescheduling and the desire not to lose 

information about already planned collisions led in ref. 1 to a complicated 

data structure and update scheme called "time-table" in ref. 9. Observe 



578 Lubachevsky and Stillinger 

that, with all its inefficiency, the naive scheme has a very attractive double- 

buffering data structure. The structure consists of only two copies of the 

global state vector S, the old and the new, so that the new vector is 

computed on the basis of the old one and, in turn, becomes the old one 

during the next cycle. 

We use a different algorithm proposed in ref. 18. The attraction of this 

algorithm is that it utilizes a simple and easy to handle double-buffering 

data structure, while avoiding problems (a) and (b). Problem (c) is han- 

dled using the standard technique of sectoring. In most cases the algorithm 

examines and processes only the events whose processing is unavoidable, 

e.g., sphere collisions and boundary crossings. Sometimes, like the naive 

algorithm, it also processes events whose examining is not necessary. 

However, the fraction of such overhead events is small and does not grow 

with N, while the speedup due to simplicity of data handling is substantial. 

The following is an outline of the algorithm. The basic data unit in the 

algorithm is called event and has the following format 

event = (time, state, partner) 

where time is the time to which state of a sphere corresponds. Note that 

state is the new state of the sphere immediately after the event, e.g., if the 

sphere has experienced a collision at time, the velocity-coordinate of the 

state is the new velocity vector after the collision; partner identifies the 

other sphere, if any, involved in the event. If there is no partner in the 

event, the program assigns a special "no-value" symbol A to the partner 

coordinate. If time= +o% then the other three coordinates in the event 

have no value, i.e., state = type =partner = A. 

At any stage of simulati6n, the algorithm maintains two events for 

each sphere: an old, already processed in the past event and a new, next 

scheduled event. This information is stored in array event[l:N, 1:2], 

where, as before, N is the number of spheres of the simulated system. Let 

us agree to understand a reference like time[3, 1 ] as the time coordinate of 

element event[3, 1 ] of this array. 

Two arrays, new[l: N] and old[l: N], with elements equal to 1 or 2, 

are maintained. For sphere i, new[i] is the pointer to the new event and 

old[i] is the pointer to the old event. Thus, the new event for sphere i is 

stored at event[i, new[i]] and the old event is stored at event[i, old[i]]. 

When new[i] is updated, old[i] is updated immediately afterward, so that 

the relation new[i] + old[i] = 3 remains invariant. 

Figure 12 represents the algorithm pseudocode given in ref. 18. The 

algorithm is formulated in terms of basic functions interaction-time, jump, 

and advance (here "basic" means that the actual computations of these 

functions are not represented). The functions have the following semantics. 
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Given state1 of sphere 1 at timel and state2 of sphere 2 at time2, func- 

tion interaction_time computes the time of the next potential interaction of 

sphere 1 with sphere 2 while ignoring the presence of other sphere and 

boundaries: 

time *--interaction_time (statel, timel, state2, time2) (A.1) 

where time >>. max(timel,  time2). If interaction_time cannot find such finite 

time, e.g., when the spheres are moving away from each other, we assume 

that + Go is returned. In the actual program, interaction_time is represented 

as a subroutine; the computations of this subroutine are specified in 

Appendix B. 

initially current_time ~-- 0 and for i = 1,2,. . .N : 

new[i] ~-- 1, old[i] ~ 2, time[i,1] +--- 0, parmer[i,1] +-- A, 

state[i,1] e-- initial state of sphere i, event[i,2] ~-- event[ i , l  ] 

1. while current_time < end_time do ( 

2. current time ~-- min time [i, new[il l  ; 
- -  l < _ i < _ N  

i* +-'- an index which supplies this minimum (i.e., current_time) ; 

3. n e w [ i , ]  ~-- old[i,] ; old[i ,]  ~-- 3 - n e w [ i , ]  ; 

4. P ~-- mill Pi.j, where A ( i , )  = {j [ I <)<N, j~:i , ,  t ime[j ,new[j]]  > Pi , j }  ; 
j ~ A(i.) 

if P < +co  then j ,  ~-- an index which supplies this minimum (i.e., P) ; 

5. Q ~ nan Qi.l:; 
l<_k<_K 

i f Q  < +co  then k* 4-- an index which supplies this minimum (i.e., Q) ; 

6. R +-- nan (P ,  Q} ; t ime[i , ,  new[i ,]]  *-- R ;  

7. i f R  < + e ~ t h e n {  

8. statel <--- advance (s tate[i , ,  o ld[ i , ] ] ,  t ime[i , ,  o ld[ i , ]] ,  R) ; 

9. i f Q  < P t h e n {  

10. s t a t e [ i , , n e w [ i , ] ]  ~-- j u m p ( s t a t e l ,  k , ) ;  

11. partner [ i , ,  new[i ,]]  ~-- A ; 

}/"  end Q < P close '7 

12. e lse{  / " e a s e Q  > P ' 7  

13. t / m e f j , ,  n e w [ j , ] ]  *,--- R ; 

14. state2 ~ advance ( s ta te[ j , ,  o l d [ j , ] ] ,  t ime[ j , ,  o l d [ j , ] ] ,  R) ; 

15. (state [ i , ,  n e w [ i , ] ] ,  state [ j , ,  n e w [ j , ] ] )  ~ jump (state l ,  state2) ; 

16. m ,  ~-- partner [ j , ,  new[ j , ] ]  ; 

17. partner [ i , ,  new[i ,]]  *-- j ,  ;partner [ j , ,  new[ j , ] ]  *-- i ,  ; 

18. if m ,  ~: A and m ,  ~ i ,  then {/"  update third party m," /  

19. state I r a , ,  n e w [ m , ] ]  *-- 

advance (s tate[m, ,  o ld[m,  ]] , t ime[m, ,  o ld[m,]] ,  t ime[m, ,  new[m,]])  ; 

20. partner [ m , ,  new[m,]]  *-- A ;  

} /"  end update third party '7 

} f '  end Q >- P close "/ 

} / " e n d R  < + o o c l o s e " /  

} /" end while loop '7 

Fig. 12. The s imula t ion  a lgor i thm.  
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The change of the sphere velocities at the moment of collision, dis- 

cussed in Section 3, is represented in the algorithm by function jump, also 

implemented as a subroutine. Given state 1 and state2 of colliding spheres 1 

and 2, subroutine jump returns new_state 1 and new_state2 of these spheres 

immediately after the interaction: 

(new_state l, new-state2) *--jump (state1, state2) 

Functions interaction_time and jump, as described, depend on two sphere 

arguments. The algorithm pseudocode in Fig. 12 also employs one-argu- 

ment variants of interaction_time and jump to express boundary crossing. 

Thus, if k is an index for the set of K boundaries (which includes the 

exterior boundaries of (2 D as well as interior boundaries which define the 

sectors), then sequences 

time ~- interaction_time (state1, time l, k) (A.2) 

and 

new_state ,,--jump (state, k) (A.3) 

show the invocation formats of these one-sphere functions. In (A.2), time 

is the nearest time of crossing boundary k. The jump in (A.3) is the identity 

map when k is an internal boundary, because neither position nor velocity 

of a sphere experiences a jump at the instance of crossing internal 

boundary. When k is an external boundary, one of the coordinates of the 

position vector experiences a jump: the sphere disappears at a face of (2 D 

and immediately reappears at the opposite face. 

Given stateO of a sphere at timeO and a value timel >~ timeO, function 

advance computes state 1 this sphere would have at time l ignoring possible 

collisions with the other spheres or boundary crossings on the interval 

[ timeO, time l ]: 

state l *--advance (stateO, timeO, time l) 

In our problem, advance has the obvious form of advancement along a 

straight line parallel to velocityO starting from positionO at timeO. 

In Fig. 12, /" and " /ma rk  the beginning and the end of a comment, 

and the minimum over an empty set of values is assumed to be + ~ .  The 

following short-hand notations are used: 

P ~ =- interaction_time (state[i, old[i] ], time[i, old[i] ], 

state[j, o ld[ j]] ,  time[j, o ld[ j ] ] )  
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where 1 ~< i, j ~< N and 

Q ~k - interaction_time(state[i, old [i] ], time[i, old[i] ], k) 

where 1 <~i<~N and 1 <~k<~K. 
The main cycle in Fig. 12 consists essentially of two steps: (1) selecting 

the next sphere i .  to process its event (line 2), (2) processing the event (the 

rest of the cycle). 

Processing the event means scheduling next events for the chosen 

sphere and the other involved spheres, if any. P and Q are the nearest next 

interaction times. There are two main cases in such scheduling, depending 

on the type of the future event: 

(a) Q < P, when the scheduled interaction involves only one sphere 

i .  (lines 8, 10, and 11). 

(b) Q~>P, when the scheduled interaction involves i, ,  a second 

party j .  (lines 8 and 13-17), and may involve a third party m. ,  the 

previous partner, if any, of j .  (lines 19 and 20). 

The pseudocode in Fig. 12 does not specify the way minimizations in 

lines 2, 4, and 5 are implemented. A straightforward method to find the 

minimum of time[i, new[ill for i ranging from 1 to N in line 2 requires 

O(N) operations per event. To reduce the cost, the algorithm instead 

organizes values time[i, new[i]] into an implicit heap structure. (15) Two 

pointer arrays pht[l:N] and pth[l:N] are maintained, so that 

time[pht [m ], new [pht [m ] ] ] is the value which is implicitly located at the 

mth position of the imaginary heap array and pth is the inverse map for 

pht, i.e., pth[pht[m]]=m for all m. In particular, time[pht[1], 
new[pht[1]]] corresponds to the heap tree root, i.e., the minimum value, 

so that line 2 can be simply rewritten as 

i. ~ pht[1], current_time ~- time[i., new[i.]] 

This method requires updating the heap structure (arrays pht and pth) each 

time a value of time[i, new[i]] is changed in other sections of the algo- 

rithm. Including this updating, the total cost of finding the minimum next 

event time is O(log N) operations per one event. 

The main difficulty in the direct method for minimization in lines 4 

and 5 is the need to compute the N - 1  values Pi.j  in line 4 and the K 

values Qi.k in line 5. The O(N+ K) complexity burden of these computa- 

tions reduces to O(1) if sectorization is used, as described above. For exam- 

ple, when D = 2 only those P~.j are computed for which the center of disk 

j belongs to one of the nine sectors neighboring the one whose member is 

i . .  This small number of P~.j is subject to minimization in line 4. 
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The last but not the least comment in this section concerns the actual 

computational speed achieved by this algorithm. On a VAX8550 computer 

whose accepted value of speed is about 1 M F L O P  (million floating- 

point instructions per second; for comparison, the accepted value of speed 

of CRAY-1 is more than 20MFLOPs) ,  the FORTRAN-implemented 

algorithm in Fig. 12 processes 150-450 pairwise collisions per second, 

depending on the disk density. Processing is faster, the higher the density. 

It takes less than 2h r  of CPU time of VAX8550 to reach the state 

presented in Fig. 5 starting from the initial configuration in Fig. 2. 

A P P E N D I X  B. 

We have 

where 

A C O N C R E T E  E X P R E S S I O N  F O R  

A S S I G N M E N T  ( A . 1 )  

time ~ t ,  + t 

t ,  = max( t imel ,  time2) 

and 

r E - B - -  (B 2 - AC)t /2] /A 
t =  

+ oo otherwise, i.e., if 

with 

if ( B < ~ O o r A < O ) a n d B 2 - A C > ~ O  

( B > 0  and A/>0) or B 2 - A C < 0  

A = l v l 2 - a o  2, B = r . v - a o a ( t , )  , C = l r l 2 - a ( t , )  2 

r = r2o - -  rio , v = V 2 - -  V I 

r lo=r l  + v l ( t , - - t i m e l ) ,  r 2 o = r 2 + v 2 ( t , - - t i m e 2  ) 

The value t is the least positive real solution of the equation 

A t 2 + 2 B t + C = O ,  which is derived from I r + v t l 2 = [ a ( t , ) + a o t ]  2. The 

latter represents the condition that the distance between the centers of 

spheres 1 and 2 equals the current diameter. 
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