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SUMMARY

This paper explores the geometrical relationships
between the kernel and nucleolus of an n-person game in
characteristic-function form and a number of other cooper-
ative solution concepts, most notably the core. As a
result, many technical properties of all these solutions
are clarified, and some new light is shed on their intu-
itive interpretations. The main technique that unifies
the investigation is the study of the behavior of the

strong e-core.as a function of ¢.

In games that are '"zero-monotonic" (including all
superadditive games), the kernel coincides with the pre-
kernel, which is analytically simpler and can be described
as a multi-bilateral equilibrium in which every pair of
players bisects the difference between the outcomes that
they, with the support of their best allies, could sep-
arately impose on each other. One of the central results
of this paper states that the part of the pre-kernel that
falls within the core, or within any strong e¢-core, depends
only on the geometrical shape of that convex polyhedron.
There is an analogous, but slightly more complicated state-
ment for the kernel.

The smgllest nonempty strong e-core ié called the

least-core; it is contained in all other strong e-cores

and it always includes at least one pre-kernel point. By

letting ¢ increase, the entire pre-kernel is eventually



included, but the strong e-core may meanwhile acquire addi-
tional faces and become hard to keep track of. However,
both the kernel and the pre-kernel can be proved to lie

within the simplex of reasonable outcomes, which inter-

locks with the simplex of imputations in a curious way.

A formula is given for the critical value of ¢ at which

the strong e-core just covers the intersection of these

two simplices, and hence surely includes the kernel and pre-
kernel. With the aid of this critical—;alue, a notion of
""quasi-zero-monotonicity" is developed that expands the
class of games in which the pre-kernel can be used to
determine the kernel.

The nucleolus is a special point in the kernel, and
for zero-monotonic games it lies in the least-core as
well. By letting e decrease--even beyond the point where
the strong e-core vanishes--a finite nested sequence of
sets can be constructed that leads to the nucleolus.

This construction yields a very elementary proof of exis-
tence and uniqueness, and also provides a rationale for
the nucleolus as a fair division point. An example shows,
rather surprisingly, that the location of the nucleolus
within the least-core (or core or kernel) cannot always

be predicted merely from the geometrical shapes of these

sets.
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GEOMETRIC PROPERTIES OF THE KERNEL,
NUCLEOLUS, AND RELATED SOLUTION CONCEPTS

M. Maschler, B. Peleg, and L. S. Shapley

1. INTRODUCTION

The kernel and nucleolus of a cooperative game with
side payments were originally regarded as auxiliary solu-
tion concepts whose main task was to illuminate the pro-
perties of the bargaining set ml(i). The latter is a
solution concept which derives its justification from
intuitive considerations, whereas the intuitive meaning
of the kernel and nucleolus has been less clear; in fact,
it is hard to justify their definitions without becoming
involved with the obscure notion of "interpersonal com-
parison of utilities." ‘

Nevertheless, both the kernel and the nucleolus
possess interesting mathematical properties and refléct
in many ways the structure of the game. A well known
example is the seven-person "projective game,'" first
described by von Neumann and Morgenstern [1944], which
has an interesting kind of symmetry. In this game, the
nucleolus consists of the payogf vector at the center of
the dmputation simplex, representing equal shares for
all Ehe players. This symmetric location is a consequence
of the fact that under the group of permutations that

leave the game invariant, all players belong to a single



orbit. The kernel yields additional information in this
case: it consists of seven radiating line segments that
connect the nucleolus at the center with the seven points
in the boundary that make up the '"main simple solution
of von Neumann and Morgenstern (see Maschler & Peleg
[1967]) This reflects the fact that the trio of players
who are favored along any one of these rays form a mini-
mal winning coalition, playing a role in the structure of
the game exactly symmetric to that played by the trio
favored along any other one of the rajs. Thus, although
the mathematical definitions of the kernel and the nucle-
olus are not particularly intuitive, their sensitivity to
the structure of the game makes them appealing and worthy
of further study.

It is well known that whenever the core of the game
is not empty it contains the nucleolus. Since the nucle-
olus is also in the kernel, this means that the kernel
and the core always have at least one point in common,
provided of course that the core is not empty. The core
itself is a concept that rests on strong intuitive grounds;
specifically, it is the set of outcomes that no coalition
can improve upon. If one could characterize in geometric
terms the exact location of the nucleolus and of the
relevant portion of the kernel within the core, then one
would hope thereby to throw more light on the intuitive

meaning of these solution concepts. This task is taken



up in the present paper. We find such a geometric charac-
terization for the relevant part of the kernel, i.e., the
portion that is 'visible'" if we regard the core as a kind
of "window'" on the space of imputations, and we generalize
this characterization from cores to strong e-cores. The
advantage is that the strong e-cores always exist for
sufficiently large ¢ even though the core itself--i.e.,
the strong O-core--may be empty. Moreover, if ¢ is large
enough the strong e-core 'window'" will expose the entire
kernel. (Sge Sec. 3.)

Roughly speaking, an outcome in the kernel repre-
sents the midpoint of a certain bargaining range for
eaéh pair of players. Each endpoint of this range is a
point in the boundary of the core (or strong e-core for

fixed ¢), representing a '"maximum"

demand made by one
player beyond which the other player can find a coalition
to support him in resisting any greater demand. An
intuitive interpretation of the kernel is thereby provided
that does not depend upon interpersonal utility compari-
sons. (See Sec. 5.)

A somewhat surprising but straightforward outcome
of this midpoint property is that if two games have the
same imputation space, and if the same geometrical set
of imputations happens to be a strong ;-core of one game

and a strong e'-core of the other game, for some ¢ and ¢',

then the 'visible'" portions of the kernels of the two



games must coincide. 1In particular, the portion of the
kernel contained within the core of a game is completely
determined by the geometrical.shape and location of the
core. (See Theorems 3.7 and 3.8 and Corollaries 3.10
and 3.11.)

The situation for the nucleolus is more complicated.
We shoﬁ in Sec. 6 how it can be characterized as a ''lexi-
cographic center," determined geometrically by certain
hyperplanes, including those that define the core; yet
its precise location depends on more than the shape of
the core. In fact, an example is given in Sec. 6 of
games having the same core but a whole range of different
nucleoli. The general question of which points in a
given convex polyhedron can be the nucleolus of a game

having that polyhedron for its core is not settled.

In developing and exploiting our geometric approach,

we were led to consider several auxiliary solution con-

[—cepts in addition to the strong e-core and the basic idea

of an imputation. Specifically, we consider the pre-kernel,

1

[ the least-core, and the notion of reasonable outcome.

‘A number of interesting intérsolutionéi_relafibnships

are established in Secs. 2 and 3. In particular, we
determine explicitly several 'critical values'" of ¢, at
which the strong e¢-core just barely contains one of the
other solutions. In Sec. 4 we then employ these results,

as well as the theory of balanced and totally balanced



games, in a program of enlarging the class of games for

" which the pre-kernel (which has a simpler definition

than the kernel) can be shown equivalent to the kernel;

this section, which is rather technical, may be omitted

at first reading, as what follows does not depend on it.”
Section 5 is a brief discussion of the interpreta-

tion of the kernel as a fair division scheme for multi-

lateral bargaining. Section 6 then applies our geometric

methods to obtain a simplified approach to the theory of

the nucleolus. A set temporarily called the 'lexicographic

center'" of the game is defined. Elementary arguments show

easily (1) that this set is non-empty, (2) that it is

contained in any strong e-core that is not empty, and

(3) that it consists of precisely one point. We then

show that the lexicographic center coincides with the

nucleolus, as traditionally defined, and describe an

example of a 4-person game in which the location of the

nucleolus is not determined completely by the geometri--

cal shape of the core. Finally, in Section 7, we use the

new definition as the basis for an intuitive rationale.

for the nucleolus as a fair division scheme.



2. THE CORE AND ITS RELATIVES

The core and its immediate generalizations are among
the simplest and most intuitive of the cooperative solution
concepts for multiperson games. Their definitions are plau-
sible and not toe sophisticated, and, if we restrict our-
selves (as we shall) to games with side payments, they
consist geometrically of nothing more recondite than closed
convex polyhedra in the space of the payoff vectors. For
these reasons, the core concept is often regarded as basic
to the theory, and other solutions gain some support if

it can be shown that they are in some way related to it.

2.1. Definitions

Let us recall some basic definitions. We consider an
n-person cooperative game with side payments, denoted
I = (N; v), where N = {1, 2, ..., n} represents the set of

players and v is the characteristic function. We assume

that v is a real-valued function from the coalitions (sub-

sets of N) to the real numbers, satisfying

(2.1) v(N) 2 '21 v({i}) and v(¢) = 0.
_ i=

The first condition in (2.1) is needed in order to guar-
antee the existence of imputations (see (2.4)); in the
interesting cases the inequality is strict. As to the
second condition, we keep it because it is so often con-

venient in many parts of game theory.



Given a game I' = (N; v), a vector x = (xl, Xgy «oes xn)

of real numbers, and a coalition S, we define

z Xg ifs + ¢
ies
(2.2) x(S) =
0 ifs=¢
and
(2.3) e(S, x) = v(S) - x(S).

The expression e(S, x) is called the excess of S at x (in
the game I'). It represents the gain (or loss, if it is
negative) to the coalition S if its members depart from
an agreement that yields x in order to form their own co-
alition.

An imputation for I' = (N; v) is a vector x = (xl,

Xgs +os xn) that satisfies

(2.4) x(N) = v(N) and . Xy 2 ;({i}), all i € N.
Equivalently, in terms of the excess,

(2.5) e(N, x) =0 and e({i}, x) < 0, alli € N.

The set of all imputations for the game I' will be denoted



by X(I'). If the inequality in (2.1) is strict, x(') is a
simplex of n - 1 dimensions. We shall have occasion also

to refer to "extended" imputations, i.e., vectors x satisfy-
ing x(N) = v(N) without necessarily being elements of X();

these are called pre-imputations and comprise an (n-1)-di-

mensional affine set that we shall denote by Z*(I').

DEFINITION 2.1. The core of the game I' = (N; v), de-

noted &(I'), is the set of all imputations that give rise

only to non-positive excesses:

(2.6) e(r) =fxex): e(S, x) 0 for all S c N}.

Equivalently,

(2.7) e@) ={x€ x*x(I): e(S, x) < 0 for all S c N}.

DEFINITION 2.2. Let ¢ be a real number. The strong

.e-core of the game I' = (N; v), denoted GE(P), is the set
of all pre-imputations that give rise only to excesses not

greater than ¢, for all coalitions other than ¢ and N:
(2.8) céGP) ={x€x2*¥(): e(S, x) g¢ for all S # N, ¢é}.

Clearly, GO(I‘) =c@l). Also, Ce T) o ce.(r) ife >¢',



with strict inclusion if ¢ _(T) # ¢. Obviously we have oe(F)'¥l¢

if ¢ is large enough and ce(r) = ¢ if ¢ is small enough.*

DEFINITION 2.3. The least-core of the game I' = (N; v),

denoted &2 ('), is the intersection of all nonempty strong
e-cores. Equivalently, let eO(P) be the smallest ¢ such
that ¢, () # ¢, i.e.,

(2.9) 8.0_(” = xélé}f?r) S;«;?N e(s, x);
this critical value may of course be negative. Then L) =
GGO(F)(F). In other words, the least-core is the set of
all pre-imputations that minimize the maximum excess.
The core was first studied by Gillies [1953, 1959].
It can be interpreted as the set of all payoff vectors that

_cannot be improved upon by any coalition. The strong !e=core,

———

(as well as the ''weak" ¢-core, which will not concern us her%),
was introduced by Shapley and Shubik [1963, 1966]. It can

be interpreted as the set of efficient payoff vectors that
cannot be improved upon by any coalition if forming a co-
alition entails a '"cost'" of ¢ (or a "bonus" of -¢, if ¢ is

negative). The least-core, treated formally for the first

time in this paper, combines these ideas in such a way as
to ensure existence and uniqueness. If the core of a game

, is not empty (i.e., if €y S 0), then the least-core is a

*We are assuming here, and elsewhere whenever neces-
sary, that n > 1. R
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lcentrally-located locus (or point) within the core. 1If

the core is empty (i.e., if €g > 0), then the least-core
may be regarded as revealing the 'latent" position of the

core.

The'following critical value will also be of interest:

@10) ¢y = Max v - = v

—

it represents the biggest gain that any group of individuals

can ensure by forming a coalition.

LEMMA 2.4. Oe(F) D %(@{) if and only if
€ g el(r).

Proof. Immediate from (2.5) and (2.8).

2.2. Geometric Properties of the Strong e¢-Core

The strong s-cores, including the least-core and the
core itself, are compact convex polyhedra, bounded by no

more than 2" - 2 hyperplanes of the form

(2.11) Hg = {x € Z*['): =x(S) = v(S) - ¢}, S # ¢, N.
We shall write Hg for Hg. Except for the least-core, all
'nonempty strong s-cores have dimension n - 1, i.e., the dimen-

' sion of Z*(F). The dimension of £&(I') is always n - 2 or less.

|

Figure 1 shows a typical 3-person game. The heavy |

black triangle represents Z(I'). The cross-hatched region is |
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viih=v({2h) =v(sh =0,
v({l,2})= 20, V(‘h::’}): 10, V((*213}) =30,
v({1,2,3})=60.

Fig. 1-—The core and the strong € -core
of a 3-person game
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the core C. Tﬁé lightly borderéd région fé;resents the
strong e-core for e=15. The least-core £2, which is the
strong e-core for ¢ = ¢y = -5, is the horizontal line in-.
side the core--in fact it is the locus of the centers of
the inscribed circles of maximum radius.

Observe thaf although HS and Hg are parallel and are;
fin a sense,* equally far apart for different S, the shapes
fof the various polyhedra cé(r) may be quite different. In
the figure, ¢(') is a quadrilateral whereas ols(r) is a
hexagon. Indeed, whenever ¢ is large enough, all 2% - 2
of the hyperplanes (2.11) will appear in the boundary of

the strong e-core. The following lemma makes this precise.

LEMMA 2.5. Let I’ = (N; v) be an n-person

game and let So be a fixed coalition other than

¢ or N. Then there exists a number e(S_) such

that Hg nNe,(r) #¢ if and only if ¢ 2 e(S.).
o

Proof. We shall show (a) that there exists a number

e¢' such that
' ne T) # ¢
So c' ’

and (b) that for any such ¢', we have

*This would not be true in the Euclidean sense for
n > 3, since the hyperplanes in n-space defined by x(S) =
v(S) do not make equal angles with the hyperplane XZ* ().
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Hgo nen) ¢4

whenever €¢'" 2 ¢'. The lemma then follows from the fact that
the set of ¢' satisfying (a) is bounded below and closed.

(a) Choose an arbitrary pre-imputation y satisfying
(2.12) y(So) =v(s,).

For each nonnegative ¢, consider the pre-imputation ye ob-
tained from y by having the members of S, pay the amount € to
the members of N - So’ in such a way that the payers pay equal

amounts and the receivers receive equal amounts. Thus,*

N i T T8, LE1 €5,
~ o
€ -
(2.13) v; =
€ L]
yi+m, ifleN-So.
Denote

(2.14) 3¢ = {T: y*(T) 2 v(T) - ¢, T+, N
(2.15) ® ={U: y*@W) <v(@U) -¢, U# b, N:

1
Clearly, T € 3€ implies T € 3° whenever ¢' > ¢, because

any decrease in the left-hand side of the inequality in ] °

*]S] denotes the number of elements in S.
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(2.14) will be offset by the decrease from -¢ to -¢' in
the right-hand side. On the other hand, if U ¢ %°, then
U # S, by (2.12) and (2.13), and so we have

'IU-SOI luns_|

Ye'(U) -y () = (ﬁﬁ‘:‘g;T - -—ngTQ—)(e' -¢€) |

1 .
| N-So-l’ ifU> s,
2 (' -¢)
Isgl - 1
0 - -—72;—r—-, ifu SO
o

where

p__=Max (1-'rSLOI-,1-TN—_1Tor)<1.

Hence the decrease in the left-hand side in (2.15) is more

| than offset by the decrease in the right-hand side, and so,

|

jsince there are only finitely many coalitions in %°, for

if ¢ is made large enough,* U will belong to 3°. 1In fact,
! !
some sufficiently large ¢' %* 1is the empty set and so y*
' belongs to ce.(r) by (2.14), (2.8), and (2.3). On the other
' ' e
}hand, we have y® ¢ Hg by (2.12) and (2.13). This proves (a).

Oy ] ]
(b) Start with yé in Hg n céqOP) and proceed as
_ o

above, for'éﬁmé ¢'; clearly the set ue' will remain empty.
This proves (b). Q.E.D. ' B o o

*It suffices to take ¢ > (v(U) - y(U))/(1 - p). Note
that p does not depend on €.
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This lemma tells us something about the behavior of
the strong e-core of a game as € varies. 1If ¢ is veE;"I;;gZ:
the boundary of cé(r) will consist of 2™ - 2 nonempty sub-
sets* of the hyperplanes Hg, S ¥ 4, N. When ¢ becomes
smaller, some of these hyperplanes may cease to touch the
strong ¢-core, and when any one of them moves away it will
never come back again to touch cé(r) at some smaller value
of ¢e. Of course, if ¢ is small enough, all the intersec-
tions will vanish and cé(r) will become the empty set.

The proof of Lemma 2.5 yields the following important

corollary:

COROLLARY 2.6. If two games I' = (N, v)

and ' = (N, v') have nonempty strong epsilon-

cores that match, say

e (r) =ca (') # ¢,

then their smaller strong epsilon-cores will

also match, i.e.,

= '
Ge_a(r) ae._é(r ) whenever § > 0.

In particular, £&(r) = g(@').

*One can show that the set HE N ¢ _(I') is a true
"facet" of ¢_ (I') whenever ¢ > e{S), fhat is, it has
dimension n -"2. For ¢ = ¢(S) it is of lower dimension,
unless perhaps if e(S) = ¢3(I'), while of course for
e < ¢(S) it is empty.
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Proof. Suppose the conclusion is false, and assume
without loss of generalit? that y e'é;;gir) - é;;igffTS:“_
Then

y(R) 2 V(R) -¢+s for all R # 6, N,
and
y(s,) < v'i(s,) - e+ 8 for at least one S, * ¢, N

Let the players of S, pay an amount & to the players of

N - So’ as in (2.13); then the resulting y6 will satisfy
y (R) > v(R) - e, for all R # ¢, N,

and

7' (8g) < vI(S,) - "

Since, obviously, y(N) = V(N) =v'(N) = y (N), we find

that y e Ce (T) - C, (F'), a contradiction.

2.3. Monotonicitv

— ————————— . =
——

[/ﬂ;— It is apparent that the core, and most other concepts
t

reated in this paper as well, are relative invariants

under ''strategic equivalence," i.e., the addltlon of an

arbitrary additive function to the characteristic function
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of the game.* When relations among such invariant concepts
are discussed there will be no loss of generality in assum-

ing that the underlying game (N; v) is-ﬁlﬁafmalized, i.e.,

(2.16) v({i}) = 0, i=1, 2,

We shall assume this whenever convenient.
A game (N; v) is called monotonic if S D T implies

v(S) 2 v(T) for all S, T< N. It is called zero-monotonic

if the unique O-normalized game that is strategically equi-
valent to (N; v) is monotonic.** Monotonicity is obviously
not an invariant concept; in fact, it is easy to show that

any game is strategically equivalent to some monotonic game.

The property of zero-monotonicity, however, is invariant.

THEOREM 2.7. If I’ = (N; v) is zero-mono- \
tonic, then £&(T) < Z(T). |

Proof. Let x € £C(T') = Ce () (see (2.9)), and l

0 | |
suppose that x; < v({1i}). Then eogé v({i}) - x; > 0.
For every S # $ not containing i, we have ***

*Thus, if a is an additive set function, then the
core, etc. of (N; v + a) is obtained from the core, etc.,
of (N; v) by the transformation x; + x, + a({i}), all

i € N. We also have invariance under multiplication of v
by a positive constant, but we shall stick to the original,
limited notion of strategic equivalence ‘defined by von Neumann
and Morgenstern [1944, p. 245]. o
**Note that every superadditive game, i.e., a game
(N; v) where SN T = z implies v(S) + v(T) = v(SU T),
is zero-monotonic.
*%¥Note that when S = N - {i} the first inequality
depends on the fact that ¢, is positive.
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x(S) = x(S U {i}) FHQ;_'

v(sS v {i}) - €y = X4

w

w

v(S) + v({i}) - €, = X4

> v(S) - €y

Therefore, we may take y € Z* to be just slightly smaller
than x in all coordinates except i, preserving the strict-

ness of the inequality:

y(8) > v(8) - e,

for all S ¥ ¢ not containing i. On the other hand, for

all T # N containing i, we have
y(T) > x(T) 2 v(T) - €y

Hence y belongs to ¢ (') for some ¢ < e, contradicting
the definition of £&(T). So x4 < v({i}) is impossible,

and we have x € Z(I'), as required.

2.4. Reasonable Outcomes

Another locus in the space of pre-imputations is of

fundamental interest.*

*The reasonable set was first introduced by Milnor
[1952]; it corresponds to what Luce and Raiffa [1957;
Chap. 11] dalled "Class B".
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DEFINITION 2.8. The reasonable set of a game I' = (N; v),

denoted R(I'), is the set of all pre-imputations that give
no player more than the largest amount he can contribute

to a coalition. Thus,

(2.17) RCT) ={x € 2*(T') : x; gr;,, allie N},

where

(2.18) £y = Max (v(S) - (s - {1})).

The next theorem details the intimate, interlocking
relationship that exists between the sets Z(I') and ()
(see Fig. 2).

THEOREM 2.9. For any game I' = (N; v), we

have:

(a) R() # ¢ --in fact, it is a simplex

of n - 1 dimensions unless v is additive, in

which case it is a single point coinciding with
z();
(b) RE) N %(r) # ¢--in fact, the two

sets have interior* points in common unless

either r; = v({i}) for some i € N, or x(I')

is a single point;

(¢) no vertex of R(I') is interior* to %Z(I');

*The term_''interior" is taken with respect to the

(n - 1)- dimensional space ~X*(T).
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NI/ SN

.y %

Fig.2— lllustrating the interlocking of Z and R

n=3
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(d) if r is zero-monotonic, then no vertex

of %Z(r) is interior to R(T).

Proof. (a) Let (il, ..
By (2.18) we have

s in) be any ordering of N.

(2.19) Ty, 2 v({i})

and, for k = 2,

(2.20) rik > v({il, cey ik}) - v({il, cees ik_l]).

Hence, summing, we obtain*Ml

(2.21) r(N) 2 v(N),

which shows that the conditions of (2.17), i.e., x(N) = v(N)

and X; S 14, i € N, are consistent. R(I') is therefore
nonempty, as claimed, and clearly is an (n - 1)-dimensional

simplex unless r(N) = v(N). But that would require equality

throughout (2.19) and (2.20), for all orderings of N, which
makes v additive and gives us R(I') = Z(r) = {(rl, . rnz}.
(b) By (2.21) and (2.1) we have h

Tz v 3 3 v(iiD),
16N

[
"We write r(S) for Tieg Fy» as at (2.2).
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so there is a number o satisfying 0 ga < 1 and

ar(N) + (1 -a) £ v({i}) = v(N).
i&N
Define the vector y by y; = ar; + (1 - a)v({i}), i =1,
., n. Then y € Z*(I') and we have

ri2v;2 v({i}), i=1, ..., n,

by (2.19). Hence y belongs to both (') and Z(I'). More-
over, if r; > v({i}), all i € N, we can conclude

that r, > ¥y all i e N, since r(N) > v(N) implies that

a < 1; in other words, y is interior to R(I’'). Similarly,
_{E“in'aadition x(f)mgé-hot gméingle-point, we can conclude
" that y; > v(fi}), all i ¢ N, since v(N) > £ v({i}) implies

that a > 0; in other words, y is interior to Z(I') as well.

(c) Take a typical vertex of R(I):
(2.22) x(J) = (rl, cees Ti1s x§3), Tils e rn),

where x}J) = v(N) - (N - {j}). Summing the n - 1 inequal-

ities (2.20) with ij = j gives us

r(N - {j}) 2 v() - v({j}).
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Hence ng) < v({j}), showing that x(j) is not interior to
z(r).
(d) Take a typical vertex of Z(I'):

y 3 = @, vy -, ¥, vas 41, v

where Y(J).= v(N) - Ei#j v({i}). Zero-monotonicity implies

the following two inequalities for any S < N:

— e

;(2 23) v(s) 2 = v({i}); v(N -8) gv(N) - T v({i}).
| i€s i€s

For some T containing j we have ry = v(T) - v(T - {j}).

Hence, applying (2.23), we have

rogv - T v(d{id) -z v(i)) =y,
J 1€EN-T i€y-{j} J
showing that y(j) is not interior to R(I'). Q.E.D.

Next we show that the core and the least-core are

"reasonable." 1In Seé:_3 we shall do the same for the ker-

| nel and pre-kernel (Theorem 3.13).%* -

! *Milnor [1952] originally showed that the Shapley

' value and the von Neumann-Morgenstern solutions are rea-
'sonable in this sense (see also Luce and Raiffa, loc. cit.).
| The proof for the kernel was first given by Wesley [19711].
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THEOREM 2.10. If I = (N; v) is any game, then

o) c /@) and se@) < RC). | |

Proof. (a) Let x € ¢(I'); then in particular

; x(N - {i}) 2 v(N - {i}), i=1,2, ..., n.

Since x(N) = v(N), this implies

x; g v(N) - v(N - {i}) < s, i=1,2, ..., n.
by (2.18). Hence x € ().

(b) Let x € £&(I') and let J be the set of T < N,
IT # ¢, N such that

:(2.P42 e(T, x) = Sgix e(s, x) = ey

b
|
‘ (see (2.9)). Then each i € N must belong to at least one
|
| Te 3, otherwise a smaller minimum could be obtained in
(2.9) by increasing X slightly while diminishing all the

. other X5 For each i, let T; €3 be such that i € T,.

If Ty + {i}, then by (2.24)

e(Tia Xx) 2 e(Ti - {i}, x);
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whence

X, S V(Ti) - v(Ti - {i}) < s,
as required. If T, = {i} and e(Ti, X) = eO(F) > 0, then

again

x; g v({i}) = v({i}) - v($) g ;.

Finally, if eOCF) < 0 then x is in the core and hence in

elg} by part (a). 'Q.E'.D-;“

To finish this section, we identify yet another "criti-

fine

(2.25) 6o (r) = Siizx (v(s) - v() + r(N - 8)).

b

The following lemma is comparable to Lemma 2.4.

LEMMA 2.11. ce(r) > R(r) if and only if

€2 ez(r).

Proof. Let x(j) be the j-th extreme point of R(T),

as at (2.22). For any ¢, we have
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R(r) c ae(r) & x(j) € oe(r), all j € N
e x(j)(S) 2 Vv(S) - ¢, all j€ Nands # é{ N
x§j) +r(S - {j}) 3 v(s) - ¢, all j€s,

and r(S) 2 v(S) - e, all j ¢ 8

all s # ¢, N.

But the lower line in the brackets is supérfluous, being
implied by the first,* so we may conclude that
Rr) ce (r) & v() - r(N - {j}) +x(s - {j}) 2 v(S) - ¢,
all jeS,S #¢, N
® e3> Vv(S) - v(N) + r(N - S), all S # $, N
e 2 ep(I). Q.E.D.
The critical values el(F) and ez(r) may occur in either

order, although of course, both are 3z e4(I'). In Sec. 3.5 {

we shall learn more about their relationship.

*Proof: Jince S # ¢ we may take i € S and obtain the
lower inequality from the upper as follows:

£(8) g r(s - {i}) + r, - r(N) + v(N)
r(s - (1)) + x{D)
2 v(S) - e.
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3. A GEOMETRIC CHARACTERIZATION OF THE KERNEL

The kernel of a cooperative game has been the subject
of many studies, starting with those of Davis and Maschler
[1965] and Maschler and Peleg [1966, 1967]. One of the
surprising by-products of the 1966 paper was the discovery
that if, for any ¢, the set C. N % is not empty, then the
kernel (for the grand coalition) intersects this set. The
surprise stemmed from the fact that on the face of it, the
definition of the kernel EEE&E&HEE—BE—EgﬁﬁiEEéi§Maﬁrelated
to any idea connected with the core. Pursuing this observa-
tion, Schmeidler [1969] was led to the discovery of the
nucleolus of a game, which is a unique point in the kernel
-_—
on the one hand, and, on the other hand, is much more di-
rectly related in its definition to the strong e¢-core con-
cept. (See Sec. 6, below.)

In this section we shall show that the part of the
kernel that is located in the strong e¢-core of the game,
for any ¢ such that ¢, N % is not empty, occupies there a
well-defined central position. In view of Lemma 2.4 (or
Lemma 2.11), we can guarantee, by choosing ¢ large

enough, that the entire kernel is contained in C_; our

results can therefore also be interpreted as a geometric

characterization of the entire kernel.

U ——|

3.1. Definitions

Let T = (N; v). For i, j e ﬁ, i # j, we denote by

3ij the set of coalitions containing i but not j, thus:
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(3.1) 3;4=1S:ScN, i€ s, j¢ s}.
For each pre-imputation x in %*(l') we define the maximum

surplus of i over j to be

(3.2) Sij(x) = max e(S, x).
chij

We say that i outweighs j at x if sij(x) > sji(x)’ and

that i and j are in equilibrium at x if neither of these

players outweighs the other, that is, if
(3.3) Sij(x) = Sji(x)'

These concepts, however, are relative to Z*(I'). More gen-
erally, let Y be any closed, convex polyhedron in Z*(T)

and let x be any member of Y. Then we say that i outweighs

j at x with respect to Y if Sij(x) > Sji(x) and, for all
sufficiently small § > 0, the pre-imputation obtained by
taking § from X5 and adding it to Xy lies in Y.* 1In par-
ticular, for x € Z(I'), i outweighs j with respect to %Z(I')

if and only if

(3.4) Sij(x) > Sji(x) and X5 > v({ij}),

so that the equilibrium condition for imputations becomes

*Intuitively, a player 'with his back to the wall"
cannot be pushed.
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(3.5) [sij(x) - Sji(x)][xj - V({j})] < 0,

together with the same inequality with i and j transposed.

DEFINITION 3.1: Let Y < X*(). The kernel for Y of

the game I' (with respect to the grand coalition*) is the
set of x & Y at which every two players are in equilibrium
with respect to Y; it is denoted KY(P). The kernel for
Z(') is called simply the kernel of I' and is denoted ('),

while the kernel for Z*(I') is called the pre-kernel of T

and is denoted ¥*(T').

Thus, an imputation is in the kernel if and only if
it satisfies (3.5) for all i, j€ N, i # j, while a pre-
imputation is in the pre-kernel if and only if it satisfies
the simpler requirement (3.3) for all i, je N, i < j;_m-

It is known that the kernel and pre-kernel are always
nonempty.** From the above we see that the pre-kernel is
the simplest of all the kernels to compute and to work with
in other ways. Moreover, it is easily seen that ¥*(T) N Y
is a subset of uY(r), for any Y € Z*¥(T'). In particular,
any imputation in the pre-kernel is in the kernel as well.

We shall soon see that in many cases the pre-kernel gives

us even more information about the kernel.

*See Remark 3.19 at the_end of this section.

#%*See Davis and Maschler [1965], Maschler and Peleg
[1966, 1967], and Maschler, Peleg, and Shapley [1972].
Note that condition (2.1; is essential for a nonempty ker-
nel, since otherwise Z(I') itself is empty. )

The pseudo-kernel, an auxiliary concept used in sev-
eral of the earlier papers cited, is the kernel for
the set:tl of nonnegative elements of Z*(T). !
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THEOREM 3.2. If I = (N; v)_is any gaﬁé; tﬁen
KC) nel) = ¥C) ned).

Proof. Clearly (3.3) implies (3.5); hence, every im-
putation, and in particular every core imputation, that
satisfies (3.3) lies in the kernel. Conversely, suppose
xe KT) nel) and let i, j€ N, i # j. It is sufficient
to show that Sij(x) < Sji(x)' Indeed, if not, then, by
(3.5) and (2.7), Xy = v({j}). Since {j}-& 351 (see(3.1)),
it follows from (3.2) and (2.3) that sji(x) 2 v({j}) - x5 = 0.
Consequently, sij(x) > 0. By (2.7), x does not bg}qu}to

the core of T', which is a contradiction.

THEOREM 3.3. If T is zero-monotonic, then
XT) = ¥x{T).

This important theorem is proved in Maschler, Peleg,

and Shapley [1972; Theorem 2.7]. 1In Section 4 we shall

extend this result to a wider class of games.

"3.2. The Bisection Property of the Kernel

We néﬁ-gegin the geometrical characterization of the
kernel. Let ¢ be such that ¢ () ¥, i.e., € > ¢o @),
and let x be a point in ceCP). Consider the ray (gélf-line)
emanating from x obtained by letting X increase and x;
decrease by the same amount, for a fixed pair of players
{i, j}. Denote by éij(x) the maximum amount which can be

transferred from i to j in this way while remaining in

Oe(F). Thus, if u’ represents the v-th unit vector, then
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(3.6)  63,(x) = Max {6: x - sul +sud € ¢ (M)} .

‘This is well defined for all x in GS(F), and is obviously

nonnegative, I

LEMMA 3.4. Let x € c%(r). Then

(3.7) 6;j(x) =¢c - Sij(x)

for all i, j€ N, i # j.

Proof. 1If X decreases by 6 and X increases by 6,

the following changes occur:

(1)) e(S, x) increases by & whenever S € 3ij;

(ii) e(S, x) decreases by 6 whenever S € in;

(iii) e(S, x) remains unchanged otherwise.

Let Sy be a coalition in 3ij for which sij(x) = e(S8,, x).
By (2.8), and because x € cb(r), we have e(SO, x) +

bgj(x) = ¢, and so (3.7) follows. Q.E.D.

Observe that Sij(x) does not depend on ¢. This fact

enables us to conclude the following corollary concerning

‘the “fécés" 6f cb. First we défiﬁg

(G.8) 85,6 = {8 €Ty

j e(s, x) = sij(x)}’

and
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3.9 -Skx) = U Si.(x).
i,jén 1J
1t]
That is, 8(x) comprises all those coalitions that are sig-
nificant at x, in that they enable some player to achieve

his surplus over some other player.

COROLLARY 3.5. Let x € cb(r). Then

- (3.10) Hone @) ¢4

holds for all S € 8(x).

The next two theorems set forth the bisection property
in detail. Not surprisingly, the statement for the pre-
kernel is simpler than that for the kernel. The geometry

of the situation will be illustrated in Sec. 3.3.

DEFINITION 3.6: Let x € ¢, ). For each i, j EN,

!i #3, dendte by Rij(x’ ¢) the line segment with endpoints

3.11) x - 6ij(x)ui + éij(x)uj and x + 6"::]]._(}{)u:.L - 6§i(x)uj.

This will be called the segment through x in the (i-j) |

.éiréétion; note that Rij(x’ e) = Rji(x’ e).

THEOREM 3.7. IfI' = (N; v) and if
x €C, (T'), then x belongs to ¥*({) n Ce T)
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if and only if for each i, j € N, i # j, x bi-

sects the segment Rij(x’ €).
Proof. Formula (3.3) and Lemma 3.4.

THEOREM 3.8. Let I’ = (N; v). Then:

(a) 1f x € ¢('), then x belongs to X(I') N &(')
if and only if for each i, j € N, i # j, x bi-

sects the segment Rij(x’ 0).

(b) If x ¢ ae(r) and I' is zero-monotonic,

then x belongs to X(I') N ¢, (') if and only if

for each i, j € N, i # j, x bisects the segment

Rij(x’ €).

(c) 1f x ¢ ce(r) (but I' is not necessarily

zero-monotonic), then x belongs to X(I') N ce(r)
" if and only if x € Z(') and, for each i, j € N,

i # j, either x bisects the segment R, (x, e)
or x5 = v({j)),and s i(x) > 6 (x), or x,; = w({i}) and

" Proof. (a) Theorems 3.2 and 3.7. (b) Theorems 3.3
and 3.7. (c) Formulas (3.3) and (3.5) and Lemma 3.4.

REMARK 3.9. Suppbsé the core not empty, and consider

the bisecting hypersurfaces Bij’ obtained by taking the mid-

points of all the segments in the (i-j) direction through

points of the core. Since Bij =B there are (g) such

3i2
hypersurfaces, and according to Theorem 3.8(a) the set

\C(P) N X(@) is their intersection. But this set is known

to be nonempty (see Maschler and Peleg [1966, Theorem 5.4]).
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Thus, we have discovered an interesting geometric property
of the core itself, namely, whenever the core is not empty,

its bisecting hypersurfaces Bij must have a nonempty inter:‘

section. This is certainly not true in general for an arbi-

trary convex polyhedron in Z*(T), since the number of
(i-j) directions and associated hyper-surfaces may greatly

exceed the dimension of the space.

COROLLARY 3.10. If T and I'' are two games
having the same |core: c¢(') = ¢(T'), then

(3.12) ¥XT)nel) =x@') ned').

Proof. By Theorem 3.8(a), X(') n ¢([') depends only
lan thé"EBIHE“QéE"éij; i.e., on its geometrical shapé:- QLE.D.
Similarly, using Theorems 3.7 and 3.8(c), one can

establish

COROLLARY 3.11. (a) Ifr, r', e, e¢' are

such that GG(F) = Oe.(F'), then
¥*T) ne () =¥’y ne @),

(b) Ifr, r', e, ¢' are such that

zr) =x@C"') ggg;ae(F) = ae,(r'), then
XT) n Ge(r) =XKT') N Geg(F').

REMARK 3.12. Let I' and I'' be two games for which
Z() =2("') and Ge(F) = Oe'(fi) for some ¢, ¢', and sup-

pose further\fhat one of them, say I', is zero-monotonic. Then
_ i S aen
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it follows from Corollary 3.1l that dropping the alterna-

itives involving a;i(x) # 6;j(x) from Theorem 3.8(c) does not
-

“remove any points from the locus defined there. Moreover,

for x € ce.(r'), we can assert that x € X(I'') if and only if
|sij(x) = Sji(x) for all i, j € N, i # j, where these sur-

pluses may be taken with respect to either I' or I''.

3.3. Examples

The first example illustrates the difference between

the kernel and the pre-kernel, using a three-person game

that is not zero-monotonic (Fig. 3). The core happens to

be empty, but ate = 5 the strong e-core coﬁé; into view,

situated outside the imputation simplex Z. (Compare

Theorem 2.7.) The pre-kernel X* turns out to be its mid-
point. If we continue to increase ¢, the strong e-core
0310, shaded) at last touches %, and the kernel ¥ turns out
to be the midpoint of Z N C10- The determination of ¥ and
¥* may be visualized from the.broken lines in the figure,
which indicate the bisection hypersurfaces where 835" sji
for the three pairs {i, j}. At X* all three equalities are

satisfied, while at X two of them are replaced by inequal-

ities, in view of the fact that X = 0.

The next example shows that two games may have the
same core and yet have kernels that differ outside the
core. (Cf. Corollary 3.10.) Consider the five-person

game I'; = ({1, 2, 3, 4, 5}; Vl) where
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~ \
~

\
\312=521
S23=S32 ~

$13=S31_.
H{y,2}

vihip) =vU2h=v({3p=o,

v({1,2})=20, v({1,3})=50, v({2,3})=30,
V( ',2,3;)=40.

€0=5

¥=1(25,0,15)}, X*={(s5,17.5,27.5)}

Fig.3— The kernel and pre-kernel in a game that is not
zero-monotonic, showing the bisecting hypersurfaces
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Vl({1,2,3,4,5}) = 7:

vl(S) 4 for s = {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5},

{2’3’4} ’ {293,5} ,and {4a5} ’

vl(S) = 0 otherwise.*

It is easy to see that the core of [, consists of just the

point (1, 1, 1, 2, 2). But the kernel turns out to be a

line segment extending from the core to a p01nt in the

boundary of Z(Fl); in fact it is

e

(3.13) W@y = ((e, ¢, £, L5325, 1535 0 g e g 1))

The pre-kernel is similar, but extends a short distance
outside x(rl) to the point given by t = =.2 in (3.13). (We
omit the calculations.) '

Now consider the game I, = (1,2,3,4,5}; v,), where

\ v2({2,3,5}) = 09 !

VZ(S) = vl(S) otherwise.

Fl and F2 have the same core and the same space of imputa-

tions; nevertheless it can be shown that the kernel and pre-

kernel of T'y now merely coincide with the core, i.e.,

*This 1s a modified form of an example in Peleg [1966].
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X3=0

10
Hi2,3}

H{2,3} /\

—-30
Hi2,3
{2 } R—f The kernel

>
cd

The (2 -3) -direction

<4
>

\ =30
HM
. -
Hig

A
%
viiih =v ({2h) =v({3h =0, R
v({1,2)=30, v({1,3}) =40, v({2,3})=50, ‘.@/
v({,2,3}) =120, \

e,
e
%

Fig. 4— The bisection property in a game that is zero-monotonic
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consist of the singlé point (1,1,1;2;2).* So they are

"different from the kernel and pre-kernel of ry-
The final two examples illustrate the bisection prop-
erty (Theorem 3.8). The three-person game shown in Fig.
4 is zero-monotonic and its core is the large hex-
agon that just fits inside the imputation simplex. The

kernel consists of the single point (35, 40, 45). We have

chosen to 111usE¥5EE‘é;'ESE';”;"10;’o, and -30, The
least-core C 35 is a short line segment, not shown.
Although these strong e¢-cores differ in shape, the kernel
in each case is seen to bisect the three segments repre-

| senting transfers between pairs of players.
| _

| Finally, Fig. 5 illustrates Theorem 3.8(c). The game™
| is not unlike that of Fig. 3. The kernel consists of the
single point (20, 20, 0) and the pre-kernel consists of
the single point (25, 25, -10). We have illustrated Ce
20 (the first value for which ¢ (T) N Z(T) # ¢)

for ¢
and ¢ = 30. Note that the kernel bisects only the segments
in the (1-2) direction. For the other directions, the
parts which are outside the imputation simplex are longer

than the parts inside.

*One way to prove this is to take a hypothetical x
in K - C or k* - ¢ and show that the coalitions of highest

excess are precisely {S: v(S) = 4}, thereby obtai
contradiction. We omit the zetailé. y obtaining a
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The pre-kernel

The (2-3) -direction

v(frh = v({2h) =v (f3h =0,
v({ 2P =60, v({,3}) = v ({2,3}) = -20,
v({1,2,3}) =40,

€0=20.

Fig. 5— The bisection property in a game that is not zero-monotonic
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3.4. Reasonableness of the Kernel and Pre-Kernel

The follow1ng theorem may be compared with Theorem

12.10 concerning the core and the least-core. It was first

proved (for the kernel) by Eugene Wesley [19;IT_ _ mv

~_ THEOREM 3.13. If T = (N; v) is any game, then
X(@) © RT) and ¥*() < R(T). '!

Proof. We shall prove both statements simultaneously.
Suppose x is in X(@) U X*([) but not in R('). Then for

some i we have X3 >y (see (2.17)). That is,
o i, i

(3.14) x; > v(S) - v(S - {io})
o

holds for every S < N containing io. In particular, we

have x; > v({io}). Hence, for each j # i
o

o’
(3.15) Sioj(x) 2 Sjio(x)

\holds if x € ¥(), by (3.5), while if x € ¥*(T') then it
holds by (3.}): Moreover, by (3.2) we have, for each

j*io’

(3.16) (x) > v(N - {1 }) - x(N - {1 })

>v() - x; - x(N - {i}) =
o .
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by (3.14) with S = N. Choose k # i, so that

(3.17) S, : (X) = Max s.. (x),
ki, j:j+io Jto

i i )
;and choose S € 3iok so that (see (3.2))

\\

~.

~.

(3.18) N S k(x) = e(So, x).
o >

~

Now (3.14) implies that &(S_ - {i }, x) > e(S., x). There
- % @ ° S
are two cases. If S # {io} we have a contradiction, since

j Eﬁi;ﬂ:ﬂii;} implies

. Sjio(x) 2 e(So‘ {i}, =)
> e(So,x) = Siok(x)
\ 2 Skio(x) g'gjio(x),

by (3.2), (3.14), (3.18), (3.15), and (3.17) respectively.

But if S = {io] we also have a contradiction, since then

0 < Skio(x) < Siok(x) = v({io}) - xio <0,

by (3.16), (3.15), (3.18), and (3.14) respectively. This

completes the proof.
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3.5. The Bound e,(T')

Our geometric characterizations thus far have not
referred directly to the kernel, but only to its intersec-
tions with the strong e-cores. It will be useful to have
conditions on e that guarantee that the strong e-core will
be so large that it surely contains the kernel. Of course,

we already have two such conditions, namely
€ e, (T) = Max [v(S) ;-.iw"v({i})]
€%l S#b,N 1€s ’

which implies ch(r) D%Z({) o X(I') (see Lemma 2.4 and Defini-
|
tion 3.1), and

€2 ezﬂr) = Sﬁzx [v(S) + (N - 8) - v()1],

'which implies cb(r) D R(M) > XIT) (see Lemma 2.11 and The-
orem 3.13). These conditions are very weak. Of course,

we can trivially combine them:

(3.19) €2 Min(el(r), @Z(F)> = Min(Max ..., Max ...),

which implies either ¢ _(I') = Z(T) gg.ce(r) > R(r), but
this represents no real progress. We would like a stronger
. condition on ¢ that guarantees ce(r) > 2() n RI). Rather

' suprisingly, it is possible to invert the order of 'Max"



44

and "Min" in (3.19) and obtain a substantial improvement.

In fact, the resulting bound ¢, ('), defined by

(3.20) le, @) = Max Min(v(S) - % v({i}), v(S) +r(N-S) - v(N)).
- S#,N i€s

proves to be exactly the '"critical value'" of ¢ at which

the strong e-core just contains the intersection of

. Z(T') and R(T).*
. — 1

LEMMA 3.14. C_(T) @ %(T) N #(T) if and

\. only if e 2 €4 ().

Proof. Without loss of generality, I' is zero-normal-

ized, making the r, nonnegative. Then x ¢ Z(T') N R(T)

implies that 0 g x,

x(N) = v(N). Hence we have both

g r; for all i ¢ N, and of course

x(8) 2 0
and
x(8) = x(N) - x(N -S) 2 v(N) - r(N - S)

for all S € N. Therefore,

*The first '"Max" in (3.19) is likely to be attained
when S is large, the second when N - S is large. Picture
the strong e,(I')-core snugly enclosing the set of reason-
able imputations, but with some or all of the vertices of
R() and Z(T) "sticking out." (Fig. 2.)
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| v(8) - x(S) g v(gg - Ma;m[O,-v(N;.- ééﬁm;-S)]

Min [v(S), v(S) - v(N) + r(N - S)]

s e*(r) ’

for all S # ¢, N. Hence x € céCP) for all e > ¢, ('), proving
the assertion in one direction.

For the other direction, let the maximum in (3.20)
be attained at S = T. Suppose first that r(N - T) > v(N).

Then €, (') = v(T). Define x by*
0, if i€ T,
(r"NT)ri, if i€ N - T.

It is easily verified that x € Z(') n #(T). However,

x(T) = 0 = v(T) - e;(),

so x § ¢, for every ¢ < 6,4(I'), as we wished to prove.
Suppose finally that r(N -'T) < v(N). Then €,() =
v(T) + (N - T) - v(N). This time define x by

*In case r(N - T) = v(N) = 0 (trivializing Z(T')), we

define x5 = 0 for all i € N.
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N) - r(N - T L.
(%%Ng - iEN - T;)ri’ ifieT

r, ifie N-T.

l’
‘Again it is clear that x ¢ Z(') N R(T), since r(N) 2 v(N).

. However,

x(T) = v(N) - r(N - T) = v(T) - e, (),

so again x ¢ Ce for every ¢ < e,(I'). This completes the

proof.

'THEOREM 3.15. ¥(r) € ¢ (T) for

all ¢ 2 e*(rjjm

Proof. Definition 3.1, Theorem 3.13, and Lemma 3.14.

It would be interesting if a still better lower bound
on ¢ could be found that ensures X(I') c ce(r). Any improve-
ment that could be made would be reflected in sharper re-

sults in Sec. 4, and would add to our general knowledge

of the kernel.

COROLLARY 3.16. If I' is zero-monotonic,

then X*(T') c GG(F) for all e > e, (T).

“Proof. Theoremg 3.3 and 3.15.

It may be that zero-monotonicity is not needed here.
In other words, it may be that X* is always in Ce » even
*

when it is not in Z N £. But we have no proof.
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COROLLARY 3.17. Ifr, r', e, e¢', are such

‘that () = 2C') and ¢ () = ¢, ('), and if
e 2 e, T) and ¢' 2 ¢, ('), then X[T) = XIT').
Proof. Corollary 3.11(b) and Theorem 3.15.

REMARK 3.18. Let B(I', ¢) denote the intersection of

the (3) bisecting hypersurfaces of the strong e-core of I.*
By Theorem 3.8(b) it follows that for a game T' that is

zero-monotonic we have

—_— — -—— ~

(3.21) XT) 0 e, @) = BT, )3

——— .

moreover, for all e 2 €, (') we have

(3.22) XKT) = B(, ¢).

IBut if T is not zero-monotonic, we can conclude only that
the left-hand sides of (3.21) and (3.22) contain the re-

spective right-hand sides.

REMARK 3.19. The discussions in this section have

been limited to the particular kernels Koy = K and Korge = W,
and have also been limited to the case of games without
restrictive "coalition structures.'" It is clear that there

are interesting extensions to be pursued. Similar results

*Compare Remark 3.9. Since any strong e-core of a
game is the core of another game (see Lemma 4.1), it follows
that B(T', ¢) is not empty if ¢ _(T') is not empty.
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presumably can be obtained for other kernels, such as the
pseudo-kernel xz+, about which quite a bit is already
known.* Similar considerations can presumably also be

developed for kernels with respect to coalition structures
other than the "érand coalition'" case that we éreat
E here.** We may remark that in dealing with arbitrary
coalition structures, however, it seems to be necessary
to strengthen the condition of zero-monotonicity, which

is the key to the equivalence of the kernel and pre-

~ kernel (see Theorem 3.3), to a sweeping requirement

that all of the reduced games that can arise, with

respect to every payoff vector for the coalition structure

in question, be zero-monotonic.¥**%*

*See Aumann, Peleg, and Rabinowitz [1965], Davis and
Maschler [1965], and Maschler and Peleg [1966, 1967].

**See Aumann and Dreze [1974] for a recent survey of
the coalition-structure approach as applied to various co-
operative solution concepts in game theory.

*%*See Maschler and Peleg [1967], esp. Corollary 3.9.
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4. SHIFTS, COVERS, AND QUASI-ZERO-MONOTONICITY

In this section we shall apply the results of

Sec. 3 to extend the class of games for which the ker-
nel can be shown to coincide with the pre-kernel or
with a well-defined part of the pre-kernel.* The
idea will be to take an arbitrary game that is not zero-
monotonic, and try to find a zero-monotonic game that has
the same strong e-core, for some value of ¢. If we suc-
ceed in this, then Corollary 3.11 and Theorem 3.3ywill en-
able us to conclude that X N ¢ = X* N cé for the original
game. Moreover, if we succeed in doing this with ¢ suffi-
ciently large, in the sense of Theorem 3.15 (or any other
criterion that ensures ¢ > X), then we will be able to
conclude that X = ¥* n Ce for the original game, or perhaps
even X = X¥* N X or X = X¥*¥. This makes the entire kernel
easier to describe and compute with the aid of the bisec-
tion property.

For any game I' = (N; v), we define a related family

of "shifted" games r.= (N; ve) by

" v(S), if s =¢, N
4.1) ve(S) =
v(S) - ¢, if s +# ¢, N.

Shifting a game qbviqqsly_doesn't affect the pre-kernel,

but it could change the kernel because the imputation space

*As this section is independent of what follows and is
rather technical, some readers will prefer to turn directly
to Section 5. : —
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is different. Note that for (4.1) to define a game, we need

4.2) ¢z v - T v

i=1

. since otherwise (2.1) fails for v,. However, either of
|
' the conditions € > 0 or ¢ eo(r) suffices for (4.2),
| ;

| as short arguments based on (2.1) and (2.9) reveal.*
| -

LEMMA 4.1. For all ¢ satisfying (4.2), *—1

we have cb(r) = a(re).

Proof. Definition 2.2 and (4.1).

4.1. The Cover of a Game

Let T be a non-empty set of players. A collection

8 = {Ty, Ty, ..., Tp] of non-empty subsets of T is called

balanced over T if there exist positive constants

Y1s Y25 et Vg such that
L (4.3) 2 vy =1
j:ieTj

holds for each i ¢ T. The set of all such p-vectors of
"balancing coefficients' for 3 will be denoted B(J). J is

called minimal balanced over T if it is balanced over T and

no proper subcollection of J is balanced over T. It can

be shown (see Shapley [1967]) that the balancing coeffi-
" #Thus, (2.9) implies that e((I) 2 Min ., Max;cy
[v({i})-xi], and it is clear that the minimum is achieved
at the center of %Z(I'), showing that eO(T) satisfies (4.2).
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cients Yj for 3 are unique if and only if § is minimal./

v - B — !

We shail déﬁote by v the set of all balanced collections

over T and by " the set of all minimal balanced collec-

tions over T. Note that the inequality

p
> 1

(4.4) T v 2
3=1 J

always holds, and holds strictly unless 3 is the trivial

collection {T}.*

DEFINITION 4.2. A game (T; u) that satisfies**

P
(4.5) u(T) 2 Max £ vysu(T.)
Jer j=1 J J
YEB(3)
is said to be balanced. A game (N; v) such that all of
its restrictions (T; v), ¢ # T « N, are balanced is said

to be totally balanced. The cover*** of a game I' = (N; v)

is defined to be the game T = (N; ¥), where V() = 0 and

P
(4.6) V(T) = Max T Vs
Jer =1 J

vE€EB(J)

v(Tj)

*In contrast to the original definition in Shapley
[1967], our present definition makes {T} a member of r.
Note also that we are requiring positive coefficients, not
merely nonnegative as in Scarf [1967], Shapley and Shubik
[1969], and elsewhere. For a simple geometric representa-
tion of the "balance'" property, see Shapley [1973].

**Note that we could replace "¢" by "M in (4.5).
Also, since {T} € M, we could replace "3'" by "=".

*%**See Shapley and Shubik [1969]. This '"totally bal-
anced cover'" is to be distinguished from the 'monotonic
cover," '"superadditive cover," '"exact cover,'" etc.
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for each § # T c N. It is clear that I' is totally bal-
anced, and that it is the least totally balanced game that

majorizes I'; in other words, if (N; w) is totally balanced

and w 2 v, thenw 2 V.

THEOREM 4.3. A necessary and sufficient

condition that a game have a nonempty core is

that it be balanced.

This theorem is basic to the study of the core. A

- T T T T mme—

proof may be “found in Bondareva [1963] or Shapley [1967];

' see also Gillies [1959, p. 71]. -

LEMMA 4. 4 Let ' = (N; v) be a balanced
(N; V) satisfy

]

game, and let f

(4.7) v(S) g V(8) g ¥(5), all s c N.

“Then zZ(r) = 2(@) = () and e@) = @) =c(f).

Proof. We have V(N) = v(N) by (4.5) and (4.6), and
v({i}) = v({i}) for all i ¢ N by (4.6); hence the imputa-
tion spaces agree: Z(T) =x2({) =x). For a proof that
e) = c() see Shapley and Shubik [1969; Lemma 1]. The
\proof is completed by observing that ¢(T') 2 e@) o C'/(Ij G(I‘)
Finally, we remark that "shifting" a game by a suffi-
ciently large ¢ always makes it totally balanced. This may

be seen by applying (4.1) and the strict form of (4.4) to
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the inequality (4.5); by increasing ¢ we make the right side
of (4.5) go down faster than the left. Hence a new '"critical
value'" for ¢ is born: we denote by e3(r) the smallest

value of ¢ for which I is totally balanced. Clearly es(r) 2

eo(r), since eo(r) represents the smallest value of ¢ for

which Fe is balanced.

e ———

|4.2. The Double Shift A(T, e)

i Now consider the following sequence of transformations

| which, for a given e, take an arbitrary game I' into a new

game A = A (T, €):

rs @) b= (N5 W)

B -/\
=~
oo
g

l I‘e —-I‘e = c

In this process, we first "shift down' by ¢, then we ''take
the cover," then we "shift up" by €. The function w in

(4.8) is given by
V/;(S)a if § = 4)3 N, \
(4.9) w(s) =

6;(3) +¢c, if S # 6, N

\(see (4.1) and (4.6)). More concisely, we could have written
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w = (6:)_3, revealing w as a kind of generalized '"cover"

of v. Note that always w(S) 2 v(S).

To illustrate the double shift operation, we shall
apply it to a five-person game I' = (N; v) which is sym-
metric, in that the worth of a coalition S depends only

on its size |S|.* (See Table 1.) This game is not balanced,

. Table 1
/“—ISI: 0 1 2 3 4 5
v(S): 0 0 3 0 3 6
v (8): o -1 2 -1 2 6
wl(S): o -1 2 3 4 6
w(s): o 0 3 4 5 6

as the two-person coalitions are too strong. Taking the
cover of I' itself would 'push up" the value of v(N) to

v(N) = 7.5 and would alter the imputation space.** But mak-
ing the double shift with ¢ = 1 (or indeed with any ¢ > 0.6)
avoids this problem and produces a game A = (N; w) which has
the same imputation space as I' and the same strong e-core. In

this case A turns out to be zero-monotonic, whereas I' was not.

—_—

Several considerations enter into a suitable choice
of ¢ for the double shift. Certainly we must have ¢,(I') g

€ < eq (I'); in other words, the game Fe must be balanced

*See Remark 4.15, below.

*%*Taking the cover of a symmetric game simply means
increasing v sufficiently to ensure that the ratio v(S)/ S|
never decreases. Thus, for each T, V(T) = max{|T|wS)/|S|:

[1sTsTslTl}. -
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but not totally balanced. If ¢ were less than eo(r) then __—1

if ¢ were not less than e3(F) then ' = A and we would have ac-

PSS

complished nothing by the double shift. Indeed, if ¢ is only

a little smaller than e3(r) the games I' and A may be too

similar to each other to reveal anything new about the ker-
nel, while if ¢ is only a little larger than eo(r) the strong
" e-core of I' may give us too small a '"window" on the region in
which the kernel is known to lie. In fact, to be able to
apply Theorem 3.15 we must have ¢ 2 ¢,(T'), and this may not
be possible, as e, (') is not only 3 eo(r) but may even be
> 33(F).*

A further complication arises from the way the various
critical values for ¢ change when we pass from I' to A. It can
be shown rather easily that eO(A) = Min (s, eo(F)) and that
e3(A) = Min ( e, e3(r)). But the behavior of e, is less pre-

dictable; we shall have more to say about this presently.

LEMMA 4.5. Let I' = (N; v), let ¢ > eo(r),

let A = A(T, ¢) = (N; w), and, finally, let

= (N; W) be such that

(4.10) v(s) s W(s) g w(s), allScN

(compare Lemma 4.4). Then

e

*Thus, for the v in Table 1 we have e¢; = 0.6, ¢; = 3,
and s5 = 9. —— -

|
|
|
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(4.11) Z(@) =2@) = %)

Ml and for all e¢' g e,

(4.12) Cer (1) = ¢ (B) =c. i (d),

(4.13) %¥@) ne, @) =x@) ne, @) =x@) ne, @),
and

(4.14) ¥*T) ne () = ¥*@) n oe.(K) = ¥*(@) nec ().

Proof. Using Lemma 4.1 and Definition 2.3, we have

.G(Fe) = O;(F) # ¢. Hence, b§ Lemma 4.1 and 4.4, we have \
ey =)

ticular, v(N)

cé(A). Hence cé(r) = cé(A), and, in par-
w(N). Then (4.10) gives us e, @) > Gé(Z) o
!cé(A) = ck(r), so (4.12) follows with the aid of Corollary

2.6. To prove (4.11), since we already have v(N) = w(N)
we need only observe that v({i}) = w({i}) for all i ¢ N
‘and apply (4.10). Finally, (4.13) and (4.14) are direct
‘applications of Corollary 3.11, using (4.11) and (4.12).

iﬂe neit lemma shows that double-shifting tends to
shrink the reasonable set. Note that nothing is asserted
for "intermediate'" games in the sense of (4.7) (Lemma 4.4)
or (4.10) (Lemma 4.5); this omission will be explained

below in Remark 4.10. 1
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LEMMA 4.6. Let ¢ 2 ¢4(F) and &4 = A(T, e).
Then R(A) < ?(F).

Proof. We must show that ri(A) < ri(r) for all i € N.

Fix i, and let T be a maximizing coalition in the defini-

tion of ri(A) (see (2.18)), so that we have
(4.15) ri(A) = w(T) - w(T - {i}).

There are several cases; let us first dispose of the easy

ones. If T = {i}, then we have at once

r | £, (8) = w({i}) = v({1}) g r; (),

by (4.11) and (2.19). If T =N, then since w(N)

and w(N - {i}) 3 v(N - {i}), we have

v(N)

|7 = W) - Wi - (1) g v(¥) - v - (1)) g 73 ().

There remains the general case: {i} < T c N. Let

3 = {Tl, . Tp} be a balanced collection of subsets of

T that achieves the maximum in (4.6) for the game (N; Ve)’

so that for a suitable choice of coefficients (yl,

) Yp) €
B(3) we have

| (4.16) @ =

p
v (T.).
o j§-1 Y5Ve J)_
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Define Sj = Tj - {i}, j =1, ..., p. Then it is easy to
see that the collection {Sj} is balanced over T - {i},
by virtue of the same coefficients. (Note that if any
two of the Sj are equal, because the corresponding Tj
differ only by {i}, we must add together the correspond-
ing yj.) It follows that

o L
(4.17) ‘GZ(TH- i) 2 52& Y5V (5 - (1D,

by the definition of cover. Hence, we have

ri(A) = G;z;;_- 6:(T - {i}H)

P
s I vylveay - vy - i)
- : vi(va - vay - {i}ﬂ
s e
s j:g%Tj YJrl( )

applying successively (4.15) and (4.9), (4.16) and (4.17),
(4.1), (2.18), and (4.3). Q.E.D.

COROLLARY 4.7. If r is balanced, then
R(T) < R(N).
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Proof. Since I' is balanced its core is not empty.
Hence eo(r) < 0 and we can apply Lemma 4.6 with ¢ = 0.

COROLLARY 4.8. If A =A(", ¢) and if

€ 2 €,(I'), then €,(8) g 6,(T).

Proof. By Lemma 3.14 we have

\%e, () ©) 2 () 0 RAr).

Lemma 4.5 with ¢ 2 ¢' = €,(T) 2 eo(r) gives us 2(a) = %2(T)
and oe*(r)(A) = Oe*(r)(F), and Lemma 4.6 gives us R(A) <
R(T). Hence

i Ce, (1) ®) 2 X@) N RE),

| so Lemma 3.14, applied to A, tells us that e (A) g €,(T).
' Q.E.D.

THEOREM 4.9. If A = A(T, ¢) and if

€ 2 €,(F), then X(a) = X(T).

Proof. Since ¢ 3 €,(I'), Corollary 4.8 gives us

€ 2 €4(0) and Theorem 3.15 gives us

¥(a) < ce(A) and - X() ¢ ce(r).

The result now follows from (4.12) and (4.13) in Lemma 4.5]



60

REMARK 4.10. Unfortunately, the condition e 3 €, (')

in Corollary 4.8 and Theorem 4.9 cannot be replaced by
€2 eO(F). The double shift already shown in Table 1 pro-
vides a counterexample. Indeed, one may readily calculate
from (3.20) that ¢,(T) =3 and ¢, (8) = 4. (The value of
€y in both games is 0.6.)

To see why Lemma 4.6 and its corollaries, unlike Lemmas
4.4 and 4.5, do not extend to "intermediate'" games, con-

sider the following example:

Table 2
Is|: 0 1 2 3 4 5 r, €y
v(S): 0 0 2 0 3 5 3 2
v(s): 0 0 2 3 4 5 2 2
v(s): 0 0 2 0 4 5 4 3

—_— -

Here v is balanced and we are simply taking the cover, i.e.,
double-shifting with ¢ = 0. To find the value of r; we
merely look for the biggest upward jump, reading from left
to right. It is easy to see from Table 2 how a function
like V, intermediate between v and ¥V, can have bigger upward

\ jumps than either v or Vv, even though ¥V is in a sense always
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"smoother'" than v. For the given V we have r, = 4, and

so R((N; V) ¢ R((N; v)), confradicting"what the "intermedi-'

ate'" versions of Lemma 4.6 and Corollary 4.7 would say.
Corollary 4.8 survives this counterexample because

the hypothesis ¢ 3 ¢,((N; v)) is not satisfied. But we

can construct a larger exémple on the sgae-pgincipié_thét

will do the trick, as shown in Table 3.

Table 3
Is|]:fo 1 2 3 4 5 6 7 8 9 10 1llir, e,
vs):]o o 1 2 3 o0 1 2 3 4 5 6|1 3
v3(S): 0O -3 -2 -1 0 -3 -2 -1 01 2 6
w3(8): 0 -3 -2 -1 0 0 0 0 0 1 2 6
ws):Jjo o 1 2 3 3 3 3 3 4 5 6|1 3
E w):}]o o 1 2 3 0 3 3 3 4 5 6|3 4

4.3. Quasi-Zero-Monotonicity

We can now reap the fruits of our '"shifty'" techniques.

The general idea is to double-shift from a game that is

not zero-monotonic to one that is, meanwhile trying to make
¢, and hence the strong e-core, as large as possible.
|Sometimes it will pay to use an "intermediate'" game, in

‘the sense of (4.10), as the following example shows:
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Table 4

30 €, 33

v(s): [0 0 10 20 30 40 39 49 49 50 [ 125 30 49
vy5(S): [0 =35 -25 -15 -5 5 4 14 14 50
wys(8): [0 -35 -25 -15 -5 5 6 14 16 50

w(s): [0 0 10 20 30 40 41 49 51 50 |125 30 35

~

w@s): 1o 0o 10 20 30 40 41 49 50 50 12% 30 42

Here W is zero-monotonic, but w is not. Moreover, no other
choice of ¢ would make w zero-monotonic, since any ¢ < 42
raises v(S) at |S| = 8 too much while any ¢ > 40 does not

raise v(S) at |S| = 6 enough.

With this possibility in mind,we define I' to be quasi-

zero-monotonic for ¢ if there exists a zero-monotonic game

X that lies "between" I and A(I', ¢), in the sense of (4.10).
Since A(I', ¢) is a nonincreasing function of ¢, it is easily

seen that any game that is quasi-zero-monotonic for ¢ is also

uasi-zero-monotonic for every e¢' < e. Ever ame is quasi-
q

zero-monotonic for ¢ = 0,and every zero-monotonic game is
quasi-zero-monotonic for every e. A game I' that is quasi-. .
zero-monotonic for ¢,(I') will be said simply to be guasi- -

zero-monotonic.
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Flrst three simple conclusions from our previous

’results

THEOREM 4.11. If T is quasi-zero-monotonic'

f for ¢ and if ¢ > eo(r), then

| ———————

-

(4.18) K() N e ) = ¥e(r) ne ().

Proof. Theorem 3.3 and Lemma 4.5, especially (4.13)
and (4.14).

COROLLARY 4.12. If ' is quasi-zero-monotonic

for ¢ and if ¢ 3 ¢, ('), then

(4.19) X({T) = ¥*(r) n Ce (r)

Proof. Theorems 4.11 and 3.15.

COROLLARY 4.13. If T is quasi-zero-monotonic .|

for any e ez(r), then
(4.20) K@) = X*(r).
Proof. By Theorem 3.13 and Lemma 2.11 we have

K*(T) € R(T) < e (T).

| Since eZ(F) 2 €,(I') (see Sec. 3.5), it follows from Corol-

lary 4.12 that ¥*(T) = ¥*(T) n ¢,(F) = ¥('). Q.E.D.|



64

We would of course like to be able to assert the con-
clusion of Corollary 4.13 for the hypotheses of Corollary

4.12; we do not know if thlS can be done.

We now come to the pr1nc1pa1 theorem of this sectlon

-

————

THEOREM 4.14. If T is qua31-zero-monoton1c l

then

(4.21) O OK(T) = w(r) 0 (r).

iIn other words, the kernel of I' is the set of

!solutions of the system:
|

[ (X)=S (x)’ il;isjEN’i<js
(4.22)  {xg 2 v({i}), all i €N,
x(N) = v(N).

The following diagram may help to clarify thg logic

of the proof;iaf course it does not represent an actual

game :

p\N

N \\/“
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Proof. By (4.19) we have ¥() = K*(F) n Ge*(P).
Since by definition X(I') < Z(I'), we can replace this by
(4.23) () = ¥*x() n e, () nzZr).

By Theorem 3.13 and Lemma 3.14 we have
(4.24) ¥*({T) N 2T) cpT) Nz c ce*(r).

Hence we may omit the C_ (') from the equation (4.23),
*
obtaining (4.21). Q.E.D.
REMARK 4.15. While the symmetric games of Tables 1-4

(and 5) are very convenient for illustrative purposes, it
should be pointed out that their kernel theofies are
trivial. It is well known that each point in the kernel

of a game must give equal treatment to any two players who
are substitutes, i.e., who are interchangeable in the
characteristic function, since otherwise they would not

be in equilibrium. The same holds for the pre-kernel.

It follows that in a fully symmetric game the kernel and
pre-kernel contain only the center of symmetry of %, i.e.,
the imputation giving each player exactly v(N)/|N|. The ’
reader may therefore rightly question our reliance on sym;
metric examples, and he may feel that the whole quasi-zero-
monotonic concept is of little practical value because of the

difficulty in recognizing it except in cases where w

already know that ¥ and ¥* coincide 1in a trivial way.

f—— ————— - —_—_——
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A general necessary and sufficient condition that
characterizes the quasi-zero-monotonic games might indeed
" be very difficult. But it is easy to give workable suf-
ficient conditions that enable us to describe many nonsym-
metric games to which the results of this section can be
applied.
For example, let I' = (N; v) be a O-normalized game, let

€ denote the_set of S # ¢, N with v(S) = e1(T'), and suppose

that v(N) > el(r). (Recéll that el(r) in a 0O-normalized
game is just the maximum of v(S) over all S # ¢, N.) Sup-
pose further that whenever v(S) > v(T) with S € T we can
find a subset 3 of € that is balanced over T. Then I is

quasi-zero-monotonic. The proof is simple: the double-

shift with ¢ = QIZF) shows that I' is quasi-zero-monotonic

~ for ¢1(T), and the inequality e, (T) g ¢ (T) (see Sec. 3.5)

completes the proof.

4.4. Repeated Double Shifts

The double shift operation can of course be repeated:

-1
-3
-3
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'giving us the games A(A(T, ¢), ¢'), AQQ(a (T, €), ¢'), "),
etc. It may seem that nothing is accomplished by this, since
the final result of such a sequence of double shifts is mm
nothing but the game A([', ¢), where ¢ is the minimum of

all the e's used. Nevertheless, something may be gained

from the viewpoint of quasi-zero-monotonicity. We have seen/

that the set £ may shrink during a double shift/. This
means that the value of e¢,, which determines the lowest
"admissible'" value of ¢, may decrease. (Recall that e,

is the smallest e si’ch that Ce 2 Z N AR.) In other words,

it is possible that a game that is not quasi-zero-monotonic

could be transformed, by an "admissible'" double shift,

° ° ° I
into a game that is quasi-zero-monotonlc .

Table 5
Is| 0 1 2 3 4 5 ry €y €3 €y -

v(S) 0 0 1 -3 4 8 7 3 9 20
va8) |0 -3 -2 -6 1 8

wy(s) | 0 -3 -2 3 1 8

w(S) 0 0 1 0 4 8 4 1 3 8
Wl(S) 0 -1 0 -1 3 8

y6) |0 -1 o o 3 8

y(8) 0 0 1 1 4 8 4 1 1 8
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Table 5 shows that this is a real possibility. The
first double shift uses ¢ = ¢, ((N; v)) = 3, and we see that
the resulting game is not zero-monotonic. No intermediate
game is zero-monotonic either, so the original game tﬁ}_ﬁshié]

not quasi-zero-monotonic. But the value of r; has decreased /

7

from 7 to 4, and we are rewarded with a smaller e¢,. The
second double shift, using ¢ = ¢,((N; w)) = 1, then has the
desired result: (N; y) is zero-monotonic. Hence (N; w) is
quasi-zero-monotonic, and it is tempting to say that (N; v);

is "quasi-quasi-zero-monotonic'! R

We have no doubt that we could construct similar examples
requiring three or more double shifts, though we have not done

so. The next theorem generalizes Corollary 4.12 (set p = 1)

/énd alsa;.in a sense, Theorem 3.3 (set p = 0, ¢ = =).

THEOREM 51161 Let ' be any game that can

be connected to a zero-monotonic game A by a

sequence of "admissible'' double shifts, namely:

6(1) P2 C*(r) r(l) = A(Fa 6(1))

(@ L D) F@ L@ @)

e(p) > G*(r(p-l)) !‘(p) = A(r(p-l), €(p))|= A.
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Then
(4.25) X(C) = ¥*() n e-(r),

where ¢ = Min {s(j): j=1, ..., p}.

Proof. By (4.12) of Lemma 4.5 and Theorem 4.9, we

have

o=(r) ey = .. =)

xe@y = ...

x(T) X@);

call these sets respectively oy and ¥. From Theorem 3.15,
applied to r-1 ghere ¢ ) = ¢, we see that X c e
Hence, applying (4.14) of Lemma 4.5 and Theorem 3.3., we

obtain
¥k(C) N Co = wk(A) N Co = X(a) N &7 = XK.

Q.E.D.

We do not know if the corresponding generalization
of Theorem 4.14 is true. We cannot argue as before, for
we do not have C_- > e(r) if/the value of ¢ is less than e*ZFy:

as it may well be. The diagram below shows the difficulty:
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none of our results exclude the possibility that elements

of ¥*(I') might lie in the shaded region. _
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5. THE KERNEL _AS A FAIR DIVISION SCHEME

Any attempt at providing an intuitive interpretation
to the definition of the kernel, as given in Sec. 3, seems

to rely on interpersonal comparison of utilities. The

quantity Sij(x)’ which measures i's '"strength'" against j,
would there be interpreted as, essentially, the maximum
gain (or, if negative, the minimal loss) that i would ob-
tain by '"bribing'" some players other than j to depart from
x, giving each of them a very small bonus. If we compare
sij(x) with Sji(x)’ we in effect compare i's utility units
with j's utility units and implicitly assume that the "in-
tensity of feeling' of i toward's i's utility units are,
in some sense, equal to the "intensity of feeling' of j
towards j's utility units. Since no clear meaning of "in-
tensity of feeling''--interpersonally comparable--is known
at present, the kernel was never considered a satisfactory
solution concept, from the intuitive point of view. Its
study was pursued ﬁainly because of its mathematical prop-
erties (being sensitive to various kinds of symmetry in
the game) and because it provided important information
on the bargaining set m{i).

R. J. Aumann has suggested* another interpretation:
to regard Sij(x) as the amount available to player i for

"bribing'" a certain coalition (which does not contain j),

*0ral communication.
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taking for himself only a small bonus. This interpretation

does not make any use of interpersonal comparison of util-
ities, but it makes sense only if Sij(x) > 0. Furthermore,
intuitively it seems to be a ground for comparing i's
strength against j only if the coalitions that are bribed
by both players have a nonempty intersection.

In this section we shall provide yet another intui-
tive interpretation of the kernel, based on the bisection
property--specifically, Theorem 3.8, which does not rely
on interpersonal comparison of utilities. We shall then
discuss the merits of the kernel under this interpretation.

Consider, at first, a game I' with a nonempty core,
and let x € C(I'). The line segments Rij(x) (see (3.11),

with ¢ '= 0) can be regarded as the bargaining range between

i and j (given that the other players receive at least
their amount in x). If player i presses player j for an
amount greater than 6ji(x) (see (3.6), ¢ = 0), then j will
be able to find a coalition which can block i's demand.
The middle point of Rij(x) represents, therefore, a situa-
tion in which both players are symmetric with respect to
the bargaining range. By Theorem 3.8(a) we can therefore

interpret X(I') N ¢(I') as the set of payoff vectors for

which every pair of players is situated symmetrically with

respect to its bargaining range. This interpretation makes

—_—
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use of symmetries in the game situation without referring
to interpersonal comparison of’utilities.*

If I' is zero-monotonic, a similar interpretation can
be provided for X(I') n OG(F) (see Theorem 3.8(b)) and--
if ¢ is large enough, for X(I') itself. 1In this case we

have to assume that once x is being considered, a constant

penalty equal to € is imposed on any coalition initiating

a departure from x. The effect of such a penalty]or cost
is to lengthen the existing sz(x), and enlarge the set o%

outcomes x at which these bargaining ranges can be defined.

If r is not zero-monotonlc (or quasi-zero-monotonic; s see

Seé. 4.3), the interpretation must be modified due to the
requirement that the outcome should be individually rational.
Thus, as long as the middle point g of Rij(x’ ¢) is individu-
ally rational, it is taken into account. But if 5 is less
than v({i}), it must be replaced by v({i}) and gj must be
modified appropriately; similarly if g4 < v({j}). This
interpretation results from Theorem 3.8(c).

We have succeeded in providing an interpretation of
the kernel which relies on symmetry considerations concern-

ing the bargaining situation, rather than the use of

*0f course, any claim that a solution should reflect
symmetries in the bargaining situation is strengthened if
utility units are, in some sense, interpersonally equal.
Similarly, any requirement of symmetry in the outcome can
be attacked on the ground that it does not take into ac-
count the possibility that utility units might be inter-
personally unequal. -
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interpersonal comparisons of utilities. However, we have
paid a price, in that the outcomes in the kernel are not
equally convincing. For outcomes outside of X(I') n &(r)

we have to assume a cost for departure from x which is

the same for all departing coalitions, and which may have
to be fairly heavy if we are to interpret the entire ker-
nel. In practice, direct penalty arrangements seem uhlikely
to be adopted by players who contract for x, and yet, if
we tried to interpret them as a "sum" of personal disutil-
ities for committing treason, in many cases the cost would
be too small and would probably not be the same for all
coalitions. (Small coalitions that depart might be consid-
ered traitors, but if large coalitions depart the disutil-
ity might disappear.) To summarize, the points in X(I') N
Oe(F) seem quite intuitive if ¢ = 0, but become less so

as ¢ becomes larger and larger.
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6. A GEOMETRIC CHARACTERIZATION OF THE NUCLEOLUS

The nucleolus of a game was introduced by Schmeidler
[1969]; it is a nonempty subset of the kernel which consisgg
of a single point, depending continuously on the character-

' istic function. It is known that the nucleolus lies in :
Ce N % whenever this set is not empty. ‘In this section
we shall characterize its location within c, Nx by means
of what amounts to an alternative definition of the nucle-
olus. In fact, to keep the logic of our argument in view,
we shall define a set temporarily called the "lexicographic
center" of the game; it is easily proved to exist, to lie
within any nonempty C . N %, and to consist of a single
point. We then show that the lexicographic center coin-
cides with the nucleolus as traditionally defined.#*

Let ' = (N; v) be an n-person cooperative game, satis-
fying as usual the condition (2.1). For each x ¢ ('), 1eti
i'e(x) be the 2M-vector whose components are the numbers e(S, x)A

S © N, arranged in nonincreasing order. That is, we have /
(6.1) 8;(x) 2 ej(x) whenever 1 g i g j g 27,
and for each real number c, the number of integers i with

ei(x) = ¢ is equal to the number of sets S such that

e(S, x) = c. The lexicographic order on such vectors is

*This approach also provides a method for computing
the nucleolus via a sequence of linear programs; compare
Kopelowitz [1967], Kohlberg [1972], and Owen [1974].
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given by the relation ©(x) < ©(y), which holds if and only

if there is an index Vo such that

(6.2) 8 (x) =@ (y) for allv <v_, and &, (x) < &, (y).
/ v Vo Vo

/We shall write "o(x), % 6(y)" for "not 6(y) < e(x)".

DEFINITION 6.1. Let Y < Z*(I'). The nucleolus for Y

of the game I' (with respect to the grand coalikion*) is
the set N,(r') of payoff vectors in Y that minimize ¢ in
the lexicographic ordering, that is,

| _

| (6.3) ﬂY(F) = {xeY: 0(x) < 9(y) for all y ¢ Y}.

The nucleolus for Z(I') is called simply the nucleolus of T,
and is denoted N (I'), while the nucleolus for Z*(I') is called

the pre-nucleolus of I and is denoted 7*(I'). (Compare

this definition with Definition 3.1.)

6.1. The Lexicographic Center

We now introduce the lexicographic center of a game.
Intuitively, it is an extension of the idea leading to the
. least-core (see Definition 2.3.). The procedure is as fol-\
lows: First we find all the imputations that minimize the

maximum excess; in general they will form a nonempty compact

*See Remark 3.19.
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convex set. Then we put as1de those coalitions whose ex-

cess never goes below this minimum in this set* and ''re-
minimize'" the maximum excess over the remaining coalitions.
This gives us in general a nonempty compact convex subset

of the previous set, as well as some new coalitions whose

excess cannot be further reduced. These coalitions in turn

. are put aside, and the process is repeated until there are !

no coalitions left. We now formalize this procedureJ

DEFINITION 6.2. We shall construct a nested sequence

XO > X1 D> ... D X¥.0f sets of payoff vectors, and a nested

sequence 20 > 21 > ...> 2 of sets of coalitions. To ,
0. Z(T) and g0 = /

{ScN: S +#40, N} .** For k =1, 2, ..., assume that |

initiate these sequences, define X

X! # ¢ and 2! # 4 and define ]
1(6°4)‘ ;k—;' Min Max e(S, x),
cexk-l gegk-1 o
(6.5) TR - {x € X571, Max  e(S, x) = &,
segk!
6.6) =z =1{s ezt e(s, x) = F, all x €/x5,

— s = r
*Alternatively, we could put aside all coalitions whose |
excess is constant on the minimum set. This could speed up !
the process by ensuring that the dimension of XK decreases
at every step; the final result, of course, is the same. ?

— _**More generally, we could set X0 equal to any closed _
set Yc 2*x(T); compare Definitions 2.1 and 6.1. 1If the \
game is zero-monotonlcﬁ Theorem 2.7 shows that this "lexi-

cographic center for Y" would coincide with the lexicographic
center whenever Y 2 Z(T').
-\.
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6.7) o A

3

Let 'K bs ghe first value of k for which either X d or

zk = ¢. (It will be shown presently that k is well de-
fined. The sequences {X } and {2 } terminate at k =

and the set X' is called the lexicographic center of r._

Let us now consider two examples. Figure 6 shows a

_ three-person game in 0-normalized form. It is easy to

1 = .10, ¢? = -25, and €3 = -45;| that

- L1, (2,313, 5, = ({1,2), (1,31}, and 55 = ({2}, (3);

and that X = {(xl, x2, x3) _;£-= 10, x, < 60,

x3 g 60, xy + x5 = 90} and X2 =. ;“{110 45, 45)}.

verify that ¢

sets xk are shown in the figure, as well as the core and
_a few of the hyperplanes Hg ; the set Xl is of course the
least-core, as it will be for any game with a nonempty.
core.

Figure |7 shows the process of reaching the lexico;
1

'l graphic center when there is no core. This time, e ]
2 =0, 3 = 3, : 21~ (2,311, 7, = (L1}, =5 = (02}, 031,
{1 2} ,{1, 3}} =x% = {x € X(F) Poxy 0}, and X3 =

{(0 3, 23)). The strong 4- and 5-cores are also 1ndicated|

note that the least-core (which is the strong 2-core, not
shown), it outside of Z(I') in this non-zero-monotonic

game.
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-10

{2.3}

viii =v({2y)=v({3p =0,
v(xlfz})=j(§l.3}v)i:§0, v({2,3})=80,
v( l,2,3})=100.

Fig.6— Reaching the lexicographic center in
_a game with a non-empty core
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With these examples in front of us, we can describe
|the geometry of the process in ggqeral. Starting with
any ¢ large enough so that the strong e-core intersects
%Z('), one '"pushes in'" all the hyperplanes Hg, S # 4, N.
The push is performed at equal speeds (in the 21 norm)
and is stopped either when the set enclosed would become

empty (as in Fig. 6) or become disjoint from Z(T') (as in

Fig. 7). Thus, the amount of pushing depends both on the

sﬁépe of the strong e¢-core and on its relation to the space

of imputations. The push brings us to the set Xl.
By (6.6), Hél contains X1 if and only if S € 15 any

further push of such a hyperplane will render X1 empty . We

therefore continue to puéh only those hyperplanes Hg where

S € 20 \ Ly = 21. These we push at equal zl-speeds so long

as the enclosed set modified in this fashion is neither
empty nor disjoint from Z(I'). This brings us to Xz. The
process continues in the same manner until all the hyper-

‘planes Hg have been pushed to their respective limits (that

is, to ¢ = ek where S € zkygﬁéfe they will all intersect

in the one-point set x“.

LEMMA 6.3. The numberiK-of Definition 6.2

is well defined (i.e., finite), and we have, for

all k, 1 g k g[ﬁ,

(1) l the ¢X are well defined,

(i1)  the XX are nonempty compact and convex sets,

(iii)‘ zk + ¢: ﬂl.
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viiih=v({zh)=v({sh =0,
v(ir,2})=v({1,3h)=0, v({2,3}) =10,
v(,2,3})=6.

-Fig.7— Reaching the lexicographic center in a coreless game
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(iv) ek < ek'l.

Proof. Claim (i) implies claim (ii), and claim (ii)
implies claim (i) when k + 1 replaces k, provided that
£X + 4. Since Xx° satisfies (ii), both (i) and (ii) are

_proved by induction for k f_ly_%L;;:anEil_gk = 4. Since

XX + 4, the sequences terminate, if at all, by virtue of

Zk = ¢, not XX = é.
= , k _ k-1

Assume now that o < 0, i.e., =" =% , for some
k before =X = 4. This means that for each S in £®~!
there exists a payoff x(s) in Xk such that e(S, x(s))
< e Letm > 1 be the number of coalitions in gkl
Then, by the convexity of Xk, the payoff vector
(6.8) =13 x(

Rezk -1

lies in XX, and hence in xk-1, Clearly, for S e Zk-l,

we must have

(6.9) e(S, X)

vs) -2 ¥, =B
M Rex

(R)
S,
Réék -1 e( X ) < e

contrary to (6.4). This contradiction proves claim (iii).

The well-definition of/n now follows from claim (iii),

since the T, are disjoint and the number of coalitions

is finite.
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Finally, to prove claim (iv), observe that for each

k, there must exist a point x(R) in Xk

for which e(R, x(R)) < ¢X.

coalition R in
Thus, if zk contains m coali-

tions and if m > 0, the payoff vector

~ _ 1 (R)
(6.10) X = = 2: X
m Rezk
belongs to Xk and satisfies e(S, X) <'ek whenever S ¢ Zk.
Consequently, for k < K we have ktl g max, e(S, X) < ¢
SeZ
Q.E.D.

THEOREM 6.4. The lexicographic center of

a game consists of a single point.

Proof. By Lemma 6.3(ii) we see that the lexico-

graphic center X" is nonempty. By (6.5), the excess of

each coalition S is constant in Xk, if S € Ty and hence

is constant in;XK. As this holds in particular for the
_single-person coalitions, we see that it is impossible

for X to contain more than one point. Q.E.D.
6.2. Equivalence of the Lexicographic Center and the
Nucleolus

LEMMA 6.5. For any k, 1 gk g K, if

x ¢ XX and y e xk‘l\xk, then 6(x) < o(y).

Proof. Consider the partition of 2Y into the sets

Tes cees Tpopo Ek-l, {d, N}. We may ignore ¢ and N in
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' the lexicographic comparison between 6(x) and o(y), sincej

_their excesses are always 0{__By (6.6) and Lemma 6.3kiv), /

we have

e(S, x) = e(S, y) = P > k-1

for all S in Zho h=1, ..., k - 1. Moreover, for all S

in Zk-l

i we have

e(S, x) < ¢k <« K1 ang e(S, y) g ek'l,

by (6.5). However, since y is not in xk, we must have

X < e(R, y) < ¢¥"1 for at least ome R in Ek-l.

Hence
(6.2) is satisfied for the index Vo corresponding to some

such R, and we have 06(x) < 6(y). Q.E.D.

THEOREM 6.6. The nucleolus of a game

coincides with the lexicographic center, and

hence consists of a single point.

Proof. Lemma 6.5 (with the fact that x0 = Z) and

Theorem 6.4.

COROLLARY 6.7. For any I', ¢, ;g_ae(r) g

(') is not empty, then it contains % (r). In

particular, if I' is zero-monotonic, then the

nucleolus is contained in every nonempty strong

e-core, and hence in the least-core.
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Finally, for completeness, we state the following

well-known result:*

THEOREM 6.8. 7(T) < ¥().

Similar considerations can obviously be applied to
‘the nucleolus for sets Y other than Y = 2(I'); we will not

pursue them here.

6.3. Discussion of a Counterexample

Our ability to describe the nucleolus in terms of

geometric manipulations of the hyperplanes Hg suggests

that, in analogy with earlier results, the nucleolus might

occupy a definite position within the core, or other
strong e-core, independently of the other data of the

game. ' The formal conjecture would be: If f, r‘, e, e'

are such that () =z(') andc (') = o;T(r') # ¢, then
R(T) = n(r'). o

Of course, this conjecture holds if ¢ and ¢' are suf-

ficiently large, for then the characteristic functions of

In.fact, they would be directly related by the "shifting'

identitf r' s Te-e' , and shifts obviously do not affect

the location of the nucleolus. (Compare Theorem 4.1.)

“Also, the conjecture will be true whenever the

geometrical shape of ce(r)' happens to imply that £(T)

*Schmeidler [1969; Theorem 3].

**Compare Corollaries 2.6 and 3.11.

!

|

the games I' and I'' are compiétely determined (see Lemma 2.5).
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is a single point, or that  XK(T') n ce(r)' is a single ;

point, for we know that n(r) is contained in each of

these sets.

But the conjecture in general is false. Let I be

_ the game (N; v) with N = {1,2,3,4} and v defined by

(v(N) =2,
v({1,2,3}) = v({1,2,4}) = v({1,3,4}) = v({2,3,4]) = 1,
v({1,2}) = v({3,4}) = v({1,4}) = v({2,3}) =1,
v({1,3}) = 1/2, v({2,4}) = 0,
v({1}) = v({2}) = v({3}) = v({4}) = v(d)

0.

Let I'' = (N; v') be the same as I', except that v'({1,2,3}) =
5/4. 1t is easily determined that in both games, the core
lis the line segment joining the two points* {

Ej= G35 ) andEy = (1,0, 1, 0).

Thus, the hypothesis of the conjecture is satisfied, with

¢ =¢' =0. But it is eééily verified that‘

nE) = (G 3 3 DY ANCH) = (G 3 3 DI,

disproving the conjecture.

*Thls set is also the least-core and the kernel of both
T and T'.
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sl — —_

Geometrically, the walls of the core do not move at

the same speeds in these games when we are squeezing X (the

1east-core) down to X2 (the nucleolus). The hyperplanes

all move at the same speed in four-dimensional space, but

they travel in different directions, so their intersections
with the line through E; and E, move at different speeds.
Specifically, in the game I', the wall at E1 is being pushed
by the coalition {1,3} only half as fast as the wall at E,
is being pushed by the coalitions {1,2,4}, {2,3,4}, |

{2}, or {4} (all of which happen to define the same point !

on ElEZ)‘ Consequently, the nucleolus of ' lies closer
to E; than E,. 1In the game I'', however, the coalition
{1,2,3} is doing the pushing at the E, end, making that

wall move at the same speed as the other wall and making

the nucleolus of I'' 1ie at theﬂaidp01nt of E.E,.

. We may extend this example by introducing a parameter
o and defining I'(e) = (N w,) for 1= o« ¢ 5/4 by

{wd(s) = v(S), S # {1,2,3},

Wa({1:293]) =.Qa.

Thus, (1) =T and I'(5/4) =T'. (We might mention that all

/ these games’r(a) are zero-monotonic; in fact, they are
} super-additive and balanced, but not totally balanced.)

[ The cores, least- cores, and kernels of these games are all
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the same segment ElEz.* But in squeezing down to the
.nucleolus, we find that the coalition {1,3} pushes at
the E; end for a while, then {1,2,3} catches up and
pushes faster. The catch-up point, and hence the nucle-

olus, depends on the value of a; in fact,
7?(1"(0‘)) = {(%’ 1 - %’ %’ 1- %)}’ 1 s CY,. < 5/4~

This shows that there can be a continuum of locations for

the- nucleolus. It would be interesting to characterize

the set of all possible nucleolus locations within
a given core. Evidently it is convex and compact,and
is properly contained in £€ if the latter is not just

a single point.

*For any ¢ > 0 the strong e-cores also agree if a is
in the range of 1 < o g 5/4 - ¢/2. This shows (with the
help of Lemma 4.1) that the counterexample is "'robust' and
does not depend on the core being of less than full
dimension. .
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7. THE NUCLEOLUS AS A FAIR DIVISION SCHEME

In this section we shall discuss the possibility of
regarding the.nucleolus of a game as an outcome recommended
by an arbitrator whom the players may wish to consult.

It has long been known that the nucleolus satisfies
many properties desired for such a purpose. We list some
of them:

1. It defines a unique payoff vector for each game.

2. 1t satisfies individual and group rationality.

3. Symmetric players receive in the nucleolus equal
payments and, in fact, more desirable players
receive at least as much as less desirable players.*

4. A dummy receives only his own value.*%*

But these properties are satisfied also by the Shapley
value (for zero-monotonic games) and by any rule that
selects a point in the kernel. Thus, they do not deter-
mine the nucleolus. It is still an open problem to find
additional intuitively acceptable properties that, together
with the above, will constitute a'sys;em of axioms that
determine the nucleolus.

However, it seems that Theorem 6.6 gives a clue to

an operational procedure that may lead the arbitrator to

select the nucleolus. An arbitrator may wish to regard

*See Maschler and Peleg [1966] and take into account
the fact that the nucleolus is contained in the kernel.

**See the previous footnote.
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the excess of a coalition at a solution point x as a
measure of dissatisfaction of that coalition from x. He
might therefore wish to select an imputation such that the
maximum excess is minimal, i.e., an imputation in the least-
core. If he has several choices, as is often the choice,
he will "tell" some coalitions that he is unable to satisfy
them any further, but he will still attempt to satisfy
further the other coalitions, by looking at outcomes that,
in addition, minimize the second highest excess. He will
continue with this procedure until he is left with the lexi-
cographic center, namely, the nucleolus.*

Naturally there arises the task of comparing possible
advantages and disadvantages of the nucleolus over the
Shapley value. They certainly have many properties in
common. As a contribution to this task let us state two
properties which distinguish between them: (1) The nucle-
olus (in the zero-monotonic case) is always in any non-
empty e-core; the Shapley value need not be. (2) The
Shapley value for any player always responds monotonically
to changes in the characteristic function v(S) (positively
when S contains the player, negatively when it does not);
the nucleolus does not have this property. Indeed,

Megiddo [1974] has provided an example of a game whose
nucleolus payoff decreases for some players when v(N) is

increased, with nothing else changed.

*We refer the reader to Justman [1973], where a dif-
ferent procedure is described, leading the players to the
nucleolus. .
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