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GEOMETRIC QUANTITIES OF MANIFOLDS

WITH GRASSMANN STRUCTURE

N. BOKAN∗, P. MATZEU and Z. RAKIĆ∗

Abstract. We study geometry of manifolds endowed with a Grassmann struc-
ture which depends on symmetries of their curvature. Due to this reason a
complete decomposition of the space of curvature tensors over tensor prod-
uct vector spaces into simple modules under the action of the group G =
GL(p, R) ⊗ GL(q, R) is given. The dimensions of the simple submodules, the
highest weights and some projections are determined. New torsion-free con-
nections on Grassmann manifolds apart from previously known examples are
given. We use algebraic results to reveal obstructions to the existence of cor-
responding connections compatible with some type of normalizations and to
enlighten previously known results from another point of view.

§1. Introduction

Let (Mn, D) be a manifold with torsion-free connection D, g ⊆ gl(V )

the holonomy Lie algebra of D at m ∈ M and V = TmM the tangent

space of M at m. Then the curvature tensor R of D at a point m ∈ M

is a g-valued 2-form on V which satisfies the Bianchi identity. One can

introduce the structure of vector space in the set of these curvature ten-

sors: R(V ) = {R ∈ Λ2 V ∗ ⊗ g | Scy R(x, y) z = 0}, (Scy means summation

over all cyclic permutations of (x, y, z)). The decomposition of the space

R(V ) under the action of g into simple g-submodules is important, be-

cause it carries some information about this manifold. The decomposition

of the space R(V ) for all holonomy groups of Levi-Civita connection was

described by Alekseevsky [2]. For example, in the case of Levi-Civita con-

nection D = ∇g of a metric g with holonomy group SO(V ) the irreducible

components of R(V ) correspond to the scalar curvature, traceless Ricci

curvature and the Weyl tensor of D = ∇g. Vanishing of some of those

irreducible components implies the system of differential equations of first
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order on connection D. Consequently these components give the first order

invariants of D. For the group GL(n, R) the complete decomposition of

R(V ) was given by Strichartz [47], for Sp(1) ⊗ GL(n, H) (the full holon-

omy group of a quaternionic connection) it was given by Alekseevsky and

Marchiafava [5], etc.

The main idea of this paper is to study geometry of manifolds endowed

with a Grassmann structure which depends on symmetries of their cur-

vature. More precisely we describe the decomposition of R(V ) under the

action of the group G = GL(p, R) ⊗ GL(q, R) (or equivalently under the

action of the Lie algebra g = gl(p, R) ⊗ 1 + 1 ⊗ gl(q, R)). We point out

that this group is one of holonomy groups for torsion free connections in

the Berger list [8]. We refer to [29] for more details about holonomy groups

and [25], [14], [15], [39], [40] for special contribution to the classification of

these groups.

Manifolds endowed with a Grassmann connection (called manifolds

with Grassmann structure) have been studied by many authors and play

an important role in modern geometry and physics (the Yang-Mills theory,

the twistor theory, etc.).

The group G and the associated geometric structure were studied by

Akivis and Goldberg [1], Bailey and Eastwood [7], Machida and Sato [34],

Manin [35], etc. The group G as a significant example of a group of

twistor type has been studied by Alekseevsky and Graev [4]. All these

references announce an important role of this group in the twistor ap-

proach, a distinguished tool in modern geometry and mathematical physics

(for more details we refer to [4], [42], [6], [18], etc.). Some applications

of Grassmann structures, as well as other Segre structures to high en-

ergy physics were discussed in [36], [38], [3], etc. Among distinguished

examples of manifolds with Grassmann structure are Grassmann mani-

folds Gr(V p ⊗ V q) = GL(p + q)/GL(p) ⊗ GL(q). Since we deal with

the general linear groups (and their Lie algebras) over R, we simply write

GL(p) = GL(p, R) (gl(p, R) = gl(p)). We use the notation V p⊗V q = V p⊗q.

The geometry and topology of these manifolds have been studied from sev-

eral point of view by many authors (for more details see for example [1],

[53], [22], [23], [16], [37], [48], [43], [32], [11], etc.). Other non-trivial exam-

ples of manifolds with Grassmann structures one can find for example in [3],

[34], where the authors have considered also various connections over these

manifolds and their applications to the complexification of hyper-Kähler

manifolds, the tautological distributions, etc.
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In our research we reveal that the curvature related to a torsion-free

connection of Gr(V p⊗q) has a more complicated algebraic structure than in

the case of an arbitrary smooth manifold whose structure group is GL(p).

This also implies a more rich geometry. We illustrate it by means of suitable

examples of invariants, which did not appear in considering GL(p).

The paper consists five sections. Apart from the first one, devoted to

the history of the problem and to the announcement of some of our results,

in Section 2 we report the known results we use in the paper. In Section 3

we prove that R(V ) has 33 irreducible components under the action of the

group G (see Theorem 3.3). Since the highest weight vectors parametrize

the irreducible components we consider them in Section 4, as well as the

corresponding dimensions of irreducible components. Section 5 consists

six subsections, each of them is devoted to various geometrical aspects of

our algebraic results in the setting of geometry of manifolds with Grass-

mann structures and especially Grassmann manifolds. So, Subsection 5.1

is devoted to studying of geometry of manifolds endowed with half-flat con-

nection. We consider projective invariants in Subsection 5.2 as well as the

projections of a curvature R into irreducible components that are not pro-

jectively invariant. We state that projectively invariant submodule consists

of 29 irreducible components. This is an algebraically more complicated

case in comparison with case of the action of group GL(n) (see for ex-

ample [46]). Anyhow, we want to emphasize (see Proposition 5.7) that a

Leichtweiss connection has the Weyl projective curvature tensor which be-

longs to an irreducible component of R(Gr(V p⊗q)) for p = q, what is not

true in the general case. Various normalizations of the Grassmann mani-

folds and algebraic structure of corresponding vector bundles of curvatures

are studied in Subsection 5.3. This allows another approach to some known

results as well as to obtain new results in this setting, related to obstructions

of the existence of some type of normalizations. Subsection 5.4 deals with

known and new examples of connections whose Ricci traces are symmetric

and their curvatures belong to sum components in R(Gr(V p⊗q)). Ricci flat

connections are studied in Subsection 5.5. Finally, in Subsection 5.6 we

construct an example of torsion-free connection with the skew-symmetric

Ricci tensor. These connections play an important role in studying absolute

parallelizability of directions. All of these results related to any point or do-

main in Gr(V p⊗q) makes also sense for space forms of Grassmann manifold

(we refer to [52] for more details).
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§2. Preliminaries

Let us recall that the study of geometry and topology by using the

action of some group on the vector space of some geometric quantities was

initiated by Alekseevsky [2], Singer and Thorpe [46], Kulkarni [31] and many

other authors who applied this method to the analysis of several geometric

problems (see for example [20], [50], and [13], [44] for more details).

In this section we introduce some basic notions and notations we need

in the following sections, as well as some known results. All vector spaces

and general linear groups we consider in this paper are taken over R. Let

Sr denotes the symmetric group in r letters and Ar its subgroup of even

permutations. Let V p be a real vector space of dimension p and V =

V p⊗q = V p ⊗ V q be a tensor product of real vector spaces. If (ei) and (fα)

are basis in V p and V q respectively, then (viα = ei ⊗ fα) is the standard

basis in V p⊗q. We denote the vectors of the dual basis by adding a ‘∗’

to the vectors of such basis. We denote the components of an arbitrary

vector v in V p⊗q by v(i α). Hence a tensor of rank (k, r) has the components

T
(j1 β1)(j2 β2)···(jk βk)
(i1 α1)(i2 α2)···(ir αr) .

We denote the vector space of tensors of rank (k, r) by T k
r . If some of

k or r is equal to zero then we drop the corresponding index. Moreover, if

k = 0 we denote it by V ⊗r. There is a natural action of the group Sr on a

tensor of rank (0, r). For σ ∈ Sr we have

σ. T(i1 α1)(i2 α2)···(ir αr) = T(iσ(1) ασ(1))(iσ(2) ασ(2))···(iσ(r) ασ(r)).

Let us remark that this action will be considered as the action of the group

ring of the symmetric group, i.e. G(Sr).

The group GL(p) ⊗ GL(q) is a subgroup of GL(p q) and it acts on

V p ⊗ V q such that GL(p) acts on V p in the usual way and GL(q) acts on

V q by inverse from the right. There is the natural projection

ξ : GL(p) × GL(q) −→ GL(p) ⊗ GL(q),

that defines a fibre bundle with fibre R
∗ by the scalar multiplication and

the dimension of the group GL(p) ⊗ GL(q) is p2 + q2 − 1 (see [34]).

Let R ∈ T 1
3 . Then R is an algebraic curvature tensor if it satisfies the
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following symmetry conditions:

σ12. R(x1, x2, x3, ω) = R(x2, x1, x3, ω) = −R(x1, x2, x3, ω),(1)
∑

σ∈A3

R(xσ(1), xσ(2))xσ(3) = A+
3 . R(x1, x2)x3 = 0,(2)

where σ12 is the transposition (12), A+
3 =

∑

σ∈A3
σ is considered as an

element of the group ring G(S3), and

(3) R(x1, x2, x3, ω) = ω(R(x1, x2)x3) = 〈R(x1, x2)x3, ω〉.

It is clear that algebraic curvature tensors build a vector subspace R(V n)

in T 1
3 . The Ricci traces, ρi : T 1

3 → T2, are defined as follows

(4) ρi = con(i, 4)R, i = 1, 2, 3,

where con(i, 4) means contraction in the i th covariant and contravariant

indices. It is easy to see the Ricci traces ρ2 and ρ3 can be expressed in

terms of ρ1, for R ∈ R(V n).

In the following, we need a fundamental result obtained by Strichartz

in [47].

The group GL(n) acts naturally on T 1
3 by

(5) π(g)R(x1, x2, x3, ω) = R(g−1 x1, g
−1 x2, g

−1 x3, g
τ ω),

and this action defines on T 1
3 the structure of GL(n)-module. As it is

known, the simple GL(n)-modules are parameterized by the lattice of high-

est weights. We denote by π(m) the simple GL(n)-module of the highest

weight m = (m1,m2, . . . ,mn) (m1 ≥ m2 ≥ · · · ≥ mn, mi are integers). Fol-

lowing a standard notation we delete the string of zeros, so that π(2,−1)

means π(2, 0, . . . , 0,−1). It is clear that π(1) is the fundamental represen-

tation of GL(n) in V n and π(−1) is its contragredient representation in

(V n)∗. In [47] the following theorem has been shown.

Theorem 2.1. The semi-simple GL(n)-module R(V n) is the direct

sum of simple GL(n)-modules,

R(V n) = π(2) ⊕ π(1, 1) ⊕ π(2, 1,−1),

(when n = 2 the third component is deleted).

In the same theorem he found corresponding projections on irreducible

components.
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§3. Decomposition of R(V )

Since we are interested in the vector space of curvature tensors over

tensor product vector spaces, we define a natural generalization of the action

of the group G.

Let 4 be the diagonal mapping of G(Sr) to G(Sr) ⊗ G(Sr), i.e.,

4 : G(Sr) −→ G(Sr) ⊗ G(Sr),

given by the following formula 4(σ) = σ⊗σ and extended by linearity. We

consider the action on V ⊗r (V = V p ⊗ V q)

(σ1 ⊗ σ2). T (x1 ⊗ y1, . . . , xr ⊗ yr) = T (xσ1(1) ⊗ yσ2(1), . . . , xσ1(r) ⊗ yσ2(r)).

Then the formulas (1) and (2) have to be obviously modified as

4(σ12). R(x1 ⊗ y1, x2 ⊗ y2, x3 ⊗ y3, ω ⊗ θ)(6)

= −R(x1 ⊗ y1, x2 ⊗ y2, x3 ⊗ y3, ω ⊗ θ)

4(A+
3 ). R(x1 ⊗ y1, x2 ⊗ y2)x3 ⊗ y3 = 0.(7)

Consequently the Ricci traces of the tensors of rank (1, 3), become

(8) ρiα = con((i, α)(4, 4))R = con(i, 4) ◦ con(α, 4)R,

where con(i, 4) = con(i, 4) ⊗ id and con(α, 4) = id ⊗ con(α, 4).

We use the formulae (1), (7) and (8), to prove the following proposition.

Proposition 3.1. The vector space of Ricci traces is spanned by ρ11,

ρ12 and ρ13.

This proposition is very important since the kernels and images of Ricci

traces are submodules of G-module R(V ).

In the rest of the paper we prefer the terminology of modules (simple

and semi-simple submodules) rather then the terminology of representations

(irreducible, reducible subrepresentations).

Since the group G is a subgroup of GL(p q) and because of the decom-

position of R(V p q) given in Theorem 2.1, it follows that its simple modules

are just stable under the action of the group G. Our next task is finding

their decomposition into simple parts. So, let us denote by Π1(m) and

Π2(m) the simple GL(p) and GL(q)-modules respectively, where m is, as

before, the highest weight.
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The tensors that belong to the component πa(2, 1) are the only ones

which satisfy both conditions (1) and (2). Consequently, making tensor

product of the component πa(2, 1) by π(−1), we obtain the decomposition

of the space of the curvature tensors into simple modules under the action

of the group GL(V ), that is practically the proof of Theorem 2.1. We apply

this idea on V = V p ⊗ V q.

Firstly, one can use the action of the group G on the vector space V ⊗V

to check the following lemma (see [34], [26]).

Lemma 3.2. Let V = V p⊗V q. Under the action of the group GL(p)⊗
GL(q) the space V ⊗ V is decomposed as follows

(i1) π(2) = Π1(2) ⊗ Π2(2) ⊕ Π1(1, 1) ⊗ Π2(1, 1),

(i2) π(1, 1) = Π1(2) ⊗ Π2(1, 1) ⊕ Π1(1, 1) ⊗ Π2(2),

where the corresponding Young symmetrizers are

(c1) c̄(2) = c(2) ⊗ c(2) + c(1,1) ⊗ c(1,1),

(c2) c̄(1,1) = c(2) ⊗ c(1,1) + c(1,1) ⊗ c(2).

Since we need the decomposition of GL(p q)-module π(2, 1,−1) into

direct sum of simple G-modules, we consider the space (V ∧ V ) ⊗ V , and

use the Young symmetrizers. Firstly, let us recall for i = p, j = 1, or i = q,

j = 2, that

V i ⊗ V i ⊗ V i = Πj(3) ⊕ Πs
j(2, 1) ⊕ Πa

j (2, 1) ⊕ Πj(1, 1, 1),

where Πs
j(2, 1) consists of tensors satisfying the first Bianchi identity and

symmetry in first two places.

If we put B = 3 I − A+
3 , then we have the following symmetrizers of

(V i)⊗3:

c(3) =
1

6
(A+

3 + σ12 A+
3 ), c(1,1,1) =

1

6
(A+

3 − σ12 A+
3 ),(9)

ca
(2,1) =

1

6
(B − σ12 B), cs

(2,1) =
1

6
(B + σ12 B).(10)

Making tensor product of the corresponding components, one can find the

symmetrizers of the simple G-modules of V ⊗3. More precisely, we have the
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following decomposition of πa(2, 1) in the terms of the corresponding Young

symmetrizers

c(3)⊗ca
(2,1) =

1

36

(

A+
3 ⊗B−A+

3 ⊗σ12 B+σ12 A+
3 ⊗B−σ12 A+

3 ⊗σ12 B
)

,

ca
(2,1)⊗c(3) =

1

36

(

B⊗A+
3 −σ12 B⊗A+

3 +B⊗σ12 A+
3 −σ12 B⊗σ12 A+

3

)

,

c(1,1,1)⊗cs
(2,1) =

1

36

(

A+
3 ⊗B−σ12 A+

3 ⊗B+A+
3 ⊗σ12 B−σ12 A+

3 ⊗σ12 B
)

,

cs
(2,1)⊗c(1,1,1) =

1

36

(

B⊗A+
3 +σ12 B⊗A+

3 −B⊗σ12 A+
3 −σ12 B⊗σ12 A+

3

)

,

(c(2,1) ⊗ c(2,1))
a = 4(ca

(2,1)) −
(

c(3) ⊗ ca
(2,1) + ca

(2,1) ⊗ c(3)

+ c(1,1,1) ⊗ cs
(2,1) + cs

(2,1) ⊗ c(1,1,1)

)

.

(11)

The corresponding decomposition of the component πa(2, 1) in terms

of the highest weights is

πa(2, 1) = Π1(3) ⊗ Πa
2(2, 1) ⊕ Πa

1(2, 1) ⊗ Π2(3) ⊕ Π1(2, 1) ⊗ Π2(2, 1)(12)

⊕ Πs
1(2, 1) ⊗ Π2(1, 1, 1) ⊕ Π1(1, 1, 1) ⊗ Πs

2(2, 1).

It is clear that all simple G-modules given in (12) satisfy all needed

symmetry conditions, and making tensor product of them by V ∗ = π(−1) =

Π1(−1) ⊗ Π2(−1), we obtain the decomposition of the space of curvature

tensors into simple G-modules (using the Littlewood-Richardson rule [34,

p. 331], see also [19], [12]).

Let we introduce symmetric analogue of the curvature tensor (symme-

try in the first two indices and the first Bianchi identity) by

R∗(V n) = πs(2) ⊕ πs(1, 1) ⊕ πs(2, 1,−1),

We summarize the previous considerations in the following theorem.

Theorem 3.3. Let G = GL(p) ⊗ GL(q) and V = V p⊗q = V p ⊗ V q

then the space of curvature tensors R(V ) decomposes as follows (p, q > 3)

R(V ) = Π1(2) ⊗ Π2(2) ⊕ Π1(1, 1) ⊗ Π2(1, 1)

⊕ Π1(2) ⊗ Π2(1, 1) ⊕ Π1(1, 1) ⊗ Π2(2)

⊕ (Πts
1 (2) ⊕ Π1(3,−1)) ⊗R(V q)

⊕R(V p) ⊗ (Πts
2 (2) ⊕ Π2(3,−1))
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⊕ (Πta
1 (1, 1) ⊕ Π1(1, 1, 1,−1)) ⊗R∗(V q)

⊕R∗(V p) ⊗ (Πta
2 (1, 1) ⊕ Π2(1, 1, 1,−1))

⊕ Π1(2, 1,−1) ⊗ Π2(2) ⊕ Π1(2) ⊗ Π2(2, 1,−1)

⊕ Π1(2, 1,−1) ⊗ Π2(1, 1) ⊕ Π1(1, 1) ⊗ Π2(2, 1,−1)

⊕ Π1(2, 1,−1) ⊗ Π2(2, 1,−1).

The superscripts ‘ ts ’ and ‘ ta ’ indicate that those components consist of

totally symmetric and totally skew-symmetric tensors in covariant places.

Remark 3.4. Some components in the decomposition in Theorem 3.3
for p, q ≤ 3 vanish since their dimensions are equal to zero (see Table
(dimension) in the next section). In Section 5, we present various projection
operators only for p, q > 3, because of the same reason.

Remark 3.5. Let us also remark, that in this decomposition there exist
four simple modules of multiplicity 3, four simple modules of multiplicity 2
and 13 simple modules of multiplicity 1.

§4. Simple modules their dimensions and highest weights

The main purpose of this section is to obtain the highest weight vectors

of all G-modules which appear in the decomposition of R(V ) (stated in

Theorem 3.3). We reach these results by studying all simple modules of

GL(n).

In order to know the dimensions of the simple G-modules, we need to

compute the dimensions of the simple GL(n)-modules enlarging the result

of Theorem 2.1. More precisely, we have Table 1.

Finally, by a straightforward computation, with use of Theorem 3.3

and Table 1 we get

dimR(V ) =
p2 q2 (p2 q2 − 1)

3
.

If we use the following notations:

v(i1α1)···(ikα1)(j1β1)∗···(jlβl)∗(13)

= (ei1 ⊗ fα1) · · · (eik ⊗ fαk
) ⊗ (e∗j1 ⊗ f∗

β1
) · · · (e∗jl

⊗ f∗

βl
)

∼= (ei1 ⊗ · · · ⊗ eik ⊗ e∗j1 ⊗ · · · ⊗ e∗jl
)

⊗ (fj1 ⊗ · · · ⊗ fjk
⊗ f∗

β1
⊗ · · · ⊗ f ∗

βl
),
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Component Dimension Highest Weight Vector

Πa(2) 1
2n(n + 1)

∑

k(e1 ∧ ek) ⊗ e1 ⊗ e∗k

Πa(1, 1) 1
2n(n − 1)

∑

k

(

(e1 ∧ e2) ⊗ ek

+ (ek ∧ e2) ⊗ e1

)

⊗ e∗k

Πa(2, 1,−1) 1
3n2(n2 − 4) (e1 ∧ e2) ⊗ e1 ⊗ e∗n

Πs(2) 1
2n(n + 1)

∑

k

(

(e1 ~ ek) ⊗ e1

− e1 ⊗ e1 ⊗ ek

)

⊗ e∗k

Πs(1, 1) 1
2n(n − 1)

∑

k

(

−2 (e1 ~ ek) ⊗ e2

+ (e1 ~ e2) ⊗ ek

+ (ek ~ e2) ⊗ e1

)

⊗ e∗k

Πs(2, 1,−1) 1
3n2(n2 − 4)

(

(e1 ~ e2) ⊗ e1

− e1 ⊗ e1 ⊗ e2

)

⊗ e∗n

Π(3,−1) 1
6n(n + 3)(n2 − 1) e1 ⊗ e1 ⊗ e1 ⊗ e∗n

Πts(2) 1
2n(n + 1)

∑

k(e1 ~ e1 ~ ek) ⊗ e∗k

Πta(1, 1) 1
2n(n − 1)

∑

k(e1 ∧ e2 ∧ ek) ⊗ e∗k

Π(1, 1, 1,−1) 1
6n(n − 3)(n2 − 1) e1 ∧ e2 ∧ e3 ⊗ e∗n

Table 1.

where v(iα) = ei ⊗ fα is the standard basis of V p ⊗ V q and v∗(jβ) = e∗j ⊗ f∗

β

is the standard basis of (V ∗)p ⊗ (V ∗)q, one can rewrite (13) as

v(i1α1)···(ikα1)(j1β1)∗···(jlβl)∗(14)

= v(i1α1) ⊗ · · · ⊗ v(ikα1) ⊗ v∗(j1β1)
⊗ · · · ⊗ v∗(jlβl)

.

One can obtain, by making tensor product of the appropriate high-

est weight vectors of components from previous Table, the highest weight

vectors of simple G-modules of the following 24 components:

Π1(3,−1) ⊗ Πa
2(2), Πa

1(2) ⊗ Π2(3,−1),

Π1(3,−1) ⊗ Πa
2(1, 1), Πa

1(1, 1) ⊗ Π2(3,−1),

Π1(3,−1) ⊗ Πa
2(2, 1,−1), Πa

1(2, 1,−1) ⊗ Π2(3,−1),

Πts
1 (2) ⊗ Πa

2(2), Πa
1(2) ⊗ Πts

2 (2), Πts
1 (2) ⊗ Πa

2(1, 1), Πa
1(1, 1) ⊗ Πts

2 (2),

Πts
1 (2) ⊗ Πa

2(2, 1,−1), Πa
1(2, 1,−1) ⊗ Πts

2 (2),
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Π1(1, 1, 1,−1) ⊗ Πs
2(2), Πs

1(2) ⊗ Π2(1, 1, 1,−1),

Π1(1, 1, 1,−1) ⊗ Πs
2(1, 1), Πs

1(1, 1) ⊗ Π2(1, 1, 1,−1),

Πta
1 (1, 1) ⊗ Πs

2(2, 1,−1), Πs
1(2, 1,−1) ⊗ Πta

2 (1, 1),

Πta
1 (1, 1) ⊗ Πs

2(2), Πs
1(2) ⊗ Πta

2 (1, 1),

Πta
1 (1, 1) ⊗ Πs

2(1, 1), Πs
1(1, 1) ⊗ Πta

2 (1, 1),

Π1(1, 1, 1,−1) ⊗ Πs
2(2, 1,−1), Πs

1(2, 1,−1) ⊗ Π2(1, 1, 1,−1).

The highest weights of the residual 9 components are given in Table 2.

§5. Applications

To apply the results in Sections 3 and 4 we introduce a notion of the

Grassmann structure. A Grassmann structure of type (p, q) on a manifold

M is, by definition, an isomorphism from the tangent bundle TM of M to

the tensor product E ⊗H of two vector bundles E and H with rank p and

q over M respectively (TM ' E ⊗ H). If dimM = n, then n = p q. Typi-

cal examples of manifolds with Grassmann structures are the Grassmann

manifolds Gr(V p⊗q). The tangent bundle TTM of TM has a Grassmann

structure of type (n, 2). Let F rM be the r-frame bundle of M . The n (r+1)-

dimensional manifold F rM has a Grassmann structure of type (n, r + 1).

We refer to [3], [34] for more details.

A linear connection D on M is called a Grassmann connection if it

preserves the Grassmann structure. This means that for any vector field X

on M and local sections e ∈ Γ(E) and h ∈ Γ(H),

DX (e ⊗ h) = DE
X e ⊗ h + e ⊗ DH

X h,

where DE , DH are connections in the bundles E, H respectively. If D is

torsion-free, its holonomy group is G = GL(p) ⊗ GL(q).

Throughout this section we consider only smooth manifolds neverthe-

less many results can be stated in the setting of complex manifolds and

holomorphic connections. We note that using analytic continuation any

real analytic connection D over a real analytic Grassmann manifold allows

extension to a holomorphic connection DC over a holomorphic Grassmann

manifold and D can be reconstructed from DC in terms of some antiholo-

morphic involution.

Let M be a real manifold with Grassmann structure of type (p, q) (p q =

n) and D a torsion-free connection whose curvature tensor R is given by

R(X,Y ) = [DX , DY ] − D[X,Y ],
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Component Highest Weight Vector

Π1(2) ⊗ Π2(2)
∑

k,j

(

v(11)(kj)(11)(kj)∗ − v(kj)(11)(11)(kj)∗

− v(11)(k1)(1j)(kj)∗ + v(k1)(11)(1j)(kj)∗

− v(11)(1j)(k1)(kj)∗ + v(1j)(11)(k1)(kj)∗
)

Π1(2) ⊗ Π2(2, 1,−1)
∑

k

(

v(11)(k2)(11)(kq)∗ − v(k2)(11)(11)(kq)∗

− v(11)(k1)(12)(kq)∗ + v(k1)(11)(12)(kq)∗

− v(11)(12)(k1)(kq)∗ + v(12)(11)(k1)(kq)∗

Π1(2, 1,−1)⊗ Π2(2)
∑

k

(

v(11)(2k)(11)(pk)∗ − v(2k)(11)(11)(pk)∗

− v(11)(21)(1k)(pk)∗ + v(21)(11)(1k)(pk)∗

− v(11)(1k)(21)(pk)∗ + v(1k)(11)(21)(pk)∗

Π1(2) ⊗ Π2(1, 1)
∑

k,j

(

v(1j)(k2)(11)(kj)∗ − v(k2)(1j)(11)(kj)∗

− v(1j)(k1)(12)(kj)∗ + v(k1)(1j)(12)(kj)∗

− v(1j)(12)(k1)(kj)∗ + v(12)(1j)(k1)(kj)∗

+ v(11)(k2)(1j)(kj)∗ − v(k2)(11)(1j)(kj)∗
)

Π1(1, 1) ⊗ Π2(2)
∑

k,j

(

v(k1)(2j)(11)(kj)∗ − v(2j)(k1)(11)(kj)∗

+ v(11)(2j)(k1)(kj)∗ − v(2j)(11)(k1)(kj)∗

− v(k1)(21)(1j)(kj)∗ + v(21)(k1)(1j)(kj)∗

− v(k1)(1j)(21)(kj)∗ + v(1j)(k1)(21)(kj)∗
)

Π1(1, 1) ⊗ Π2(1, 1)
∑

k,j

(

v(kj)(22)(11)(kj)∗ − v(22)(kj)(11)(kj)∗

+ v(11)(22)(kj)(kj)∗ − v(22)(11)(kj)(kj)∗

− v(k1)(2j)(12)(kj)∗ + v(2j)(k1)(12)(kj)∗

− v(k1)(12)(2j)(kj)∗ + v(12)(k1)(2j)(kj)∗
)

Π1(1, 1) ⊗ Π2(2, 1,−1)
∑

k

(

v(k1)(22)(11)(kq)∗ − v(22)(k1)(11)(kq)∗

+ v(11)(22)(k1)(kq)∗ − v(22)(11)(k1)(kq)∗

− v(k1)(21)(12)(kq)∗ + v(21)(k1)(12)(kq)∗

− v(k1)(12)(21)(kq)∗ + v(12)(k1)(21)(kq)∗
)

Π1(2, 1,−1)⊗ Π2(1, 1)
∑

k

(

v(1k)(22)(11)(pk)∗ − v(22)(1k)(11)(pk)∗

+ v(11)(22)(1k)(pk)∗ − v(22)(11)(1k)(pk)∗

− v(1k)(21)(12)(pk)∗ + v(21)(1k)(12)(pk)∗

− v(1k)(12)(21)(pk)∗ + v(12)(1k)(21)(pk)∗
)

Π1(2, 1,−1)⊗ Π2(2, 1,−1) v(11)(22)(11)(pq)∗ − v(22)(11)(11)(pq)∗

− v(11)(21)(12)(pq)∗ + v(21)(11)(12)(pq)∗

− v(11)(12)(21)(pq)∗ + v(12)(11)(21)(pq)∗

Table 2.
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where X,Y ∈ X , the algebra of C∞ vector fields on M .

Let TmM be the tangent space at m. Then, having in mind the above

exposition we have TmM = V p ⊗ V q, where V p and V q are fibers of E and

H respectively. We denote by R(M) the vector bundle with fiber R(TmM),

i.e. the vector space of curvature tensors at a point m ∈ M . Theorem 3.3

applied to R(TmM) gives rise to a decomposition of R(M) into subbundles.

We still denote the simple components as in the previous sections.

Let us recall that our results in Section 3 are pure algebraic. To obtain

geometrical interpretations of the components (which are bundles in the

setting of this section) in Theorem 3.3, we need to find some torsion-free

connections whose curvature tensors belong to these components.

Many authors have been interested in this topic giving previously par-

tially geometrical interpretations of some components or their direct sum.

We mention here some of previously known examples and find some new

ones.

Under appropriate assumptions, for example, when the Grassmann

structure is associated with a quaternionic Kähler structure on M , half-

flatness implies the Yang-Mills equations. Inspired by the harmonic space

approach, Alekseevsky, Cortés and Devchand [3] have developed a local

construction of (holomorphic) half-flat connections DW over a complex

manifold with (holomorphic) Grassmann structure equipped with a suit-

able linear connection, in general case with torsion. Any such connection

DW can be obtained from a prepotential by solving a system of linear first

order ODEs.

Machida and Sato [34] have regarded a Grassmann structure of type

(p, q) as a geometric structure related to a simple graded Lie algebra of the

first kind. They have applied the Tanaka theory which induces the existence

of a unique normal Cartan connection and explicitly have written down the

normal Cartan connection for a Grassmann structure of type (p, q).

5.1. Curvatures of half-flat torsion-free connections

Among Grassmann connections we study mainly half-flat ones. Let M

be a manifold with a Grassmann structure TM ' E ⊗ H of type (p, q)

and with a Grassmann connection D = DE ⊗ Id + Id ⊗ DH . Then D is

called positive half-flat if the connection DH in the vector bundle H → M

is flat and negative half-flat if DE is flat in the vector bundle E → M .

The corresponding structures TM ' E ⊗ H are called a positive half-flat

Grassmann structure and a negative half-flat Grassmann structure respec-
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tively. In general case D is not torsion-free, but we are interested only in

the connections which are torsion-free. We call them half-flat torsion-free

connections and the corresponding Grassmann structures half-flat torsion-

free structures. The Levi-Civita connection on a hyper-Kähler manifold is

an example of a positive half-flat torsion-free connection [3]. The conditions

for D being torsion-free have been studied in [34, Theorems 5.1, 6.1, 7.3].

We are interested now in curvatures for half-flat torsion-free Grass-

mann connections. Let us recall that R(M) is the vector bundle with fiber

R(TmM) – the vector space of curvature tensors at a point m ∈ M . The

tensor spaces and the tensor fields on M give rise to decompositions with

respect to the same group G.

Denote by Λ2 the space of 2-forms Λ2(TM) or Λ2(T ∗M). Then Λ2 is

decomposed (see Lemma 3.2 (i2)) as follows

(15) Λ2 = S2(E) ⊗ Λ2(H) ⊕ Λ2(E) ⊗ S2(H).

The decomposition is invariant under the group G. We combine (15) with

our restriction (the vanishing of torsion is equivalent to the first Bianchi

identity) to get

(16) R(M) =
{

R ∈ Λ2 ⊗ g | σcyR(x, y) z = 0
}

,

whose subbundles

R+(M) =
{

R ∈ S2(E) ⊗ Λ2(H) ⊗ g | σcyR(x, y) z = 0
}

,(17)

R−(M) =
{

R ∈ Λ2(E) ⊗ S2(H) ⊗ g | σcyR(x, y) z = 0
}

,(18)

consist of curvatures for positive and negative torsion-free half-flat Grass-

mann connections respectively (see [3] and [34]).

We combine now (17) with Theorem 3.3 to get

Theorem 5.1. Let G = GL(p) ⊗ GL(q) and let R+(M) be the sub-

bundle that consists of curvatures of a manifold with a positive torsion-free

half-flat Grassmann structure. Then R+(M) decomposes (p, q > 3) as fol-

lows

R+(M) = (Πts
1 (2) ⊕ Π1(3,−1)) ⊗R(V q)(19)

⊕R∗(V p) ⊗ (Πta
2 (1, 1) ⊕ Π2(1, 1, 1,−1)).
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Proof. It is clear that all components in the righthand side of (19)
belong to R+(M). Other candidates in Theorem 3.3 should be omitted
either because of skew-symmetry condition or because of the Bianchi iden-
tity, since R(M) = R+(M) ⊕R−(M) ⊕ R̃(M), where R̃(M) = [Π1(2, 1) ⊗
Π2(2, 1)] ⊗ Π1(−1) ⊗ Π2(−1). See (12) for more details.

A similar statement holds for R−(M).

Let us emphasize that R̃(M) consists of curvatures that fulfill the con-

dition (6) but are not obtained by combining the symmetries with respect

to E and H. See also PΠ1(2)⊗Π2(2) R in Proposition 5.14.

Consequently, one can obtain algebraic obstructions for a torsion-free

connection defined on M (TM ' E⊗H) being positive half-flat torsion-free.

Corollary 5.2. Let D be a torsion-free non-flat connection defined

globally (or locally) on M with a Grassmann structure of type (p, q). Then

D is not positive half-flat iff its curvature tensor has non-vanishing projec-

tion on the subbundle

R−(M) ⊕ Π1(2) ⊗ Π2(2) ⊕ Π1(1, 1) ⊗ Π2(1, 1) ⊕ Π1(2) ⊗ Π2(1, 1)

⊕ Π1(1, 1) ⊗ Π2(2) ⊕ Π1(2, 1,−1) ⊗ Π2(2) ⊕ Π1(2) ⊗ Π2(2, 1,−1)

⊕ Π1(2, 1,−1) ⊗ Π2(1, 1) ⊕ Π1(1, 1) ⊗ Π2(2, 1,−1)

⊕ Π1(2, 1,−1) ⊗ Π2(2, 1,−1).

Proof. Use Theorem 3.3, Theorem 5.1 and Definition of half-flat
torsion-free connections.

Analogous statement holds for negative half-flat torsion-free-connec-

tion.

5.2. Projective invariants

The main purpose of this subsection is to obtain some invariants of pro-

jective transformations of real Grassmann manifolds and to analyze them

in the light of Theorem 3.3. Therefore, in what follows, we give some results

concerning torsion-free connections D and D ′ on Gr(V p⊗q) with common

geodesic lines. With this aim, we introduce the (1, 2)-rank tensor field T

whose components T
(kγ)
(iα)(jβ) are given by

(20) T
(kγ)
(iα)(jβ) := Γ

(kγ)
(iα)(jβ) − G

(kγ)
(iα)(jβ),
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where Γ
(kγ)
(iα)(jβ) and G

(kγ)
(iα)(jβ) denote the Christoffel symbols of D and D ′

respectively and i, j, k, . . . ∈ {1, . . . , p}, α, β, γ ∈ {1, . . . , q}. Now we can

state

Lemma 5.3. Let Gr(V p⊗q) be a Grassmann manifold, D, D′ two tor-

sion-free connections on Gr(V p⊗q) with corresponding Christoffel symbols

Γ
(kγ)
(iα)(jβ) and G

(kγ)
(iα)(jβ) respectively. Then these connections are projectively

related if and only if their Christoffel symbols satisfy the equation

(21) G
(kγ)
(iα)(jβ) = Γ

(kγ)
(iα)(jβ) −

(

η(iα) δk
j δγ

β + η(jβ) δk
i δγ

α

)

,

where

(22) η(iα) =
1

p q + 1
T

(kγ)
(kγ)(iα).

Proof. See [23].

Let now B = {zlτ = xl ⊗ yτ | 1 ≤ l ≤ p, 1 ≤ τ ≤ q} be a fixed basis

of the tangent space Tm(Gr(V p⊗q)) = V p ⊗ V q and let D be a torsion-free

connection on Gr(V p⊗q) with Christoffel symbols Γ
(kγ)
(iα)(jβ). Then one can

consider its curvature tensor

(23) R(ziα, zjβ) zkγ = Dziα
Dzjβ

zkγ − Dzjβ
Dziα

zkγ − D[ziα, zjβ ] zkγ

with components

R(iα)(jβ)(kγ)
(lν) =

∂Γ
(lν)
(jβ)(kγ)

∂xiα
−

∂Γ
(lν)
(iα)(kγ)

∂xjβ
(24)

+ Γ
(mµ)
(iα)(kγ) Γ

(lν)
(jβ)(mµ) − Γ

(mµ)
(jβ)(kγ) Γ

(lν)
(iα)(mµ),

and the Ricci trace ρ11
R = con((1, 1)(4, 4))R. In particular, if we suppose

that R and R′ are the curvature tensor fields of the projectively related

torsion-free connections D and D′ respectively, then, from Lemma 5.3, we

get that their Ricci traces ρ11
R and ρ11

R′ satisfy the following equation

(25) ρ11
R′(ziα, zjβ) = ρ11

R (ziα, zjβ) + p q η(ziα, zjβ) − η(zjβ, ziα),

where

(26) η(iα)(jβ) = η(ziα, zjβ) := −(Dziα
η)(zjβ) + η(ziα) η(zjβ).

Analogously to the well known definitions, (see also [22], [23], [24]) we can

now introduce the following.
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Definition 5.4. Let D be a torsion-free connection on the real Grass-
mann manifold Gr(V p⊗q) and let R, ρ11

R be its curvature tensor field and
its Ricci curvature. Then the (1, 3)-tensor field given by

P (ziα, zjβ) zkγ = R(ziα, zjβ) zkγ − (Q(ziα, zjβ) − Q(zjβ, ziα)) zkγ

+ Q(zjβ, zkγ) ziα − Q(ziα, zkγ) zjβ,

where

(27) Q(ziα, zjβ) = −
p q

p2 q2 − 1
ρ11

R (ziα, zjβ) −
1

p2 q2 − 1
ρ11

R (zjβ, ziα),

is the projective curvature tensor associated with D.

In fact, taking into account that (25) implies the following transforma-

tion formula for Q:

(28) Q′(ziα, zjβ) = Q(ziα, zjβ) − η(ziα, zjβ),

from Lemma 5.3 we get that the tensor P is invariant for projective trans-

formations of the connection D. Moreover, its definition assures that P is

a curvature tensor satisfying the symmetries (6) and (7) as well as that its

Ricci trace ρ11
P vanishes. For more details one can see [23].

Let P(Gr(V p⊗q)) ⊆ R(Gr(V p⊗q)) be the vector subbundle of pro-

jective curvature tensors. Consequently, comparing the properties of

P(Gr(V p⊗q)) with the decomposition formula in Theorem 3.3, we obtain

that P(Gr(V p⊗q)) is not simple. More precisely we state the following the-

orem.

Theorem 5.5. The decomposition of subbundle P(Gr(V p⊗q)) of

R(Gr(V p⊗q)) into direct sum of simple G-subbundles is given by (p, q > 3)

P(Gr(V p⊗q)) = 2Π1(2) ⊗ Π2(2) ⊕ 2Π1(1, 1) ⊗ Π2(1, 1)

⊕ 2Π1(2) ⊗ Π2(1, 1) ⊕ 2Π1(1, 1) ⊗ Π2(2)

⊕ Πts
1 (2) ⊗ Π2(2, 1,−1) ⊕ Π1(2, 1,−1) ⊗ Πts

2 (2)

⊕ Π1(3,−1) ⊗R(V q) ⊕R(V p) ⊗ Π2(3,−1)

⊕ Π1(1, 1, 1,−1) ⊗R∗(V q) ⊕R∗(V p) ⊗ Π2(1, 1, 1,−1)

⊕ Πta
1 (1, 1) ⊗ Π2(2, 1,−1) ⊕ Π1(2, 1,−1) ⊗ Πta

2 (1, 1)

⊕ Π1(2, 1,−1) ⊗ Π2(2) ⊕ Π1(2) ⊗ Π2(2, 1,−1)

⊕ Π1(2, 1,−1) ⊗ Π2(1, 1) ⊕ Π1(1, 1) ⊗ Π2(2, 1,−1)

⊕ Π1(2, 1,−1) ⊗ Π2(2, 1,−1).
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Remark 5.6. Th. Hangan in [22] has also studied the projective trans-
formations of Gr(V p⊗q) from pseudogroups point of view.

We are now interested in projection operators on some components

considered in Theorem 3.3. To obtain these projections into some of simple

components we introduce the following notations:

S(lµ)(jβ) =
1

2

(

ρ11
(lµ)(jβ) + ρ11

(jβ)(lµ)

)

,

A(lµ)(jβ) =
1

2

(

ρ11
(lµ)(jβ) − ρ11

(jβ)(lµ)

)

,

Ss
(lµ)(jβ) =

1

4

[

ρ11
(jβ)(lµ) + ρ11

(lµ)(jβ) + ρ11
(lβ)(jµ) + ρ11

(jµ)(lβ)

]

,

Sa
(lµ)(jβ) =

1

4

[

ρ11
(jβ)(lµ) + ρ11

(lµ)(jβ) − ρ11
(lβ)(jµ) − ρ11

(jµ)(lβ)

]

,

As
(lµ)(jβ) =

1

4

[

ρ11
(jβ)(lµ) + ρ11

(lβ)(jµ) − ρ11
(lµ)(jβ) − ρ11

(jµ)(lβ)

]

,

Aa
(lµ)(jβ) =

1

4

[

ρ11
(jβ)(lµ) − ρ11

(lβ)(jµ) − ρ11
(lµ)(jβ) + ρ11

(jµ)(lβ)

]

.

Consequently, we use our previous computations to find:

(

PΠ(2)⊗Π(2) R
)

(lµ)(jβ)(kγ)
(iα) =

1

4(p q − 1)

[

δα
µ δi

l S
s
(jβ)(kγ) − δα

β δi
j S

s
(lµ)(kγ)

]

,

(

PΠ(1,1)⊗Π(1,1) R
)

(lµ)(jβ)(kγ)
(iα) =

1

4(p q − 1)

[

δα
µ δi

l S
a
(kγ)(jβ) − δα

β δi
j S

a
(kγ)(lµ)

]

,

(

PΠ(2)⊗Π(1,1) R
)

(lµ)(jβ)(kγ)
(iα) =

1

4(p q + 1)

[

δα
µ δi

l A
s
(jβ)(kγ)

− δα
β δi

j A
s
(lµ)(kγ) + 2 δα

γ δi
k A

s
(lµ)(jβ)

]

,

(

PΠ(1,1)⊗Π(2) R
)

(lµ)(jβ)(kγ)
(iα) =

1

4(p q + 1)

[

δα
µ δi

l A
a
(jβ)(kγ)

− δα
β δi

j A
a
(lµ)(kγ) + 2 δα

γ δi
k A

a
(jβ)(lµ)

]

.

(29)

We prefer to omit other projections as they are rather complicated. We

remark that they are determined by the corresponding Young symmetrizers,

given above in Section 3. Anyhow we recall that

Pπ(2,1,−1) = Id − PΠ1(2)⊗Π2(2) − PΠ1(1,1)⊗Π2(1,1)(30)

− PΠ1(2)⊗Π2(1,1) − PΠ1(1,1)⊗Π2(2)
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is the projector on subbundle P(Gr(V p⊗q)), invariant under projective

transformations assuming that the corresponding projections in this set-

ting are given by (29). We emphasize that these projection operators are

uniquely determined if we wish Pπ(2,1,−1) R, given by (30), to be projectively

invariant.

We also give here the projections of the curvature for the Leichtweiss

metric [32] in order to point out its projectively invariant components. We

consider this curvature in Subsection 5.4 too, to obtain other type of pro-

jection operators to show that they are not uniquely determined and that

corresponding components may have various interpretations.

Proposition 5.7. On the Grassmann manifold Gr(V p⊗q), p q > 1,
there exists a Riemannian metric

(31) ds2 = λ

(

p
∑

i=1

p+q
∑

α=p+1

(〈eα dei〉)
2

)

,

where λ = const > 0, such that Gr(V p⊗q) is an Einstein space and the

Riemann curvature tensor R satisfies the relations

(i1) Pπ(2) R = PΠ1(2)⊗Π2(2) R, Pπ(1,1) R = 0,

(i2) Pπ(2,1,−1) R = P ′

Π1(2)⊗Π2(2) R ⊕ P ′′

Π1(2)⊗Π2(2) R, for p 6= q, and

(i3) Pπ(2,1,−1) R = P ′

Π1(2)⊗Π2(2) R, for p = q.

Moreover :

(

Pπ(2) R
)

(iα)(jβ)(kγ)
(lν) =

2 − p − q

1 − p q
(δjk δl

i δβγ δν
α − δik δl

j δαγ δν
β),

(

Pπ(2,1,−1) R
)

(iα)(jβ)(kγ)
(lν) = W(iα)(jβ)(kγ)

(lν)

= (δik δl
j − δjk δl

i) δαβ δν
γ + δij δl

k (δαγ δν
β − δβγ δν

α)

+
p + q − 2

1 − p q
(δjk δl

i δβγ δν
α − δik δl

j δαγ δν
β).

(32)

Proof. One can use [32] (see also Subsection 5.4) to see that the cur-
vature tensor of the Leichtweiss metric in the origin of a coordinate system
is given by the following relations

R(iα)(jβ)(kγ)
(lν)(0, . . . , 0) = (δik δl

j − δjk δl
i) δαβ δν

γ(33)

+ δij δl
k (δαγ δν

β − δβγ δν
α).
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Its Ricci traces are as follows

(ρ11)(jβ)(kγ)(0, . . . , 0) = (2 − p − q) δjk δβγ(34)

= (2 − p − q) g(jβ)(kγ)(0, . . . , 0),

(ρ12)(jβ)(kγ)(0, . . . , 0) = (p − q) δjk δβγ(35)

= (p − q) g(jβ)(kγ)(0, . . . , 0),

(ρ13)(jβ)(kγ)(0, . . . , 0) = q(p − 1) δjk δβγ(36)

= q(p − 1) g(jβ)(kγ)(0, . . . , 0).

Consequently we get our statements by using Theorems 5.5, 2.1.

5.3. Normalization of Grassmann manifold

As it is well known a manifold M admits a torsion-free connection D

with symmetric Ricci tensor ρD if and only if M admits a D-parallel volume

form ω = ω(D), i.e. D ω = 0. The form ω is unique modulo a constant non-

zero factor. But in the framework of the Grassmann manifolds Gr(V p⊗q)

there exists a distinguished subclass of torsion-free connections, that does

not exist otherwise. They are obtained by means of certain constructions

called normalizations, which we are now going to describe. The Grassmann

manifold Gr(V p⊗q) is said to be normalized if to each of its p-dimensional

subspaces U there corresponds a chosen subspace U ∗ of dimension q in the

space R
p+q, such that U ∗ is a complement of U in R

p+q. The U∗ is called

the normalizing subspace for U , while the Grassmann manifold Gr(V p⊗q)

is called normalized and denoted by Gr ν(V p⊗q). We refer to [1] for more

details.

A normalization of the Grassmann manifold Gr(V p⊗q) is defined by a

differential mapping ν : Gr(V p ⊗ V q) → Gr(V q ⊗ V p) whose differential

equations are the following

(37) ω(iα) = λ(iα)(jβ) ω(jβ),

where the 1-forms ωiα are basis forms of the frame bundle associated with

Gr(V p⊗q) and the coefficients λ(iα)(jβ) form a tensor called the fundamental

tensor of Gr ν(V p⊗q). The normalization ν is harmonic if the coefficients in

equation (37) are symmetric with respect to the pair of indices (jβ), (iα),

i.e., λ(iα)(jβ) = λ(jβ)(iα). When the fundamental tensor λ(iα)(jβ) satisfies the

relation

(38) λ(iα)(jβ) = −gij gαβ ,
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with gij , gαβ symmetric, then the corresponding normalization ν is said to

be polar and the normalized Grassmann manifold is homogeneous. It is

clear that a polar normalization is also harmonic.

Theorem 5.8. ([1]) The normalization ν of a normalized domain U ν ⊆
Gr(V p⊗q) uniquely determines a torsion-free affine connection Dν with the

connection forms

ω(iα)(jβ) = δαβ ωij − δij ωαβ,

where ωαβ and ωij are fiber forms of the frame bundle associated with a

normalized Grassmann manifold Gr ν(V p⊗q) (or a domain U ν of this mani-

fold).

One can use Theorem 5.8 to see which projections of the curvature

corresponding to a connection Dν vanish. The curvature tensor of this con-

nection is expressed in terms of the fundamental tensor of the normalization

ν according to the formulas

R(kγ)(lµ)(jβ)
(iα) =

1

2

(

δα
β δi

k λ(jγ)(lµ) + δα
γ δi

j λ(kβ)(lµ)(39)

− δα
β δi

l λ(jµ)(kγ) − δα
µ δi

j λ(lβ)(kγ)

)

.

To find the Ricci traces ρ1i of the connection Dν we need to contract the

tensor (39) with respect to the corresponding indices. Consequently we get

ρ11
(lµ)(jβ) = R(iα)(lµ)(jβ)

(iα)(40)

=
1

2

(

(p + q)λ(jβ)(lµ) − λ(jµ)(lβ) − λ(lβ)(jµ)

)

,

ρ12
(lγ)(jβ) = R(iγ)(lα)(jβ)

(iα) =
1

2

(

p λ(jγ)(lβ) − q λ(lβ)(jγ)

)

,(41)

ρ13
(lγ)(jµ) = R(iγ)(lµ)(jα)

(iα)(42)

=
1

2

(

(p q + 1)λ(jγ)(lµ) − q λ(jµ)(lγ) − λ(lµ)(jγ)

)

.

From these relations it follows immediately that the Ricci tensor ρ11 of

the connection Dν is symmetric if and only if the normalization ν of the

Grassmann manifold Gr(V p⊗q) is harmonic.

Having in mind the results mentioned above, we can reach the geomet-

rical interpretations of some components in our complete decomposition of

R(Gr(V p⊗q)). We now show that we can characterize the curvature tensor
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at any point of Gr(V p⊗q) corresponding to connections Dν for an arbitrary

normalization, as well as some subspaces related to the connections Dν for

special types of normalizations. To obtain a characterization of the compo-

nents in a neighborhood we need the existence of local coordinate system

where the curvature tensor of Dν has just these components. We illustrate

these ones by some examples in Subsections 5.4 and 5.6. Besides that,

we give also the projection operators. Our decomposition of R(Gr(V p⊗q))

inform us what are the obstructions for their elements being a curvature

tensor corresponding to some torsion-free connection that admits a normal-

ization. While these obstructions are both of global and local nature, to

have an affirmative answer of the first question it is not enough to use only

our complete decomposition but also some topological tools, that is a topic

of our forthcoming paper.

Proposition 5.9. Let R(Dν) ∈ R(Gr(V p⊗q)) be a curvature tensor

of torsion-free connection Dν corresponding to the normalization ν on

Gr(V p⊗q). Then it satisfies

R(Dν) ∈ Π1(2) ⊗ Π2(2) ⊕ Π1(1, 1) ⊗ Π2(1, 1)(i1)

⊕ Π1(2) ⊗ Π2(1, 1) ⊕ Π1(1, 1) ⊗ Π2(2),

with corresponding projections as follows:

(

PΠ(2)⊗Π(2) R
)

(kγ)(lµ)(jβ)
(iα) =

1

2

[

δα
β

(

δi
k Ss

(jγ)(lµ) − δi
l Ss

(jγ)(kµ)

)

(i2)

+ δi
j

(

δα
γ Ss

(kβ)(lµ) − δα
µ Ss

(lγ)(kβ)

)

]

,

(

PΠ(1,1)⊗Π(1,1) R
)

(kγ)(lµ)(jβ)
(iα) =

1

2

[

δα
β

(

δi
k Sa

(jγ)(lµ) + δi
l Sa

(jγ)(lµ)

)

(i3)

+ δi
j

(

δα
γ Sa

(kβ)(lµ) + δα
µ Sa

(lγ)(kβ)

)

]

,

(

PΠ(2)⊗Π(1,1) R
)

(kγ)(lµ)(jβ)
(iα) =

1

2

[

δα
β

(

δi
k As

(jγ)(lµ) + δi
l As

(jγ)(lµ))(i4)

+ δi
j

(

δα
γ As

(kβ)(lµ) + δα
µ Ss

(lγ)(kβ)

)

]

,

(

PΠ(1,1)⊗Π(2) R
)

(kγ)(lµ)(jβ)
(iα) =

1

2

[

δα
β

(

δi
k Aa

(jγ)(lµ) − δi
l Aa

(jγ)(lµ))(i5)

+ δi
j

(

δα
γ Aa

(kβ)(lµ) − δα
µ Aa

(lγ)(kβ)

)

]

,
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where

Ss
(lµ)(jβ) =

1

4

[

λ(jβ)(lµ) + λ(lµ)(jβ) + λ(lβ)(jµ) + λ(jµ)(lβ)

]

,(43)

Sa
(lµ)(jβ) =

1

4

[

λ(jβ)(lµ) + λ(lµ)(jβ) − λ(lβ)(jµ) − λ(jµ)(lβ)

]

,(44)

As
(lµ)(jβ) =

1

4

[

λ(jβ)(lµ) − λ(lµ)(jβ) + λ(lβ)(jµ) − λ(jµ)(lβ)

]

,(45)

Aa
(lµ)(jβ) =

1

4

[

λ(jβ)(lµ) − λ(lµ)(jβ) − λ(lβ)(jµ) + λ(jµ)(lβ)

]

.(46)

Proof. We use Proposition 3.1 to see that in the general case the cur-
vature tensor R ∈ R(V ), corresponding to a torsion-free connection D, has
three independent traces ρ1i (i = 1, 2, 3). But for a connection Dν that
permits a normalization ν, because of (40)–(42), it follows that there exists
only one independent trace whose components are linear combinations of
λ(jγ)(lµ). Therefore we combine Lemma 3.2 with these results to prove the
first part of Proposition. The second part of Proposition one can check by
using (39) and Lemma 3.2.

As we know, the normalized Grassmann manifold is not in general

homogeneous (see [1, p. 260]). Then the polar normalization of a Grassmann

manifold assures that it is homogeneous. Other important things (generally

speaking at least) are the following: in this case Dν is always the Levi-Civita

connection of a metric on the polar-normalized manifold and in addition this

manifold is always Einsteinian with respect to this metric.

Corollary 5.10. Let R(Dh) ∈ R(Gr(V p⊗q)) be the curvature tensor

of torsion-free connection Dh corresponding to the harmonic normalization

h on Gr(V p⊗q). Then

R(Dh) ∈ Π1(2) ⊗ Π2(2) ⊕ Π1(1, 1) ⊗ Π2(1, 1)

with projections as in Proposition 5.9.

Corollary 5.11. If a Grassmann manifold Gr(V p⊗q) admits the po-

lar normalization π such that Gr(V p⊗q) is homogeneous, then the corre-

sponding connection Dπ satisfies the condition

R(Dπ) ∈ Π1(2) ⊗ Π2(2).
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Let us introduce now the following subbundles of R(Gr(V p⊗q))

O(Gr(V p⊗q)) = Π1(3,−1) ⊗R(V q) ⊕R(V p) ⊗ Π2(3,−1)

⊕ Π1(1, 1, 1,−1) ⊗R∗(V q) ⊕R∗(V p) ⊗ Π2(1, 1, 1,−1)

⊕ 2Π1(2, 1,−1) ⊗ Π2(2) ⊕ 2Π1(2) ⊗ Π2(2, 1,−1)

⊕ 2Π1(2, 1,−1) ⊗ Π2(1, 1) ⊕ 2Π1(1, 1) ⊗ Π2(2, 1,−1)

⊕ Π1(2, 1,−1) ⊗ Π2(2, 1,−1),

H(Gr(V p⊗q)) = Π1(1, 1) ⊗ Π2(2) ⊕ Π1(2) ⊗ Π2(1, 1)

⊕ Π1(1, 1) ⊗ Π2(2) ⊕ Π1(1, 1) ⊗ Π2(2)

⊕ Π1(2) ⊗ Π2(1, 1) ⊕ Π1(2) ⊗ Π2(1, 1),

and

Po(Gr(V p⊗q)) = Π1(1, 1) ⊗ Π2(1, 1) ⊕ Π1(1, 1) ⊗ Π2(1, 1)

⊕ Π1(1, 1) ⊗ Π2(1, 1).

Proposition 5.12. Let D be a torsion-free non-flat connection defined

globally (or locally) on Gr(V p⊗q). Then D does not correspond to

(i1) any normalization if and only if its curvature tensor R(D) has a non-

vanishing projection on the subbundle O(Gr(V p⊗q)).

(i2) any harmonic normalization if and only if its curvature tensor R(D)
has a non-vanishing projection on the subbundle O(Gr(V p⊗q)) ⊕
H(Gr(V p⊗q)).

(i3) any polar normalization such that Gr(V p⊗q) is homogeneous if and

only if its curvature tensor R(D) has non-vanishing projection on the

subbundle O(Gr(V p⊗q)) ⊕H(Gr(V p⊗q)) ⊕Po(Gr(V p⊗q)).

Proof. (i1) We use (39)–(42) to see that the torsion-free non-flat con-
nection uniquely determined by a normalization of Gr(V p⊗q) has all non-
vanishing traces ρ1i, i = 1, 2, 3 which are dependent on the fundamental
tensor λ. Consequently, its curvature tensor may have non-vanishing pro-
jections only on the subbundles of type Π1(2) ⊗ Π2(2), Π1(1, 1) ⊗ Π2(1, 1),
Π1(2) ⊗ Π2(1, 1), Π1(1, 1) ⊗ Π2(2). The converse part can be proved in a
similar way.

(i2) Since the fundamental tensor λ corresponding to a harmonic nor-
malization h is symmetric and vice versa, the proof follows directly from
(i1).

For (i3) we use (38), the symmetry of gij , gαβ and (i1).
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Remark 5.13. Finally we notice that Dν is flat if and only if R(Dν) = 0
i.e. if and only if the domain U ν is endowed with the structure of the affine
space Aρ of dimension ρ = p q. We refer to [1] for more details.

As we have seen throughout this section various examples of torsion-free

connections are already known on Grassmann manifolds Gr(V p⊗q). Some

new examples are given in the next subsections.

5.4. Ricci symmetric connections

For the first fundamental form

(47) ds2 =

p
∑

i,j=1

p+q
∑

α,β=p+1

g(iα)(jβ)(xkγ) dxiα dxjβ

with

(48) g(iα)(jβ) =

p
∑

k=1

p+q
∑

γ=p+1

〈

eγ
∂ek

∂xiα

〉〈

eγ
∂ek

∂xjβ

〉

we get the Pfaff forms ω(iα) using the vector differential forms

(49) dei =

p
∑

j=1

p+q
∑

β=p+1

∂ei

∂xjβ

dxjβ, deα =

p
∑

j=1

p+q
∑

β=p+1

∂eα

∂xjβ

dxjβ,

in the following way

(50) ω(iα) = 〈eα dei〉 =

p
∑

j=1

p+q
∑

β=p+1

〈

eα
∂ei

∂xjβ

〉

dxjβ = −〈ei deα〉 = −ω(αi).

The relations

(51) dω(iα) = −

p
∑

j=1

p+q
∑

β=p+1

ω(iα)(jβ) ∧ ω(jβ),

imply the components of the corresponding curvature tensor (33) whose

components of the Ricci tensor ρ11 are given by (34).

We present now the projections of the curvature tensor for this metric

which are neither considered in the framework of projective invariants nor

various normalizations. More precisely we have



70 N. BOKAN, P. MATZEU AND Z. RAKIĆ

Proposition 5.14. On the Grassmann manifold Gr(V p⊗q) it exists a

Riemannian metric such that Gr(V p⊗q) is an Einstein space and the cur-

vature tensor R fulfills the relations

(

PΠa
1(2)⊗Πts

2 (2) R
)

(iα)(jβ)(kγ)
(lν)

=
1

3

(

δik δl
j − δjk δl

i

)(

δαβ δν
γ + δγα δν

β + δβγ δν
α

)

,
(

PΠts
1 (2)⊗Πa

2 (2) R
)

(iα)(jβ)(kγ)
(lν)

=
1

3

(

δij δl
k + δji δ

l
k + δkj δl

i

)(

δαγ δν
β − δβγ δν

α

)

,
(

PΠ1(2)⊗Π2(2) R
)

(iα)(jβ)(kγ)
(lν)

=
1

3

(

δik δl
j − δjk δl

i

)(

2 δαβ δν
γ − δγα δν

β − δβγ δν
α

)

+
1

3

(

2 δij δl
k − δki δ

l
j − δjk δl

i

)(

δαγ δν
β − δβγ δν

α

)

.

Proof. It follows by using straightforward computations.

Remark 5.15. Let us remark that one can obtain the Leichtweiss con-
nection from the Akivis-Goldberg one if we put λ(iα)(jβ) = −δij δαβ .

We are interested in an example of a torsion-free connection D on

Gr(V 2 ⊗ V 2), whose Ricci trace ρ11 is symmetric, and D is not the Levi-

Civita connection. We have in mind Gr(V 2 ⊗V 2) is homeomorphic to S
2
1 ×

S
2
2, where S

2
i (i = 1, 2) are standard two-dimensional spheres, parametrized

as

(52) xi = cosαi sinβi, yi = sinαi sinβi, zi = cos βi;

0 < αi < 2π, 0 < βi < π (see [53] for more details).

Then we use a local coordinate system ui3 = αi, ui4 = βi, and adopt

computations from [10] to get

Γ̃
(i3)
(i4)(i4) = Γ̃

(i3)
(i3)(i3) = Γ̃

(i4)
(i4)(i3) = Γ̃

(i4)
(i3)(i4) = 0,(53)

Γ̃
(i4)
(i4)(i4) = hi, Γ̃

(i3)
(i4)(i3) = cot βi + hi,(54)

Γ̃
(i4)
(i3)(i3) = − sin2 βi(cot βi + hi),(55)
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assuming hi = hi(βi) are some smooth functions, periodic with respect to

βi. Because of the properties of functions hi we see that our connection can

be also extended to a global connection on S
2
1 × S

2
2.

We find the components of the Ricci trace ρ̃11 = ρ̃

ρ̃(i4)(i4) = ρ̃(i3)(i3) =
∂hi

∂βi
+ hi cot βi − 1,(56)

ρ̃(i3)(i4) = ρ̃(i4)(i3) = 0.(57)

One can check

PΠ(2)⊗Π(2) R̃ = R̃,

and consequently, other projections vanish. Therefore, R̃ belongs to the

simple subbundle Π(2)⊗Π(2) and D̃ is its corresponding connection, glob-

ally defined on Gr(V 2 ⊗ V 2).

The projective transformations for this connection do not coincide with

the affine transformations and this connection is not the Levi-Civita con-

nection (see [10] for more details).

5.5. Ricci flat connections

We use [30], [22], [23] to define the normal projective connection Π

Π
(kγ)
(iα)(jβ) = Γ

(kγ)
(iα)(jβ) −

1

p q + 1

(

δk
i δγ

α Γ
(mµ)
(mµ)(jβ) + δk

j δγ
β Γ(mµ)(iα)

(mµ)
)

,

where Γ is an arbitrary torsion-free connection defined on Gr(V p⊗q). The

normal projective connection Π is uniquely determined for the projective

structure P which consists of all projectively equivalent torsion-free con-

nections. For Π the corresponding Ricci curvature is

ρ11(Π) = 0.

Consequently it yields

Proposition 5.16. If Π is the normal projective connection on

Gr(V p⊗q), then its curvature belongs to the subbundle π(2, 1,−1) in the

decomposition of the R(Gr(V p⊗q)).

We use [27] to prove the following theorem.

Theorem 5.17. For the normal projective connection Π on Gr(V p⊗q)
its curvature tensor R(Π) belongs to P(Gr(V p⊗q)), and consequently the

group of projective transformations coincides with its subgroup of affine

transformations.
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5.6. Ricci skew-symmetric connections

As we know manifolds, that admit absolute parallelizability of direc-

tions (shortly APD manifolds) were studied by Norden [41]. He proved

APD manifolds have the skew-symmetric Ricci tensor. We are now inter-

ested in do Grassmann manifolds belong to the class of APD manifolds?

We answer this question affirmatively locally and non-affirmatively globally

for the case p = q = 2, i.e. for Gr(V 2 ⊗ V 2). To find a torsion-free connec-

tion with the skew-symmetric curvature tensor ρ11 defined on Gr(V 2 ⊗V 2)

we recall Gr(V 2 ⊗ V 2) is homeomorphic to S
2
1 × S

2
2 (see Subsection 5.4 and

[53]).

Then we use a local coordinate system ui3 = αi, ui4 = βi, i = 1, 2;

βi ∈ (0, π), and adopt computations from [9] to get

Γ̃
(i4)
(i4)(i4) =

1 − cos βi

sinβi
, Γ̃

(i3)
(i4)(i4) = −

1 − cos βi

sin2 βi

,

Γ̃
(i3)
(i3)(i4) = Γ̃

(i3)
(i4)(i3) =

1

sinβi
, Γ̃

(i4)
(i3)(i3) = − sinβi,(58)

Γ̃
(i4)
(i3)(i4) = Γ̃

(i4)
(i4)(i3) = Γ̃

(i3)
(i3)(i3) = 1 − cos βi,

where i = 1, 2. Consequently, by direct computations one can check

ρ(i3)(i4) = −ρ(i4)(i3) = R(14)(13)(14)
(14) = sinβi, i = 1, 2,

ρ(iα)(iα) = 0, α = 3, 4, R(jβ)(kγ)(lδ)
(mν) = 0, otherwise.

Let c1(M) be the first Chern class of a manifold M . Since c1(S
2) 6= 0, there

exists only locally a torsion-free connection on Gr(V 2 ⊗ V 2) with skew-

symmetric Ricci curvature. We refer to [9] for more details. It is simple to

see

(59) PΠ(2)⊗Π(1,1) R̃ = R̃,

and consequently, other projections vanish. Therefore R̃ belongs to the

simple subbundle Π(2) ⊗ Π(1, 1) and Γ̃ is its corresponding connection.

Remark 5.18. The connection with coefficients Γ̃ (studied in Subsec-
tions 5.4 and 5.6) can be expressed also in this way

Γ̃
(iα)
(jβ)(kγ) = Γ

(iα)
(jβ)(kγ) + δi

j δα
β p(kγ) + δi

k δα
γ p(jβ) − g(jβ)(kγ) P (iα),(60)

p(kγ) = g(iα)(kγ) P (iα).(61)
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g is the standard metric of S
2 ×S

2 or of M in general case. The connection
Γ̃ in this framework was studied by Simon in [45]. He has proved this
connection is affine conformally invariant on a hypersurface of an affine
space with relative normalization.
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[37] S. Marchiafava, Varietà localmente grassmanniane quaternionali, Atti Accad. naz.

dei Lincei, 57 (1974), 80–89.

[38] S. A. Merkulov, Paraconformal supermanifolds and nonstandard N-extended super-

gravity models, Classical Quantum Grav., 8 (1991), 557–569.
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