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Abstract: LetK be a connected Lie group of compact type and letT ∗(K) be its cotan-
gent bundle. This paper considers geometric quantization ofT ∗(K), first using the ver-
tical polarization and then using a natural Kähler polarization obtained by identifying
T ∗(K) with the complexified groupKC. The first main result is that the Hilbert space
obtained by using the Kähler polarization is naturally identifiable with the generalized
Segal–Bargmann space introduced by the author from a different point of view, namely
that of heat kernels. The second main result is that the pairing map of geometric quan-
tization coincides with the generalized Segal–Bargmann transform introduced by the
author. This means that the pairing map, in this case, is a constant multiple of a unitary
map. For both results it is essential that the half-form correction be included when using
the Kähler polarization.

These results should be understood in the context of results of K. Wren and of the
author with B. Driver concerning the quantization of(1+ 1)-dimensional Yang–Mills
theory. Together with those results the present paper may be seen as an instance of
“quantization commuting with reduction”.
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1. Introduction

The purpose of this paper is to show how the generalized Segal–Bargmann transform
introduced by the author in [H1] fits into the theory of geometric quantization. I begin
this introduction with an overview of the generalized Segal–Bargmann transform and its
applications. I continue with a brief description of geometric quantization and I conclude
with an outline of the results of this paper. The reader may wish to begin with Sect. 5,
which explains how the results work out in theR

n case.

1.1. The generalized Segal–Bargmann transform.See the survey paper [H7] for a sum-
mary of the generalized Segal–Bargmann transform and related results.

Consider a classical system whose configuration space is a connected Lie groupK of
compact type. Lie groups of compact type include all compact Lie groups, the Euclidean
spacesRn, and products of the two (and no others – see Sect. 7). As a simple example,
consider a rigid body inR3, whose rotational degrees of freedom are described by a
system whose configuration space is the compact group SO(3).

For a system whose configuration space is the groupK, the corresponding phase
space is the cotangent bundleT ∗(K). There is a natural way to identifyT ∗(K) with the
complexificationKC of K. HereKC is a certain connected complex Lie group whose
Lie algebra is the complexification of Lie(K) and which containsK as a subgroup. For
example, ifK = R

n thenKC = C
n and ifK = SU(n) thenKC = SL(n;C).

The paper [H1] constructs a generalized Segal–Bargmann transform forK. (More
precisely, [H1] treats the compact case; theR

n case is just the classical Segal–Bargmann
transform, apart from minor differences of normalization.) The transform is a unitary
mapCh̄ ofL2(K, dx) ontoHL2(KC, νh̄(g) dg),wheredx anddg are the Haar measures
onK andKC, respectively, and whereνh̄ is theK-invariantheat kernelonKC. Hereh̄
is Planck’s constant, which is a parameter in the construction (denotedt in [H1]). The
transform itself is given by

Ch̄f = analytic continuation ofeh̄�K/2f,

where the analytic continuation is fromK toKC with h̄ fixed. The results of the present
paper and of [Wr] and [DH] give other ways of thinking about the definition of this
transform. (See below and Sect. 3 for a discussion of [Wr,DH].)

The results of [H1] can also be formulated in terms of coherent states and a resolution
of the identity, as described in [H1] and in much greater detail in [HM]. The isometricity
of the transform and the resolution of the identity for the coherent states are just two
different ways of expressing the same mathematical result.

The results of [H1] extend to systems whose configuration space is a compact homo-
geneous space, such as a sphere, as shown in [H1, Sect. 11] and [St]. However the group
case is special both mathematically and for applications to gauge theories. In particu-
lar the results of the present paper donot extend to the case of compact homogeneous
spaces.

The generalized Segal–Bargmann transform has been applied to the Ashtekar ap-
proach to quantum gravity in [A], as a way to deal with the “reality conditions” in the
original version of this theory, formulated in terms of complex-valued connections. (See
also [Lo].)

More recently progress has been made in developing a purely real-valued version of
the Ashtekar approach, using compact gauge groups. In a series of six papers (beginning
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with [T2]) T. Thiemann has given in this setting a diffeomorphism-invariant construc-
tion of the Hamiltonian constraint, thus giving a mathematically consistent formulation
of quantum gravity. In an attempt to determine whether this construction has ordinary
general relativity as its classical limit, Thiemann and co-authors have embarked on a pro-
gram [T3,TW1,TW2,TW3,STW] to construct coherent states that might approximate
a solution to classical general relativity. These are to be obtained by gluing together the
coherent states of [H1] for a possibly infinite number of edges in the Ashtekar scheme.
This program requires among other things a detailed understanding of the properties of
the coherent states of [H1] for one fixed compact groupK, which has been worked out
in the caseK = SU(2) in [TW1].

In another direction, K. K. Wren [Wr], using a method proposed by N. P. Landsman
[La1], has shown how the coherent states of [H1] arise naturally in the canonical quan-
tization of (1 + 1)-dimensional Yang–Mills theory on a spacetime cylinder. The way
this works is as follows. (See Sect. 3 for a more detailed explanation.) For the canonical
quantization of Yang–Mills on cylinder, one has an infinite-dimensional “unreduced”
configuration space consisting ofK-valued connections over the spatial circle, where
K is the structure group. One is then supposed to pass to the “reduced” or “physical”
configuration space consisting of connections modulo gauge transformations. It is con-
venient to work at first with “based” gauge transformations, those equal to the identity
at one fixed point in the spatial circle. In that case the reduced configuration space,
consisting of connections modulo based gauge transformations overS1, is simply the
structure groupK. (This is because the one and only quantity invariant under based
gauge transformations is the holonomy around the spatial circle.)

Wren considers the ordinary “canonical” coherent states for the space of connections
and then “projects” these (using a suitable regularization procedure) onto the gauge-
invariant subspace. The remarkable result is that after projection the ordinary coherent
states for the space of connections become precisely the generalized coherent states
for K, as originally defined in [H1]. Wren’s result was elaborated on by Driver–Hall
[DH] and Hall [H8], in a way that emphasizes the Segal–Bargmann transform and uses
a different regularization scheme. These results raise interesting questions about how
geometric quantization behaves under reduction – see Sect. 3.

Finally, as mentioned above, we can think of the Segal–Bargmann transform forK as
a resolution of the identity for the corresponding coherent states. The coherent states then
“descend” to give coherent states for any system whose configuration space is a compact
homogeneous space [H1, Sect. 11], [St]. Looked at this way, the results of [H1,St] fit into
the large body of results in the mathematical physics literature on generalized coherent
states. It is very natural to try to construct coherent states for systems whose configuration
space is a homogeneous space, and there have been previous constructions, notably by
C. Isham and J. Klauder [IK] and De Bièvre [De]. However, these constructions, which
are based on extensions of the Perelomov [P] approach, arenotequivalent to the coherent
states of [H1,St]. In particular the coherent states of [IK] and [De] do not in any sense
depend holomorphically on the parameters, in contrast to those of [H1,St].

More recently, the coherent states of Hall–Stenzel for the case of a 2-sphere were
independently re-discovered, from a substantially different point of view, by K. Kowalski
and J. Rembieli´nski [KR1]. (See also [KR2].) The forthcoming paper [HM] explains in
detail the coherent state viewpoint, taking into account the new perspectives offered by
Kowalski and Rembieli´nski [KR1] and Thiemann [T1]. In the group case, the present
paper shows that the coherent states of [H1] can be obtained by means of geometric
quantization and are thus of “Rawnsley type” [Ra1,RCG].



236 B. C. Hall

1.2. Geometric quantization.A standard example in geometric quantization is to show
how the Segal–Bargmann transform forR

n can be obtained by means of this theory.
Furthermore, the standard method for constructing other Segal–Bargmann-type Hilbert
spaces of holomorphic functions (and the associated coherent states) is by means of
geometric quantization. Since [H1] is not formulated in terms of geometric quantization,
it is natural to apply geometric quantization in that setting and see how the results
compare. A first attempt at this was made in [H4, Sect. 7], which used “plain” geometric
quantization and found that the results were not equivalent to those of [H1]. The present
paper uses geometric quantization with the “half-form correction” and the conclusion
is that geometric quantization with the half-form correctiondoesgive the same results
as [H1]. In this subsection I give a brief overview of geometric quantization, and in the
next subsection I summarize how it works out in the particular case at hand. See also
Sect. 5 for how all this works in the standardR

n case.

For quantum mechanics of a particle moving inR
n there are several different ways of

expressing the quantum Hilbert space, including the position Hilbert space (or Schrödinger
representation) and the Segal–Bargmann (or Bargmann, or Bargmann–Fock) space. The
position Hilbert space isL2(Rn),with R

n thought of as the position variables.The Segal–
Bargmann space is the space of holomorphic functions onC

n that are square-integrable
with respect to a Gaussian measure, whereC

n = R
2n is the phase space. (There are also

the momentum Hilbert space and the Fock symmetric tensor space, which will not be
discussed in this paper.) There is a natural unitary map that relates the position Hilbert
space to the Segal–Bargmann space, namely the Segal–Bargmann transform.

One way to understand these constructions is in terms of geometric quantization. (See
Sect. 5.) In geometric quantization one first constructs a pre-quantum Hilbert space over
the phase spaceR2n. The prequantum Hilbert space is essentially justL2

(
R

2n
)
. It is

generally accepted that this Hilbert space is “too big”; for example, the space of position
and momentum operators does not act irreducibly. To get an appropriate Hilbert space
one chooses a “polarization”, that is (roughly) a choice ofn out of the 2n variables on
R

2n. The quantum Hilbert space is then the space of elements of the prequantum Hilbert
space that are independent of the chosenn variables. So in the “vertical polarization” one
considers functions that are independent of the momentum variables, hence functions of
the position only. In this case the quantum Hilbert space is just the position Hilbert space
L2 (Rn). Alternatively, one may identifyR2n with C

n and consider complex variables
z1, . . . , zn, and z̄1, . . . , z̄n. The Hilbert space is then the space of functions that are
“independent of thēzk ’s”, that is, holomorphic. In this case the quantum Hilbert space
is the Segal–Bargmann space.

More precisely, the prequantum Hilbert space for a symplectic manifold(M,ω) is
the space of sections of a line-bundle-with-connectionL overM, where the curvature
ofL is given by the symplectic formω.A real polarization forM is a foliation ofM into
Lagrangian submanifolds.A Kähler polarization is a choice of a complex structure onM

that is compatible with the symplectic structure, in such a way thatM becomes a Kähler
manifold. The quantum Hilbert space is then the space of sections that are covariantly
constant along the leaves of the foliation (for a real polarization) or covariantly constant
in thez̄-directions (for a complex polarization). Since the leaves of a real polarization are
required to be Lagrangian, the curvature ofL (given byω) vanishes along the leaves and
so there exist, at least locally, polarized sections. Similarly, the compatibility condition
between the complex structure and the symplectic structure in a complex polarization
guarantees the existence, at least locally, of polarized sections.
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A further ingredient is the introduction of “half-forms”, which is a technical necessity
in the case of the vertical polarization and which can be useful even for a Kähler polar-
ization. The inclusion of half-forms in the Kähler-polarized Hilbert space is essential to
the results of this paper.

If one has two different polarizations on the same manifold then one gets two different
quantum Hilbert spaces. Geometric quantization gives a canonical way of constructing
a map between these two spaces, called the pairing map. The pairing map is not unitary
in general, but it is unitary in the case of the vertical and Kähler polarizations onR

2n.
In theR

2n case, this unitarity can be explained by the Stone-von Neumann theorem. I
do the calculations for theR2n case in Sect. 5; the reader may wish to begin with that
section.

Besides theR2n case, there have not been many examples where pairing maps have
been studied in detail. In particular, the only works I know of that address unitarity
of the pairing map outside ofR2n are those of J. Rawnsley [Ra2] and K. Furutani and
S.Yoshizawa [FY]. Rawnsley considers the cotangent bundle of spheres, with the vertical
polarization and also a certain Kähler polarization. Furutani and Yoshizawa consider a
similar construction on the cotangent bundle of complex and quaternionic projective
spaces. In these cases the pairing map is not unitary (nor a constant multiple of a unitary
map).

1.3. Geometric quantization and the Segal–Bargmann transform.An interesting class
of symplectic manifolds having two different natural polarizations is the following.
Let X be a real-analytic Riemannian manifold and letM = T ∗(X). ThenM has a
natural symplectic structure and a natural vertical polarization, in which the leaves of
the Lagrangian foliation are the fibers ofT ∗ (X) . By a construction of Guillemin and
Stenzel [GStenz1,GStenz2] and Lempert and Sz˝oke [LS],T ∗ (X) also has a canonical
“adapted” complex structure, defined in a neighborhood of the zero section.This complex
structure is compatible with the symplectic structure and so defines a Kähler polarization
on an open set inT ∗ (X) .

This paper considers the special case in whichX is a Lie groupK with a bi-invariant
Riemannian metric. Lie groups that admit a bi-invariant metric are said to be of “compact
type”; these are precisely the groups of the form(compact)×R

n. In this special case, the
adapted complex structure is defined on all ofT ∗(K), soT ∗(K) has two polarizations,
the vertical polarization and the Kähler polarization coming from the adapted complex
structure. IfK = R

n then the complex structure is just the usual one onT ∗ (Rn) =
R

2n = C
n.

There are two main results, generalizing what is known in theR
n case. First, the

Kähler-polarized Hilbert space constructed overT ∗(K) is naturally identifiable with the
generalized Segal–Bargmann space defined in [H1] in terms of heat kernels. Second, the
pairing map between the vertically polarized and the Kähler-polarized Hilbert space over
T ∗(K) coincides (up to a constant) with the generalized Segal–Bargmann transform of
[H1]. Thus by [H1, Thm. 2] a constant multiple of the pairing map is unitary in this case.
Both of these results hold only if one includes the “half-form correction” in the con-
struction of the Kähler-polarized Hilbert space. In the caseK = R

n everything reduces
to the ordinary Segal–Bargmann space and the Segal–Bargmann transform (Sect. 5).

The results are surprising for two reasons. First, the constructions in [H1] involve
heat kernels, whereas geometric quantization seems to have nothing to do with heat
kernels or the heat equation. Second, in the absence of something like the Stone–von
Neumann theorem there does not seem to be any reason that pairing mapsoughtto be
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unitary. The discussion in Sect. 4 gives some partial explanation for the occurrence of
the heat kernel. (See also [JL].)

If one considersYang–Mills theory over a space-time cylinder, in the temporal gauge,
the “unreduced phase space” is a certain infinite-dimensional linear space of connec-
tions. The reduced phase space, obtained by “reducing” by a suitable gauge group,
is the finite-dimensional symplectic manifoldT ∗(K), whereK is the structure group
for the Yang–Mills theory. Thus the symplectic manifoldT ∗(K) considered here can
also be viewed as the “symplectic quotient” of an infinite-dimensional linear space by
an infinite-dimensional group. It is reasonable to ask whether “quantization commutes
with reduction”, that is, whether one gets the same results by first quantizing and then
reducing as by first reducing and then quantizing. Surprisingly (to me), the answer in
this case is yes, as described in Sect. 3.

I conclude this introduction by discussing two additional points. First, it is reasonable
to consider the more general situation where the groupK is allowed to be a symmetric
space of compact type. In that case the geometric quantization constructions make perfect
sense, but the main results of this paper donot hold. Specifically, the Kähler-polarized
Hilbert space does not coincide with the heat kernel Hilbert space of M. Stenzel [St],
and I do not know whether the pairing map of geometric quantization is unitary. This
discrepancy reflects special properties that compact Lie groups have among all compact
symmetric spaces. See the discussion at the end of Sect. 2.3.

Second, one could attempt to construct a momentum Hilbert space forT ∗(K). In the
caseK = R

n this may be done by considering the natural horizontal polarization. The
pairing map between the vertically polarized and horizontally polarized Hilbert spaces
is in this case just the Fourier transform. By contrast, ifK is non-commutative, then
there is no natural horizontal polarization. (For example, the foliation ofT ∗(K) into
the left orbits ofK is not Lagrangian.) Thus, even though there is a sort of momentum
representation given by the Peter–Weyl theorem, it does not seem possible to obtain a
momentum representation by means of geometric quantization.

It is a pleasure to thank Bruce Driver for valuable discussions, Dan Freed for making
an important suggestion regarding the half-form correction, and Steve Sontz for making
corrections to the manuscript.

2. The Main Results

2.1. Preliminaries.Let K be a connected Lie group ofcompact type. A Lie group
is said to be of compact type if it is locally isomorphic to some compact Lie group.
Equivalently, a Lie groupK is of compact type if there exists an inner product on the
Lie algebra ofK that is invariant under the adjoint action ofK. SoR

n is of compact
type, being locally isomorphic to ad-torus, and every compact Lie group is of compact
type. It can be shown that every connected Lie group of compact type is isomorphic to a
product ofRn and a connected compact Lie group. So all of the constructions described
here for Lie groups of compact type include as a special case the constructions forR

n.

On the other hand, all the new information (beyond theR
n case) is contained in the

compact case. See [He, Chap. II, Sect. 6] (including Proposition 6.8) for information on
Lie groups of compact type.

Let k denote the Lie algebra ofK.We fix once and for all an inner product〈· , ·〉 onk
that is invariant under the adjoint action ofK. For example we may takeK = SU(n), in
which casek = su(n) is the space of skew matrices with trace zero. An invariant inner
product onk is 〈X, Y 〉 = Re

[
trace(X∗Y )

]
.
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Now letKC be thecomplexificationofK. If K is simply connected then the complex-
ification ofK is the unique simply connected Lie group whose Lie algebrakC is k+ik. In
general,KC is defined by the following three properties. First,KC should be a connected
complex Lie group whose Lie algebrakC is equal tok+ ik. Second,KC should contain
K as a closed subgroup (whose Lie algebra isk ⊂ kC). Third, every homomorphism of
K into a complex Lie groupH should extend to a holomorphic homomorphism ofKC

into H. The complexification of a connected Lie group of compact type always exists
and is unique. (See [H1, Sect. 3].)

Example 2.1.If K = R
n thenKC = C

n. If K = SU(n) thenKC = SL(n;C). If
K = SO(n) thenKC = SO(n;C). In the first two examples,K andKC are simply
connected. In the last example, neitherK norKC is simply connected.

We have the following structure result for Lie groups of compact type. This result is a
modest strengthening of Corollary 2.2 of [Dr] and allows all the relevant results for Lie
groups of compact type to be reduced to two cases, the compact case and theR

n case.

Proposition 2.2. Suppose thatK is a connected Lie group of compact type, with a
fixed Ad-invariant inner product on its Lie algebrak. Then there exists a isomorphism
K ∼= H × R

n, whereH is compact and where the associated Lie algebra isomorphism
k = h + R

n is orthogonal.

The proof of this result is given in an appendix.

2.2. Prequantization.We letθ be the canonical 1-form onT ∗(K), normalized so that
in the usual sort of coordinates we have

θ =
∑

pk dqk.

We then letω be the canonical 2-form onT ∗(K), which I normalize asω = −dθ, so
that in coordinatesω = "dqk ∧ dpk.We then consider a trivial complex line bundleL
onT ∗(K)

L = T ∗(K)× C

with trivial Hermitian structure. Sections of this bundle are thus just functions onT ∗(K).
We define a connection (or covariant derivative) onL by

∇X = X − 1

ih̄
θ (X) . (2.1)

Note that the connection, and hence all subsequent constructions, depends onh̄ (Planck’s
constant). The curvature of this connection is given by

[∇X,∇Y ] − ∇[X,Y ] = 1

ih̄
ω (X, Y ) .

We letε denote the Liouville volume form onT ∗(K), given by

ε = 1

n!ω
n,
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wheren = dimK = (1/2)dimT ∗(K). Integrating this form gives the associated Liou-
ville volume measure. Concretely we have the identification

T ∗(K) ∼= K × k (2.2)

by means of left-translation and the inner product onk.Under this identification we have
[H3, Lemma 4] ∫

T ∗(K)
f ε =

∫
k

∫
K

f (x, Y ) dx dY, (2.3)

wheredx is Haar measure onK, normalized to coincide with the Riemannian volume
measure, anddY is Lebesgue measure onk, normalized by means of the inner product.
The prequantum Hilbert space is then the space of sections ofL that are square integrable
with respect toε. This space may be identified withL2 (T ∗(K), ε) .

One motivation for this construction is the existence of a natural mappingQ from
functions onT ∗(K) into the space of symmetric operators on the prequantum Hilbert
space, satisfying[Q (f ) ,Q (g)] = −ih̄Q ({f, g}) ,where{f, g} is the Poisson bracket.
Explicitly, Q (f ) = ih̄∇Xf + f, whereXf is the Hamiltonian vector field associated
to f. This “prequantization map” will not play an important role in this paper. See [Wo,
Chap. 8] for more information.

2.3. The Kähler-polarized subspace.Let me summarize what the results of this subsec-
tion will be. The cotangent bundleT ∗(K) has a natural complex structure that comes
by identifying it with the ‘complexification’ ofK. This complex structure allows us
to define a notion of Kähler-polarized sections of the bundleL. There exists a natural
trivializing polarized sections0 such that every other polarized section is a holomorphic
function timess0. The Kähler-polarized Hilbert space is then identifiable with anL2

space of holomorphic functions onT ∗(K), where the measure is the Liouville measure
times|s0|2 .We then consider the “half-form” bundleδ1.The half-form corrected Kähler
Hilbert space is the space of polarized sections ofL⊗ δ1. This may be identified with an
L2 space of holomorphic functions onT ∗(K), where now the measure is the Liouville
measure times|s0|2 |β0|2, whereβ0 is a trivializing polarized section ofδ1. The main
result is that this last measure coincides up to a constant with theK-invariant heat kernel
measure onT ∗(K) introduced in [H1]. Thus the half-form-corrected Kähler-polarized
Hilbert space of geometric quantization coincides (up to a constant) with the generalized
Segal–Bargmann space of [H1, Thm. 2].

We letKC denote the complexification ofK, as described in Sect. 2.1, and we let
T ∗(K) denote the cotangent bundle ofK. There is a diffeomorphism ofT ∗(K)withKC

as follows. We identifyT ∗(K) with K × k∗ by means of left-translation and then with
K × k by means of the inner product onk.We consider the map' : K × k → KC given
by

'(x, Y ) = xeiY , x ∈ K,Y ∈ k. (2.4)

The map' is a diffeomorphism. If we use' to transport the complex structure ofKC to
T ∗(K), then the resulting complex structure onT ∗(K) is compatible with the symplectic
structure onT ∗(K), so thatT ∗(K) becomes a Kähler manifold. (See [H3, Sect. 3].)

Consider the functionκ : T ∗(K)→ R given by

κ (x, Y ) = |Y |2 . (2.5)
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This function is aKähler potentialfor the complex structure onT ∗(K) described in the
previous paragraph. Specifically we have

Im
(
∂̄κ
) = θ. (2.6)

Then becauseω = −dθ it follows that

i∂∂̄κ = ω. (2.7)

An important feature of this situation is the natural explicit form of the Kähler potential.
This formula forκ comes as a special case of the general construction of Guillemin–
Stenzel [GStenz1, Sect. 5] and Lempert–Sz˝oke [LS, Cor. 5.5]. In this case one can
compute directly thatκ satisfies (2.6) and (2.7) (see the first appendix).

We define a smooth sections of L to beKähler-polarizedif

∇Xs = 0

for all vectors of type(0,1) . Equivalentlys is polarized if∇∂/∂z̄k s = 0 for all k, in
holomorphic local coordinates. TheKähler-polarized Hilbert spaceis then the space of
square-integrable Kähler-polarized sections ofL. (See [Wo, Sect. 9.2].)

Proposition 2.3. If we think of sectionss of L as functions onT ∗(K) then the Kähler-
polarized sections are precisely the functionss of the form

s = Fe−|Y |2/2h̄,
with F holomorphic and|Y |2 = κ (x, Y ) the Kähler potential (2.5). The notion of
holomorphic is via the identification (2.4) ofT ∗(K) withKC.

Proof. If we work in holomorphic local coordinatesz1, . . . , zn then we want sections
s such that∇∂/∂z̄k s = 0 for all k. The condition (2.6) onκ says that in these coordinates

θ = 1

2i

∑
k

(
∂κ

∂z̄k
dz̄k − ∂κ

∂zk
dzk

)
.

So

θ

(
∂

∂z̄k

)
= 1

2i

∂κ

∂z̄k
.

Then we get, using definition (2.1) of the covariant derivative,

∇∂/∂z̄k e−κ/2h̄ = ∂

∂z̄k
e−κ/2h̄ − 1

ih̄
θ

(
∂

∂z̄k

)
e−κ/2h̄

=
(
− 1

2h̄

∂κ

∂z̄k
− 1

ih̄

1

2i

∂κ

∂z̄k

)
e−κ/2h̄ = 0.

Now any smooth sections can be written uniquely ass = F exp(−κ/2h̄) , whereF is
a smooth complex-valued function. Such a section is polarized precisely if

0 = ∇∂/∂z̄k
(
F e−κ/2h̄

)
= ∂F

∂z̄k
e−κ/2h̄ + F∇∂/∂z̄k e−κ/2h̄

= ∂F

∂z̄k
e−κ/2h̄

for all k, that is, precisely ifF is holomorphic. ��
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The norm of a polarized sections (as in Proposition 2.3) is computed as

‖s‖2 =
∫
T ∗(K)

|F |2 e−κ/h̄ ε

=
∫

k

∫
K

∣∣∣F (
xeiY

)∣∣∣2 e−|Y |2/h̄ dx dY.

HereF is a holomorphic function onKC which we are “transporting” toT ∗(K) by
means of the map'(x, Y ) = xeiY . (Recall (2.2) and (2.3).) Thus if we identify the
sections with the holomorphic functionF, the Kähler-polarized Hilbert space will be
identified with

HL2(T ∗(K), e−|Y |2/h̄ε).
Hereε is the Liouville volume measure andHL2 denotes the space of holomorphic
functions that are square-integrable with respect to the indicated measure.

In Sect. 7 of [H4] I compared the measuree−|Y |2/h̄ε to the “K-invariant heat kernel
measure”νh̄ onKC

∼= T ∗(K). The measureνh̄ is the one that is used in the generalized
Segal–Bargmann transform of [H1, Thm. 2]. In the commutative case the two measures
agree up to a constant. However, in the non-commutative case the two measures differ
by a non-constant function ofY, and it is easily seen that this discrepancy cannot be
eliminated by choosing a different trivializing polarized section ofL. In the remainder
of this section we will see that this discrepancy between the heat kernel measure and the
geometric quantization measure can be eliminated by the “half-form correction”. I am
grateful to Dan Freed for suggesting to me that this could be the case.

We now consider the canonical bundle forT ∗(K) relative to the complex structure
obtained fromKC. The canonical bundle is the complex line bundle whose sections are
complex-valuedn-forms of type(n,0) . The forms of type(n,0) may be described as
thosen-formsα for which

X�α = 0

for all vectors of type(0,1) . We then define the polarized sections of the canonical
bundle to be the(n,0)-formsα such that

X�dα = 0

for all vector fields of type(0,1) . (Compare [Wo, Eq. (9.3.1)].) These are nothing but
the holomorphicn-forms. We define a Hermitian structure on the canonical bundle by
defining for an(n,0)-form α

|α|2 = ᾱ ∧ α

b ε
.

Here the ratio means the only thing that is reasonable:|α|2 is the unique function such
that |α|2 bε = ᾱ ∧ α. The constantb should be chosen in such a way as to make|α|2
positive; we may takeb = (2i)n(−1)n(n−1)/2.

In this situation the canonical bundle may be trivialized as follows.We think ofT ∗(K)
asKC, since at the moment the symplectic structure is not relevant. IfZ1, . . . , Zn are
linearly independent left-invariant holomorphic 1-forms onKC then their wedge product
is a nowhere-vanishing holomorphicn-form.

We now choose a square rootδ1 of the canonical bundle in such a way that there
exists a smooth section ofδ1 whose square isZ1 ∧ · · · ∧ Zn. This section ofδ1 will
be denoted by the mnemonic

√
Z1 ∧ · · · ∧ Zn. There then exists a unique notion of

polarized sections ofδ1 such that 1) a locally defined, smooth, nowhere-zero sectionν
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of δ1 is polarized if and only ifν2 is a polarized section of the canonical bundle, and 2) if
ν is a locally defined, nowhere-zero, polarized section ofδ1 andF is a smooth function,
thenFν is polarized if and only ifF is holomorphic. (See [Wo, p. 186].) Concretely the
polarized sections ofδ1 are of the form

s = F (g)
√
Z1 ∧ · · · ∧ Zn

with F a holomorphic function onKC. The absolute value of such a section is defined
as

|s|2 :=
√(
s2, s2

) = |F |2
√
Z̄1 ∧ · · · ∧ Z̄n ∧ Z1 ∧ · · · ∧ Zn

b ε
.

Now thehalf-form corrected Kähler-polarized Hilbert spaceis the space of square-
integrable polarized sections ofL⊗ δ1. (The polarized sections ofL⊗ δ1 are precisely
those that can be written locally as the product of a polarized section ofL and a polarized
section ofδ1.) Such sections are precisely those that can be expressed as

s = Fe−|Y |2/2h̄ ⊗√
Z1 ∧ · · · ∧ Zn (2.8)

with F holomorphic. The norm of such a section is computed as

‖s‖2 =
∫
T ∗(K)

|F |2 e−|Y |2/h̄ηε,

whereη is the function given by

η =
√
Z̄1 ∧ · · · ∧ Z̄n ∧ Z1 ∧ · · · ∧ Zn

bε
, (2.9)

and whereb = (2i)n(−1)n(n−1)/2. We may summarize the preceding discussion in the
following theorem.

Theorem 2.4. If we write elements of the half-form corrected Kähler Hilbert space in
the form (2.8) then this Hilbert space may be identified with

HL2(T ∗(K), γh̄),

whereγh̄ is the measure given by

γh̄ = e−|Y |2/h̄η ε.

Hereε is the canonical volume form onT ∗(K), |Y |2 is the Kähler potential (2.5), andη
is the “half-form correction” defined in (2.9) and given explicitly in (2.10) below. Here
as elsewhereHL2 denotes the space of square-integrable holomorphic functions.

Note thatZ̄1 ∧ · · · ∧ Z̄n ∧ Z1 ∧ · · · ∧ Zn is a left-invariant 2n-form onKC, so that
the associated measure is simply a multiple of Haar measure onKC. Meanwhileε is
just the Liouville volume form onT ∗(K). Thusη is the square root of the density of
Haar measure with respect to Liouville measure, under our identification ofKC with
T ∗(K). Both measures areK-invariant, so in our(x, Y ) coordinates onT ∗(K), η will
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be a function ofY only. By [H3, Lem. 5] we have thatη (Y ) is the uniqueAd-K-invariant
function onk such that in a maximal abelian subalgebra

η (Y ) =
∏
α∈R+

sinhα (Y )

α (Y )
, (2.10)

whereR+ is a set of positive roots.
Meanwhile there is the “K-invariant heat kernel measure”νh̄ onKC

∼= T ∗(K), used
in the construction of the generalized Segal–Bargmann transform in [H1, Thm. 2]. When
written in terms of the polar decompositiong = xeiY , νh̄ is given explicitly by

dνh̄ = (πh̄)−n/2 e−|ρ|2h̄e−|Y |2/h̄η (Y ) dx dY.

(See [H3, Eq. (13)].) Hereρ is half the sum of the positive roots for the groupK. Thus
apart from an overall constant, the measureT ∗(K) coming from geometric quantization
coincides exactly with the heat kernel measure of [H1]. So we have proved the following
result.

Theorem 2.5. For eachh̄ > 0 there exists a constantch̄ such that the measureγh̄ coming
from geometric quantization and the heat kernel measureνh̄ are related by

νh̄ = ch̄γh̄,

where
ch̄ = (πh̄)−n/2 e−|ρ|2h̄,

and whereρ is half the sum of the positive roots for the groupK.

Let us try to understand, at least in part, the seemingly miraculous agreement between
these two measures. (See also Sect. 4.) The cotangent bundleT ∗(K) has a complex
structure obtained by identification withKC.The metric tensor onK then has an analytic
continuation to a holomorphicn-tensor onT ∗(K). The restriction of the analytically
continued metric tensor to the fibers ofT ∗(K) is the negative of a Riemannian metric
g. Each fiber, with this metric, is isometric to the non-compact symmetric spaceKC/K.

(See [St].) This reflects the well-known duality between compact and non-compact
symmetric spaces. Each fiber is also identified withk, and under this identification the
Riemannian volume measure with respect tog is given by

√
gdY = η (Y )2 dY.

That is, the “half-form factor”η is simply the square root of the Jacobian of the expo-
nential mapping forKC/K.

Now on any Riemannian manifold the heat kernel measure (at a fixed base point,
written in exponential coordinates) has an asymptotic expansion of the form

dµh̄ (Y ) ∼ (πh̄)−n/2 e−|Y |2/h̄ (j1/2 (Y )+ ta1 (Y )+ t2a2 (Y )+ . . .
)
dY. (2.11)

Herej (Y ) is the Jacobian of the exponential mapping, also known as the Van Vleck–
Morette determinant. (I have written̄h for the time variable and normalized the heat
equation to bedu/dt = (1/4)�u.) Note that this is the expansion for the heat kernel
measure; in the expansion of the heat kernelfunctionone hasj−1/2 instead ofj1/2.
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In the case of the manifoldKC/K we have a great simplification. All the higher
terms in the series are just constant multiples ofj1/2 and we get an exact convergent
expression of the form

dµh̄ (Y ) = (πh̄)−n/2 e−|Y |2/h̄j1/2 (Y ) f (t) dY. (2.12)

Here explicitlyf (t) = exp(− |ρ|2 t), whereρ is half the sum of the positive roots.
The measureνh̄ in [H1] is then simply this measure times the Haar measuredx in the
K-directions. So we have

dνh̄ = e−|ρ|2t (πh̄)−n/2 e−|Y |2/h̄j1/2 (Y ) dx dY.

So how does geometric quantization produce a multiple ofνh̄? The Gaussian factor
in νh̄ comes from the simple explicit form of the Kähler potential. The factor ofj1/2 in
νh̄ is the half-form correction – that is,j1/2(Y ) = η(Y ).

If we begin with a general compact symmetric spaceX then much of the analysis
goes through:T ∗(X) has a natural complex structure,|Y |2 is a Kähler potential, and the
fibers are identifiable with non-compact symmetric spaces. (See [St, p. 48].) Further-
more, the half-form correction is still the square root of the Jacobian of the exponential
mapping. What goes wrong is that the heat kernel expansion (2.11) does not simplify to
an expression of the form (2.12). So the heat kernel measure used in [St] and the measure
coming from geometric quantization will not agree up to a constant. Nevertheless the
two measures do agree “to leading order inh̄”.

I do not know whether the geometric quantization pairing map is unitary in the case
of general compact symmetric spacesX. There is, however, a unitary Segal–Bargmann-
type transform, given in terms of heat kernels and described in [St].

2.4. The vertically polarized Hilbert space.After much sound and fury, the vertically
polarized Hilbert space will be identified simply withL2 (K, dx), wheredx is Haar
measure onK. Nevertheless, the fancy constructions described below are important for
two reasons. First, the vertically polarized Hilbert space does not depend on a choice
of measure onK. The Hilbert space is really a space of “half-forms”. If one chooses
a smooth measureµ onK (with nowhere-vanishing density with respect to Lebesgue
measure in each local coordinate system) then this choice gives an identification of the
vertically polarized Hilbert space withL2(K,µ).Although Haar measure is the obvious
choice forµ, the choice of measure is needed only to give a concrete realization of
the space as anL2 space; the vertically polarized Hilbert space exists independently of
this choice. Second, the description of the vertically polarized Hilbert space as space of
half-forms will be essential to the construction of the pairing map in Sect. 2.5.

The following description follows Sect. 9.3 of [Wo]. Roughly speaking our Hilbert
space will consist of objects whose squares aren-forms onT ∗(K) that are constant along
the fibers and thus descend ton-forms onK. The norm of such an object is computed
by squaring and then integrating the resultingn-form overK.

We consider sections ofL that are covariantly constant in the directions parallel to the
fibers ofT ∗(K). Note that each fiber ofT ∗(K) is a Lagrangian submanifold ofT ∗(K),
so thatT ∗(K) is naturally foliated into Lagrangian submanifolds. Suppose thatX is a
tangent vector toT ∗(K) that is parallel to one of the fibers. Then it is easily seen that
θ (X) = 0, whereθ is the canonical 1-form onT ∗(K). Thus, recalling definition (2.1)
of the covariant derivative and thinking of the sections ofL as functions onT ∗(K),
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the vertically polarized sections are simply the functions that are constant along the
fibers. Such a section cannot be square-integrable with respect to the Liouville measure
(unless it is zero almost everywhere). This means that we cannot construct the vertically
polarized Hilbert space as a subspace of the prequantum Hilbert space.

We consider, then, the canonical bundle ofT ∗(K) relative to the vertical polarization.
This is thereal line bundle whose sections aren-formsα such that

X�α = 0 (2.13)

for all vectors parallel to the fibers ofT ∗(K). We call such a section polarized if in
addition we have

X�dα = 0 (2.14)

for all vectorsX parallel to the fibers. (See [Wo, Eq. (9.3.1)].)
Now letQ be the space of fibers (or the space of leaves of our Lagrangian foliation).

ClearlyQ may be identified withK itself, the “configuration space” corresponding to
the “phase space”T ∗(K). Let pr : T ∗(K) → K be the projection map. It is not hard
to verify that ifα is an-form onT ∗(K) satisfying (2.13) and (2.14) then there exists a
uniquen-form β onK such that

α = pr∗ (β) .

We may think of such ann-formα as being constant along the fibers, so that it descends
unambiguously to ann-formβ onK. In this way the polarized sections of the canonical
bundle may be identified withn-forms onK.

SinceK is a Lie group it is orientable. So let us pick an orientation onK, which
we think of as an equivalence class of nowhere-vanishingn-forms onK. Then if β is
a nowhere-vanishing orientedn-form onK, we define the “positive” part of each fiber
of the canonical bundle to be the half-line in whichpr∗ (β) lies. We may then construct
a unique trivial real line bundleδ2 such that 1) the square ofδ2 is the canonical bundle
and 2) ifγ is a nowhere-vanishing section ofδ2 thenγ 2 lies in the positive part of the
canonical bundle. We have a natural notion of polarized sections ofδ2, such that 1) a
locally defined, smooth, nowhere-zero sectionν of δ2 is polarized if and only ifν2 is a
polarized section of the canonical bundle and 2) ifν is a locally defined, nowhere-zero,
polarized section ofδ2 andf is a smooth function, thenf ν is polarized if and only iff
is constant along the fibers.

Now let β be any nowhere vanishing orientedn-form onK. Then there exists a
polarized section ofδ2 (unique up to an overall sign) whose square ispr∗ (β) . This
section is denoted

√
pr∗ (β).Any other polarized section ofδ2 is then of the form

f (x)
√
pr∗ (β),

wheref (x) denotes a real-valued function onT ∗(K) that is constant along the fibers.
Finally we consider polarized sections ofL⊗δ2, i.e. those that are locally the product

of a vertically polarized section ofL and a polarized section ofδ2. These are precisely
the sections that can be expressed in the form

s = f (x)⊗√
pr∗ (β),
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wheref is a complex-valued function onT ∗(K) that is constant along the fibers. The
norm of such a section is computed as

‖s‖2 =
∫
K

|f (x)|2 β.

It is easily seen that this expression for‖s‖ is independent of the choice ofβ. Note that
the integration is over the quotient spaceK, not overT ∗(K).

In particular we may choose linearly independent left-invariant 1-formsη1, . . . , ηn
onK in such a way thatη1∧· · ·∧ηn is oriented. Then every polarized section ofL⊗ δ2
is of the form

s = f (x)⊗√
pr∗ (η1 ∧ · · · ∧ ηn)

and the norm of a section is computable as

‖s‖2 =
∫
K

|f (x)|2 η1 ∧ · · · ∧ ηn

=
∫
K

|f (x)|2 dx, (2.15)

wheredx is Haar measure onK. Thus we may identify the vertically polarized Hilbert
space withL2(K, dx). More precisely, if we assume up to now that all sections are
smooth, then we have the subspace ofL2 (K, dx) consisting of smooth functions. The
vertically polarized Hilbert space is then the completion of this space, which is just
L2 (K, dx) .

2.5. Pairing. Geometric quantization gives a way to define apairingbetween the Kähler-
polarized and vertically polarized Hilbert spaces, that is, a sesquilinear map from
HKähler × HVertical into C. This pairing then induces a linear map between the two
spaces, called thepairing map. The main results are: (1) the pairing map coincides up to
a constant with the generalized Segal–Bargmann transform of [H1], and (2) a constant
multiple of the pairing map is unitary from the vertically polarized Hilbert space onto
the Kähler-polarized Hilbert space.

Now the elements of the Kähler-polarized Hilbert space are polarized sections of
L⊗ δ1 and the elements of the vertically polarized Hilbert space are polarized sections
of L ⊗ δ2. Here δ1 and δ2 are square roots of the canonical bundle for the Kähler
polarization and the vertical polarization, respectively. The pairing of the Hilbert spaces
will be achieved by appropriately pairing the sections at each point and then integrating
overT ∗(K) with respect to the canonical volume formε. (See [Wo, p. 234].)

A polarized sections1 of L ⊗ δ1 can be expressed ass1 = f1 ⊗ β1, wheref1 is a
Kähler-polarized section ofL andβ1 is a polarized section ofδ1. Similarly, a polarized
section ofL⊗ δ2 is expressible ass2 = f2 ⊗ β2 with f2 a vertically polarized section
of L andβ2 a polarized section ofδ2.We define a pairing betweenβ1 andβ2 by

(β1, β2) =
√
β2

1 ∧ β2
2

c ε
,

wherec is constant which I will take to bec = (−i)n(−1)n(n+1)/2. (This constant is
chosen so that things come out nicely in theR

n case. See Sect. 5.) Note thatβ2
1 andβ2

2
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aren-forms onT ∗(K), so thatβ2
1 ∧ β2

2 is a 2n-form onT ∗(K). Note that(β1, β2) is a
complex-valued function onT ∗(K).There are at most two continuous ways of choosing
the sign of the square root, which differ just by a single overall sign. That there is at least
one such choice will be evident below.

We then define the pairing of two sectionss1 ands2 (as in the previous paragraph) by

〈s1, s2〉pair =
∫
T ∗(K)

(f1, f2) (β1, β2) ε (2.16)

whenever the integral is well-defined. Here as usualε is the Liouville volume form on
T ∗(K). It is easily seen that this expression is independent of the decomposition ofsi
asfi ⊗ βi. The quantity(f1, f2) is computed using the (trivial) Hermitian structure on
the line bundleL. Although the integral in (2.16) may not be absolutely convergent in
general, there are dense subspaces of the two Hilbert spaces for which it is. Furthermore,
Theorem 2.6 below will show that the pairing can be extended by continuity to alls1,s2
in their respective Hilbert spaces.

Now, we have expressed the polarized sections ofL⊗ δ1 in the form

F e−|Y |2/2h̄ ⊗√
Z1 ∧ · · · ∧ Zn,

whereF is a holomorphic function onKC andZ1, . . . , Zn are left-invariant holomorphic
1-forms onKC. As always we identifyKC with T ∗(K) as in (2.4). The function|Y |2
is the Kähler potential (2.5). We have expressed the polarized sections ofL⊗ δ2 in the
form

f (x)⊗√
pr∗ (η1 ∧ · · · ∧ ηn),

wheref (x) is a function onT ∗(K) that is constant along the fibers,η1, . . . , ηn are
left-invariant 1-forms onK, andpr : T ∗(K)→ K is the projection map.

Thus we have the following expression for the pairing:

〈F, f 〉pair =
∫
K

∫
k
F
(
xeiY

)
f (x) e−|Y |2/2h̄ζ (Y ) dx dY, (2.17)

whereζ is the function onT ∗(K) given by

ζ =
√
Z̄1 ∧ · · · ∧ Z̄n ∧ pr∗ (η1 ∧ · · · ∧ ηn)

c ε
, (2.18)

wherec = (−i)n(−1)n(n+1)/2. I have expressed things in terms of the functionsF and
f, and I have used the identification (2.2) ofT ∗(K) with K × k. It is easily seen that
ζ (x, Y ) is independent ofx, and so I have writtenζ (Y ) .

Theorem 2.6. Let us identify the vertically polarized Hilbert space withL2 (K) as in
(2.15) and the Kähler-polarized Hilbert space withHL2(T ∗(K), γh̄) as in Theorem 2.4.
Then there exists a unique bounded linear operator:h̄ : L2(K) → HL2(T ∗(K), γh̄)
such that

〈F, f 〉pair =
〈
F,:h̄f

〉
HL2(T ∗(K),γh̄) =

〈
:∗
h̄F, f

〉
L2(K)

for all f ∈ L2(K) and allF ∈ HL2(T ∗(K), γh̄).We call:h̄ thepairing map.
The pairing map has the following properties.
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(1) There exists a constantah̄ such that for anyf ∈ L2 (K) , :h̄f is the unique holo-
morphic function onT ∗(K) whose restriction toK is given by(

:h̄f
)∣∣
K
= ah̄e

h̄�K/2f.

Equivalently,

:h̄f (g) = ah̄

∫
K

ρh̄(gx
−1)f (x) dx, g ∈ KC,

whereρh̄ is the heat kernel onK, analytically continued toKC.

(2) The map:∗
h̄ may be computed as

(
:∗
h̄F

)
(x) =

∫
k
F
(
xeiY

)
e−|Y |2/2h̄ζ (Y ) dY,

whereζ is defined by (2.18) and computed in Proposition 2.7 below.
(3) There exists a constantbh̄ such thatbh̄:h̄ is a unitary map ofL2(K) onto

HL2(T ∗(K), γh̄). Thus:∗
h̄ = b−2

h̄ :−1
h̄ .

The constantsah̄ andbh̄ are given explicitly asah̄ = (2πh̄)n/2 e−|ρ|2h̄/2 andbh̄ =
(4πh̄)−n/4 , whereρ is half the sum of the positive roots forK.

Remarks.(1) The map:h̄ coincides (up to the constantah̄) with the generalized Segal–
Bargmann transform forK, as described in [H1, Thm. 2].

(2) The formula for:∗
h̄F may be taken literally on a dense subspace ofHL2(T ∗(K),

γh̄). For generalF, however, one should integrate over a ball of radiusR in k and
then take a limit inL2 (K) , as in [H2, Thm. 1].

(3) The formula for:∗
h̄ is an immediate consequence of the formula (2.17) for the

pairing. By computingζ (Y ) explicitly we may recognize:∗
h̄ as simply a constant

times theinverse Segal–Bargmann transformfor K, as described in [H2].
(4) In [H2] I deduce the unitarity of the generalized Segal–Bargmann transform from

the inversion formula. However, I do not know how to prove the unitarity of the
pairing map without recognizing that the measure in the formula for:∗

h̄ is related
to the heat kernel measure forKC/K.

(5) SinceF is holomorphic, there can be many different formulas for:∗
h̄ (or:−1

h̄ ). In
particular, if one takes the second expression for:h̄ and computes the adjoint in the
obvious way, one willnot get the given expression for:∗

h̄. Nevertheless, the two
expressions for:∗

h̄ do agree on holomorphic functions.

Proof. We begin by writing the explicit formula forζ.

Proposition 2.7. The functionζ is an Ad-K-invariant function onk which is given on a
maximal abelian subalgebra by

ζ (Y ) =
∏
α∈R+

sinhα(Y/2)

α(Y/2)
,

whereR+ is a system of positive roots.
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The proof of this proposition is a straightforward but tedious calculation, which I
defer to an appendix.

Directly from the formula (2.16) for the pairing map we see that

〈F, f 〉pair =
〈
:∗
h̄F, f

〉
L2(K)

, (2.19)

where:∗
h̄ is defined by

(
:∗
h̄F

)
(x) =

∫
k
F
(
xeiY

)
e−|Y |2/2h̄ζ (Y ) dY.

At the moment it is not at all clear that:h̄ is a bounded operator, but there is a dense
subspace ofHL2(T ∗(K), γh̄) on which:h̄ makes sense and for which (2.19) holds. We
will see below that:h̄ extends to a bounded operator on all ofHL2(T ∗(K), γh̄), for
which (2.19) continues to hold. Then by taking the adjoint of:∗

h̄ we see that〈F, f 〉pair =〈
F,:h̄f

〉
HL2(T ∗(K),γh̄) as well.

Using the explicit formula forζ and making the change of variableY ′ = 1
2Y we have

(
:∗
h̄F

)
(x) = 2n

∫
k
F
(
xe2iY ′)e−2|Y ′|2/h̄ ∏

α∈R+

sinhα
(
Y ′)

α (Y ′)
dY ′


 .

We recognize from [H3] the expression in square brackets as a constant times the heat
kernel measure onKC/K, written in exponential coordinates and evaluated at time
t = h̄/2. It follows from the inversion formula of [H2] that

:∗
h̄ = ch̄C

−1
h̄ ,

for some constantch̄ and whereCh̄ is the generalized Segal–Bargmann transform of
[H1, Thm. 2].

Now, Ch̄ is unitary if we use onKC
∼= T ∗(K) the heat kernel measureνh̄. But in

Theorem 1 we established that this measure coincides up to a constant with the measure
γh̄. Thus:h̄ is a constant multiple of a unitary and coincides withCh̄ up to a constant.
This gives us what we want except for computing the constants, which I leave as an
exercise for the reader.��

3. Quantization, Reduction, and Yang–Mills Theory

Let me summarize the results of this section before explaining them in detail. It is pos-
sible to realize a compact Lie groupK as the quotientK = A/L (K), whereA is a
certain infinite-dimensional Hilbert space andL (K) is the based loop group overK,
which acts freely and isometrically onA. (HereA is to be interpreted as a space of
connections overS1 andL (K) as a gauge group.) The cotangent bundle ofA may be
identified with the associated complex Hilbert spaceAC and the symplectic quotient
AC//L (K) is identifiable withT ∗(K). The results of [DH,Wr] (see also the exposition
in [H8]) together with the results of this paper may be interpreted as saying that in this
casequantization commutes with reduction. This means two things. First, if we perform
geometric quantization onAC and then reduce byL (K) the resulting Hilbert space is
naturallyunitarily equivalent to the result of first reducing byL (K) and then quantizing
the reduced manifoldAC//L (K) = T ∗(K). This result holds using either the vertical
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or the Kähler polarization; in the Kähler case it is necessary to include the half-form cor-
rection. Second, the pairing map between the vertically polarized and Kähler-polarized
Hilbert spaces overAC descends to the reduced Hilbert spaces and then coincides (up
to a constant) with the pairing map forT ∗(K). Additional discussion of these ideas is
found in [H7,H8]. The first result contrasts with those of Guillemin and Sternberg in
[GStern]. That paper considers the geometric quantization of compact Kähler manifolds,
without half-forms, and exhibits (under suitable regularity assumptions) a one-to-one
onto linear map between the “first quantize then reduce” space and the “first reduce and
then quantize” space. However, they do not show that this map is unitary, and it seems
very unlikely that it is unitary in general. In the case considered in this paper and [DH],
quantization commutesunitarily with reduction.

Consider then a Lie groupK of compact type, with a fixed Ad-K-invariant inner
product on its Lie algebrak. Then consider the real Hilbert space

A := L2 ([0,1] ; k) .
LetL (K) denote thebased loop groupforK, namely the group of mapsl : [0,1] → K

such thatl0 = l1 = e. (For technical reasons I also assume thatl has one derivative in
L2, i.e. thatl has “finite energy”.) There is a natural action ofL (K) onA given by

(l · A)τ = lτAτ l
−1
τ − dl

dτ
l−1
τ . (3.1)

Herel is in L (K) , A is in A, andτ is in [0,1] . Then we have the following result: the
based loop groupL (K)acts freely and isometrically onA,and the quotientA/L (K) is a
finite-dimensional manifold that is isometric toK. ThusK, which is finite-dimensional
but with non-trivial geometry, can be realized as a quotient ofA, which is infinite-
dimensional but flat.

Explicitly the quotient map is given in terms of theholonomy. ForA ∈ A we define
the holonomyh (A) ∈ K by the “path-ordered integral”

h(A) = P
(
e
∫ 1

0 Aτ dτ
)

= lim
N→∞ e

∫ 1/N
0 Aτ dτ e

∫ 2/N
1/N Aτ dτ · · · e

∫ 1
(N−1)/N Aτ dτ . (3.2)

Then it may be shown thatA andB are in the same orbit ofL (K) if and only if
h(A) = h (B) . Furthermore, everyx ∈ K is the holonomy of someA ∈ A, and so
theL (K)-orbits are in one-to-one correspondence with points inK. The motivation for
these constructions comes from gauge theory. The spaceA is to be thought of as the
space of connections for a trivial principalK-bundle overS1, in which caseL (K) is
the based gauge group and (3.1) is a gauge transformation. For connectionsA overS1

the only quantity invariant under (based) gauge transformations is the holonomyh (A)

around the circle. See [DH] or [H8] for further details.
Meanwhile, we may consider the cotangent bundle ofA, T ∗ (A) , which may be

identified with
AC := L2 ([0,1] ; kC) .

ThenAC is an infinite-dimensional flat Kähler manifold. The action of the based loop
groupL (K) onA extends in a natural way to an action onAC (given by the same for-
mula). Starting withAC we may construct the symplectic (or Marsden–Weinstein) quo-
tientAC//L (K) . This quotient is naturally identifiable withT ∗ (A/L (K)) = T ∗(K).
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One may also realize the symplectic quotient asAC/L (KC), whereL (KC) is the based
loop group overKC. The quotientAC/L (KC) is naturally identifiable withKC. So we
have ultimately

T ∗(K) ∼= T ∗ (A/L (K)) ∼= AC/L (KC) ∼= KC.

The resulting identification ofT ∗(K)withKC is nothing but the one used throughout this
paper. The quotientAC/L (KC) may be expressed in terms of the complex holonomy.
For Z ∈ AC we definehC (Z) ∈ KC similarly to (3.2). Then theL (KC)-orbits are
labeled precisely by the value ofhC.

So the manifoldT ∗(K) that we have been quantizing is a symplectic quotient of the
infinite-dimensional flat Kähler manifoldAC. Looking atT ∗(K) in this way we may
say that we have first reducedAC by the loop groupL (K) , and then quantized. One
may attempt to do things the other way around:first quantizeAC andthenreduce by
L (K) . Motivated by the results of K. Wren [Wr] (see also [La2, Chap. IV.3.8]), Bruce
Driver and I considered precisely this procedure [DH]. Although there are technicalities
that must be attended to in order to make sense of this, the upshot is that in this case
quantization commutes with reduction, as explained in the first paragraph of this section.

In the end we have three different procedures for constructing the generalized Segal–
Bargmann space forK and the associated Segal–Bargmann transform. The first is the
heat kernel construction of [H1], the second is geometric quantization ofT ∗(K) with a
Kähler polarization, and the third is by reduction fromAC. It is not obviousa priori that
any two of these constructions should agree. That all three agree is an apparent miracle
that should be understood better. I expect that if one replaces the compact groupK with
some other class of Riemannian manifolds, then these constructions will not agree.

Let me now explain how the quantization ofAC and the reduction byL (K) are done
in [DH]. (See also the expository article [H8].) In the interest of conveying the main ideas
I will permit myself to gloss over various technical issues that are dealt with carefully
in [DH]. Although [DH] does not use the language of geometric quantization, it can
easily be reformulated in those terms. Now, the constructions of geometric quantization
are not directly applicable in the infinite-dimensional setting. On the other hand,AC

is just a flat Hilbert space and there are by now many techniques for dealing with its
quantization. Driver and I want to first perform quantization onC

n and then letn tend
to infinity. If one performs geometric quantization onC

n with a Kähler polarization and
the half-form correction one getsHL2(Cn, νh̄), where

dνh̄ = e−(Im z)2/h̄ dz.

See Sect. 5 below.
In this form we cannot let the dimension go to infinity because the measure is Gaussian

only in the imaginary directions. So we introduce a regularization parameters > h̄/2
and modify the measure to

dMs,h̄ = (πr)−n/2 (πh̄)−n/2 e−(Im z)2/h̄e−(Rez)2/r ,

wherer = 2(s− h̄/2).The constants are chosen so thatMs,h̄ is a probability measure. If
one rescalesMs,h̄ by a suitable function ofs and then letss tend to infinity one recovers
the measureνh̄. Our Hilbert space is then justHL2(Cn,Ms,h̄). Now we can let the
dimension tend to infinity, and we get

HL2 (AC,Ms,h̄

)
,
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whereMs,h̄ is a Gaussian measure on a certain “extension”AC of AC. (See [DH,
Sect. 4.1].) This we think of as the (regularized) Kähler-polarized Hilbert space.

Our next task is to perform the reduction byL (K) ,which means looking for functions
in HL2(AC,Ms,h̄) that are “invariant” in the appropriate sense under the action of
L (K) . The notion of invariance should itself come from geometric quantization, by
“quantizing” the action ofL (K) onAC.Note thatL (K) acts onA by a combination of
rotations and translations; the action ofL (K) onAC is then induced from its action on
A. Let us revert temporarily to the finite-dimensional situation as in Sect. 4. Then the
way we have chosen our 1-formθ and our Kähler potentialκ means that the rotations and
translations ofRn act in the Kähler-polarized Hilbert spaceHL2(Cn, νh̄) in the simplest
possible way, namely by rotating and translating the variables. (This is not the case in
the conventional form of the Segal–Bargmann space.) We will then formally extend this
notion to the infinite-dimensional case, which means that an elementl of L (K) acts on
a functionF ∈ HL2(AC,Ms,h̄) by F (Z)→ F

(
l−1 · Z) .

We want functions inHL2(AC,Ms,h̄) that are invariant under this action, i.e. such
thatF

(
l−1 · Z) = F (Z) for all l ∈ L (K) . Since our functions are holomorphic they

must also (at least formally) be invariant underL (KC) . So we expect the invariant
functions to be those of the form

F (Z) = '(hC (Z)) ,

where' is a holomorphic function onKC. (Certainly every such function isL (K)-
invariant. Although Driver and I did not prove that everyL (K)-invariant function is of
this form, this is probably the case.) The norm of such a function may be computed as∫

AC

|F (Z)|2 dMs,h̄ (Z) =
∫
KC

|'(g)|2 dµs,h̄ (g) ,

whereµs,h̄ is the push-forward ofMs,h̄ to KC underhC. Concretelyµs,h̄ is a certain
heat kernel measure onKC. See [DH] or [H5] for details.

So our regularized reduced quantum Hilbert space is

HL2(KC, µs,h̄).

At this point we may remove the regularization by lettings tend to infinity. It can be
shown that

lim
s→∞µs,h̄ = νh̄,

whereνh̄ is theK-invariant heat kernel measure of [H1]. So without the regularization
our reduced quantum Hilbert space becomes finally

HL2(KC, νh̄),

which (up to a constant) is the same asHL2(T ∗(K), γh̄), using our identification of
T ∗(K) with KC.

Meanwhile the vertically polarized Hilbert space forC
n also requires a regularization

before we letn tend to infinity. So we considerL2(Rn, Ps), wherePs is the Gaussian
measure given by

dPs (x) = (2πs)−n/2 e−|x|2/2s .
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RescalingPs by a function ofs and then lettings tend to infinity gives back the Lebesgue
measure onRn. We then consider the Segal–Bargmann transformSh̄, which coincides
with the pairing map of geometric quantization (Sect. 5). This is given by

Sh̄f (z) = (2πt)−n/2
∫

Rn

e−(z−x)2/2t f (x) dx.

With the constants adjusted as above this map has the property that it is unitary between
our regularized spacesL2 (Rn, Ps) andHL2(Cn,Ms,h̄), for all s > h̄/2. (See [DH,
Sect. 3.1] or [H5].)

Letting the dimension tend to infinity we get a unitary map [DH, Sect. 4.1]

Sh̄ : L2 (A, Ps)→ HL2(AC,Ms,h̄). (3.3)

It seems reasonable to think of this as the infinite-dimensional regularized version of
the pairing map forAC. To reduce byL (K) we consider functions inL2

(A, Ps) that
areL (K)-invariant. According to an important theorem of Gross [G1] these are (as
expected) precisely those of the form

f (A) = φ (h (A)) , (3.4)

whereφ is a function onK. The norm of such a function is computed as

∫
A
|f (A)|2 dPs (A) =

∫
K

|φ (x)|2 dρs (x) .

Thus with the vertical polarization our reduced Hilbert space becomesL2 (K, ρs) .Since

lim
s→∞ dρs (x) = dx

we recover in the limit the vertically polarized subspace forK. (Compare [Go].)

Theorem 3.1. [DH] Consider the Segal–Bargmann transformSh̄ of (3.3). Then consider
a functionf ∈ L2

(A, Ps) of the formf (A) = φ (h (A)) ,withφ a function onK.Then

(
Sh̄f

)
(Z) = '(hC (Z)) ,

where' is the holomorphic function onKC given by

' = analytic continuation ofeh̄�K/2φ.

RestrictingSh̄ to theL (K)-invariant subspace and then lettings → ∞ gives the unitary
map

Ch̄ : L2 (K, dx)→ HL2(KC, νh̄)

given byφ → analytic continuation ofeh̄�K/2φ.
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If we restrictSh̄ to theL (K)-invariant subspace but keeps finite, then we get a
modified form of the Segal–Bargmann transform forK, a unitary mapL2 (K, ρs) →
HL2(KC, µs,h̄), still given byφ → analytic continuation ofeh̄�K/2φ. This transform
is examined from a purely finite-dimensional point of view in [H5].

So if we accept the constructions of [DH] as representing regularized forms of the
geometric quantization Hilbert spaces and pairing map, then we have the following con-
clusions. First, the Kähler-polarized and vertically polarized Hilbert spaces forAC, after
reducing byL (K) and removing the regularization, are naturally unitarily equivalent to
the Kähler-polarized and vertically polarized Hilbert spaces forT ∗(K) = AC//L (K) .

(I am including the half-forms in the construction of the Kähler-polarized Hilbert spaces.)
Second, the pairing map forAC, after restricting to theL (K)-invariant subspace and
removing the regularization, coincides with the pairing map forT ∗(K). Both of these
statements are to be understood “up to a constant”.

4. The Geodesic Flow and the Heat Equation

This section describes how the complex polarization onT ∗(K) can be obtained from
the vertical polarization by means of theimaginary-time geodesic flow. This description
is supposed to make the appearance of the heat equation in the pairing map seem more
natural.After all the heat operator is nothing but theimaginary-timequantized geodesic
flow. This point of view is due to T. Thiemann [T1,T3].

Suppose thatf is a function onK and letπ : T ∗(K) → K be the projection map.
Thenf ◦ π is the extension off to T ∗(K) that is constant along the fibers. A function
of the formf ◦ π is a “vertically polarized function”, that is, constant along the leaves
of the vertical polarization. Now recall the functionκ : T ∗(K)→ R given by

κ (x, Y ) = |Y |2 .
Let Bt be the Hamiltonian flow onT ∗(K) generated by the functionκ/2. This is the
geodesic flow for the bi-invariant metric onK determined by the inner product on the
Lie algebra. The following result gives a way of using the geodesic flow to produce a
holomorphic function onT ∗(K).

Theorem 4.1. Let f : K → C be any function that admits an entire analytic continu-
ation toT ∗(K) ∼= KC, for example, a finite linear combination of matrix entries. Let
π : T ∗(K)→ K be the projection map, and letBt be the geodesic flow onT ∗(K).

Then for eachm ∈ T ∗(K) the map

t → f (π (Bt (m)))

admits an entire analytic continuation (int) from R to C. Furthermore the function
fC : T ∗(K)→ C given by

fC (m) = f (π (Bi (m)))

is holomorphic onT ∗(K) and agrees withf onK ⊂ T ∗(K).

Note thatfC is the analytic continuation off from K to T ∗(K), with respect to
the complex structure onT ∗(K) obtained by identifying it withKC. So in words: to
analytically continuef from K to T ∗(K), first extendf by making it constant along
the fibers and then compose with the timei geodesic flow. So we can say that the
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Kähler-polarized functions (i.e. holomorphic) are obtained from the vertically polarized
functions (i.e. constant along the fibers) by composition with the timei geodesic flow.

Now if g is any function onT ∗(K) theng ◦ Bt may be computed formally as

g ◦ Bt =
∞∑
n=0

(t/2)n

n! {. . . {{g, κ} , κ} , . . . , κ}︸ ︷︷ ︸
n

.

Thus formally we have

fC =
∞∑
n=0

(i/2)n

n! {. . . {{f ◦ π, κ} , κ} , . . . , κ}︸ ︷︷ ︸
n

. (4.1)

(Compare [T1, Eq. (2.3)].) In fact, this series converges provided only thatf has an
analytic continuation toT ∗(K). This series is the “Taylor series in the fibers” offC; that
is, on each fiber thenth term of (4.1) is a homogeneous polynomial of degreen.

Theorem 4.2. Supposef is any function onK that admits an entire analytic continuation
toT ∗(K), denotedfC.Then the series on the right in (4.1) converges absolutely at every
point and the sum is equal tofC.

As an illustrative example, consider the caseK = R so thatT ∗(K) = R
2. Then

consider the functionf (x) = xk onR, so that(f ◦ π) (x, y) = xk. Using the standard
Poisson bracket onR2, {g, h} = ∂g

∂x
∂h
∂y

− ∂g
∂y

∂h
∂x

it is easily verified that

∞∑
n=0

(i/2)n

n!
{
. . .

{{
xk, y2

}
, y2

}
, . . . , y2

}
︸ ︷︷ ︸

n

= (x + iy)k .

(The series terminates after then = k term.) SofC (x + iy) = (x + iy)k is indeed the
analytic continuation ofxk.

So “classically” the transition from the vertical polarization (functions constant along
the fibers) to the Kähler polarization (holomorphic functions) is accomplished by means
of the timei geodesic flow. Let us then consider the quantum counterpart of this, namely
the transition from the vertically polarized Hilbert space to the Kähler-polarized Hilbert
space. In the position Hilbert space the quantum counterpart of the functionκ/2 is the
operator

H := −h̄2�K/2.

(Possibly one should add an “author-dependent” multiple of the scalar curvature to this
operator [O], but since the scalar curvature ofK is constant, this does not substantively
affect the answer.) The quantum counterpart of the geodesic flow is then the operator

B̂t := exp(itH/h̄)

and so the timei quantized geodesic flow is represented by the operator

B̂i = eh̄�K/2.

Since this is precisely the heat operator forK, the appearance of the heat operator in the
formula for the pairing map perhaps does not seem quite so strange as at first glance.
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This way of thinking about the complex structure and the associated Segal–Bargmann
transform is due to T. Thiemann [T1]. The relationship between the complex structure
and the imaginary time geodesic flow is also implicit in the work of Guillemin–Stenzel,
motivated by the work of L. Boutet de Monvel. (See the discussion between Thm. 5.2
and 5.3 in [GStenz2].) Thiemann proposes a very general scheme for building complex
structures and Segal–Bargmann transforms (and their associated “coherent states”) based
on these ideas. However, there are convergence issues that need to be resolved in general,
so it is not yet clear when one can carry this program out.

Although results similar to Theorems 4.1 and 4.2 are established in [T3, Lem. 3.1],
I give the proofs here for completeness. Similar results hold for the “adapted complex
structure” on the tangent bundle of an real-analytic Riemannian manifold, which will be
described elsewhere.

Proof. According to a standard result [He, Sect. IV.6], the geodesics inK are the curves
of the formγ (t) = xetX, with x ∈ K andX ∈ k. This means that if we identifyT ∗(K)
with K × k by left-translation, then the geodesic flow takes the form

Bt (x, Y ) =
(
xetY , Y

)
.

Thus iff is a function onK then

f (π (Bt (x, Y ))) = f
(
xetY

)
.

We are now supposed to fixx andY and consider the mapt → f
(
xetY

)
. If f has

an analytic continuation toKC, denotedfC, then the mapt → f
(
xetY

)
has an analytic

continuation (int) given by

t → fC

(
xetY

)
, t ∈ C.

(This is because the exponential mapping fromkC toKC is holomorphic.) Thus

f (π (Bi (x, Y ))) = fC

(
xeiY

)
.

Now we simply note that the map(x, Y )→ fC

(
xeiY

)
is holomorphic onT ∗(K), with

respect to the complex structure obtained by the map'(x, Y ) = xeiY . This establishes
Theorem 4.1.

To establish the series form of this result, Theorem 4.2, we note that (almost) by the
definition of the geodesic flow we have(

d

dt

)n
(f ◦ π) ◦ Bt

∣∣∣∣
t=0

= 1

2n
{. . . {{f ◦ π, κ} , κ} , . . . , κ}︸ ︷︷ ︸

n

. (4.2)

On the other hand, iff has an entire analytic continuation toT ∗(K) ∼= KC, then as
established above, the mapt → (f ◦ π) ◦ Bt has an entire analytic continuation. This
analytic continuation can be computed by an absolutely convergent Taylor series at
t = 0, where the Taylor coefficients att = 0 are computable from (4.2). Thus

fC = (f ◦ π) ◦ Bi =
∞∑
n=0

(i/2)n

n! {. . . {{f ◦ π, κ} , κ} , . . . , κ}︸ ︷︷ ︸
n

.

This establishes Theorem 4.2.��



258 B. C. Hall

5. The R
n Case

It is by now well known that geometric quantization can be used to construct the Segal–
Bargmann space forCn and the associated Segal–Bargmann transform. (See for example
[Wo, Sect. 9.5].) In this section I repeat that construction, but in a manner that is non-
standard in two respects. First, I trivialize the quantum line bundle in such a way that
the measure in the Segal–Bargmann space is Gaussian only in the imaginary directions.
This is preferable for generalizing to the group case and it is a simple matter in the
R
n case to convert back to the standard Segal–Bargmann space (see below). Second, I

initially compute the pairing map “backward,” that is, from the Segal–Bargmann space
toL2 (Rn) . I then describe this backward map in terms of the backward heat equation,
which leads to a description of the forward map in terms of the forward heat equation. By
contrast, Woodhouse uses the reproducing kernel for the Segal–Bargmann space in order
to compute the pairing map in the forward direction. Although I include the half-form
correction on the complex side, this has no effect on the calculations in theR

n case.
We consider the phase spaceR

2n = T ∗ (Rn). We use the coordinatesq1, . . . , qn,

p1, . . . , pn, where theq ’s are the position variables and thep’s are the momentum
variables. We consider thecanonical one-form

θ =
∑

pk dqk,

where here and in the following the sum ranges from 1 ton. Then

ω := −dθ =
∑

dqk ∧ dpk

is the canonical 2-form. We consider a trivial complex line bundleL = R
2n × C with a

notion of covariant derivative given by

∇X = X − 1

ih̄
θ (X) .

Here∇X acts on smooth sections ofL, which we think of as smooth functions onR2n.

Theprequantum Hilbert spaceis the space of sections ofL that are square-integrable
with respect to the canonical volume measure onR

2n. The canonical volume measure
is the one given by integrating theLiouville volume formdefined as

ε = 1

n!ω ∧ · · · ∧ ω (n times)

= dq1 ∧ dp1 ∧ · · · ∧ dqn ∧ dpn.

Since our prequantum line bundle is trivial we may identify the prequantum Hilbert
space withL2

(
R

2n, ε
)
.

We now consider the usual complex structure onR
2n = C

n.We think of this complex
structure as defining aKähler polarizationonR

2n. This means that we define a smooth
sections of L to bepolarizedif

∇∂/∂z̄k s = 0 (5.1)

for all k.
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Proposition 5.1. If we think of sectionss of L as functions then a smooth sections
satisfies (5.1) if and only ifs is of the form

s (q, p) = F (q1 + ip1, . . . , qn + ipn) e
−p2/2h̄, (5.2)

whereF is a holomorphic function onCn. Herep2 = p2
1 + · · · + p2

n.

Proof. To prove this we first compute∇∂/∂z̄k as

∇∂/∂z̄k =
∂

∂z̄k
− 1

ih̄
θ

(
∂

∂z̄k

)

= 1

2

(
∂

∂qk
+ i

∂

∂pk

)
− 1

2ih̄
pk.

Then we note that

∇∂/∂z̄k e−p
2/2h̄ =

[
1

2

(
∂

∂qk
+ i

∂

∂pk

)(
−p2

2h̄

)
− 1

2ih̄
pk

]
e−p2/2h̄

=
[
−i pk

2h̄
− 1

2ih̄
pk

]
e−p2/2h̄

= 0.

Then if s is any section, we can writes in the forms = F e−p2/2h̄, for some complex-
valued functionF. Such a sections is polarized if and only if

0 = ∇∂/∂z̄k
(
Fe−p2/2h̄

)
= ∂F

∂z̄k
e−p2/2h̄ + F ∇∂/∂z̄k e−p

2/2h̄

= ∂F

∂z̄k
e−p2/2h̄,

for all k, that is, if and only ifF is holomorphic. ��
We then define theKähler-polarized Hilbert spaceto be the space of square-integrable

Kähler-polarized sections ofL. Note that theL2 norm of the sections in (5.2) is com-
putable as

‖s‖2 =
∫

Cn

|F (z)|2 e−p2/h̄ dnq dnp,

wherez = q + ip with q, p ∈ R
n. If we identify the polarized sections with the

holomorphic functionF then we identify the Kähler-polarized Hilbert space as the
space

HL2(Cn, e−p2/h̄dnq dnp). (5.3)

HereHL2 denotes the space of square-integrable holomorphic functions with respect to
the indicated measure. This space is a form of theSegal–Bargmann space.

The conventional description [Wo, Sect. 9.2] of the Segal–Bargmann space is slightly
different from what we have here, for two reasons. First, it is conventional to insert a factor
of

√
2 into the identification ofR2n with C

n. Second, it is common to use a different
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trivialization of L, resulting in a different Gaussian measure onC
n. The mapF →

ez
2/4h̄F maps “my” Segal–Bargmann space unitarily toHL2(Cn, e−|z|2/2h̄dnq dnp),

which is the standard Segal–Bargmann space (apart from the above-mentioned factor
of

√
2). The normalization used here for theR

n case is the one that generalizes to the
group case.

We also define thecanonical bundle(relative to the given complex structure) to be the
bundle whose sections aren-forms of type(n,0) . We then define thehalf-form bundle
δ1 to be the square root of the canonical bundle. The polarized sections ofδ1 are objects
of the form

F (z)
√
dz1 ∧ · · · ∧ dzn,

whereF is holomorphic. Here the square root is a mnemonic for a polarized section of
δ1 whose square isdz1 ∧ · · · ∧ dzn. The absolute value of such a section is computed
by setting

∣∣∣√dz1 ∧ · · · ∧ dzn

∣∣∣2 =
[
dz̄1 ∧ · · · ∧ dz̄n ∧ dz1 ∧ · · · ∧ dzn

b ε

]1/2

= 1, (5.4)

where the constantb is given byb = (2i)n(−1)n(n−1)/2.

Thehalf-form-corrected Hilbert spaceis then the space of square-integrable polarized
sections ofL⊗ δ1. Polarized sections ofL⊗ δ1 may be expressed uniquely as

s = F (z) e−p2/2h̄ ⊗√
dz1 ∧ · · · ∧ dzn. (5.5)

In light of (5.4) our Hilbert space may again be identified with the Segal–Bargmann
spaceHL2(Cn, e−p2/h̄ dnq dnp). Although in this flat case the half-form correction
does not affect the description of the Hilbert space, it still has an important effect on
certain subsequent calculations, such as the WKB approximation. (See [Wo, Chap. 10].)

Next we consider thevertically polarized sections. A vertically polarized sections
of L is one for which∇∂/∂pk s = 0 for all k. Identifying sections with functions and
usingθ = "pkdqk we see that∇∂/∂pk = ∂/∂pk. Thus the vertically polarized sections
are simply functionsf (q, p) that are independent ofp. Unfortunately, such a section
cannot be square-integrable (overR

2n) unless it is zero almost everywhere.
So we now consider thecanonical bundle(relative to the vertical polarization). This

is thereal line bundle whose sections aren-formsα satisfying(∂/∂pk)�α = 0 for all k.
Concretely such forms are precisely those expressible as

α = f (q, p) dq1 ∧ · · · ∧ dqn

wheref is real-valued. Such an-form is calledpolarizedif (∂/∂pk)�dα = 0 for all k.
Such forms are precisely those expressible as

α = f (q) dq1 ∧ · · · ∧ dqn.

We now choose an orientation onR
n and we construct a square rootδ2 of the canonical

bundle in such a way that the square of a section ofδ2 is a non-negative multiple of
dq1 ∧ · · · ∧ dqn, whereq1, . . . , qn is an oriented coordinate system forR

n. There is
a natural notion of polarized sections ofδ2, namely those whose squares are polarized
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sections of the canonical bundle. The polarized sections ofδ2 are precisely those of the
form

β = f (q)
√
dq1 ∧ · · · ∧ dqn. (5.6)

We then consider the space of polarized sections ofL⊗ δ2. Every such section may
be written uniquely in the form

s = f (q)⊗√
dq1 ∧ · · · ∧ dqn, (5.7)

where nowf is complex-valued. We define the inner product of two such sectionss1
ands2 by

(s1, s2) =
∫

Rn

f1 (q) f2 (q) dq1 ∧ · · · ∧ dqn. (5.8)

Note that the integration is overRn not R
2n. Thevertically polarized Hilbert spaceis

the space of polarized sectionss of L⊗ δ2 for which (s, s) < ∞. (This construction is
explained in a more manifestly coordinate-independent way in the general group case,
in Sect. 2.4.)

Finally, we introduce thepairing mapbetween the vertically polarized and Kähler-
polarized Hilbert spaces. First we define a pointwise pairing between sections ofδ1 and
sections ofδ2 by setting(√

dz1 ∧ · · · ∧ dzn,
√
dq1 ∧ · · · ∧ dqn

)
=
[
dz̄1 ∧ · · · ∧ dz̄n ∧ dq1 ∧ · · · ∧ dqn

cε

]1/2

= 1,

where the constantc is given byc = (−i)n(−1)n(n+1)/2. Then we may pair a section
of L ⊗ δ1 with a section ofL ⊗ δ2 by applying the above pairing ofδ1 andδ2 and the
Hermitian structure onL, and then integrating with respect toε. So if s1 is a polarized
section ofL⊗δ1 as in (5.5) ands2 is a polarized section ofL⊗δ2 then we have explicitly

〈F, f 〉pair =
∫

Rn

∫
Rn

F (q + ip)f (q) e−p2/2h̄ dnq dnp. (5.9)

Here I have expressed things in terms ofF ∈ HL2(Cn, e−p2/h̄ dnq dnp) and f ∈
L2(Rn).

Theorem 5.2. Let us identify the vertically polarized Hilbert space withL2 (Rn) as
in (5.8) and the Kähler-polarized Hilbert space withHL2(Cn, e−p2/h̄dnq dnp) as
in (5.5). Then there exists a unique bounded linear operator:h̄ : L2(Rn) → H
L2(Cn, e−p2/h̄dnq dnp) such that

〈F, f 〉 = 〈
F,:h̄f

〉
HL2(Cn,e−p2/h̄ dnq dnp)

= 〈
:∗
h̄F, f

〉
L2(Rn)

.

We call:h̄ thepairing map. We then have the following results.

(1) The map:h̄ : L2(Rn)→ HL2(Cn, e−p2/h̄dnq dnp) is given by

:h̄f (z) = ah̄

∫
Rn

e−(z−q)2/2h̄f (q) dnq,

whereah̄ = (πh̄)−n/2 (2πh̄)−n .
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(2) The map:∗
h̄ may be computed as(

:∗
h̄F

)
(q) =

∫
Rn

F (q + ip) e−p2/2h̄ dnp.

(3) The mapbh̄:h̄ is unitary, wherebh̄ = (πh̄)n/4 (2πh̄)n/2 .

Note that the formula for:∗
h̄ (mapping from the Segal–Bargmann space toL2(Rn))

comes almost directly from the formula (5.9) for the pairing. The unitarity (up to a
constant) of the pairing map in thisRn case is “explained” by the Stone–von Neumann
theorem. The map:h̄, as given in 1), is the “invariant” form of the Segal–Bargmann
transform, as described, for example, in [H6, Sect. 6.3]. In the expression for:∗

h̄ the
integral is not absolutely convergent in general, so more precisely one should integrate
over the set|p| ≤ R and then take a limit (inL2(Rn)) asR → ∞. (Compare [H2,
Thm. 1].)

There are doubtless many ways of proving these results. I will explain here simply
how the heat equation creeps into the argument, since the heat equation is essential to the
proof in the group case. Fix a holomorphic functionF on C

n that is square-integrable
overRn and that has moderate growth in the imaginary directions. Then define a function
fh̄ onR

n by

fh̄ (q) =
∫

Rn

F (q + ip)

[
e−p2/2h̄

(2πh̄)n/2

]
dnp. (5.10)

Note that the Gaussian factor in the square brackets is just the standard heat kernel in
thep-variable and in particular satisfies the forward heat equation∂u/∂h̄ = (1/2)�u.
Let us then differentiate under the integral sign, integrate by parts, and use the Cauchy–
Riemann equations in the form∂F/∂pk = i∂F/∂qk. This shows that

∂fh̄

∂h̄
= −1

2
�fh̄, (5.11)

which is thebackwardheat equation. Furthermore, lettingh̄ tend to zero we see that

lim
h̄↓0

fh̄ (q) = F (q) . (5.12)

Thus (up to a factor of(2πh̄)n/2) :∗
h̄F is obtained by applying theinverseheat

operator to the restriction ofF to R
n. Turning this the other way around we have(

:∗
h̄

)−1
f = (2πh̄)n/2

(
analytic continuation ofeh̄�/2f

)
, (5.13)

whereeh̄�/2f means the solution to the heat operator at timeh̄, with initial condition
f. Of course,eh̄�/2f can be computed by integratingf against a Gaussian, so we have(

:∗
h̄

)−1
f (z) =

∫
Rn

e−(z−q)2/2h̄f (q) dnq,

where the factors of 2πh̄ in (5.13) have canceled those in the computation of the heat
operator onRn.

We now recognize
(
:∗
h̄

)−1
as coinciding up to a constant with the “invariant” form

Ch̄ of the Segal–Bargmann transform, as described in [H6, Sect. 6.3]. The unitarity of
Ch̄ then implies that:h̄ is unitary up to a constant. The argument in the compact group
case goes in much the same way, using the inversion formula [H2] for the generalized
Segal–Bargmann transform of [H1].
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6. Appendix: Calculations with ζ and κ

We will as always identifyT ∗(K) with K × k by means of left-translation and the
inner product onk. We choose an orthonormal basis fork and we lety1, . . . , yn be
the coordinates with respect to this basis. Then all forms onK × k can be expressed in
terms of the left-invariant 1-formsη1, . . . , ηn onK and the translation-invariant 1-forms
dy1, . . . , dyn on k. Since the canonical projectionpr : T ∗(K)→ K in this description
is just projection onto theK factor,pr∗ (ηk) is just identified withηk. We identify the
tangent space at each point inK × k with k + k.

Meanwhile we identify the tangent space ofKC at each point withkC
∼= k + k. We

then consider the map' that identifiesT ∗(K) ∼= K × k with KC,

' (x, Y ) = xeiY .

Since we are identifying the tangent space at every point of bothK × k andKC with
k+ k, the differential of' at any point will be described as a linear map ofk+ k to itself.
Explicitly we have [H3, Eq. (14)] at each point(x, Y )

'∗ =
(

cosadY 1−cosadY
adY

− sinadY sinadY
adY

)
. (6.1)

Our first task is to compute the functionζ(Y ) defined in (2.18). So let us use' to
pull back the left-invariant anti-holomorphic formsZ̄k toT ∗(K).To do this we compute
the adjoint'∗ of the matrix (6.1), keeping in mind thatadY is skew, since our inner
product is Ad-K-invariant. We then get that

'∗ (Z̄k) = terms involvingηl

− i

[
sinadY

adY
+ i

cosadY − 1

adY

]
lk

dyl.

Thus

Z̄1 ∧ · · · ∧ Z̄n ∧ η1 ∧ · · · ∧ ηn = (−i)nζ (Y )2 η1 ∧ · · · ∧ ηn ∧ dy1 ∧ · · · ∧ dyn

= ±(−i)nζ (Y )2 ε,
where

ζ (Y )2 = det

[
sinadY

adY
+ i

cosadY − 1

adY

]
.

Hereε = η1 ∧ dy1 ∧ · · · ∧ ηn ∧ dyn is the Liouville volume form, and the factor of
±(−i)n is accounted for by the constantc in the definition ofζ.

Computing in terms of the roots we have

ζ (Y )2 =
∏
α∈R

sinhα(Y )+ coshα(Y )− 1

α(Y )

=
∏
α∈R

eα(Y ) − 1

α(Y )

=
∏
α∈R+

(
eα(Y ) − 1

) (
1− e−α(Y )

)
α(Y )2

.
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Since(ex − 1)
(
1− e−x

) = 4 sinh2(x/2) we get

ζ (Y )2 =
∏
α∈R+

sinh2 α(Y/2)

α(Y/2)2
.

Taking a square root gives the desired expression forζ(Y ).

Now we turn to the Kähler potentialκ. As usual we identifyT ∗(K) with K × k
by means of left-translation and the inner product onk. The canonical projectionπ :
T ∗(K)→ K in this description is simply the map(x, Y )→ x. The canonical 1-formθ
is defined by setting

θ (X) = 〈Y, π∗ (X)〉 ,
whereX is a tangent vector toT ∗(K) at the point(x, Y ) . Choose an orthonormal basis
e1, . . . , en for k and lety1, . . . , yn be the coordinates onk with respect to this basis. Let
α1, . . . , αn be left-invariant 1-forms onK whose values at the identity are the vectors
e1, . . . , en in k ∼= k∗. Then it is easily verified that at each point(x, Y ) ∈ T ∗(K) we
have

θ =
n∑

k=1

ykαk.

Now letκ be the function onT ∗(K) given by

κ (x, Y ) = |Y |2 =
n∑

k=1

y2
k .

We want to verify that

Im
[
∂̄κ
] = θ.

We start by observing that

dκ =
n∑

k=1

2yk dyk.

To compute∂̄κ we need to transportdκ to KC, where the complex structure is
defined. OnKC we express things in terms of left-invariant 1-formsη1, . . . , ηn and
Jη1, . . . , J ηn. We then want to pull backdκ to KC by means of'−1. So we need to
compute the inverse transpose of the matrix (6.1) describing'∗. This may be computed
as (

'−1∗
)tr = adY

sinadY

( sinadY
adY

− sinadY

1−cosadY
adY

cosadY

)
.

In terms of our basis for 1-forms onT ∗(K), dκ is represented by the vector

[
0
Y

]
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so we have to apply the matrix above to this vector. But of courseadY (Y ) = 0, and so
we get simply

(
'−1

)∗
(dκ) = 2

n∑
k=1

ykJηk

= 2
n∑

k=1

yk
1

2i
((ηk + iJ ηk)− (ηk − iJ ηk)) .

Thus taking only the term involving the anti-holomorphic 1-formsηk − iJ ηk we have

∂̄κ =
n∑

k=1

iyk (ηk − iJ ηk) ,

which is represented by the vector [
iY

Y

]
.

We now transfer this back toT ∗(K) by means of'∗. So applying the transpose of
the matrix (6.1) we get

∂̄κ =
n∑

k=1

(iykαk + ykdyk) ,

and so

Im
[
∂̄κ
] = n∑

k=1

ykαk = θ.

7. Appendix: Lie Groups of Compact Type

In this appendix I give a proof of Proposition 2.2, the structure result for connected
Lie groups of compact type. We consider a connected Lie groupK of compact type,
with a fixed Ad-invariant inner product on its Lie algebrak. Since the inner product
is Ad-invariant, the orthogonal complement of any ideal ink will be an ideal. Thusk
decomposes as a direct sum of subalgebras that are either simple or one-dimensional.
Collecting together the simple factors in one group and the one-dimensional factors in
another, we obtain a decomposition ofk ask = k1 + z, wherek1 is semisimple andz
is commutative. Sincek1 is semisimple and admits an Ad-invariant inner product, the
connected subgroupK1 of K with Lie algebrak1 will be compact. (By Cor. II.6.5 of
[He], the adjoint group ofK1 is a closed subgroup of Gl(k1) ∩ O(k1) and is therefore
compact. Then Thm. II.6.9 of [He] implies thatK1 itself is compact.)

Now letB be the subset ofz given by

B =
{
Z ∈ z| eZ = id

}
,

whereid is the identity inK. Sincez is commutative,B is a discrete additive subgroup
of z, hence there exist vectorsX1, . . . , Xk, linearly independent overR, such thatB
is the set of integer linear combinations of theXk ’s. (See [Wa, Exer. 3.18] or [BtD,
Lemma 3.8].)
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Now letz1 be the real span ofX1, . . . , Xk, and letz2 be the orthogonal complement
of z1 in z, with respect to the fixed Ad-invariant inner product. Sincez1 is commutative,
the image ofz1 under the exponential mapping is a connected subgroup ofK, which is
isomorphic to a torus, hence compact. Thus the connected subgroupH of K whose Lie
algebra isk1 + z1 is a quotient ofK1 × (z1/B) , hence compact.

Next consider the mapG : H × z2 → K given by

G (h,X) = heX,

which is a homomorphism becausez2 is central. I claim that this map is injective. To
see this, suppose(h,X) is in the kernel. Thenh = e−X, which means thath is in the
center ofK, hence in the center ofH. Now,H is a quotient ofK1 × (z1/B) , so there
existx ∈ K1 andy ∈ (z1/B) such thath = xy. Sinceh is central andy is central,x is
central as well. But the center ofK1 is finite, so there existsm such thatxm = id. Since
y andeX are central, this means that

hm = xmymemX = ymemX = id.

But y = eY for someY ∈ z1, so we haveemY emX = emY+mX = id, which means that
mY +mX ∈ B. This means thatX = 0, sincez is the direct sum of the real span ofB
andz2, and so alsoh = e−X = id.

ThusG is an injective homomorphism ofH ×Z2 intoK. The associated Lie algebra
homomorphism is clearly an isomorphism (k = (k1 + z1) + z2). It follows thatG is
actually a diffeomorphism. To finish the argument, we need to show that the Lie algebra
of H (namely,k1 + z1) is orthogonal toz2. To see this, note thatk1 andz2 are automat-
ically orthogonal with respect to any Ad-invariant inner product (since the orthogonal
projection ofk1 onto z2 is a Lie algebra homomorphism of a semisimple algebra into
a commutative algebra), andz1 andz2 are orthogonal with respect to the chosen inner
product, by the construction ofz2.

References

[A] Ashtekar,A., Lewandowski, J., Marolf D., Mourão, J. and Thiemann, T.: Coherent state transforms
for spaces of connections. J. Funct. Anal.135, 519–551 (1996)

[B] Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform, Part
I. Comm. Pure Appl. Math.14, 187–214 (1961)

[BtD] Bröcker, T. and tom Dieck, T.:Representations of compact Lie groups. Graduate Texts in Math-
ematics98. New York, Berlin: Springer-Verlag, 1995

[De] De Bièvre, S.: Coherent states over symplectic homogeneous spaces. J. Math. Phys.30, 1401–
1407 (1989)

[Dr] Driver, B.: On the Kakutani–Itô–Segal–Gross and Segal–Bargmann–Hall isomorphisms. J. Funct.
Anal. 133, 69–128 (1995)

[DH] Driver, B. and Hall, B.: Yang–Mills theory and the Segal–Bargmann transform. Commun. Math.
Phys.201, 249–290 (1999)

[F] Folland, G.Harmonic analysis in phase space. Princeton: Princeton Univ. Press, 1989
[FY] Furutani, K. andYoshizawa, S.: A Kähler structure on the punctured cotangent bundle of complex

and quaternion projective spaces and its application to a geometric quantization. II. Japan. J. Math.
(N.S.)21, 355–392 (1995)

[Go] Gotay, M.: Constraints, reduction, and quantization. J. Math. Phys.27, 2051–2066 (1986)
[G1] Gross, L.: Uniqueness of ground states for Schrödinger operators over loop groups. J. Funct.Anal.

112, 373–441 (1993)
[G2] Gross, L.: Heat kernel analysis on Lie groups. Preprint
[GM] Gross, L. and Malliavin, P.: Hall’s transform and the Segal–Bargmann map. In:Itô’s stochastic

calculus and probability theory, Fukushima, M., Ikeda, N., Kunita, H. and Watanabe, S., eds.,
New York, Berlin: Springer-Verlag, 1996, pp. 73–116



Geometric Quantization and Segal–Bargmann Transform 267

[GStenz1] Guillemin, V. and Stenzel, M.: Grauert tubes and the homogeneous Monge–Ampère equation. J.
Differ. Geom.34, 561–570 (1991)

[GStenz2] Guillemin, V. and Stenzel, M.: Grauert tubes and the homogeneous Monge–Ampère equation. II.
J. Differ. Geom.35, 627–641 (1992)

[GStern] Guillemin, V. and Sternberg, S.: Geometric quantization and multiplicities of group representa-
tions. Invent. Math.67, 515–538 (1982)

[H1] Hall, B.: The Segal–Bargmann “coherent state” transform for compact Lie groups. J. Funct. Anal.
122, 103–151 (1994)

[H2] Hall, B.: The inverse Segal–Bargmann transform for compact Lie groups. J. Funct. Anal.143,
98–116 (1997)

[H3] Hall, B.: Phase space bounds for quantum mechanics on a compact Lie group. Commun. Math.
Phys.184, 233–250 (1997)

[H4] Hall, B.: Quantum mechanics in phase space. In:Perspectives on quantizationCoburn, L. and
Rieffel, M., eds., Contemp. Math. Vol.214. Providence, R.I.: Am. Math. Soc., 1998, pp. 47–62

[H5] Hall, B.: A new form of the Segal–Bargmann transform for Lie groups of compact type. Canad.
J. Math.51, 816–834 (1999)

[H6] Hall, B.: Holomorphic methods in analysis and mathematical physics. In:First Summer School in
Analysis and Mathematical PhysicsPérez-Esteva, S. and Villegas-Blas, C. eds., Contemp. Math.
Vol. 260. Providence, R.I.: Am. Math. Soc., 2000, pp. 1–59

[H7] Hall, B.: Harmonic analysis with respect to heat kernel measure. Bull. (N.S.) Am. Math. Soc.38,
43–78 (2001)

[H8] Hall, B.: Coherent states and the quantization of(1+ 1)-dimensional Yang–Mills theory. Rev.
Math. Phys.13, 1281–1306 (2001)

[HM] Hall, B. and Mitchell, J.: Coherent states for spheres. J. Math. Phys., to appear. quant-ph/0109086;
http://xxx.lanl.gov

[HS] Hall, B. and Sengupta, A.: The Segal–Bargmann transform for path-groups. J. Funct. Anal.152,
220–254 (1998)

[He] Helgason, S.:Differential Geometry, Lie Groups, and Symmetric Spaces. San Diego: Academic
Press, 1978

[Ho] Hochschild, G.:The structure of Lie groups. San Francisco: Holden-Day, 1965
[IK] Isham, C. and Klauder, J.: Coherent states forn-dimensional Euclidean groupsE(n) and their

application. J. Math. Phys.32, 607–620 (1991)
[JL] Jorgenson, J. and Lang, S.: The ubiquitous heat kernel. In:Mathematics unlimited – 2001 and

beyond. New York – Berlin: Springer-Verlag, 2001, pp. 655–683
[Ki] Kirillov, A.: Geometric quantization. In:Dynamical Systems IV, Arnǒld, V. and Novikov, S., eds.,
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