GEOMETRIC QUANTIZATION FOR PROPER MOMENT MAPS:
THE VERGNE CONJECTURE

XTAONAN MA AND WEIPING ZHANG

ABSTRACT. We establish a geometric quantization formula for a Hamiltonian action of
a compact Lie group acting on a noncompact symplectic manifold with proper moment
map.
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0. INTRODUCTION

The purpose of this paper is to establish a geometric quantization formula for a Hamil-
tonian action of a compact Lie group acting on a noncompact symplectic manifold with
proper moment map. Our results provide a solution to a conjecture of Michele Vergne
in her ICM 2006 plenary lecture [25].

Let (M,w) be a symplectic manifold with symplectic form w, and dim M = n. We
assume that (M, w) is prequantizable, that is, there exists a complex line bundle L (called

a prequantum line bundle) carrying a Hermitian metric h and a Hermitian connection
1



2 XTAONAN MA AND WEIPING ZHANG

VL such that the associated curvature RY = (VL)2 verifies

_V_lRL —

(0.1) -

w.

Let TM be the tangent vector bundle of M. Let J™ be an almost complex structure
on T'M such that

(0.2) g M(u,v) = wlu, M), u, veTM,

defines a JM-invariant Riemannian metric '™ on TM.

Let G be a compact connected Lie group. Let g denote the Lie algebra of G and g*
denote the dual of g. Let G act on g* by the coadjoint action.

We assume that G acts on the left on M, that this action lifts to an action on L, and
that G preserves ¢g?™, JM K% and V7.

For K € g, let KM € €>(M,TM) denote the vector field generated by K over M.
The moment map p : M — g* is defined by the Kostant formula [8],

(0.3) 2V —1pu(K) := Vi — Li, K € g.
Then, for any K € g, we have
(0.4) du(K) = igmw.

From now on, we make the following assumption.

Fundamental Assumption. The moment map p : M — g* is proper, i.e., for any
compact subset B C g*, the subset u='(B) C M is compact.

Let T be a maximal torus of G, let t be its Lie algebra and t* the dual of t. The integral
lattice A C t is defined as the kernel of the exponential map exp : t — T', and the real
weight lattice A* C t* is defined by A* := Hom(A, 27Z). We fix a positive Weyl chamber
t' C t". Then the set of finite dimensional G-irreducible representations is parametrized
by A7 == A" Nt

Recall that g = t@ v, with v = [t, g, and so g* = t* @ ¢*. So we identify A’ to a subset
of g*. For v € A%, we denote by VVG the irreducible G-representation with highest weight
v. The V. v € A%, form a Z-basis of the representation ring R(G). Let R[G] be the
formal representation ring of G. For W € R[G], we denote by W, € Z the multiplicity
of Vf in W.

Take v € A%. If v is a regular value of the moment map p, then one can construct the
Marsden-Weinstein symplectic reduction (M., w,), with M, = G\p~'(G - ) a compact
orbifold (since p is proper). Moreover, the line bundle L (resp. the almost complex
structure J) induces a prequantum line bundle L. (resp. an almost complex structure
J,) over (M., w,). One can then construct the associated Spin®-Dirac operator (twisted
by L), D QOeven (ML L) — QO4(NML L) (cf. (1.5), Section 2) on M,, of which
the index is defined by

(0.5) Q(L,) =Ind (Df) .= dim Ker (Df) — dim Coker (D_%) c 7.
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If v € A% is not a regular value of 41, then by a perturbation argument (cf. [16], [17, §7.4]),
one still gets a well-defined quantization number )(L,) extending the above definition.
We equip g with an Adg-invariant scalar product. We will identify g and g* by this
scalar product. Let m : TM — M denote the projection from T'M to M. We identify
T*M with TM by the scalar product g™
Set H = |u|*>. Let X™ = —JM(dH) be the Hamiltonian vector field associated with
H. Then (see (2.5))

(0.6) X" =9,M

where ™ € €>°(M, TM) is the vector field on M generated by p: M — g, i.e., for any
zeM, pM(x) = (u(x)"(2).

For a > 0, set M, := H™([0,a]) = {x € M : H(z) < a}. For any regular value a > 0
of H, by (0.6), u* does not vanish on M, = H!(a), the boundary of the compact
G-manifold M,. According to Atiyah [1, §1, §3] and Paradan [17, §3] (cf. also Vergne
23]), the triple (M,, u*, L) defines a transversally elliptic symbol

obls = w (Ve (4 ) ©1y) 7 (MTODM) © 1) — 7 (AT VM) & 1)

where c(-) is the Clifford action on A(T*®VM) (cf. (2.3))." Let Ind(o}'s) € R[G] denote
the corresponding transversal index in the sense of Atiyah [1, §1].

Theorem 0.1. a) For v € A%, there exists a, > 0 * such that Ind(aﬁ/{z)7 € Z does not
depend on the reqular value a > a, of 'H.
b) Ind(ay“)vzo € Z does not depend on the reqular value a > 0 of 'H.

By Theorem 0.1, for v € A%, we can associate an integer (L), that is equal to
Ind (o7, u)V for large enough regular value a > 0 of H.
We can now state the main result of this paper.

Theorem 0.2. For v € A%, the following identity holds:
(0.7) Q(L)y = Q(L,).

Remark 0.3. When M is compact, Theorem 0.2 is the Guillemin-Sternberg geometric
quantization conjecture [7] which was first proved by Meinrenken [14] and Vergne [23]
in the case where G is abelian, and by Meinrenken [15] and Meinrenken-Sjamaar [16]
in the general case. We refer to [24] for a survey on the Guillemin-Sternberg geometric
quantization conjecture.

If M is noncompact but the zero set of X is compact, then Theorem 0.1 is already
contained in [18] and [25], while Theorem 0.2 was conjectured by Michele Vergne in
her ICM 2006 plenary lecture [25, §4.3]. Special cases of this conjecture, related to the
discrete series of semi-simple Lie groups, have been proved by Paradan [18], [20].

Theorem 0.2 provides a solution to Michele Vergne’s conjecture even when the zero
set of X™ is noncompact.

IThe symbol aﬁ{; is the (semi-classical) symbol of Tian-Zhang’s [21], [22] deformed Dirac opera-
tor (2.11) in their approach to the Guillemin-Sternberg geometric quantization conjecture [7]. The
associated symbol was used by Paradan [17], [18] in his approach to the same conjecture.

In view of Theorem 2.1, we can take a., = = with ¢, being defined in (2.8).
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Theorem 0.2 is a consequence of a more general result that we will now describe.

Let (N,w"™,JV) be a compact symplectic manifold with compatible almost complex
structure JV. Let (F, h'", V) be the prequantum line bundle over N carrying a Hermit-
ian metric h* and a Hermitian connection V¥ verifying X2(VF)? = w¥. We assume
that G acts on N, F as above. Let n: N — g* be the assoc1ated moment map.

Let DY : QO’QVGH(N, F) — Q%dd(N F) be the associated Spin® Dirac operator on N.
Then as a virtual representation of G, we have

(0.8) Ind (o7,) = Ind (DY) := Ker (DY) — Coker (DY) € R(G).

For v € A, let Q (F),, be the multiplicity of the G-irreducible representation (VWG)* in
Ind (DY) € R(G).

Let LQF be the prequantum line bundle over M x N obtained by the tensor product
of the natural lifts of L and F' to M x N.

Theorem 0.4. For the induced action of G on (M X N,w®w™) and L& F, the following
wdentity holds:

(0.9) Q((LeF),) = > QL) Q(F),,.

yEAYL

For v € A%, denote by O, = G - the orbit of the coadjoint action of G' on g*. Let L”
be the canonical prequantum holomorphic line bundle on O,, such that the associated
moment map is the inclusion O, — g*. By the Borel-Weil-Bott theorem and the solution
of the Guillemin-Sternberg geometric quantization conjecture for the compact manifold

O,, x O,,, one has that Homg(V¢, V¢ @ VG) #0ifand only if 13 € G- 11 + G- 15 In

v3y?) "y
particular, one has |v1| < |vs| + [v2|. For vy, 15 € A%, set
(0.10) C) ,, = dimHomg(VE, VS @ VS).

By taking N, F to be O,, (L")*, we recover Theorem 0.2 from Theorem 0.4 by using
the Borel-Weil-Bott theorem.

By applying Theorems 0.2, 0.4 to M x N x O,, we get the following result which is
trivial in the compact case.

Corollary 0.5. For any v € A%, the following identity holds:
(01].) L®F Z 1/1 1/2 V1 ' Q (F)IJQ ?
Vi, I/QEA
where there are only finitely many non-vanishing terms in the right-hand side.
We now explain briefly the main ideas of the proof of Theorems 0.1 and 0.4.
The first observation is that in the case when v = 0, both Theorems 0.1 and 0.2 are
relatively easy to prove. On the other hand, in the case when v # 0, one needs to

establish the more general Theorem 0.4, in order to prove (0.7).
In fact, it is relatively easy to see that (cf. (4.1) and (4.2))

(0.12) Q(LRF),_,=Q ((L®F )7:0> :
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Thus Theorem 0.4 is a consequence of (0.12) and the following identity,
(0.13) QLOF) _,= > QL (F),.

YEAL

Assume that M is compact. Then (0.13) is trivial and this is why one only needs to
prove (0.7) for v = 0, in order to establish (0.7).

However, if M is noncompact, although the geometric data on M x N have product
structure, and the associated moment map is 6(z, y) = u(z)+n(y), the vector field >N
on M x N induced by € is not a sum of two vector fields lifted from M and N (cf. (3.7)).
Thus one cannot compute directly @ (L&®F),_, as the right hand side of (0.13).

To be more precise, let a > 0 be a regular value of H so that p* does not vanish on
OM,. By the multiplicativity of the transversal index,

(0.14) > Ind(o}"), - Q(F),, =Ind (o sh ) e

WGA*
Let b > 0 be a regular value of H' = |0|?>. Then >N € T(M x N) does not vanish on
the boundary (M x N), of (M x N), = {(x,y) € M x N, |0(z,y)|* < b}. By Theorem
0.1b), we have

(0.15) Q(L&F),_, = Ind (O—Lg;;v)) "

We take b > 0 large enough so that M, x N C (M x N), and that (0(M x N);) N
(O(M, x N)) = (. Denote by M, the closure of (M x N), \ M, x N. Then M, is a
manifold with boundary OM,, = (O(M x N),) U (9(M, x N)).

Let W) : My, — g be a G-equivariant map such that W, p|o,xn) = p, while
\Ifa,b\a( MxnN), = 0. From the additivity of the transversal index, we get

(MxN), .
(0.16) Ind <0L®F\I, )7_0 = Ind <0L®;9) )7_0 — Ind (ay@;g) o
We infer from (0.13)-(0.16) that Theorem 0.4 is equivalent to
(0.17) Ind <aL®N b) ~0.

Let a; > 0 be another large enough regular value of ‘H. By the additivity and the
homotopy invariance of the transversal index, we have,

at,b
(0.18) Ind <0L®F\1/ )70 — Ind < L®}\I,a1 b>yo
My xN o
— Ind (o750 )7:0 —Tnd (o385) .

By (0.14), (0.18), and by taking N, F' to be O, (L?)* for v € A’ , we find that Theorem
0.1a) is a consequence of the vanishing result (0.17).

Note that in the situations considered in [18], [20], for a,b > 0 large enough, one is
able to find ¥,; : M., — g such that \If;\j;)“’b € TM,y does not vanish on M, ;. From
this, (0.17) follows tautologically. However, there is no canonical way to construct U,

such that \II(/Z\;"’Z’ € TM,, does not vanish on M, in the general situation considered
here.
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Our proof of (0.17) consists of two steps. In a first step, we express the transversal
index as an Atiyah-Patodi-Singer (APS) type index on corresponding manifolds with
boundary. Then in a second step, we construct a specific deformation map ¥,;, when
a, b > 0 are large enough, so that we can apply the analytic localization techniques
developed in [3], [21] and [22] to the current problem. This allows us to show that the
APS type index corresponding to the left-hand side of (0.17) vanishes®.

This paper is organized as follows. In Section 1, we express the transversal index as an
APS type index. In Section 2, we establish Theorem 0.1, by applying the identification
of the transversal index to an APS index that was established in Section 1, as well as the
analytic localization techniques developed in [3], [21] and [22]. In Section 3, we present
our proof of (0.17). Finally, in Section 4, we provide details of the proofs of (0.12) and
(0.14), thus completing the proof of Theorem 0.4. We explain also the compatibility of
quantization and its restriction to a subgroup.

The results contained in this paper have been announced in [12] (cf. also [10, §4]).

0.1. Notation. In the whole paper, GG is a compact connected Lie group with Lie algebra
g. Let Adg(g) denote the adjoint action of g € G on g. We equip g with an Adg-invariant
scalar product, and we identify g and g* by this scalar product. Let Vi, -+, Vgm g be an
orthonormal basis of g.

If a Hilbert space H is a G-unitary representation space, by the Peter-Weyl theorem,
one has the orthogonal decomposition of Hilbert spaces

(0.19) H= P H", with H' = Homa(V, H) @ VL.

VGAQ
We will call H” the ~-component of H. Moreover, if W C H is a G-invariant linear
subspace, for v € A%, we denote by

(0.20) W =wnH"
and call it the y-component of W. If D : Dom(D) C H — H is a G-equivariant linear

operator, where Dom(D) is a dense G-invariant subspace of H, for v € A%, we denote
by D(7) the restriction of D to Dom(D)” which is dense in H".
If G acts on the left on a manifold M, for K € g, we denote by KM(z) = 2e'f x|,
the corresponding vector field on M.
For any ® € €>(M,g), we denote ®;, 1 < i < dim G, the smooth functions on M
defined by
dim G
(0.21) O(z) = Z ¢, (z)V; for x € M.
i=1

Let ®M denote the vector field over M such that for any « € M,
dim G

(0.22) oM (2) = (®(2))(2) = Z () V¥ (),

3In fact, the corresponding vanishing result for the APS index, in the case of N = point and 1 = 0,
has already been proved in [22, Theorems 2.6, 4.3]
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where (®(2))M is the vector field over M generated by ®(z) € g.
Finally, when a subscript index appears two times in a formula, we sum up with this
index unless other notification is given.
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1. TRANSVERSAL INDEX AND APS INDEX

In this section we express the transversal index as an Atiyah-Patodi-Singer? type index
which have been studied in [22] for v = 0 component.

This section is organized as follows. In Section 1.1, we recall the definition of the
transversal index in the sense of Atiyah [1] for manifolds with boundary. In Section
1.2, we consider instead an index problem on a manifold with boundary for a Dirac
operator with APS boundary conditions. In Section 1.3, we prove the corresponding
Dirac operator on the boundary is invertible. This guarantees that the APS index of
the Dirac operator is invariant under deformation. In Section 1.4, we show that the
transversal index can be identified with the APS index using a result by Braverman [4].

We use the same notation as in the Introduction.

1.1. Transversal index. Let M be an even dimensional compact oriented Spin®-manifold
with non-empty boundary OM, and dim M = n. In the following, the boundary oM
carries the induced orientation. Let ¢”™ be a Riemannian metric on the tangent vector
bundle 7 : TM — M. Let E be a complex vector bundle over M.

We assume that the compact connected Lie group G acts isometrically on the left on
M, and that this action lifts to an action of G on the Spin®-principal bundle of T'M and
on E. Then the G-action also preserves M.

We identify TM and T*M by the G-invariant metric g”™. Following [1, p. 7] (cf. [17,
§3]), set

(1.1) TeM = {(z,v) € T,M : 2 € M and (v, K(z)) =0for all K € g} .

Let S(TM) = S4(TM) & S_(TM) be the vector bundle of spinors associated with the
spin®-structure on TM and g™ . For any V € T M, the Clifford action ¢(V) exchanges
SL(TM).

Let ¥ : M — g be a G-equivariant smooth map. Assume that ¥ does not vanish on
OM, i.e., for any x € OM, UM (z) # 0.

In the sequel, Atiyah-Patodi-Singer will be abbreviated to APS.
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Let o'y € Hom(7*(S4(TM) ® E), n*(S_(TM) ® E)) be the symbol
(1.2) U%{\I,(x,v) =7 (V-1le(v+¥")® IdE)|(z 2 forz e M, ve T, M.

Since M does not vanish on OM, the set {(x,v) € T¢M : ogy(x,v) is non-invertible}
is a compact subset of T¢M (where M = M \ dM is the interior of M), so that o}y, is

a G-transversally elliptic symbol on Tgi\/i in the sense of Atiyah [1, §1, §3] and Paradan
(17, §3], [18, §3]. The associated transversal index can be written in the form

(1.3) Ind (o3y) = €D Ind (oy)_ - V7 € R[G],

weAi

with each Ind (aﬁ‘ﬂ/{q,)7 € Z. Moreover, Ind (qu,) only depends on the homotopy class

of ¥ as long as U™ does not vanish on M, but not on g7, Note that the number of
v € A% such that Ind(ogy ), # 0 could be infinite.

1.2. The Atiyah-Patodi-Singer (APS) index. We make the same assumptions and
use the same notation as in Section 1.1.

Let h¥ be a G-invariant Hermitian metric on £, V¥ a G-invariant Hermitian con-
nection on E with respect to h¥. Let h¥(T™) be the G-invariant Hermitian metric on
S(TM) induced by g™ and a G-invariant metric on the line bundle defining the spin®
structure (cf. [9, Appendix D]). Let h¥TM®E he the metric on S(TM) ® E induced by
the metrics on S(T'M) and E.

Let VS(™M) be the Clifford connection on S(T'M) induced by the Levi-Civita connec-
tion VIM of g™ and a G-invariant Hermitian connection on the line bundle defining
the spin® structure (cf. [9, Appendix DJ]). Let VSIM)®E he the Hermitian connection on
S(TM) ® E induced by VITM) and VE.

Let dvys denote the Riemannian volume form on (M, g?™). For s € €>(M,S(TM)®
E), its L?>-norm ||s]|o is defined by

(1.4) )2 = /M 15(2) Pduas ().

Let (-,-) denote the Hermitian product on (M, S(TM) ® E) corresponding to || - ||2,
and let L*(M,S(TM) ® E) be the space of L%-sections of S(TM) ® E on M.
Let D%, be the Spin®-Dirac operator defined by (cf. [9, Appendix D])

(15)  Dy=> cle)VEIMeE  @=(M, S(TM) ® E) — €*(M,S(TM) ® E),
i=1
where {e;} is an oriented orthonormal frame of T'M.

Let € > 0 be less than the injectivity radius of ¢g?. We use the inward geodesic
flow to identify a neighborhood of the boundary OM with the collar OM x [0, ], and we
identify M x {0} to the boundary OM.

Let e,, be the inward unit normal vector field perpendicular to OM. Let eq,--- ,e,_1 be
an oriented orthonormal frame of TOM so that e, -- ,e,_1, €, is an oriented orthonor-

vTM

mal frame of T'M|sy,. By using parallel transport with respect to along the unit
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speed geodesics perpendicular to OM, eq,--- ,e, give rise to an oriented orthonormal
frame of TM over OM x [0, ¢].

The operator DY, induces a Dirac operator on M, DL, : €><(0M,(S(TM) ®
E)loy) — € (0M,(S(TM) ® E)|sn) defined by (cf. [6, p. 142])

n—1

(1.6) D5y = — Zc(en) (e;) VEITMSE 4 — Zﬂ'n,

i=1

where

(1.7) mi; = (ViMej e, 1<i, j<n—1,

>|BM’

is the second fundamental form of the isometric embedding 29y : OM — M. Let D5y, .
be the restrictions of DF,, to € (M, (S+(TM) @ E)|sn).

As in (1.4), we define the Riemannian volume form duvsy on OM, the Hermitian
product (-,-) sy, and the L2-norm || - [loaro on €>(OM, (S(TM) @ E)|on)-

By [6, Lemma 2.2], D), is a self-adjoint first order elliptic differential operator defined
on OM. Moreover, the following identity holds on OM:

(1.8) Dfyre = c(en)” (—Diar) clen)

Since the G-action preserves OM, the restriction of UM to OM is a section of TOM, i.e.,

(1.9) WM |, e G (OM, TOM).
For T' € R, set
(1.10) Dyp =Dy +V—1Tc (¥"),
DﬁvivT - Df/sz|%°°(M75i(TM)®E)a
and
(1.11) Dfy7 = Dby — V1T ¢ (en) ¢ (W),

E _ E
Doy v = Dgnprle@on,(se(rm@E)on)-

Then Dy} ; exchanges the spaces associated with S.(TM)®FE, and by (1.9), D), - is self-
adjoint and preserves € (OM, (S=(TM) ® E) |an). Let Spec(Dg), 1 ) be the spectrum
of D§y+p. For A € Spec(Dfy, 1 1), let Exrp be the corresponding eigenspace. Let
Psox1 (resp. P.gx7) be the orthogonal projection from L*(OM, (S+(TM) QF)|on)
onto @GxsoEx 1 (resp. ®asoErir). We will call Poo o (vesp. Poo_r) the APS
projection associated with DJ), , - (resp. D5y, _ 7).

For T € R, let (D} | 7, Psor1) (vesp. (D} _ 1, Pso—r)) denote the corresponding
operator with the the APS boundary condition [2]. More precisely, the boundary con-
dition of Dy, 1 is Pso 4 r(slon) = 0 for s € €°(M, S, (TM) ®F) (resp. of Dy _p is
P.o_7(s|lor) =0 for s € ‘KOO(M S_(TM) ®E)).

Both (D}, 1, Po+r) and (D _ 7, Pso— 1) are elliptic, and (D} _ 7, Pso,— 1) is the
adjoint of (D} | 1, Po+1) (cf. (1. 8) [6, Theorem 2.3]). In particular, they are Fredholm
operators and they commute with the G-action.
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Let Q¥psr (E,9) € Z, v € A%, be defined by

(112) B Qpsr (B, W), -V =Ind (D}, 7, Poot.1)

'yGA*
= Ker (D3 4.1, Pso1) — Ker (Dy;_ 1, Pso 1) € R(G).

1.3. An invariance property of the APS index.

Proposition 1.1. For v € A%, there exist C, > 0, T, > 0 such that for T > T,,
s € EC®(OM,(S(TM)® E)|sn)?, we have

(1.13) HDaMTSHaMo HDaMSHdMO—i_C T?||s H@MO’

in particular, DFy () is invertible.

Proof. From (1.6), (1.9) and (1.11), we get

(1.14)  (Dyr)’ = (D5y)* = V=1T ZW“ ¢ (wM)

n—1

4+ /1T Z c(en)c(e;) <V2(TM)®E (C (en)c (\I/M)> )

1=1
— /AT VRE T M

For any K € g, let Lk denote the Lie derivative of K acting on €< (M, S(T'M) ® E)
and thus also on €°(OM, (S(TM) ® E)|sn). Then

(1.15) pSTMEE () .= g3 TMSE _ e (M End(S(TM) ® E)).

KM
By (0.21) and (0.22), we have

dim G dim G
(1.16) VoEr - Z ULy, + Z ( AR Lv>

In view of (0.19), it is clear that each Ly;, 1 < i < dim G, acts as a bounded operator
on L2(OM, (S(TM) ® E)|aon)”.
On the other hand, since ¥ does not vanish on dM, there exists C' > 0 such that

(1.17) WM |* > 4C on M.

We deduce from (1.14)-(1.17) that there exists C!, > 0 such that for any s € €>°(0M
(S(TM)® E)|an)?, we have

(1.18) HDBMTSHaMO HDaMsnaMo TC;HSH%M,O + 4T20||8||?9M,0'
The (1.18) implies that Proposition 1.1 holds with T, = 2C" /C. O

Proposition 1.2. For v € A}, there exists T, > 0 such that Q%pg(E,¥), does not
depend on T > T,.
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Proof. For v € A%, let (Df/[ +7(7); P>o4,7(7)) denote the corresponding operator with
the APS boundary condition [2], which is just the restriction of (Df/l 1 Psoyr) to
the corresponding 7 component. Thus, (Dg; , 7(7), Pso+r(7)) is elliptic and defines a
Fredholm operator, the index of which is given by (1.12),

(1.19) Ind (Dy71 7(7): Poo4.0(7)) = Qipsr (B, 9), - V.7

By Proposition 1.1, there exists T, > 0 such that (D, , 1(7), P>o4r(7)) forms a con-
tinuous family of Fredholm operators for T > T7,. Therefore, Ind(D}; , 1(7), Pso+.7(7))
does not depend on 7' > T,. By (1.19), this completes the proof of our proposition. [

Definition 1.3. By Proposition 1.2, for v € A%, we can associate an integer Q¥ (E, \IJ)7
that is equal to QXpg 1 (E, v), for T'>T,.

Remark 1.4. The same argument shows that the APS type index Qg (E, V) , does
not depend on the given metrics and connections. It only depends on the homotopy
class of ¥ as long as \I/MfaM does not vanish over OM.

1.4. Transversal index and APS index.

Theorem 1.5. For v € A%, the following identity holds:
(1.20) Ind (ag{qu)7 = Qips (E,T)., .

The proof of Theorem 1.5 consists of two steps. In a first step, by applying a result of
Braverman [4, Theorem 5.5], we express Ind (0% \1,)7 as the L%-index of a Dirac operator

on M = M U (8M x (—o00,0]), and we show that the difference of the above L?-index
and Q¥pg (E, W) L 18 equal to an index on the cylindrical end. In a second step, we prove
that the index on the cylindrical end is zero.

We start by deforming our geometric data to those on a manifold with cylindrical end.

Recall that g7 is the Riemannian metric on M induced by ¢”. We use the inward
geodesic flow to identify a neighborhood of OM with the collar M x [0,¢]. As g™ is
G-invariant, the G-action on dM X [0,¢] is induced by the G-action on OM, and there
exists a family of metrics g7 (z,,) on TOM verifying

(1.21) g@?ﬁn) = ggaM(xn) + (dzn)?,  (y,2n) € OM x [0,€].

For (y, z,) € OM x [0, €], we identify S(T'M)y.2,), Eywn) t0 S(T'M)(y0), Eqy0) by using
the parallel transport with respect to V3™ V¥ along the geodesic [0,1] 3 t — (y, tx,).
Thus, the restrictions of (S(T'M), h¥TM) (E, hF) to OM x [0, ] are the pull-back of their
restrictions (S(TM)|oar, W5 |oar), (Eloar, h¥|aar) to OM. Moreover, the G-actions on
S(TM), E on OM x [0, ¢] are induced by the G-actions on S(T'M)|snr, F|on under this
identification.

By the homotopy invariance of the transversal index Ind(ogy ), (cf. (1.3)) and of the
APS index Q¥pg (E, ¥), (cf. Remark 1.4), to establish Theorem 1.5, we may and we
will assume that e = 2 and that ¢”™, pSTM) ySTM) 7E § have product structures
on OM x [0,2], and that the G-actions on objects such as £, S(TM) on OM x [0,2] are
the product of the G-actions on their restrictions to M and the identity in the direction

0,2].
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We attach now an infinite cylinder OM x (—oo,0] to M along the boundary M and
extend trivially all objects on M to M = M U(OM x (—o0, 0]). We decorate the extended
objects on M by a “~”. Thus for (y,z,) € OM x (—o0,2], we have

U(y,z,) =WU(y,0) €9, gLt =90+ (dz,)?,
(1.22)  (S(TM),h5TM ST o) = TH(S(TM) |ong, 5T o0, VST 0),
(B, b V) |onrx(—ooz) = 7 (Eloar, B |oar, VE |oar),

with 7y : OM X (—00,2] — M the natural projection.
Let D]% be the Spin® Dirac operator on 65°(M,S(TM) ® E) defined as in (1.5). By
(1.5), (1.6) and (1.22), we have on OM x (—o0, 2],

= 0
(1.23) DE = c(e,) Dhy + clen) T

For any h € ‘500(]\7), let D%h be the operator on CKO‘X’(M, S(T]\N@ ® E) defined by
(1.24) DE = DE+V=The(¥M).

Let Hlih(ﬂ) be the Sobolev space obtained by completion of CKOOO(M, S.(TM) @ E)
under the norm || - ||, defined by

~ 2
(1.25) Isll2s = sl + | DZ 5]

Let f be a strictly positive G-invariant smooth function on M such that flur =1, and
such that for (y,z,) € OM x (—o0,0],

(1.26) f(y,z,) does not depend on y and f(y,x,) =e " if x,, < —1.

For T > 0, T'f is an admissible function on M for the triple (S(TM)® E, VS@TM)E 0)
in the sense of Braverman [4, Definition 2.6] as we are in the product case.

By a result of Braverman [4, Theorem 5.5] (cf. also [13]), for T' > 0, v € A*, DAE% Tf(v),

E

D]\N/[ L f(w) extend to bounded Fredholm operators, for which we keep the same notation,
~ — —~ —~  \7
(1.27) DE ()t HL (M) — L? (M, S=(TM) ® E) ,
and the following identity holds:
E M G
(1.28) Ind (DMM f(7)> = Ind (o}t,) - VE.
Set

(1.29) M, = OM x (—00,1] C M, Ms=08M x (—00,2] C M,
' Z =0M x [0,2] C M.
Let £ € °°(]0,2]) be such that

(1.30) Eloa/g =1, 0<E ez <1, &2 =0,
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and such that
(1.31) o= (1-¢)"

is smooth. Clearly, ¢ extends to My by setting € = 1 on My = M,; \ (M x (0,1]). Tt

also extends to M by setting & = 0 on M \ (OM x [0,2)). Thus ¢ also extends to M
and M \ (OM x [0,2)). Set

H=1? (1\7 S(TM) ® E) ® L2 (Z,(S(TM) @ B)|,),
(1.32)

Mo

H = L? (M}, (S(TJTZ) ® E) ) ®L*(M,S(TM)® E).
Let U : H — H' be defined by :
(1.33) (s1,82) € H— <§sl—g032,<,081+§82> e H'.

Let U* : H' — H be the adjoint of U. By (1.33), U*(s1,$2) = (§ S1+ @S2, —p s1+E s2) €
H. On sees easily that U is unitary (cf. [5, §3.2]), that is,

(1.34) U*U = Idy, UU* = Idg.

We fix v € A% and let T" > 0. If W is one of Mo, M and Z, let (D%,’Jr’Tf('y), PY (7))
be the operator with the APS boundary condition:

(1.35) M rp (W, P2 qp) = {u€ HLp (W), PY L 7p(7) (ulow) = 0}
) ~ ~ v
L (W, <S_(TM) ®E>‘W> .
Since f =1 on M and Z, we know that for W = M or Z,

(1.36) (Df s P y)) = (Do), Poor())),

and they are Fredholm as explained in Section 1.2.
By (1.27), (1.34) and (1.36), we see that

(1.37) U{DE , 1,00+ (DEx(3), Poosr() } U*
—~ ¥
H. 7y (M2= F gofwf) ®HL 1y (M, P2y p)

Ny (JTJQ, (S,(TJTJ) ® E)

~)7@L2(M, S_(TM) ®E>W

Mo
is Fredholm.

By the construction of U, it is clear that U preserves the APS boundary conditions
on the corresponding boundary components. Moreover, the difference

(1.38) U {DJ]\EZ,JF,TJ‘(V) + <D§,+7T(7), P>0,+7T(7)>} U*

- (D%27+7Tf(7)7 P%?+7Tf(7>) - (Dﬁ,+,T(’7>7 P?O,—F,T(’Y))
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is a zero-order differential operator with compact support®, which implies that it is a
compact operator. Thus,

<D]%27+,Tf(7)7 P%Q,+,Tf(’7)) + (Dﬁ,+,T(7)a P20,+,T(’7))

is Fredholm. In particular, (D%27+’T B P%f +7Tf(7)> is Fredholm. Moreover, we have

(1.39) Tnd (DL () +nd (D, +(3), Poosr(7)

— Ind (D%Q#,Tf(v), P>A{>2,+,Tf(7)) + Ind (Df/[7+7T<'y)7 p>07+7T(7)>‘

Note that 0Z = (OM x {0}) U (=OM x {2}). By (1.22) and (1.23), P>o 4 r|omxfo} =
Pootr, Poo—rlovxioy = Pso—1, and Psoy 1r|_anmxq2y (resp. Pso—1|-anxq2y) is the
orthogonal projection from L*(OM, (S;(TM) QFE)|an) onto @rcoFr+ 1 (vesp. L*(OM,
(S_(T'M) ® E)|am) onto @rcoFEy_ 1), thus from the product structure on Z, we get
(compare with [2, Proposition 3.11])

Ker (D§,+,T(’Y)> P>0,+,T(’Y)) =0,
Ker (D7 _ (7)., Pso,— (7)) = Ker (Dgy, _1(7)) -

Combining (1.40) with Proposition 1.1, for 7" > T.,, we get

(1.41) Ind (D, +(3), Poo.2(7)) = 0.

By Definition 1.3, (1.19), (1.28), (1.39) and (1.41), for any 7" > T},

(142)  Wd (DL (), PY, () = (nd (o}y), — Qs (B, W), ) - V.

For a second step, we need to prove the following Lemma.

(1.40)

Lemma 1.6. For v € A%, there exists Ty > T, such that for T' > Ty, we have

(1.43) Ind (DE, (3. PR 0y()) = 0.

Proof. Following Bismut-Lebeau [3, pp. 115-116], let U; = OM x (—o0,1), Uy = OM X
(0, 2] be an open covering of My. Let hy, hy be two smooth G-invariant functions on M,

such that h?, h3 form a partition of unity associated with the covering {U;}2_,.
By (0.22), (1.5), (1.15), (1.16) and (1.24), we deduce that

) (P5,) = (DE) + VAT 3 efee (V7 (157))

dim G dim G

~ ~ ~ ~ 2
/AT Y WLy, — 21T £ S Wy SODEE (V) 4 72 f\IJM‘ .
=1 1=1

®Indeed, for any s € %OOO(MQ, (S+(TM) ® E)|1\72) @65 (M, (S+(TM) ® E)| ) which is supported in
M, \ (OM x [0,2]), the difference operator in (1.38) acts on s as a zero operator.
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By (1.22), U, MS(TM)®E(V;) are constant on z, on M,, thus from (0.21), there exists
C1 > 0 such that the following inequality holds:

dim G dim G
(1.45) > WLyl + Z U, STDSE | < o,
=1

(where the norm in (1.45) refers to operators acting on L(M, S(TM) ® E)).
By (1.26), (1.44) and (1.45), there exists C' > 0 such that for 7" > 0, s € 65°(Uy, (S(T'M)
®FE)|5,)"s we have

2 5 2 PRE

<<DM Tf> s,s> > HDMS
Thus from (1.17), (1.22), (1.26) and (1.46), we see that there exist 77 > T, C5 > 0 such
that for any 7' > Ty, s € 65°(Uy, (S(TM) ® E)|5,)7, we have

~ 2
(146) ||D% F1#s| = CTlfslollslo-

Mo, Tf°

(1.47) HD HDEvsH + CoT|s][5.

By Green’s formula, (1.23) and (1.24) imply that for s € %OOO(]T/[;, (S(T]T/[/) ® E)\%),
we have

_ 2 2 _

E _ E — E —
a9) |05 5= [ < (D% ..,) > togy + [ {sscl-enDE, 4 ) dugy,
2 2

- 2 —~ -
_ B L S(TM)®E -
= [MQ <s, <DM27Tf> s> dUM2 /31\72 <5,V,en s> d“aM2
E —_
_/31\72 <5 DE)M 755 >dvaM2.
By the Lichnerowicz formula (cf. [9, Appendix D]), we have
N2 _
E\" _ _AE
(1.49) (DM) = —AP 1 0(1),

where AF is the Bochner Laplacian, and O(1) is an endomorphism of S (T]TJ )® E. By
(1.22), the fiberwise norm of this endomorphism has an uniform upper bound over M.
By Green’s formula, we have, for any s € €5°(Ma, (S(T'M) ® E)|5,),

~ ~ =~ —~  ~ 2
(1.50) /N <—AES,3> dvgz, — /N <3,V§£M)®Es> dvysy, = HVS(TM)®E5” .
Mo My 0

Note that f = 1 on dMs. By (1.13), for any T > T, s € 65°(My, (S(TM) ® E)|5,)"

with ngijf(sb%) = 0, we have

(1.51) /{M7 <s DE. L4 >dvaM <—\/C THS|8M2
2

As hy has compact support in M x (0,2] C MQ, on which f =1, by (1.17), (1.22),
(1.44), (1.45), (1.48)-(1.51), there exist C5,Cy,C5 > 0 such that for 77 > 1 and s €

8MO
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G5 (Ms, (S(TM) @ E)|57,)" with PM2, - (s],) = 0, we have
> Cs||D

2
(152 ||PE, 09, E (has)|| = CuTllas? + 5T a3

Since h? + h3 = 1, for any s € G5°(Ma, (S(TM) © E)|5,)" with P22, (s],57.) = 0,
we obtain

2 2

2 ~
_ E E
(1.53) HDM Tf ’thﬁz,Tfs 0 + ) ha D3z, 7y5 0
2 2
HDquhw> 5 | P22 os)| = ety 13— ettana))si

where (dh;)* € TM2 is the dual of dh; with respect to gT]\7
By (1.47), (1.52) and (1.53), there exist Cs, C7 > 0 such that for any 7" > T} > T, and

s € 6°(M, (S(TM) ® E)’M )Y with P%fijf(ﬂa%) =0, we have

C ~ 2
(54 |DE, DE s)|[| + 52 ||PE, (has)|| — CoTllsl + o2

> 5]
By D]%Q(his) = h,;Dj%Qs—i-c((dhi)*)s, hi+h3 =1 and (1.54), there exist T, > T, Cs, Cg >

0 such that for T > Ty, s € 6°(My, (S(TM) ® E)|57,)" with P22, 1 .(s|,5,) = 0, the
following holds:

0

_ 2 _
(1.55) |DE, 5. = CIDE sl + ot
By Proposition 1.1, (1.19) and (1.55), we get Lemma 1.6. O

By (1.42) and Lemma 1.6, the proof of Theorem 1.5 is completed.

2. QUANTIZATION FOR PROPER MOMENT MAPS: PROOF OF THEOREM 0.1

The purpose of this section is to give a proof of Theorem 0.1. This proof consists of
two steps. In a first step, we reduce Theorem 0.1 to a vanishing result for the transversal
index and then use Theorem 1.5 to interpret the later as a vanishing result for the APS
type index. In a second step, we apply the analytic localization method developed in [3],
[21] and [22] to prove the vanishing of this APS type index.

We use the assumptions and the notation in the Introduction. Also, for any real one
form v on a Riemannian manifold, we denote by v* the corresponding vector field on
this manifold.

Recall that (M, w, JM) is a noncompact symplectic manifold with a compatible almost-
complex structure J, and g™ = w(-, J¥.) is the associated Riemannian metric on M.
We have the canonical splitting TM ®@g C = TWOM @ TOY M | for the complexification

of TM, with
2.1) TOOM ={u € TM @ C : JMu = /—1u},
' TOYNM ={u € TM @ C : JMu = —v/—1u}.

Let T*OY M be the dual of TOY M.
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The almost complex structure J¥ on T'M determines a canonical spin®-structure on
TM with the associated Hermitian line bundle det(7% ). Moreover, we have

even

(2.2) S(TM) = A(T*OVM), S (TM)= A% (70D ).

For any W € TM, we write W = w+w € TOOM @ TOVM. Let w* € T*OV M
correspond to w so that (w*, @) = g™ (w, ) for any uw € T(®Y M. Then

(2.3) (W) = V2(w* A —iz)

defines the Clifford action of W on A(T*®VM). It interchanges A®v**(T*Y M) and
A (TOD ALY, The Levi-Civita connection V™ together with the almost complex
structure J induces by projection a canonical Hermitian connection VICOM o 70 .
This induces a Hermitian connection V9t on det(T%M). The Clifford connection
VAT OUM) oA (T*®VM) is induced by the Levi-Civita connection V7 and the
connection V9 (cf. [9, Appendix D], [11, §1.3] and [21, §1a)]).

We take I/ = L, with L the prequantum line bundle on M in the Introduction, and
denote by Q%*(M, L) = €=(M, A(T*®YM) ® L). Let D%, be the corresponding Dirac
operator defined as in (1.5).

Recall that the moment map o : M — g* is assumed to be proper. Let X be the
Hamiltonian vector field of H = |u|?, i.e.,

By (0.2), (0.4), (0.21) and (2.4), we find (cf. [21, (1.19)]),
dim G dim G

(2.5) X" = —JM(dH)* = —2JM Z i (dp;)™ =2 Z VM =2 M.
i=1 i=1

For any regular value a > 0 of H = |u|?, denote by M, the compact G-manifold with
boundary defined by

(2.6) M,={zxe M:H(z) <a}.

By (2.5), u* does not vanish on the boundary OM, = H~*(a) of M,.

Let a’ > a > 0 be two regular values of H. Let M, denote the compact G-manifold
with boundary M, ., = M, \ M,. By the additivity of the transversal index (cf. [1,
Theorem 3.7, §6] and [17, Prop. 4.1]), we have for v € A%,

Ma’ M, _ Ma,a’
(2.7) Ind <0L,u >“/ — Ind (O’L#)W = Ind <0L7u >7
Let Casg = — ), V;V; be the Casimir operator associated with G. Let ¢, > 0 be
defined by the following formula,
(2.8) Casglye = ¢y ldye .

Clearly, ¢,—o = 0. As Casglye = — >, Ly;(7)?, from (1.45) and (2.8), we get

(2.9) e = X Lty
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By Theorem 1.5, (2.7) and (2.9), the following result is a reformulation of Theorem
0.1, with a more precise form of the bound a,.

Theorem 2.1. Fiz v € A%. Then for any reqular values ', a of H with o’ > a > 4%,
the following identity holds:
M, .

(2.10) Vet (Lyp), = 0.
Proof. 1f v = 0, (2.10) has been proved in [22, Theorems 2.6, 4.3]. The proof for general
v € A% is a modification of the proof of [22, Theorem 2.6] where it is assumed that
¥ =0. Let v € A% and @’ > a > % be fixed.

By (2.5), (1.10) becomes in the current situation (cf. [21, (1.20)] and [22, (1.19)]),

—1T
2
Let ey,--- ,e, be an oriented orthonormal frame of T'M, ,. By [21, Theorem 1.6], the

(2.11) D r =Dy + ¢ (X)) : Q" (M, L) — Q% (Myo, L).

following formula holds:

2 2 VAT &
212) (D)’ = (03)+ 55 Dol (vorxr)
dim G
. \/—_1TTr [VTMXH|T(1,0)M} + g Z <\/ —1c <JM‘/1M) c <V;M) + |‘/;M‘2>

2 ,
=1

dim G T2 12
+4nTH — 2V —=1T ; pilv, + — [ X7

Let U be a G-invariant open neighborhood of M, . in M, , such that X " does not
vanish on U. Since X™ does not vanish on OM,. v, the existence of U is clear. Let U’ be
a G-invariant open subset of M, ., such that U’ N (OM, ) =0, U UU' = M, .

By using that Ly, acts as a bounded operator on L?(M, ., A(T*®VM) ® L) and
(1.13) instead of [22, Theorem 2.1], then by proceeding in exactly the same way as in
22, Proof of Proposition 2.4|, we know that there exist 73 > 0, C; > 0 (depending
on U and 7) such that for any T > T; and s € Q% (M, ., L) with supp(s) C U and
P)o,i,T(S’aMaﬂa,) = 0, the following inequality holds:

(2.13) |DY 8|2 = € (HDJLstlli +T2||8||§> :
For any € > 0, set
dim G
(2.14) Gk = (Dk7)" = (4m — ) TH +2V/=1T 3 piiLy,.
=1

Clearly, G, is of the same form as Ff in [21, (2.6)], with 47TH in [21, (2.6)] being
replaced by eT"H.

By replacing 47H in [21, (2.26)] by ¢H in the proof of [21, Proposition 2.2, Case
2], from (2.12) and (2.14), we know the analogue of [21, Proposition 2.2] holds for the
operator G%s: for any @ € M, \ OM,, there exist an open neighborhood U, C
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My \ OM, 0 of x and C, > 0, b, > 0 such that for any 7" > 1 and s € Q% (M, L)
with supp(s) C U,, we have

(2.15) (GE_s,5) > C, (HD@sHi 4 (T — by) ||s||g> .

From (2.15), as explained in [21, §2c¢)], there exist Cy > 0, by > 0 such that for any 7" > 1
and s € Q% (M, o, L) with supp(s) C U’, we have

(2.16) (GE_s,8) > Cy (||DAL45H§ (T —by) |ys||g) .

Lemma 2.2. There exists 0 < € < 47 such that for any s € Q°*(M, ., L)", one has
dim G

(2.17) <<(47r —e)H-2v=1) /MLVZ)S, s> > 0.
i=1

Proof. Since a' > a > 5, there exists ¢ € (0,4m) such that the following inequality
holds on M, q:

4c
2.18 >
(2.18) " (4m —€)?
By the Cauchy inequality and (2.9), we have that for any s € Q%*(M, ., L)7,
dim G dim G
1 4T — ¢ 2 2 2
(X s < 5 2 (M5 sl + - s

(2.19) — 2 = 2 dm — €

dm — ¢ c 2

= <H8’8>+4W15||8||0'

From (2.18) and (2.19), we obtain for any s € Q**(M, ., L)?,

dim G
4 — e 2c
_ 9 /_ . > — 7 > 0.
(2.20) <((47T e)H — 2V 1;:1 /LZLVZ)S,S>/<< 5 H 47T_€>5,3>/O

The proof of Lemma 2.2 is completed. O

Let € > 0 be fixed as in Lemma 2.2. By Lemma 2.2, (2.14) and (2.16), we have that
for any 7' > 1 and s € Q%*(M,, ., L)? with supp(s) C U/,

(221)  ||Dkirslls = (ki) s.5) = (Ghos,s) = G (|| Dss|ls + (T = bu) |s]3)

Let hy, hy be two smooth G-invariant functions on M, . such that k%, h3 forms a

partition of unity associated with the G-invariant open covering U’, U of M, ,.°

Let s € Q% (M, ., L) with Pso+r1(slon, ,) = 0. Clearly, hys, hys still belong to
Q% (M, o, L) with supp(hes) C U and P>0,£,T((h28)|aMa ) = 0, while supp(hys) C U'.
By applying (2.13) to hgs, (2.21) to hys, and by proceeding as in (1.53)-(1.55) (cf. [3,
pp. 115-116]), we obtain constants C3 > 0, by > 0 such that for any 7" > T} and
s € Q% (Maw, L)" with Pso s+ 7(slan, ) = 0, the following inequality holds:

(2.22) ((Dkir)"s,5) = Co (|[Dksslfs + (T = ba) 1)

SWe can take hy a radical function with respect to |u|? near M, . as in (1.30), then hy, hy are
automatically G-invariant.
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By Proposition 1.1, (2.5), (2.11) and (2.22), we have Q%‘;@:T(L, p)y =0 for T' > 0 large
enough. Combining this with Definition 1.3, we get Theorem 2.1.
By Theorems 1.5, 2.1 and (2.8), we get Theorem 0.1. O

3. A VANISHING RESULT FOR THE APS INDEX

In this section, we prove the vanishing result (0.17).

This section is organized as follows. In Section 3.1, we state (0.17) as a vanishing
theorem on the APS index, Theorem 3.2. In Section 3.2, we construct a suitable function
¥ : M x N — g which is homotopy to the function Y in Theorem 3.2 such that the
associated operator with the APS boundary condition is invertible. In Section 3.3, we
prove the invertibility of the operator associated to 1, Theorem 3.7 up to a pointwise
estimate, Lemma 3.9. In Sections 3.4-3.6, we prove Lemma 3.9.

We make the same assumptions and we use the same notation as in the Introduction
and in Section 2.

3.1. A vanishing theorem for the APS index. For convenience, we recall the basic
setting. Let (M,w), (N,w™) be two symplectic manifolds with symplectic forms w, w",
and dim M = n. We assume that M is noncompact and that N is compact.

Let JM JN be almost complex structures on TM, TN such that w(-, JM.) defines a
metric ¢?™ on TM, and w™ (-, JV:) defines a metric g”™ on TN. Let (L,h*, VL) be a
prequantum line bundle on (M, w), and let (F,h,V¥) be a prequantum line bundle on
(N,w™) (cf. (0.1)).

Suppose that G acts (on the left) on M, N and its actions on M, N lift to L and F.
Moreover, we assume that these G-actions preserve the above metrics and the connections
on TM, TN, L, F and JM JV.

Let the moment map p : M — g be defined as in (0.3). Let n: N — g be the moment
map defined in the same way for (N,w") and (F,hY, V).

We will keep the same notation for the natural lifts of the objects on M, N to M x N.
In particular, L ® F' is the Hermitian line bundle on M x N induced by L and F' with
the Hermitian connection VE®¥ induced by VI, V¥,

The G-action on M x N is defined by g - (x,y) = (g, gy) for (z,y) € M x N. We

define the symplectic form 2 and the almost complex structure J on M x N by
(3.1) Qa,y) = w(@) + (), T = (P, JY).
The induced moment map 6 : M x N — g is given by

(3.2) 0(z,y) = pu(x) +n(y).

Since p : M — g is proper, 6 : M x N — g is also proper.
For A > 0, set

My ={(z,y) € M x N : |u(z)]* = A} = OM, x N,
(3.3) Mo ={(z,y) € M x N : |0(x,y)[* = 24},
M ={(z,y) € M x N : |u(z)]* > A, 0(z,y)]* < 24} € M x N,
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where OMy is the boundary of M4 defined in (2.6). As u,6 are proper and M is non-
compact, |pu(M)[?, |0(M x N)|? contain a half line of R, thus for A large enough, My,
My are nonempty.

Remark 3.1. Since N is a compact manifold, there exists Cy > 0 such that

(3.4) Il <Cy on N.

2
By (3.2) and (3.4), we have |0] < |y + Co. Set Ag = (ﬂ_C\o/%> . By (3.3), for A > Ay,

we have
(3.5) || = V2A - Cy = \/5A/3 on M,.

Thus for any A > Ay, we have M; N My = 0.

By Sard’s theorem, given C' > 0, there exists C’ > C' which is a regular value of the
functions |u|* and 3|0]? on M x N.

From now on, let A > Ay be a regular value of |u* and 1]6]>. By Remark 3.1 and

(3.3), M is a smooth G-manifold with boundary OM = M; U M.
From (0.4), (0.21) and (3.2), for any 1 < ¢ < dim G, we have

| e A
(dpa)” =JHVM, (dn)" = TV
By (0.22) and the first equation of (3.6), we get

(3.7) PMAN M N gMXN M N

(3.6)

By (2.5), ™ does not vanish on M, so that > also does not vanish on M;.
Similarly, 8> does not vanish on Ms.
Let Y : M — g be a G-equivariant smooth map such that
(38) YlMl = :U”MU Y’M2 = 9|M2
Then YM € €°°(M, T M) does not vanish on OM.
The main result of this section can be stated as follows.
Theorem 3.2. There exists Ay > Ay such that for any reqular value A > Ay of |u|? and
%|9|2, the following identity holds:
(3.9) Yps(L@FY )y = 0.

Remark 3.3. By Theorem 1.5, (3.9) is equivalent to (0.17) with a = 5b = A.

1
2
3.2. Proof of Theorem 3.2.

Lemma 3.4. There exist two real smooth functions a, qz € € (R) verifying the following

properties,
2 t< i, ~ 1—¢3, P A
() = fort<s gy for t <
(3.10) 1, fort>3, 2(1—1t),  fort>2,
~ ~ 29 1 9 ~,
Oé(t)+¢(t)>2—7 Jor gétég; d(t)y<0 for 0<t<1.
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Proof. We may set ao(t) = 2, ¢o(t) =1 — 1% on t < 25 &(t) = 1, ¢o(t) = 2(1 — t) on
t > g; and assume that ag, ¢g are linear on % <t < g.

interpolation, starting from ay, 50, we get a, 5 verifying (3.10). O

By smoothing out the linear

Let A > Ay be a regular value of [u* and £|6|*. Set

(1 ~(t
The following identities hold:
Lo (L) am ot
(3.12) ozA(t)an <A 1), A(t)Aqb(A 1).
Let a4 € €°°(M x N) be defined by
(3.13) Ba = |ul* +aa (lul?) (10 — u?) .

Let pa, 74, ¥4 : M x N — g be the G-equivariant smooth maps defined by
(3.14a) pa =0 — da(Ba)n,

(3.14b) 7a =2[ 1+ oy (16f?) (10 = 1) |1+ 20a (1,
(3.14c) a =pa — ¢4(Ba) (pa,m) Va.

For any function f on M x N, we denote by dM f, dVf its differentials along M, N
respectively.
The following lemma partly motivates our choice of 14 (compare with (2.5)).

Lemma 3.5. The following identity holds:
(3.15) 20y = 1 (@]pal?)"
Proof. By (0.21), (3.2) and (3.13)-(3.14b), we have

484 =21+ oy ()61 — [12) — a1 s 1, -+ 200 (16,5,
(3.16) =ya;d" 1y + 204 (| )0,V

dpaj =d0; — ¢4 (Ba)n;dBa — da(Ba)d" ;.
From (3.6) and (3.16), we get

(do;) =JMVM + NV,
(dBa)" =" vy + 2aa(|ul?) I oY,
(dpaj)* =TV — ¢y (Ba)n T AN
(1= 0a(8)) JXVY = 263 (Ba)aa(al)n 7VOY.

From (0.22), (3.14c) and the third equality in (3.17), we get
(3.18) 204 = 2p4; [V — 4 (Ba)niva|] = =27 paj(d paj)* = =T (d™|pal®)”.

The proof of Lemma 3.5 is completed. 0J

(3.17)
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Lemma 3.6. There exists Ay > Ag such that for any regular value A > Ay of |u|* and
21012, the following identities hold:

Yalm, =4, Balm, = A,
Yalm =<1+é(6 77>)9 Balm, = 2A.
2 A Y ) 2

Moreover, the following inequality holds:

(3.19)

on Ma.

DN —

4
(3.20) L+ (0,n) >
In particular, ' does not vanish on OM.
Proof. On M, we have |u|*> = A. By (3.10)-(3.14a), we deduce that on M,

(3.21) Ba=A, ¢a(Ba) =1, ¢4(Ba)=aa (|M|2) =0, pa=p.
The first two equalities in (3.19) follow from (3.14c) and (3.21).
From (3.5) and (3.10)-(3.14b), for A > Ay, we have on My = (|6]*)}(2A):
aa (lpl*) =1, oy (u*) =0, 7a=20,

(3.22) )
Ba=24, ¢a(Ba)=0, pa=10, ¢,(Ba)= -

By (3.14c) and (3.22), the last two identities in (3.19) hold. Since |§] = v/2A on M,
(3.4) implies that there exists Ay > Ay such that (3.20) holds on My for A > A,.

We have seen just after (3.7) that ™ and ™ do not vanish on M, M, respectively.
Hence by (0.22), (3.19) and (3.20), ¥}! does not vanish on M when A > A,.

The proof of Lemma 3.6 is completed. O

Let DI®F . QO%(M x N, L ® F) — Q% (M x N,L ® F) be the Spin¢ Dirac operator
on M x N (cf. (1.5) and Section 2). Following (1.10), let D1 be the operator defined
for T € R, by

(3.23) Dy = DMF +/=1Tc (v4") 1 Q"* (M, L@ F) — Q" (M, L ® F).
Let Pso+r be the APS projections associated with Dyag o r induced by Dar (cf.

(1.11)).

Theorem 3.7. There erists Ay > Ay such that if A > Ay is a regular value of |u|? and
%\9\2, then there exist C' > 0, Ty > 0 such that for any T > Ty and G-invariant element
s of Q"*(M,L @ F) with Pso+1(slom) = 0, the following inequality holds:

(3.24) IDarsl2 = € (||D27so+ Tisli3)

Proof of Theorem 3.2. Let A > A; be a regular value of |u|* and $|0|*. Then by Theorem
3.7, (Domer(y = 0), P>o . 7(v = 0)) is invertible for 7" > T;. By Propositions 1.1, 1.2
and Definition 1.3, this implies

(3.25) QYps (L ® F,a),_y = 0.

We connect the map Y defined in (3.8) and 14 via ¥4 = (1 — )Y +th4, 0 < t < 1.
Lemma 3.6 shows that 4! € €°°(M, TM) generated by 1)4; via (0.22) does not vanish
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on OM for any 0 < t < 1. By the homotopy invariance of the APS index (cf. Remark
1.4) and (3.25), we get (3.9). O

The rest of the section is devoted to the proof of Theorem 3.7.

3.3. Proof of Theorem 3.7. Let {e;}7_, (resp. {f;}&m ™) be an oriented orthonormal
frame of TM (resp. TN). Then {e,}dmM = {e.} U {fz} is an oriented orthonormal
frame of T M. Set

Lay 25 e ((a"a;)7) e (VM +2V%) 4 e ((aV0ay)7) e (V)
M
(3.26) Ta :% <(1 + \‘/]__1) v, (dMe)a;)" > = Tr [(d™a;) lra0n @ V],
L =c ((da;)")  (V}Y) -
Theorem 3.8. The following formula holds:

(3:27) Dy = DF 4 /=TT {; S e en) e (VIMGA) — T (VG4 rnonn] }
k=1
dim N

+ V1T {% > clf)e(VINVY) = Te [(VMVY) lraon] } Vg

i=1

+ 47T (Y4, 0) + V=1T (Lay + Las + Lug) — 2V/=1T4a; Ly, + T2 |0}

Proof. Let VA" be a brief notation for VATV MELOF By (393 we deduce as in
(1.14) and (1.44) that

dim M

(3.28) Digp = D' + V=IT Y clea)e (VEMYL') — 2V/=1TVIN + T2 Il

a=1

From (3.6), the definition of the moment map, and LxgX = VIMX — VIMKM for
Keg X e €M, TM), we get (cf. [21, Lemma 1.5], (2.12))

(329) 3.(/)\/1 - ¢A] VM - wA]LV +27T\/_ <wA> >

d1m N

+ - Z C ek VTMVM 1/1,4] + Z fl v};N‘/;N) wAj

+ §¢Aj Tr [(VTMV}MMT(LO)M] + §¢Aj Tr [(VTNV}N”T(LO)N] .

By (3.26), we get

n

gy 320 (T s = 53 clee (T) = e (@) ) (1)
k=1

k=1
Pa; Tr [VPMVM paoy ] = T [(VIMYE)paon] — Las.



GEOMETRIC QUANTIZATION FOR PROPER MOMENT MAPS: THE VERGNE CONJECTURE 25

Also by (0.21) and (3.6), we have

dim M n
(3.31) Z ceq)e (VIMyA) = Z clex)e (VEMYY) + ¢ ((dM¢Aj)*) c (V)

+ 2 e (VEVVN) vy +e (@) ) e (VY + V).
i=1
By (3.26), (3.28)-(3.31), we get (3.27). The proof of Theorem 3.8 is completed. O

Lemma 3.9. There exists Ay > Ay such that if A > Ay is a regular value for |p|* and
31012, then for any z € M with ¢¥}'(2) =0, and any f € (A(T*"VM) ® (L ® F)|m)|-,
the following inequality holds at z:

1

(3.32) Re <¢—_1 {5 > e e(VEVVY) = T [(VVY)lrao ] } Vs f, f>

i=1
+ Re <<47T (a,0) + \/—_1(],41 + Lao + 1a3) >f>f> > 7TA|f|2-

Lemma 3.9 will be proved in Sections 3.4-3.6.

Let Fyr: Q% (M, L® F) — Q% (M, L ® F) be defined by
(3.33) Fur = D3y +2V—1T¢ 4Ly,

Proposition 3.10. Let A; > 0 be as in Lemma 3.9. If A > Ay is a regular value for |u|*
and %]9|2, then for any z € M\ OM, there exist an open neighborhood U, of z in M,
with U,NOM =0, and C, > 0, b, > 0 such that for any T > 1 and s € Q**(M,L® F)
with supp(s) C U,, we have

(3:34) Re (Furs,s) > C (|| D573+ (T = b.) [s]3)

Proof. Let A > A; be a fixed regular value for [p|* and 1]0|?, and we fix z € M\ OM.
If 41(2) # 0, then by (3.27) and (3.33), we see that Proposition 3.10 holds.
From now on we assume that ¢4!(z) = 0. We write 2z = (g, yo) with 29 € M, yo € N.
From (0.22), ¥4*(2) = ¥4 (2) + ¢ (2) and ¥4 (2) € TM Y (2) € TN, thus

(3.35) Y(2) =0 ifand only if ¥ (2) =0 and Y (2) = 0.
Let ' = (x1,--+,2,) be the normal coordinate system with respect to {e;|s,}7—;
near g € M. Let ¥/ = (y1,*** ,Yaimn) be the normal coordinate system near yo € N

associated with {f;],, }&m &

By (3.15), ¥ (z) = 0 implies that (d|pal|*)(2)

= 0. Thus we can choose the or-
thonormal frame {e;}" ; so that the function |pa(-, o)

|* has the following expression
near o,

(3.36) pa(@y0) P = [pa(@o, o) + ) aja + O(|2']%).
j=1

The following Lemma is an analogue of [21, Lemma 2.3].
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Lemma 3.11. The following inequality holds at the point (zo,yo),

n

(3.37) ~ Z c (VIMYY) = V=T1Te (V™M) |paon] = =) lal,

j=1

and the inequality is strict if at least one of the a;’s is negative.

Proof. Set
(3.38) V(2 ) Zth y I ey,

Then Lemma 3.5 and (3.36) imply that
(3.39) te(a’,y0) = arzi + O(|2' ).

Let e; = 6]1-’0 + e?’l e TWOM @ TODM. By (2.3), (3.38) and (3.39), we deduce that
at the point (zg, yo),

(3.40) —— Z VTM ) —V—1Tr [(VTMw%”T(LO)M]
- M \/__1 . JM M
== ;ajc(ej)C(J &)= —5— ; < (1 + \/—_—1> —a;J " ej), >
:—QZaJmle Z\aﬂ

where the last inequality is strict if at least one of the a;’s is negative. 0

3

Let AM_AYN be the Bochner Laplacians on M, N acting on Q%*(M, L), Q°*(N, F),
respectively. We still denote by AM  A¥ the induced operators acting on Q%*(M x
N,L® F), then AM*N = AM 4 AN is the Bochner Laplacian on M x N. Clearly, they
are nonpositive operators acting on Q%*(M x N, L® F'). From the Lichnerowicz formula
for DL®F2 (cf. [9, Appendix D] and [11, Theorem 1.3.5]), we get on M,

(3.41) DEeR2 — _AMXN L O(1),

and where O(1) is an endomorphism of A(T*®YVM)® L ® F.

Let Fyi,p be the formal adjoint of Fur. Note that ‘wﬁ”f = W%f + }WX‘Q. From
(3.27), (3.32), (3.33), (3.37), (3.38) and (3.41), we find that 3 (Fuor + Firgp) + AMN
is an operator of order 0, and near z = (¢, yo),

(3.42)

N —

(Famr + Frgp) + AN > =Ty g+ T2 "t («/,y)°

+ T2 ()| + 7 TA+ O (L+T ||+ Ty) .

Let €9 > 0 be sufficiently small so that the orthonormal frame {e;}7_; is well defined
over the ball BM (zo) = {«/ € M : d (2, z0) < &0}, and B (x¢) x BN (yo) N\OM = (. For
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any 1 < j < n, let (V,,)* be the formal adjoint of Vé\f We have (cf. [11, (1.2.9)])

(3.43) (Ve,)" ==V + (e, VEMe;) .

Set

(B44) = =37 (Vo) + Tlsgna)t; (@',y) ) (VA + Tlsgnay)t; (@',))
j=1

Clearly, —A¥ is nonnegative near z = (x9,9). We verify using (3.39) that

(B45) AN =AY T o+ T2 4y O (4 T+ Ty
=1 =1
By (3.42), (3.44) and (3.45), the following identity holds for any k£ > 1, when both
sides act on sections with compact support in B (z9) x B (yo),

1
(3.46) 3 (Fpmr + Frgr) 2 =AY =AY +7TA+ O+ T ||+ Ty|)
1 N 1 M T - / /
> - AN - oA —E2|aj|+7TTA+O(1+T|x|+T|y|).
j=1

By (3.41) and (3.46), there exist Cy, C5 > 0 such that for any 0 < & < g9, s € Q"*(M, L®
F) with supp(s) € BM(zy) x BY(yp), we have

1 1 ¢ C
(347) Re(Furs,s) > = [[DHF s o+ [T(WA—E > lasl— Cae) - ( 2+Cy) |l
j=1
We take k large enough and choose € small enough so that
(3.48) ———Z|ay>o é—035>0.
2 / 2

With e chosen as in (3.48), the conclusion of Proposition 3.10 follows from (3.47) in the
case where ¢%!(z) = 0. The proof of Proposition 3.10 is completed. O

By Proposition 3.10 and the gluing trick due to Bismut-Lebeau [3, pp. 115-117]
(which has been used in the proof of (2.16)), we obtain the following: for any open
subset U’ C M with U’ N OM = (), there exist Cs > 0, by > 0 such that for any
s € Q% (M, L ® F) with supp(s) C U’, we have

(3.49) Re (Furs, s) > Co (|[D%"s]lp+ (T = b) ls]})

Let U be a G-invariant open neighborhood of M in M such that 1! does not vanish
onU. As " does not vanish on M, the existence of U is clear. Then one can proceed
in exactly the same way as in the proof of (1.52) (or [22, Proposition 2.4]), to see that
there exist Ty > 0, C7 > 0 such that for any 7" > Ty and s € Q"*(M, L ® F)"=° with
supp(s) C U and Pso + r(s|om) = 0, we have

(3.50) 1Daarslly > Cn (|07 s+ T2015).
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In view of (3.33), (3.49) and (3.50), one can then proceed as in the proof of (2.22),
which goes back to [3, pp. 115-117], to see that Theorem 3.7 holds.

3.4. Proof of Lemma 3.9 (I): uniform estimates on functions. We give first uni-
form estimates for some functions appeared in the definition of v4, ¥4 when A — oo.

Recall that A, > 0 was determined in Lemma 3.6. Let A > A, be a regular value for
|u[* and 116>, Set

Tar =14 4 ([l (107 — |1]),
Taz =1 = 2¢/4(Ba) (pa,n) Tar,
(3.51) Tas =1 — ¢a(Ba) = 2¢4(Ba)aa(lul?) (pa,m) .

TAs = [1 - ¢A(ﬁA>}7—A1 —aa(|p)
=1 = 6a(Ba) = call®) + [1 = 6a(8a)|u () (61 ~ 1)
Then

(3.52) Tas = Ta1 Tas — aa(|pl?) Tas -
From (3.14b), (3.51), we obtain

(3.53) va = 21ap+ 2aa(|pf)n.

From (3.2), (3.14a), (3.14c), (3.51) and (3.53), we get

b=+ (1= 6a(8a) |0 = $4(8a) pasm) [2ranp + 204 (|nf?) 1]

=Tao b+ Taa?.

(3.54)

In the following, for s € R and a function f4 on M, we write f4 = Og(A?) if there
exists C' > 0 (independent on A) such that its €°-norm on M can be controlled by C'A®.
The following lemma contains basic asymptotic estimates for these 7 functions.

Lemma 3.12. There exists Ag = Ao such that for A > Ag, we have

(3.55) A< fBa<2A, on M)\ OM.

Thus

(3.56) 0<alBa) <1 on M\IM.
Moreover,

(3.57a) Ta =140y (A2, 1a =140, (A7),
(3.57b) a1 = (1= 6a(80)] (140 (4772) ),

(3.57c) 5 = [1 = 0a(8a) — @ (1) | (14 00(4772)).

Finally, for any A > Ag, we have

1_¢A(BA)_CYA (|,u|2) <0 Zf(!L‘,?J) GM\@M,

(3.38) —0 i (z,y) € IM.
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Proof. From (3.2), (3.3) and (3.4), for A > Ay > Ay, we have on M,

A2 < Jul < J6]+ Il < V2AM2 4+ |Col < (2v2 - V/B/3) A2,

101 — 1l = 2 (u,m) + Inf* = Oo(A"?).

From (3.10)-(3.13) and (3.59), for A > Ay, we have on M,

(3.60) aa (|ul*) = Oo(1),  Ba = |ul>+ Oo(AY?), oy (|ul*) = ¢4(Ba) = Op(A7Y).

If |pu[* < 224, then (3.10), (3.11), (3.13) and (3.59) yield

%A = ('*f 1) {H 2 ("f ) (161 - \ulz)}
ROT

If |pu[* > 24, then by (3.60), we have for A > A, large enough,

(3.59)

(3.61)

4 6A
(3.62) Ba = g A+ Oo(AV?) > =
By (3.3), (3.61) and (3.62), we have 54 > A on M \ OM for A > A, large enough.
On the other hand, if [u[?> < 22, then by (3.60), for A > A, large enough, B4 < 2A.

By (3.10), (3.11) and (3.13), if |u|? > 22

(3.63) aallpl®) =1, oy(Juf*) =0, Ba=0]"

Combining with (3.3) we have 84 < 24 on M \ OM for A > A, large enough. Thus
there exists A7 > Ay such that (3.55) holds for A > A;. Note that ¢(0) = 1,¢(1) =
and ¢ < 0 on (0,1]. Thus (3.11) and (3.55) imply (3.56).

The first identity in (3.57a) follows immediately from (3.51), (3.59) and (3.60).

From (3.14a), (3.56) and (3.59), we obtain for A > A7,

(3.64) lpal < 16| + 0| < 24Y%  on M.

From (3.4), (3.51), the first identity in (3.57a), (3.60) and (3.64), we get the second
identity in (3.57a). Hence the proof of (3.57a) is completed.

We prove now (3.57b). If |u|*> < %2, then by (3.60), we have 84 < 224 for A > A;
large enough. Then (3.10), (3.11) and (3.61) imply

) = (1Y
(3.65) 1_¢A(5A):<ﬁ_2_1>3:(%— >3<1+00(A‘1/2)>,

o) = - (% 1)
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From (3.4), (3.51), (3.61), (3.64) and (3.65), we deduce that
TA4 =<1 — ¢A(5A)) {1 + % . (% — ) (1 + Oy (A_l/Z) ) (pa, 77>}
=(1=0a(80)) (1+ 00 (4772) ).

If [ > %, by (3.10), (3.11) and (3.62), we have 1 —¢4(B4) = 1 —pa(®4) =573 > 0,
from which (3.57b) holds, since in view of (3.4), (3.60) and (3.64), ¢/4(Ba)aa (|u]?)
{pa,n) = Oo(A71/?) holds. Together with (3.66), this implies (3.57b).

For the proof of (3.57c) and (3.58), we first consider the region |u[* > 22 in M. By
(3.51) and (3.63), we get

(3.67) Tas = 1= ¢a(Ba) — aa(|ul’) = —0a(Ba).

Thus (3.57¢) holds. From (3.22), (3.56) and (3.67), we get (3.58).
By (3.10), (3.12) and (3.60), we find that for A > A7,

(3.66)

(3.68) G4(Ba) = da (lu*) + Op (A7?)  on M.

If 44 < |puf> < 22, then from (3.10) and (3.68), we have for A large enough,
1

(3.69) 1= pa(Ba) — aa (Jul?) < ~5

By (3.51), (3.59), (3.60) and (3.69), we get (3.57c) and (3.58).
Finally, if |u[* < %, by (3.51), the first equation of (3.57a) and (3.65), the following
identities hold for A > A large enough:

1=pa(Ba) — ca(|p]?)

(U (2 ) aan))
Tas = [1 - ¢A(5A)} <1 +0 (A7) ) —aa (Juf)

= [1= 0a(82) = @ (1) | (1405 (4772) ),

From (3.21) and the first identity in (3.70), we get (3.58) in this case.
Combining the three cases discussed above, we conclude that there exists Ag > Ay
such that (3.57¢) and (3.58) hold for A > Ag. The proof of Lemma 3.12 is completed. [J

(3.70)

The following Lemma will also be used in the proof of Lemma 3.9.
Lemma 3.13. There exists Ag > Ag such that for any A > Ag,
2
(1= 04(80)) = aalluP)

1= ¢a(Ba) — cal(ul?)
Proof. By (3.56) and (3.58), we have

(3.71) 1<

<12 on M\ OM.

(3.72) (1 - ¢A(5A)>2 —aa(lpl?) <1 —=0a(Ba) — aa(|pl?) <0 on M\ OM.
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To complete the proof of (3.71), we have to show that

(3.73) 11— 1004(84) — 1laa(|p*) — da(B4)> <0 on M\ OM.

We examine three cases. First, if |pu[* > 32, then (3.73) follows from (3.56) and (3.63).
Secondly, if [p|* < %, then by (3.65), we get

(3.74) 11 —10¢4(Ba) — Laa (|uf*) — ¢a(Ba)® < —11laa (Juf?) + 12(1 — ¢A(5A))
(B ) o)

By (3.74), we see that (3.73) holds for A large enough.
Thirdly, let % < uf < %, from (3.69) for A > 0 large enough, we have

11 17

(3.75) 11— 1004 (84) — aa(|ul*) — ¢a(Ba)* < o T Ga(Ba) — da(Ba)® < 103"

This completes the proof of Lemma 3.13. 0
By (3.57a), we may and we will assume that A is large enough so that 745 > 1/2. Set

a0 = = 20504 (10 — ) (2

+ 4¢;<@A>ai4<|u|2><p,4,n>%

2[ = 481 (parm) + (G480 ] (—) 20l ()2,
(3.76)

rar =200y (Ba)aly (), ) 2T
A2

— 2] = (8o m) + (4 (8] <|u|2>(”2;§f*4)”5

A2

# a0 1 204(00) 72 - a2

TA2

Lemma 3.14. For A > 0 large enough, the following identities hold on M:
Ta6 =244 (Ba) [1 — ¢a(Ba) — aa (Iul?) } (1 + Oy (A71?) )7

(3.77) 2
mar =048 [ (1= 64(80) = aa (1) | (1400 (4772 ).

In particular,
578 Tag >0, 747 >0 if (z,y) € M\ IM,
(3.78) Tag =0, 747 =0 if (z,y) € OM = M;UM,,

and

(379) TA7 6TA6 [ + Oo (A_I/Q)} .
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Proof. Note that from (3.4), (3.10), (3.11), (3.60) and (3.64), on M, we have
oy ([l?) (pasm) = Oo(A™Y2), oy (ul?) (pasm) = Oo(A™),
= $a(Ba){pa m) + (D4(B4))*Inf* = Oo(A™*2).

Recall that ¢/ < 0 on (0,1]. By (3.12), (3.55) and the second equation of (3.60), there
exist C' > 0, A9 > 0 such that for A > Ay,
¢4(Ba) <0 on M\ OM,

4A

/ c
|p4(Ba)] = 1 if |pl? > R

(3.80)

(3.81)

By Lemma 3.12, (3.59), (3.76) and (3.80), we get

(3:52) 7a0= 648400 (A7) [L= 048]+ 645000 (A7) [1 = 64(80)]
FOUA)[1 = 0a(82) — an (0P|

+ 204 (Ba) [1 — ¢a(Ba) — aa (Juf) } (1 + O (A7) )
By (3.61), (3.65) and the first equation of (3.70), there exists C' > 0 such that for A > 0
large enough, if |u]? < %, then
0<1—9¢a(Ba) <C|1=0a(Ba) —aa(luf)],
1= 0a(Ba) — aa (Juf*)| < ClAL(B)].
Due to (3.56), (3.60), (3.69) and (3.81), if 44 < |uf* < 32, (3.83) still holds for some
constant C' > 0. By (3.83), the first three terms in (3.82) can be controlled by [¢,(84)

(3.83)

1—¢a(Ba) —aa (|u!2)] ’(90 (A_I/Q) if [u)? < %. Thus from (3.82), the first identity in
(3.77) holds when |u|* < 22.

Ror [uf? > 52, by (3.63), /(I
zero. By (3.57a)-(3.57c), (3.67), (

(384)  Tas = O (A7) 64(84)" = 204(Ba)oa(Ba) (1+ Op (A77%) ).

From (3.56), (3.67), (3.81) and (3.84), the first identity in (3.77) holds when |p|* > .
From (3.58), the first identity in (3.77) and (3.81), we get (3.78) for 746.
For the second identity in (3.77), by Lemma 3.12 and (3.80), we obtain the asymptotics
of the terms of 747 in (3.76) in order as follows :

12) = o/4(|u|?) = 0, thus the first two terms of 744 are
3.76) and the third equation in (3.80), we have

(3:85) 77 = 9a(0)[1 — 6a(B4)]| O (A772)
s () [1=64(8a) = aa (I1?) |Oo(A72)
+ (B0 (1= 0a(84) + 00 (A7) ) [1 = 64(8a) — aa (1) |
—aa (1) (64(82) + 0 (4772) ) },
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here the factor 1 — ¢4(B4) in the first term of (3.85) is from 744 and the factor 1 —

dA(Ba) — aa (Juf?) is from 7y45.
If |u> < 22, by (3.72), the first equation of (3.83) (which holds for [uf*> < 22 as

explained after (3.83)), we get for A > 0 large enough,
(3.56) o (4)] < (C+ D] = 0a(37 0 ()]
Thus by (3.72), (3.83) for |u|?> < 34 and (3.86), the first two terms of (3.85) is bounded

by ]¢’A(BA) (1= 6a(82))? —aA(M )H o (A71/2). From (3.72), (3.85) and (3.86), the
second identity in (3.77) holds for |u|* < 22
If |2 > 24, then by (3.51), (3.63) and (3.67), we have

(3.87) Tar =1, Taz—Tas = da(Ba), 7Tas = —0a(Ba)
By (3.57a), (3.63), (3.76), (3.80) and (3.87), we get the first term of 747 is zero and

(3.88) TA7T = ¢A(6A)2(90 (A—3/2) + ¢i4(ﬁA){ B ¢A<BA)2<1 L0, (A—1/2) >

= [1=204(8)] 64082 (14 00 (A772) ) = 0a(82) (14 O (4712) ) }.
From (3.56), (3.81) and (3.88), we get that if |u[* > 22,
(3.89) Tar = — ¢4 (B4)Pa(Ba) [2 - ¢A(5A)] (1 + O (A7) )

Now (3.63) and (3.89) imply the second identity in (3.77) for |u[* > 2. By (3.58),
(3.71) and (3.81), we get (3.78) for 747. From Lemma 3.13, (3.77) and (3.78), we get
(3.79). This concludes the proof of Lemma 3.14. O

3.5. Proof of Lemma 3.9 (II): evaluation of I4. over zero(¢%!). In this subsection,
we evaluate the terms I4. in (3.26) on zero(1}!), the zero set of 14!. The main point is
that we use n (resp. n™) to replace u™, OV, ~% (resp. p*, ¥4) which are difficult to
control over M.

Lemma 3.15. On {z € M : ¥}'(2) = 0}, the following identities hold:

(3.90) Tao ™ == 1™, TasyY = —27450Y,
and
(3.91) Tas ™ = —71aan™, Tar v = 21450, 1420V = (Taz — Tas) "

Proof. Let z € M be such that ¢}%(2) = 0. In view of (3.54) the equation ¥4 (z)
in (3.35) is equivalent to the first equation of (3.90). Similarly, the equation % (z) =
in (3.35) is equivalent to the first equation of (3.91).

By (3.51), (3.52), (3.53) and the first equation of (3.90), we get at z:

0
0

(3.92) Tao 7% = 2TA1T 42 ,uM + 2aA(|p|2)7'A2 nM
= 270 7aa ™ + 204 (|u|P) Taz ™ = =275 7™M

The second equation in (3.91) follows similarly. By (3.6) and the first equation in (3.91),
we get the third equation in (3.91). The proof of Lemma 3.15 is completed. U
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Foranyz € M,y € N,W € T,M,V € T,N, let B(W) € End(A(T*OY(M x N)))(z)
be defined by
(3.93) B(W)=+V—=1c(JMW) (W) + W[

Clearly, the endomorphisms B(W), v/—1e(W)c(V) of A(T*OY(M x N))(,.,) are self-
adjoint and B(JMW) = B(W) = B(—-W).

Lemma 3.16. On {z € M : ¢!(z) = 0}, the following identities hold for 1. in (3.26):
dim G

\/—_1<1A1+1A2) - % B (VM) + 746 B (n™)
(3.94) V= Iras e (JMVM) ¢ (V) + 2/~ Trag e (JMpM) e ()

+ \/—_1TA4C<JNV ) (VM) ~|—2\/_7'A7C(JN N) (nM) ,
Lag =Tasc (JYVY) e (V) + 2147 ¢ (JV0N) ¢ (") .
Proof. Let z € M be such that ¢}!(z) = 0. By (3.6) and (3.51), we get
(d7a1)" = 204 () (10 = ) T 1™ + 200, (1) T 0™,
(A7) = 20y (|uf*) TV 0.
Using (3.6), (3.17) and (3.90), we infer at z,

(3.95)

(@Y Ba) = JYy) = ——=J"y
(3.96) TA2

(@ (pa, )" = JMnM+2¢A<ﬂA>!n|2“5 MM,

By (3.6), (3.51), (3.90), (3.95) and (3.96), at z, we get

(3.97) (dM7a2)* = =284 (Ba)(pa, ) (d" 7a1)*
— 204 (Ba) (pa. m)Tar(d™ Ba)* — 204 (Ba)Tar (A (pa, )

= (a0 o) |os 1) (10— 1) 22— au)

Y

[~ 5o+ 0] P = 285Gy I,

TA2
and

(3.98) (d"7a1)" = ~264(8a)pa, ma([uf?)2.0 i
+ | = $a(8a) = 20481 pa maa )] (@ B0)"
=200, (Ba)aa(|u?) (@™ (pa,m)*

{4¢A(5A)CYA(|M| )(pasn )—2 +2¢’A(5A)E

TA2

— 4 = 8 pam) + (a8l (i) 2
=20, (Ba)aa(lpl?) 1.
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From (3.6) and (3.54), we get

(A 4a;)" = (@Y 742)" g + (A 7a0) ) + Ta2 MV,
(399) N * N * N * Ny/N
(d%paz)” = (d7a2)" pj + (A 7aa)" mj + Taa "V
From (3.52), (3.76), the first equation of (3.90) and (3.97)-(3.99), we get at z,
(@) ¢ (V) = maae (V) (V) + 2ranc () ¢ ().

(3.100) <(1+j_£> VM (M) >_ \/1__1(TA22\‘6M\2+2TA6|77M|2).

Using (3.76), the first equation of (3.91) and (3.97)-(3.99), we get at z,

(3.101) (@) )e(V;Y) =rao ol TV (V) + 2 a0 (VM ™).

J

By (3.17), (3.91) and (3.95), it follows that at z,

(31022)  (dVBa)" = 2 (|uf?) =YY,

TA2

(31020)  (dVran)* = 200y (Juf?) =T VY,
2

(3102)  (@¥pa)" = (1= 04(84)) INVY = 2604(Ba)aa (Juf?) 22Ny,

TA2

From (3.6), (3.14a), (3.91) and (3.102c), we have

(3.103) (@™ (pa, )" = (05 =GBy ) (@) +n (@ py)*

= {1 —204(Ba) + (1 — 2004 (Ba)aa (|ul?) |77’2> %1 TN
By (3.51), (3.90), (3.95) and (3.102a)-(3.103), we get at z,

(3.104)  (dN7a2)* = =284 (Ba){pa, n)(d" Tar)*
— 204 (Ba){pa, n)Tar(d™ Ba)* — 2¢"4(Ba)Tar(d™ {pa,m))*

TA2 — TA4
{ 4, (Ba) (s mhad ([uf?) A2 T4

TA2
TA4

4] = B oam) + (Sa (B P a (1) =y

TA2

2, (Ba)7an (1 C20a(B4) + u) } T,
TA2



36 XTAONAN MA AND WEIPING ZHANG

and

(3:105) (d"7a0)" = | = $4(8) = 204(82) (pa mava(”)| (@ Ba)
— 203 (Ba)aa((u?) (@ {pa, )

= {4[ - 56 + G a2

TA2
26 (a)an () [1 - 264050 + 2724 L,
TA2

From (3.52), (3.76), (3.91), (3.99), (3.104) and (3.105), we get at z,
(

)
(3.106) ((dNIPAJ) )e(ViM) =7a4 C(J]tVJN) c(V, N) +27a7 C(JNWN)C(TI;),
c((d¥a;))e(V}™) =Taa e( TV (V) + 27470 (T 0V )e(n™).
By (3.26), (3.93), (3.100), (3.101) and (3. 106) we get (3.94). O

Lemma 3.17. For any k > 0, the following inequalities hold for W € TM,V € TN :
B(W) >0,
V—=1e(W)c(V) > —%B( ) — K|V

Proof. 1t is enough to prove it for V- =v + 7, W = w + w, and {v,w} an orthonormal
basis of C? with the standard Hermitian product. Using (2.3) and (3.93), we find

(3.107)

(3.108) B(W) = =2 (w* A +ig) (W' A —ig) + 2 = 4w™ A iy

Thus the first inequality in (3.107) holds (cf. [21, (2.9), (2.13)]).
For any o € AC2*, we write 0 = o1 w* A v* + oy w* + o3v* + g4, where o; € C for
i=1,2,3,4. By (2.3), we get

(3.109) V=1e(W)e(V)o = 2/ =1 (=01 + 090" — o3w”™ + oqw™ Av").
From (3.108) and (3.109), we find that for any k£ > 0,
(V—=1c(W)e(V)o,0) = 41m (0,05 — 0203)

(3.110) 9 1
> =2 (jou? + [02]?) — 2klo? = 5 (B(W)a.0) — 2klo]".
From (3.110), we get the second inequality of (3.107). O

3.6. Proof of Lemma 3.9 (III): final step. Recall that z € M satisfies 1}*(2) = 0.
By Lemma 3.6, z € M\ OM.

By Lemma 3.12, 742,744 > 0 on M for A large enough. Thus by (3.78), (3.94) and
the second equation in (3.107) with k = 8, we get

1/7 1 dim G dim & 9
v—1 (IAl + [AQ) 5 <§7'A2 - §7A4) Z B (V;M) - <8TA2 + 8TA4> Z ‘V;N|
j=1 Jj=1

7 1
+ (gTAﬁ — §7A7) B (nM) — (167’A6 + 167,47) ‘nN‘Z.

(3.111)
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By Lemma 3.12, we obtain for A > 0 large enough,

7 1 3 1 1
3.112 Ty — =Taa = — + = ATV > 2
( ) gTA2 = gTas =7+ 8¢A(5A)+Oo( ) 5
By Lemma 3.14, for A > 0 large enough, as z € M \ OM,
7 1 1
(3.113) STas = a7 2 §7A6<1 + OO(A‘1/2)> > 0.

Recall that V', 7 are defined on the compact manifold N. By Lemmas 3.12, (3.77),
(3.107) and (3.111)-(3.113), there exists C" > 0 such that for A > 0 large enough, the
following inequality holds:

(3.114) V—1(Ig +14) = —C"1d  on {z € M, ¢ (2) =0}

By (3.57b), (3.77) and (3.94), there exists C” > 0 such that for A > 0 large enough, we
have

(3.115) [Ias] <C"  on {z e M, (z) = 0}.
By Lemma 3.12, (3.4), (3.54) and (3.59), for A > 0 large enough, we get over M:
2 (Ya,0) = 27a0|pul* + 274 |0|* + 2 (Taz + Tas) (1, 1)
(3.116) > 24+ 0y (AY?) > A,
[l = Oy (A'?).
By (3.114)—(3.116), we get (3.32). This completes the proof of Lemma 3.9.

4. FUNCTORIALITY OF QUANTIZATION

This section is organized as follows. In Section 4.1, we establish the product formula for
quantization, Theorem 0.4. In Section 4.2, we explain the compatibility of quantization
and its restriction to a subgroup.

We will use the assumptions and notation in the Introduction and in Section 3.1.

4.1. Proof of Theorem 0.4. Let ¢ > 0 be a regular value of |0|*>. By [22, Theorem
4.3], [17, Prop. 7.10] (cf. also Theorems 1.5, 2.1), the following identity holds:

(4.1) Ind <U(L]g;’]9v)c>yo =Q <(L®F)7:0) .

Here 0 need not to be a regular value of 6.
On the other hand, by Theorem 0.1b), we have

(4.2) Ind (agg;g%)vzo = Q(L&F),_,

Therefore, by (4.1) and (4.2), we get (0.12). Thus, to prove Theorem 0.4, we only need
to prove the following identity, which has been stated in (0.13)

(4.3) QLOF),_,= Y Q(L

YEAL

We first establish the following lemma, which has been stated in (0.14).
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Lemma 4.1. There exists a’ > 0 such that for any regqular value a > a’ of |u|* : M — R,
the following identity holds:

o My x N
(4.4) > QL) QF) =Ind (07550 -
WGAi
Proof. We denote the finite set {y € A% : Q(F),+ # 0} by A% (F). By Theorem 0.1,
there exists a; > 0 such that for any regular value a > a; of |u|?, we have

(4.5) Q(L), =Ind (0%;)7 for any v € A% (F).

Let a > a; be a regular value of |u|>. For 0 <t < 1, let o; be the symbol on M, x N

defined to be a deformation of o} ;g as follows,

(4.6) o = a%j;ﬁ — (1= t)V=1r"c (1)
where 7 : T'(M, x N) — M, x N is the canonical projection (cf. (1.2)).
By (1.2) and (3.7), when ¢ = 0, oy is the external product of oy and opo in the

sense of [1] (cf. [17, (3.11)]). Then by the multiplicativity of the transversal index (|1,
Theorem 3.5], [17, (3.12)]) and by (4.5), we get

(4.7) Z Q(L)y - Q(F),, = Ind (0-0>'y=0 :

For 0 <t <1, set

(45) V= iMexN (1= ),
Then by (3.6), (3.7) and (4.8), we have
(4.9) Vi = M +tu?.

As a > ay is a regular value of |u|?, u* does not vanish on OM,. From (4.9), uM>N "V,
do not vanish on 9(M, x N) = (0M,) x N for 0 <t < 1.

By (1.2), (4.6), (4.8) and (4.9), the set {(z,v) € T(M, x N) : there exists 0 < ¢t <
1 such that o4(z,v) is non-invertible} C {(z,y,0) € Te(M, x N) : p™(x) = 0,z €
M,,y € N} is a compact subset of Tg(MTX\N ). Thus o; forms a continuous family of
transversally elliptic symbols in the sense of [1] and [17, §3]. Hence by (4.6), (4.7) and
the homotopy invariance of the transversal index (cf. [1, Theorems 2.6, 3.7], [17, §3]),
we get (4.4). The proof of Lemma 4.1 is completed. O

Let A > 0 be a regular value of both |¢|* and |0|?. We may and we will assume that
A > 0 is large enough so that both Theorem 3.2 and Lemma 4.1 hold.

Let Y : M — g be a G-equivariant map such that (3.8) holds. By the additivity of
the transversal index (cf. [1, Theorem 3.7, §6] and [17, Prop. 4.1]), we have

MxN)s
(4.10) Ind (a(m;ﬂ) A>Vzo = Ind (0 5y ),y + Ind (o}250) -
By Theorems 1.5 and 3.2, we find

(4.11) Ind (J%F,Y)VZO =0.

By Theorem 0.1b), (4.4), (4.10) and (4.11), we get (4.3). The proof of Theorem 0.4 is
completed.
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4.2. Restriction commutes with quantization. Set

(4.12) Qa(L)™ = @ Q(L), -V € R[G).

weAi

By Theorem 0.2, Q¢ (L)~ is equal to the formal geometric quantization in the sense
of Weitsman [26, Definition 4.1] (where the fundamental properness assumption of the
moment map was introduced into the framework of geometric quantization) and Paradan
[19, Definition 1.2].

On the other hand, let H be a compact connected subgroup of GG such that the moment
map of the induced action of H on M is also proper. By combining Theorem 0.2, (4.12)
with [19, Theorem 1.3], one gets the following relation between Qg (L)~ and Qg (L)~ .

Theorem 4.2. Any irreducible representation of H has a finite multiplicity in Qg (L)™.
Moreover, when both sides are viewed as virtual representation spaces of H, the following
wdentity holds:

(4.13) Qa(L)™™|, = Qu(L)™.

It would be interesting to give a direct proof of Theorem 4.2.
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