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1. Introduction. The classical Hamiltonian (kinetic energy) H for
the mechanical system consisting of a non-relativistic free particle of
unit mass moving on a Riemannian manifold is given by one-half the
Riemannian metric. Several authors say that the quantum Hamiltonian
H corresponding to H is 2"WΔ, where Δ is the Laplacian acting on
functions and h = {2π)~1h, h = Planck's constant. See Blattner [4] and
Simms and Woodhouse [20]. However, DeWitt [7] and Cheng [5] used
the method of "Feynman's path integrals" to derive a different operator
for the quantum Hamiltonian. See also Ben-Abraham and Lonke [1].
Elhadad [9] applied the method of "Maslov pairing" to the geodesic flow
on the unit ^-sphere Sn to obtain a quantum Hamiltonian. Also, Weins-
tein [21] has shown, in the case of Sn, that the ΛΓ-th quasi-classical
eigenvalue for H is XN = 2~ιh\N + 2~\n — I))2, which is not equal to
the JV-th eigenvalue μN = 2~1h2N(N + n — 1) of the operator 2~1h2Δ on
S*. Note that the multiplicity of λ^ is equal to that of μN. See Ii [11].
These results show that 2~1h2A may not necessarily be the quantum
Hamiltonian corresponding to H. The correct quantum Hamiltonian H
has to be determined from appropriate general principles. In the
present paper, we apply the quantization procedure of Kostant to
quantize the mechanical system consisting of a non-relativistic, positive
energy free particle of unit mass moving on the unit ^-sphere Sn

(n ^ 3). We construct a polarization which enables us to quantize H.
The resulting quantum Hamiltonian H has λ^ as the iV-th eigenvalue.
Moreover using the same polarization, we define an operator L2 which
has 2μN as the JV-th eigenvalue and has the same eigenspaces as that
of H. From the construction L2 may be identified with h2A. Under
this identification, the correct quantum Hamiltonian H on Sn is given
by 2~W(Δ + 4r\n - I)2). The referee pointed out that the idea of
adding 4rι(n — I)2 to the Laplacian was also found by Y. Akyildiz in
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his Berkeley thesis in connection with the representation of S0(n + 1, 2)
on L2(Sn).

2. Preliminaries. Let Rn+1 and T*ΛΛ+1 be the (n + l)-space and its
cotangent bundle with coordinates x = (xl9 , xn+1) and (x, y) = (a?!, ,
»n+i, Vu "'f Vn+i)> respectively. Let \x\2 = Σ ^ , \v\2 = Σ*V] and a-2/ =
Σ ίCj-3/i, so that the cotangent bundle on the unit ^-sphere Sn is re-
presented by Γ*S* = {(x, 7/) e T*iί*+ 1 | |a?| = 1, a? 2/ = 0}. The Hamiltonian
of a free particle of unit mass on Sn is given by H(x, y) — 2~1\y\2. The
phase space of the positive energy free particle of unit mass on Sn

is given by 1 = T*Sn - {0-section} = {(a?, y) e T*Sn \\y\> 0} with the
action form ω = ^uyάdxj and the symplectic form Ω = — dω = ^dx3- Λ
dyά. Let C°°(M; R) be the space of real-valued smooth functions on M.
Since Ω is real and non-degenerate, we can define for each / e C°°(M; R)
a real vector field Xf on M by Xf J Ω = df. Xf is called the Hamiltonian
vector field generated by /. Let us define Ljk and U e CTO(M; JB) by
Ljk(x, y) = x3 yk - %kVj (1 ^ j , h ^ w + 1) and L2 = Σ;<* I'"*, which are
called angular momenta and square of angular momenta, respectively.
Note that H = 2"1L2. Let us denote Xs = d/dxjf Yό = d/dyj9 X =
(Xlf > -,Xn+1) and Y = (Ylf •••, Yn+1). For the sake of simplicity, we
write U'X instead of Σ UJXJ f ° r u = (^i, , ^«+i) Then we have XH —

Σ ( » Λ - \y\%Ys) = v-X- \y\*χ Y and Xjk = xLik = Σ Γ i M ί - δ ^ +
δikx/)Xt + ( — δi3 yk + dikyj)Yif which are complete vector fields on Λf. X^
is the geodesic flow vector field on M. See Moser [13].

3. Quantum bundle L. Since the symplectic form Ω is exact, and
M is simply connected (n >̂ 3), there exists, up to isomorphism, unique
quantum bundle L over M. For quantum bundles, see Kostant [12]. L
is a trivial bundle; L = (Λf x C, p, Λf). Let Γ(Z/) denote the space of
smooth cross-sections of L. Then Γ(L) is identified with the space C°°(M)
of complex-valued smooth functions on M in a natural manner. The
connection form θ on L is given by θ\{XtVtt) = — h~l/p*ω + i^z'^dz (ze
C — {0}), where i = i/ — 1 . The covariant differentiation V corresponding
to 0 is given by Vzφ = Zφ — ίh~ιω{Z)φ for any tangent vector Z to M
and for any φeC°°(M).

4. Polarization P. In this section, we construct a polarization of
our symplectic manifold (ikf, 42), which is invariant under the flows of
XH and Xik. By means of this polarization, we quantize the "classical
observables" H and Ljk. See Elhadad [8], Gawedzki [10], Kostant [12],
Onofri [14], [15], [16], Simms [18], [19] and Simms and Woodhouse [20].

Let Fj (1 ^ j ^ n + 1) be vector fields on T*Rn+1 defined by
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Fά I {Xty) = X,. - i I y IY3. For any (x, y)eM and for any v = (vlf , vn+1) e

Rn+1, such t h a t v as = v # = 0, the vector v-F\{Xty) = YuVόFά \lXtV) is t a n g e n t

to M. L e t P(jB,y> be the complexified t a n g e n t space spanned by t h e vectors

XHUX,V) a n d { v ' F \ u > y ) \ v e R n + 1 , v > x = v - y = 0 } . T h e n P : ( x , y ) \ - * P i X t y )

defines a distribution on M, and we have:

LEMMA 1. P is a polarization of (M, Ω), which is invariant under
the flows of XH and Xjk.

PROOF. It is easy to see that P is an ̂ -dimensional smooth, complex
distribution on M. Ω(P, P) = 0 is straightforward. Let v = (vlf , vn+1)
and w = {wu , wn+1) be i?n+1-valued smooth functions on M such that
vx = v y = w cc = w-y = 0. Then we have [X#, v ί7] = ΣC-^^y + ill/l^i)^
[v-F,wF] = Σi(aί-i\v\bi)FJ, [Xjk, XH] = 0 and [I. ̂  f J ^ Σ A
where α, = (vX)wd — (w-X)vjf bά = O F)^^ — (tt F)^- and ct = XjkVi +
δijVjc — (*ikv3>. aj9 bj and ct a re real-valued and satisfy ^A(XHVJ)XJ =

Σ (XH^J)VJ = a x = a y = b x = b-y = 0, c x = Xjk(v x) = 0 and c y =

Xjk(v-y) = 0. It follows that P is involutive and invariant under the
flows of X# and Xjlc. P Π P is a one-dimensional complex distribution
spanned by X#. P + P is a (2w — l)-dimensional involutive complex
distribution spanned by XH and the vectors of the form v X and v F.
Thus we are done.

In the terminology of Gawedzki [10], P is a strongly admissible,
positive polarization.

5. Half-P-forms. Let a = Σyάdyά and βό = dxό — i\y\~ιdyά (1 <̂
j <; n + 1) be one-forms on M. Choose Λn+1-valued (not necessarily con-
tinuous) functions ua = (u\, , wj+1), (1 ̂  a ̂  n — 1), on M, such that
the matrix \x, \y\~~1y, ul9 •••, u^eSOin + 1) at any point (a?, y)eM.
Define /3 = Λ S Σ i ^ ^+i^ ' f t . Then /3 is a smooth (n — l)-form on M,
which is independent of the choice of {ua}. Let J*fz denote the Lie
derivation with respect to a vector field Z on M.

LEMMA 2. μ = a A /3 is a nowhere-vanishing smooth n-form on M,
which satisfies: (1) Z} μ — 0 /or any vector Z from P, (2) <SfXuμ =
i(w — 1) I y I μ, (3) ̂ fv.Fμ — 0 /or cm̂ / Rn+1-valued smooth function v on
M with V'X = v-y = 0 α^cί (4) ̂ fχjkμ = 0.

By the above lemma, it follows that the bundle D of complex in-
forms on M, vanishing after contraction with any vector from P is a
trivial bundle. Let Dm — (M x C, p, M) be another complex line bundle
(trivial bundle) over M, and v denote the cross-section (x, y) \-^ (x, y, 1)
of D'\ Let c: Dm (x)Dm -> D be the vector bundle isomorphism defined
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by c(v (x) v) = μ. We call the pair (Z)1/2, ή the square root structure for
P and sections of Dm half-P-forms on M. See Gawedzki [10] and Simms
and Woodhouse [20]. Since H\M, Z2) = 0 (n ^ 3), the square root
structure is unique. For any smooth vector field Z on M, let us define
a ^-derivation £fz

m acting on the space Γ(Dm) of smooth cross-sections
of Dm by the following: c(2(^pσ) (g) σ) = £fz(t(σ (g) σ)), for any σ e
Γ(Dm). See Gawedzki [10].

Let Sf\M) be the space of generalized functions (distributions or
0-currents) on M. See de Rham [6] and Schwartz [17]. We call the
tensor product £&\M) (x) Γ(Dm), taken over the ring C°°(M), the space
of generalized half-P-forms on M. See Simms [19]. Finally, we have
the space of generalized i-valued half-P-forms on M, Γ = Γ(L)(g)D'(M)®
Γ(Dm). Note that Γ is naturally identified with &\M) by the corres-
pondence 1 (x) T (x) v «- T.

6. Quantum phase space β^p. Let Γ(P) denote the space of smooth,
complex vector fields on M which belong to P at each point of M. A
complex vector field Z on M is said to preserve the polarization P if
[Z, X] e Γ(P) for any XeΓ(P). For each vector field Z, which preserves
P, we define a linear operator δz on Γ by δz(φ (R) T (x) σ) = (Vz<£>) (x) Γ (x)

+ 9(x)Γ(x)J2^1/20", where ZT is defined by (ZT)(A) =
for any smooth 2w-form A on ikf of compact support. See

Gawedzki [10] and Simms [19]. A cross-section 7 6 Γ is called P-horizontal
if gz(7) = 0 for all ZeΓ(P). Then by Lemma 2, a cross-section l(x)Γ(g)
veΓ is P-horizontal if and only if XHT - i\y\{h~1\y\ - 2~\n - 1))T = 0
and (v F)T = 0, for any v as in Lemma 2.

For each integer N9- N > 2r\n — 1), let us denote rN = Λ(iV +
2~x(^ — 1)). Define a submanifold: jlί^ = {(x, y) eM\ \y\ = r^} of Λί with
the inclusion pN: MN -^ M. Let Λ9(ΛO denote the space of smooth q-
forms on Λf. Define η = \y\~\y Γ) J βΛ 6 A271"1 (M). Then 77 satisfies
<j/. Γ) J V = 0. d(|y I) Λ η = i2M and p%(£fXHη) - 0. It follows that ηN =
PNV e A2n~\MN) is non-vanishing and invariant under the flow of XH

restricted to MN. For any A e Λ2w(ikf), A = aΩn with aeC°°(M), let
AN = p%{aη) e h2n~\MN). For any TN e &\MN), let us define TN e 3f\M)
by Γ^(A) = TN(AN), for any 4 G Λ 2 W of compact support. In the
following, we shall determine the subspace β^p of Γ composed of P-
horizontal cross-sections of the form 1 (x) Σ ^ TN 0 v. If we write
{l(g)f,(x)ve ^ T p I TV e ^'(M^)}, then

LEMMA 3. 3^N is non-trivial if and only if N is non-negative. In
this case, ^fj is given by 3ίfl = {1 (x) fN (g) v| TN = Σ*\K\=N CKZK}, where
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cκeC, z = ( z u ••, z n + ί ) , Zj = xj - i r Ϋ V j e C ~ ( M N ) , K = ( k u ••-, k n + 1 ) a n d

Note that

n-l(N + n - 2

which is equal to the multiplicity of the N-th eigenvalue of the Laplacian
Δ acting on functions on Sn. See Berger-Gauduchon-Mazet [2].

7. Kostant quantization for H and Ljk. Following the Kostant
quantization prescription, we shall assign for H and Ljk linear operators
H = ί-1hδXlί + H and Ljk = %-ιhbXάh + Ljk on J T F . We call Ljk the
angular momentum operators. Furthermore, we define L2 — ^ji<k{Ljk)

2

y

which we call the square of angular momentum operators.

LEMMA 4. (1) H\^p = 2~ιh\N + 2~\n — I))2 (multiplication operator).
(2) Ljk(l (x) zA (x) v) = 1 (g) i~ιh{akz

B — aάz
c) (x) v, where z = (zlf , «»+i),

• , as + l , j , ak - 1, , α n + 1 ) αwώ C = (al9 , aά - 1, , αΛ + 1,

αn+1). (3) L2 |̂ .p = h2N(N + n — I) (multiplication operator).

PROOF. Since δXlί = 0 on J T P , we have J^^p =̂  H\*p = 2-W(N +
2~1(tι — I))2. Thus (1) is proved. To prove (2), it is sufficient to note
VXifcl = —ih^Ljk and = 5 ^ v = 0, which follow from Lemma 2. To prove
(3), it is sufficient to note z-z = 0 on Λf̂ .

Summing up, we have the following:

THEOREM. There exists a polarization P on M — T*Sn — {0-section},
which is invariant under the geodesic flow and under the natural
SO(n + l)-action on M. By means of this polarization, the classical
Hamiltonian H and the functions Lάks are geometrically quantized. For
n ^ 3, the corresponding quantum Hamiltonian H has 2~1h2(N + 2r\n — I))2

as the N-th eigenvalue (N ^ 0) with the eigenspace 3ίfl of dimension

2N + n - 1 IN + n - 2\

N \ n-1

Moreover, an operator L2, defined by Σi<fc(£^)2> has h2N(N + n — 1) as
the N-th eigenvalue with the eigenspace JgSP.

As "classical observables", energy H and one-half the square of
angular momenta, 2~ι Σ IA kf are equal, but as "quantum observables",
H and 2"1 Σ Φjk)

2 are different by an additive constant; H = 2-1(L2 +
^2(2-1(^ - I))2).
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A similar observation may be possible for such manifolds as compact
symmetric spaces of rank one. See Besse [3].

8. Appendix. Let Q be the restriction to M of the vertical polari-
zation of p: T*Sn ->Sn, and E the bundle of complex w-forms on M,
vanishing after contraction with any vector from Q. In the following,
we use the same letter p for the restriction of p to M. E is a trivial
bundle and p*μ is a nowhere-vanishing cross-section of E, where μ e
An(Sn) is t h e volume form on Sn. Let (E1/2, c) be the square root structure
for Q and v the cross-section of the trivial bundle Em such that c(v (x) v) =
p*μ. For each vector field Z on M, which preserves the polarization Q,
we define a linear operator δz on Γ(L) (x) Γ(E) by δz(φ (x) v) = (yzφ) (x)
v + φ (x) -S^11'2^. Q-horizontal sections are similarily defined, which are
of the form (fop) ® v for / e C°°(Sn). The space < ^ ρ of Q-horizontal
sections is naturally identified with C°°(SW) by the correspondence {f°p) (x)
v<-*f. Since Xifc preserves Q, we can define a linear operator Ljk by
£iAs = i~ιhδXjk + Lifc on 3$fq. We also call Lifc the angular momentum
operator. Furthermore, if we define U — Σi<& (Ljk)\ then we have
L\(f°V)®v) = ((h2Δf)°p)®v. Thus, under the identification of ^fq

with C™{β>n), L2 is nothing but h2 times the Laplacian Δ acting on func-
tions on Sn, (the Casimir operator). Since XH does not preserve Q, we
cannot quantize H in the same way as above as a linear operator on
£έfq. But, by Lemma 4 and the above calculation, it is reasonable to say
that if we quantize the classical Hamiltonian H as an operator on ^fQ,
then we should have the operator H = 2~1(L2 + h\2-\n - I))2) as the
corresponding quantum Hamiltonian. If we identify 3ίfq with C°°(Sn),
then H is given by 2"W(Δ + (2~\n - I))2).
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