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We present a computational scheme, GRIP ~geometric random inner products!, for testing the quality of

random number generators. The GRIP formalism utilizes geometric probability techniques to calculate the

average scalar products of random vectors distributed in geometric objects, such as circles and spheres. We

show that these average scalar products define a family of geometric constants which can be used to evaluate

the quality of random number generators. We explicitly apply the GRIP tests to several random number

generators frequently used in Monte Carlo simulations, and demonstrate a statistical property for good random

number generators.

DOI: 10.1103/PhysRevE.67.016113 PACS number~s!: 02.50.Ng

I. INTRODUCTION

Monte Carlo methods are among the most widely used

numerical algorithms in computational science and engineer-
ing @1#. The key element in a Monte Carlo calculation is the
generation of random numbers. Although a truly random
number sequence produced by either a physical process such
as nuclear decay, an electronic device etc., or by a computer
algorithm, may not actually exist, a new and computationally
easy-to-implement scheme to investigate random number
generators is always highly desirable.

There have been many proposed schemes for the quality
measure of random number generators @2–12#. These com-
putational tests are based either on probability theory and
statistical methods ~for example, the x2 test, the Smirnov-
Kolmogorov test, the correlation test, the spectral test, and
the DieHard battery of randomness tests!, or on mathemati-
cal modeling and simulation for physical systems ~for ex-
ample: random walks and Ising model simulations!. These
methods also open the door to studying the properties of
random number sequences such as randomness and complex-
ity @13#. Some important attempts at an operational definition
of randomness were previously developed by Kolmogorov
and Chaitin ~algorithmic informational theory! @14–17# and
by Pincus ~approximate entropy! @18#.

In this paper, we study a method to measure
n-dimensional randomness which we denote by GRIP ~geo-
metric random inner products!. One of our main purposes in
formulating the GRIP tests is to allow the characterization of
geometric correlations which may cause unexpected errors in
Monte Carlo simulations. The GRIP family of tests is based
on the observation that the average scalar products of ran-
dom vectors produced in geometric objects ~e.g., circles and
spheres!, define geometric constants which can be used to
evaluate the quality of random number generators. After pre-
senting an example of a GRIP test, we exhibit a computa-
tional method for implementing GRIP, which is then used to
analyze a number of random number generators. We then
discuss the GRIP formalism in detail and show how a ran-

dom number sequence, when converted to random points in
a space defined by a geometric object, can produce a series
of known geometric constants. Later we introduce additional
members within the GRIP family. We then present results for
configurations of four, six, and eight random points in an n

ball. Finally, we conclude by discussing how the GRIP test
quantifies random number generators by explicitly adding a
new geometric property of truly random number sequences
along with other known properties studied by previously pro-
posed schemes @2–13#.

II. GENERAL DESCRIPTION OF THE GRIP FORMALISM

The GRIP scheme is derived from the theory of random
distance distribution for spherical objects, and can be gener-
alized to other geometric objects with arbitrary densities
@19,20#. First, three random points (rW1 , rW2 , and rW3) are in-
dependently produced from the sample space defined by a
geometric object. We then evaluate the average inner product

^rW12•rW23& constructed from two associated random vectors,
rW125rW22rW1 and rW235rW32rW2 . For a geometric object such as
an n-ball of uniform density with a radius R, the analytical
result is a geometric constant which can be expressed in
terms of the dimensionality n of the space @19,20#:

^rW12•rW23&n52

n

n12
R2. ~1!

A simple derivation of Eq. ~1! can be found in the Appendix.
The following procedures are the numerical implementa-

tion of our testing programs. A random number generator is
used to produce a series of random points rW1 , rW2 , and rW3 ~n
coordinates in the range of 2R and R for each point! such
that these points are distributed in an n-dimensional spherical
ball B of radius R, where

B5$~x1 ,x2 , . . . ,xn!:x1
2
1x2

2
1¯1xn

2<R2%. ~2!

Note that the points are accepted only if the condition ~2! is
satisfied, and rejected otherwise. We then compute a series of
values for rW12•rW23 . If rW12•rW23 is evaluated N times ~Monte
Carlo steps!, then statistically we expect
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lim
N→`

1

N (
i51

N

~rW12•rW23! i52

n

n12
R2, ~3!

as predicted by Eq. ~1!.

III. RANDOM NUMBER GENERATORS

The following random number generators are used in the
GRIP test.

~1! LCG1—a 32-bit ~multiplicative! linear congruential
generator @2,3# using

xn5a3xn211c mod m , ~4!

where a516 807, c50, and m5231
21.

~2! LCG2—a 48-bit ~multiplicative! linear congruential
generator @21# with a5689 096 024 602 61, c50, and m

5248.
~3! LCG3—a 48-bit ~multiplicative! linear congruential

generator @21# with a5252 149 039 17, c511, and m5248.
We note that LCG3 and drand48, a standard library function
in Unix systems, use the same algorithm.

~4! F55a—a lagged Fibonacci generator @2,3# using

xn5~xn2p(xn2q! mod m , ~5!

where p555, q524, (51 , and m5231.
~5! F55b—a lagged Fibonacci generator with p555, q

524, (52 , and m5231.
~6! F100—a lagged Fibonacci generator @2# with p

5100, q537, (52 , and m5230.
~7! F378—a lagged Fibonacci generator with p5378, q

5107, (51 , and m5231.
~8! F23209—a lagged Fibonacci generator with p

523 209, q59739, (51 , and m5231.
~9! R31—a generalized feedback shift register ~GFSR!

generator @2,8–12# using

xn5xn2p % xn2q , ~6!

where p531, q53, and % is the bitwise exclusive OR op-
erator.

~10! R250—a GFSR generator with p5250 and q5103.
~11! R9689—a GFSR generator with p59689 and q

54187.
~12! R44497—a GFSR generator with p544 497 and q

521 034.
~13! R132049—a GFSR generator with p5132 049 and

q554 454.
~14! PENTA31—a four-tap shift-register-sequence

random-number generator @9–12,22,23# using

xn5xn2p % xn2q1
% xn2q2

% xn2q3
, ~7!

where p531, q1523, q2511, q359, and % is the bitwise
exclusive OR operator.

~15! PENTA89—a four-tap shift-register-sequence
random-number generator with p589, q1569, q2540, and
q3520.

~16! Ziff31—a four-tap shift-register-sequence random-
number generator with p531, q1513, q258, and q353
@22,23#.

~17! Ziff89—a four-tap shift-register-sequence random-
number generator with p589, q1561, q2538, and q3533.

~18! Ziff9689—a four-tap shift-register-sequence random-
number generator with p59689, q15471, q25314, and q3

5157.
~19! durxor—a generator selected from the IBM ESSL

~Engineering and Scientific Subroutine Library! @24#.
~20! durand—a generator selected from the IBM ESSL

~Engineering and Scientific Subroutine Library! and the se-
quence period of durand is shorter than durxor @24#.

~21! ran–gen—one of the subroutines in IMSL libraries
from Visual Numeric @25#.

~22! Random—a Fortran 90/95 standard intrinsic random
number generator @26#.

~23! Weyl—a Weyl sequence generator @27,28#,

xn5$na%, ~8!

where $x% is the fractional part of x, and a is an irrational
number such as &.

~24! NWS—a nested Weyl sequence generator @27,28#,

xn5$n$na%%. ~9!

~25! SNWS—a shuffled nested Weyl sequence generator
@27,28#,

sn5M $n$na%%1
1
2 , ~10!

xn5$sn$sna%%, ~11!

where M is a large positive integer.

IV. OTHER MEMBERS OF THE GRIP FAMILY

For practical computational purposes, we may wish to
transform a random number sequence from a uniform den-
sity distribution to one which is nonuniform. One of the most
important nonuniform density distributions is the Gaussian
~normal! distribution P(r) with mean zero and standard de-
viation s,

Pn~r !5

1

~2p !n/2sn e2~1/2!~r2/s2!. ~12!

Here *0
`Pn(r)dr51, r5(x1

2
1¯1xn

2)1/2, and n is the space

dimensionality. One can use either the Box-Muller transfor-
mation method to generate a random number sequence with
a Gaussian density distribution, or use available subroutines
from major computational scientific libraries such as IBM
ESSL and IMSL @24,25#. By applying the probability density
function of the random distance distribution as discussed in
Ref. @20#, one can add a new GRIP member to investigate the
quality of a Gaussian random number generator, and this
new GRIP test can be expressed as

^rW12•rW23&n52ns2. ~13!
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A very common situation arises when one has to produce
random points uniformly distributed on the surface of an n

sphere of radius R. Some general computational techniques
for doing this are summarized in Refs. @2,19#. We can then
use

^rW12•rW23&n52R2, ~14!

to examine the quality of such transformed random number
generators as discussed in Ref. @29#.

Another application of the GRIP formalism is in stochas-
tic geometry. We can design a test scheme for a configuration
utilizing any number of random points @29#, and these tests
can be included in the GRIP family. Among the tests are the
following.

~1! Four uniform random points configuration for an n

ball of radius R,

^~rW12•rW23!~rW34•rW41!&n5

n~n11 !

~n12 !2 R4, ~15!

^~rW12•rW34!~rW23•rW41!&n5

2n

~n12 !2 R4, ~16!

^rW13•rW24&n50. ~17!

~2! 2m uniform random points configuration for an n ball
of radius R,

^~rW12•rW23!¯~rW2m21 2m•rW2m 1!&n

5~21 !m
n~nm21

11 !

~n12 !m R2m, ~18!

where 2m (m52,3,4, etc.! is a positive even number.
A derivation of Eq. ~15! can be found in the Appendix.

Equations ~16!–~18! can be derived in a similar manner.

V. RESULTS

We summarize the computational results using Eq. ~3!
when n53 and 9 in Table I. The results obtained from Eq.
~18! when m52,3,4 and n53 and 9 are presented in Tables
II, III, and IV. Note that in Tables I–IV, RNG denotes the
specific random number generator defined in the text, ‘‘Er-
ror’’ is measured in terms of how many standard derivations
s @8–12# the result differs from the theoretical number in
absolute value, and the check marks ~A! designate those
RNG’s where the errors are less than 3s. We consider those
RNG’s whose errors are larger than 3s unacceptable, as they
may contain subtle n-dimensional nonrandom patterns hid-
den in random number sequences produced by those RNG’s.

TABLE I. Computed results for ^rW12•rW23&n , where ‘‘Expected’’ is the exact result obtained from Eq. ~1!.

For each entry in the table, N5108 was used. The results have been rounded off to 10 significant digits. See

text for additional details.

RNG n53 Error Rating n59 Error Rating

LCG1 20.600 023 482 4 0.38574s A 20.818 191 721 0 0.21441s A

LCG2 20.600 063 774 9 1.04753s A 20.818 196 741 8 0.32317s A

LCG3 20.599 965 787 7 0.56203s A 20.818 154 896 6 0.58295s A

F55a 20.600 026 485 5 0.43511s A 20.818 001 573 0 3.90347s

F55b 20.599 962 385 5 0.61798s A 20.818 377 153 0 4.22972s

F100 20.599 922 968 6 1.26561s A 20.818 144 811 9 0.80136s A

F378 20.600 037 616 8 0.61796s A 20.818 241 341 4 1.28886s A

F23209 20.599 950 821 5 0.80803s A 20.818 182 126 6 0.00668s A

R31 20.600 036 514 6 0.59991s A 20.818 138 813 5 0.93172s A

R250 20.599 925 280 4 1.22755s A 20.818 202 857 5 0.45560s A

R9689 20.599 889 642 5 1.81311s A 20.818 139 299 2 0.92077s A

R44497 20.599 829 528 0 2.80110s A 20.818 203 037 1 0.45949s A

R132049 20.599 971 014 7 0.47621s A 20.818 204 495 5 0.49106s A

PENTA31 20.599 872 086 7 2.10175s A 20.818 162 743 0 0.41304s A

PENTA89 20.600 130 419 7 2.14242s A 20.818 172 044 3 0.21164s A

Ziff31 20.599 849 912 2 2.46602s A 20.818 301 441 0 2.59027s A

Ziff89 20.599 972 497 7 0.45181s A 20.818 203 546 6 0.47050s A

Ziff9689 20.599 932 334 3 1.11162s A 20.818 176 395 9 0.11741s A

durxor 20.599 914 506 2 1.40452s A 20.818 119 610 8 1.34706s A

durand 20.599 920 364 2 1.30827s A 20.818 218 547 4 0.79528s A

ran–gen 20.599 838 783 2 2.64900s A 20.818 207 066 1 0.54667s A

Random 20.599 929 863 4 1.15224s A 20.818 250 867 8 1.49512s A

NWS 20.629 874 106 5 463.606s 20.825 614 262 9 161.111s

SNWS 20.599 694 521 4 5.01971s 20.817 973 418 9 4.51291s

Expected 20.600 000 000 0 20.818 181 818 1
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Hence caution should be exercised when these generators are
put into use.

We observe that NWS and Weyl ~results not shown! per-
form poorly in n53 and 9 on all GRIP tests, and hence these
are not recommended for any serious Monte Carlo simula-
tion. We also note from the n59 results in Table II that these
results are clearly biased to larger values ~except R31 and
NWS! compared to the expected value, and reveal much
larger errors than the other cases. One interpretation may be
that ^(rW12•rW23)(rW34•rW41)&9 is a more sensitive and dedicated
computational test for investigating random number genera-
tors than other GRIP tests. For RNG’s such as LCG1,
F23209, R250, R44497, Ziff31, Ziff89, Ziff9689, and Ran-
dom whose errors are less than 3s in all the GRIP tests, we
quantify these RNG’s as high quality, although additional
tests for different geometric configurations in other dimen-
sions should be further investigated.

Reference @29# contains additional results for random
number generators based on modern algorithms such as the
data encryption standard ~DES! @2,3#, and on turbulent elec-
troconvection @30#, along with the computed results from
Eqs. ~13! and ~14!, and results from other geometric objects
such as an n cube.

VI. GRIP ANALYSIS

In the following, we analyze the relationship between
GRIP and a random number sequence, and show how a good

random number sequence, when converted to random points
in a space defined by a geometric object, can produce a series
of known n-dimensional geometric constants. A random
number sequence generated from a random number genera-
tor can be written as

a1a2a3a4a5a6a7a8a9a10 . . . , ~19!

where each number a1 ,a2 , . . . has been computed to 16
significant digits in the present work. When the sequence is
converted to represent random points in a two-dimensional
geometric object, the random numbers in Eq. ~19! can then
be grouped in pairs as

~a1a2!~a3a4!~a5a6!~a7a8!~a9a10!. . . , ~20!

where Cartesian coordinates are used. The first set of random
points $rW1 ,rW2 ,rW3% can thus be identified as

rW15~a1 ,a2!, rW25~a3 ,a4!, rW35~a5 ,a6!. ~21!

GRIP then uses rW1 , rW2 , and rW3 to evaluate the average scalar
product, which can be computed by rewriting

TABLE II. Computed results for ^(rW12•rW23)(rW34•rW41)&n , where ‘‘Expected’’ is the exact result obtained

from Eq. ~24!. For each entry in the table, N5106 was used. The results have been rounded off to 10

significant digits. See text for additional details.

RNG n53 Error Rating n59 Error Rating

LCG1 0.480 326 220 7 0.38729s A 0.745 160 858 6 1.82074s A

LCG2 0.479 312 580 5 0.81684s A 0.747 142 341 9 4.47138s

LCG3 0.479 800 297 3 0.23710s A 0.746 097 024 7 3.07191s

F55a 0.479 472 279 1 0.62583s A 0.745 044 686 3 1.66400s A

F55b 0.480 251 112 9 0.29780s A 0.746 028 097 1 2.98178s A

F100 0.479 333 365 5 0.79406s A 0.747 173 425 4 4.51577s

F378 0.479 240 077 4 0.90314s A 0.747 946 360 4 5.53490s

F23209 0.478 891 696 2 1.31638s A 0.745 852 738 1 2.74513s A

R31 0.481 674 398 6 1.98036s A 0.743 751 213 1 0.06789s A

R250 0.479 246 168 2 0.89487s A 0.745 934 636 1 2.85605s A

R9689 0.480 480 236 5 0.56857s A 0.746 449 920 8 3.54730s

R44497 0.480 585 752 8 0.69443s A 0.745 035 278 8 1.65054s A

R132049 0.479 110 831 7 1.05649s A 0.746 629 847 5 3.78132s

PENTA31 0.479 709 543 3 0.34451s A 0.747 164 383 2 4.48989s

PENTA89 0.478 951 282 9 1.24614s A 0.746 251 912 0 3.27910s

Ziff31 0.479 977 626 4 0.02652s A 0.745 160 015 7 1.82056s A

Ziff89 0.480 608 958 3 0.72163s A 0.745 540 987 5 2.33093s A

Ziff9689 0.480 253 105 1 0.30062s A 0.745 934 238 7 2.85333s A

durxor 0.479 836 356 8 0.19433s A 0.746 112 464 7 3.09483s

durand 0.479 963 554 4 0.04317s A 0.746 827 102 8 4.05046s

ran–gen 0.479 737 323 6 0.31143s A 0.746 557 542 4 3.68475s

Random 0.482 301 244 0 2.72522s A 0.744 845 091 0 1.40049s A

NWS 0.565 091 874 9 86.8004s 0.729 359 623 4 19.5459s

SNWS 0.478 633 590 1 1.62413s A 0.746 113 925 1 3.09980s

Expected 0.480 000 000 0 0.743 801 652 8
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^rW12•rW23&5

1

N (
i51

N

(
j51

2

~a6i241 j2a6i261 j!

3~a6i221 j2a6i241 j!, ~22!

where N is a large positive integer. When the geometric ob-
ject is a circle of radius R and uniform density, we expect

^rW12•rW23&'20.5R2 as predicted by Eq. ~1!.
The analysis for two-dimensional GRIP can be immedi-

ately generalized to the n-dimensional case. When the se-
quence in Eq. ~19! is used to generate random points in an
n-dimensional spherical object, we can regroup Eq. ~19! as
follows:

~a1¯an!~an11¯a2n!~a2n11¯a3n!~¯ !~¯ !~¯ !. . . .
~23!

The average scalar product of rW12•rW23 can then be expressed
as

^rW12•rW23&5

1

N (
i51

N

(
j51

n

~a3in22n1 j2a3in23n1 j!

3~a3in2n1 j2a3in22n1 j!. ~24!

When the geometric object is an n ball with a radius R51
and a uniform density, we expect from Eq. ~1! that the result
of Eq. ~24! should be a geometric constant, 2n/(n12).

VII. CONCLUSIONS

We have presented a computational paradigm, GRIP, for
evaluating the quality of random number generators in mul-
tiple ~n-dimensional! levels. We then demonstrate that GRIP
gives rise to a geometric property characterizing truly ran-
dom number generators. We have shown how a random
number sequence, when converted to random points in a
space defined by a geometric object, can produce a series of
known geometric constants. Several random number genera-
tors were selected to run our GRIP tests, and they are graded
based on the 3s error criterion. Finally, we note that one
implication of our work is that computational scientists
should test the random number generators they use in their
simulations, and verify that their random number generators
pass as many of the proposed tests as possible.
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PENTA89 20.240 516 074 8 0.68886s A 20.555 130 919 7 0.91090s A

Ziff31 20.239 123 375 9 1.17676s A 20.555 829 828 6 1.86798s A

Ziff89 20.239 424 598 6 0.77000s A 20.555 491 103 1 1.41120s A

Ziff9689 20.239 216 682 3 1.04965s A 20.554 371 687 6 0.13627s A

durxor 20.239 336 568 5 0.88983s A 20.554 875 968 3 0.55897s A

durand 20.239 676 774 6 0.43155s A 20.555 594 143 1 1.54743s A

ran–gen 20.239 893 600 6 0.14276s A 20.555 514 082 2 1.43941s A

Random 20.242 062 399 1 2.74386s A 20.555 326 364 5 1.18388s A

NWS 20.306 122 274 9 73.1801s 20.543 001 338 6 16.2303s

SNWS 20.239 966 640 7 0.04487s A 20.555 872 308 5 1.93763s A

Expected 20.240 000 000 0 20.554 470 323 0
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APPENDIX: DERIVATION OF Š„r¢12"r¢23…‹
n

AND Š„r¢12"r¢23…

Ã„r¢34"r¢41…‹
n

We derive the analytical result of Eq. ~1! for a circle (n

52) of radius R and uniform density. The same derivation
can be applied to the case of n dimensions where n>3. We
label three independent random points as 1, 2, and 3 in Fig.
1, and then calculate

rW12•rW235r12r23 cos u52r12r23 cos a , ~A1!

where a1u5p . From the triangle formed by the random
points, we then have

r31
2

5r12
2

1r23
2

22r12r23 cos a . ~A2!

Extending this two-dimensional case to the n-dimensional
case, and combining Eqs. ~A1! and ~A2!, we then evaluate

^rW12•rW23&n52

1

2
^r12

2
1r23

2
2r31

2 &n52

1

2
^r12

2 &n

52

1

2
E

0

2R

Pn~r !r2dr52

n

n12
R2, ~A3!

where r[r12 and we have utilized the fact that rW12 , rW23 , and
rW31 are three independent random vectors. The functions
Pn(r) in Eq. ~A3!, which can be found in Refs. @19,20,31–
36#, are the probability density functions for the random dis-
tance r between two random points in an n-dimensional
spherical ball of radius R and uniform density.

We consider next the analytical result in Eq. ~15! for a
circle (n52) of radius R and uniform density. A similar
derivation can lead to Eqs. ~16!, ~17!, and ~18!, as well as to
the case of n dimensions where n>3. We begin by express-
ing four random points rW1 , rW2 , rW3 , and rW4 in Cartesian coor-
dinates, where rW i5(x i ,y i). The expression in Eq. ~15! can
then be evaluated by writingFIG. 1. Three random points configuration in a circle.

TABLE IV. Computed results for ^(rW12•rW23)(rW34•rW45)(rW56•rW67)(rW78•rW81)&n , where ‘‘Expected’’ is the exact

result obtained from Eq. ~24!. For each entry in the table, N5106 was used. See text for additional details.

RNG n53 Error Rating n59 Error Rating

LCG1 0.135 140 448 36 1.14563s A 0.448 409 903 3 0.45119s A

LCG2 0.134 603 480 25 0.31160s A 0.447 900 972 0 1.14776s A

LCG3 0.134 594 842 74 0.30013s A 0.450 139 109 2 1.90643s A

F55a 0.134 793 830 40 0.60703s A 0.447 299 025 3 1.97972s A

F55b 0.134 809 559 91 0.62657s A 0.449 843 729 7 1.50773s A

F100 0.135 268 986 61 1.34118s A 0.449 237 545 6 0.68210s A

F378 0.133 742 948 67 1.02105s A 0.449 082 210 0 0.46735s A

F23209 0.133 646 768 54 1.17825s A 0.448 361 681 9 0.51580s A

R31 0.137 021 008 35 3.94609s 0.446 342 175 7 3.31142s

R250 0.134 120 025 93 0.43419s A 0.448 392 677 3 0.47485s A

R9689 0.135 421 421 80 1.56498s A 0.449 432 650 9 0.94622s A

R44497 0.135 124 568 49 1.12330s A 0.447 998 707 9 1.01310s A

R132049 0.134 205 319 96 0.30080s A 0.448 278 512 4 0.63130s A

PENTA31 0.133 793 533 03 0.93659s A 0.449 325 134 7 0.80024s A

PENTA89 0.133 268 761 04 1.76752s A 0.447 289 046 0 1.99025s A

Ziff31 0.135 303 988 59 1.39176s A 0.449 324 341 7 0.79657s A

Ziff89 0.134 159 909 60 0.36759s A 0.449 596 479 4 1.16867s A

Ziff9689 0.133 126 247 67 1.99475s A 0.448 318 538 9 0.57655s A

durxor 0.134 755 849 92 0.54729s A 0.448 671 385 1 0.09328s A

durand 0.135 199 790 76 1.24225s A 0.448 255 871 0 0.66290s A

ran–gen 0.135 356 217 59 1.46385s A 0.447 975 021 3 1.04562s A

Random 0.135 171 001 52 1.19057s A 0.448 359 930 6 0.51967s A

NWS 0.190 588 119 06 65.9349s 0.434 860 321 0 19.6506s

SNWS 0.134 169 611 46 0.35408s A 0.448 844 043 1 0.14295s A

Expected 0.134 400 000 00 0.448 739 840 1
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^~rW12•rW23!~rW34•rW41!&25

E
2R

R

dx1E
2AR2

2x1
2

AR2
2x1

2

dy1¯E
2R

R

dx4E
2AR2

2x4
2

AR2
2x4

2

f 13 f 2dy4

E
2R

R

dx1E
2AR2

2x1
2

AR2
2x1

2

dy1¯E
2R

R

dx4E
2AR2

2x4
2

AR2
2x4

2

dy4

5

3

8
R4, ~A4!

where

f 15~x22x1!~x32x2!1~y22y1!~y32y2!,

f 25~x42x3!~x12x4!1~y42y3!~y12y4!.

A derivation of the general result using the probability density functions Pn(r) in Eq. ~A3! can be found in Ref. @29#.
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