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ABSTRACT 
Generic shape recognition is the problem of determining the 

pose and dimensions of objects for which only topological models 
are available, that is, the shape of the object is known but the size is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
unknown. One such application domain is the handling and sorting 
of postal objects. Because metrical information relating object 
features to one another is not available, the more common model- 
based approaches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare inadequate. Our system, INGEN (INference 
engine for GENeric object recognition), uses a data-driven approach 
to recognize objects with generic shapes such as parallelepipeds and 
cylinders when the dimensions of the objects are unknown. Size and 
pose estimation are facilitated by a geometric reasoning process 
which extends objects in the direction away from the sensor until 
they physically contact other objects in the scene. We show the 
results of experiments which use the INGEN system to guide a robot 
in the manipulation of postal objects. 

1. INTRODUCTION 
Over the years it has become clear to us that there cannot exist 

universally applicable strategies for the recognition of 3D objects 
from range maps - or, for that matter, from sensory data of any 
type. The reason for this has to do with the fact that the types of dis- 
tinctions that a system must make between different objects depend 
upon the uses for which object recognition is being camed out. For 
example, the types of distinctions needed for identifying objects in a 
robotic assembly cell are different from the types of distinctions 
necessary for sorting parcels in a postal mail stream. For the former, 
it will usually be necessary to take into account the precise geometric 
attributes of the various features of objects, since such attributes are 
important for making distinctions between industrial objects. For the 
latter, on the other hand, it will usually be sufficient to classify an 
object as, say, a “box” for large variations in the dimensions of the 
object. If one of the dimensions becomes too small, the object might 
then be called a “flat,” again, over large variations in the other two 
dimensions. 

The two different types of problems outlined above require 
fundamentally different approaches to object recognition. Where 
industrial objects are involved, a recognition system must make pre- 
cise measurements of the various geometric attributes of the object 
surfaces. On the other hand, for other kinds of objects such as postal 
objects, a recognition system must be able to ignore the finest level 
detail, which in most cases would correspond to irrelevant details 
such as “crumpliness” of the surfaces, and instead concentrate on 
the overall object shape. 

These types of problems lie at opposite ends of the spectrum of 
3-D object recognition as described by Bajcsy and Solina [l]. At one 
end of the spectrum we have feature-based object recognition such as 
recognition of industrial objects where we have complete 3-D 
models for all objects that might appear in a scene. The goal is to 
match scene features with features in the object database, thus 
finding the identity and the pose of objects in the scene. Most efforts 
in object recognition have focused on this domain. At the other end 
of the spectrum we have generic object recognition such as 
classification of postal objects. In this case we have incomplete 
information about objects that might appear in the scene, in the sense 
that objects are assumed to belong to generic categories based on 
gross shape where each category allows for large variation in object 
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dimensions. This domain is relatively new and traditional feature- 
based approaches are not easily adapted to it. Although the use of 
geometric constraints between objects is a new approach to generic 
object recognition. a number of researchers have addressed various 
aspects of the generic object recognition problem and influenced our 
work [21,22,4,5,8,9,23,11,10,26,2,3, 1,25.14,15,12, 131. 

In feature-based recognition the most important issues are the 
data representation and the search procedure. For example, the 3D- 
POLY system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16, 71 makes use of a highly optimized data structure 
and a hypothesize-and-verify search process to recognize industrial 
objects in low-order polynomial time. In this paper we discuss the 
INGEN (INference engine for GENeric object recognition) system 
which uses a hypothesize-and-refine approach to determine the pose 
and sue of generic shaped objects. The hypothesize-and-refine 
approach, in contrast to the hypothesize-and-verify approach, does 
not emphasize the importance of object representation and efficient 
search. The system has to deal with only a few generic shapes - 
parallelepipeds, cylinders, and irregulars - and uses data-driven 
refinement rather than model-based search. 

The hypothesize-and-refine approach of INGEN begins with a 
rough object hypothesis. The object hypothesis contains information 
regarding the shape, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApose, and dimensions of the object. Rather zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthan 
simply verifying the correctness of this initial hypothesis we perform 
operations that can produce superior estimates of the object’s attri- 
butes. This process is referred to as the object hypothesis refinement 
process. More precisely, for INGEN we define refinement as the pro- 
cess of adding new information to an object hypothesis or improving 
the accuracy of information in an object hypothesis. 

Important issues in INGEN are coping with surface and edge 
irregularities, developing a control structure which allows varied 
approaches to computing object attributes, and using information 
derived from the geometrical contacts between objects to find object 
dimensions. In [I91 the domains, approaches and implementations of 
3D-POLY and INGEN are compared and contrasted. This paper 
concentrates on the use of geometric reasoning for the determination 
of object size. Previous publications 116, 17, 181 describe other 
aspects of this system such as the range data acquisition, range data 
processing, robot manipulation planning, flow of control, and attri- 
bute computation. 

The INGEN system has been used to successfully guide robot 
manipulation experiments involving postal objects. Fig. la shows a 
pile of postal objects. Each object in the pile has an overall generic 
shape, despite the irregularities of the surfaces, that belongs to one of 
a small number of categories. Fig. lb shows range data derived from 
a structured light scan of the scene and Fig. IC shows the segmented 
range map. Range data is collected by a structured light scanner 
mounted above the robot work area. In Fig. 2, the photo on the left 
shows the robot picking the first object from the pile. The center 
photo shows the results after the first three objects have been 
stacked. The photo on the right shows the final result where the 
objects have been moved to two stacks, one to the left of the original 
pile and the other to the right. Because of the depth of the original 
pile most of the objects are totally occluded in the initial scene. Data 
must be collected and INGEN must be run several times as the robot 
removes the topmost objects and more objects are uncovered. In this 
example INGEN was run four times. Three objects were found in 
the first run and two objects were found in the second and third runs. 
In the final run INGEN determined that the scene was empty. 
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Figure 1: (a) A pile of postal objects, (b) range data for the scene, and (c) the segmented range map for the scene. 

Figure 2: Seven postal objects in a pile are picked up and stacked by a robot using INGEN. 

2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOVERVIEW OF INGEN 
The INGEN system consists of five modules: Hypothesis Gen- 

eration, Attribute Refinement, Merging, Aggregation, and Geometric 
Reasoning. The flow of information between these modules is 
shown in Fig. 3. We will first give an overview of the flow of con- 
trol in INGJW and then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill discuss the operation each module indi- 
vidually. We concentrate on the Geometric Reasoning Module and 
provide a brief discussion of the operation of the other modules. 

The overall flow of control in INGEN is controlled by the 
Focus of Attention Mechanism. The first step is hypothesis genera- 
tion. As described previously, an object hypothesis is created for 
each surface in the scene and added to the Current Scene Interpreta- 
tion. As object hypotheses are refined the Current Scene Interpreta- 
tion database is continuously updated. The next step is Attribute 
Refinement. For each hypothesis in the Current Scene Interpretation 
we compute a number of attributes in an entirely data-driven manner. 
The third step is Merging. The surfaces of all of the object 
hypotheses (single-surface object hypotheses at this point) are exam- 
ined and if hypotheses with compatible surfaces (coplanar, 
cocylindrical, or coirregular) are found, and the hypotheses them- 
selves are compatible, then they are merged into a single object 
hypothesis. The Attribute Refinement Module is then called upon to 
recompute the attributes of the newly modified hypothesis. The 
fourth step is Aggregation. The relations between adjacent surfaces, 

. and therefore hypotheses, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare examined and if it is determined that 
the adjacent hypotheses actually are parts of the same object then 
they are combined. The Attribute Refinement Module is then called 
upon to recompute the attributes of the newly modified hypothesis. 
Notice that merging involves combining hypotheses that are separate 
because surfaces were segmented into multiple parts due to noise or 
occlusion. Aggregation, on the other hand, combines hypotheses 
that are separate because distinct object surfaces were present in the 
scene. The. iinal step is Geometric Reasoning. When a single range 
sensor is used there will always be uncertainty about the extent of 
objects in the direction away from the sensor. The geometric reason- 
ing process can be thought of as “growing” the object in a particular 
direction until it comes into contact with another object in the scene. 

This allows INGEN to determine the maximum extent of the object 
and it also helps to ensure that the scene interpretation is geometri- 
cally consistent by ensuring that object hypotheses do not intersect 
one another. As before, the Attribute Refinement Module is then 
called upon to recompute the attributes of the newly modified 
hypothesis. 

The most impoltant aspect of the flow of control within 
INGEN is that all of the object hypotheses are created at the begin- 
ning of the recognition process and all are refined incrementally and 
simultaneously until the final scene interpretation is produced. This 
approach is necessary because the geometric reasoning process 
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Figure 3: The INGEN system. 
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requires information about the entire scene interpretation to iind the 
extent of a particular object. Although there might appear to be 
some redundancy in INGEN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbecause the Attribute Refinement 
Module computes values for object attributes as many as four zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtimes 
(after hypothesis generation, merging, aggregation, and geometric 
reasonmg) during the recognition process. this is not the case. The 
Attribute Refinement Module will only recompute attributes that 
depend on attributes that have been changed by some other module. 

Currently. when INGEN makes a hypothesis combination deci- 
sion it is committed to that decision even if further processing (attri- 
bute refinement or geometric reasoning) uncovers a problem. A 
backtracking conml scheme is under development which will handle 
this situation. It will allow the Merging and Aggregation Modules, 
which are the largest sources of error in INGEN, to back out of deci- 
sions to combine hypotheses if the Attribute Refinement or 
Geometric zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAReasoning Modules detect problems with the combmed 
hypothesis. Hypotheses will be evaluated based on a data fit meas- 
ure and a visibility measure. The data fit measure will evaluate how 
well the hypothesis surfaces and edges fit the model surfaces and 
edges. The visibility measure will evaluate how well the visible 
parts of the object hypothesis compare with the parts of the object 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare expected to be visible when occlusion has been taken into 
account. 

In Table 1 we summarize some interesting characteristics of 
these modules. The Focus column shows the extent of the interpreta- 
tion which the module focuses on: S refers to single objects and A 
refers to all objects. The Driven column shows the basic approach of 
the module: D refers to a data-driven approach and M refers to a 
model-driven approach. The Features column shows the data 
features used by the module: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS refers to surfaces, E refers to edges, 
V refers to vertices, and R refers to relations. 

As we discuss the operation of each module we will make 
reference to the two postal scenes shown in Figs. 4 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. This data 
was supplied by the GE/RCA - Advanced Technclogy Labs. INGEN 
has also been used successfully with data supplied by SRI and ERIM 
as well as with data from various sensors at the Purdue Robot Vision 

Hypothe~.iisGeneratiOn S 
AmibuteRe6nemmt S 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM a i n e  
Aggregation A 
GeomehicReasoning A 

Table 1: INGEN module characteristics. 
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Lab. As shown in Fig. 4, scene 1 contains zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree objects. The top- 
most object is a letter which is lying on two boxes, one of which is 
lying on top of the other. As shown in Fig. 5, scene 2 contains four 
objects. The topmost object is a flat @ostal terminology for large 
thick letter or a magazine) which lies across a box and divides it into 
two segments. The other two objects are a bundle of letters and a 
package of business reply cards. 

3. HYPOTHESIS GENERATION 
The accuracy of the initial hypotheses used by INGEN is less 

critical than in most other recognition systems because instead of 
just verifying the commess of the initial hypotheses INGEN will 
actually improve them. For each surface in the scene we create an 
object hypothesis. Initially, each object inherits its attributes from 
the attributes of its single surface. Other information available for the 
scene such as edges, vertices. and relations is used for refinement but 
is not used for hypothesis generation. Only the most basic informa- 
tion is required at the start of the recognition process. Later steps of 
the recognition p m s s  will correct initial errors and improve the 
accuracy of the object hypotheses. 

The input to INGEN is a scene description consisting of four 
types of features extracted from the r;inge data of a scene: surfaces, 
edges, vertices. and relations. AU of the features have sets of attri- 
butes which characterize them. Surfaces include planar, cylindrical 
and irregular types. The irregular type is used to characterize sur- 
faces that are generally planar but have wide variations in the local 
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Figure 4: Range data plot and segmentation for scene 1. 

Segmentation 

Figure 5: Range data plot and segmentation for scene 2. 
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surface normals. Edges zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare straight l i i  features which separate sur- 
faces. Vertices are points where edges are joined. A relation 
involves two surfaces which are adjacent in the scene and any 
number of edges which lie along their common boundary. Some 
relation attributes are: boundary type (concave, convex, occluded, 
occluding, or unknown). lccal measurements of the angle and jump 
discontinuities at the boundary, and global measurements such as the 
angle between the average normals of the surfaces. 

The initial object hypothesis consists mostly of information 
derived from the surface which supports it. The object type is based 
on the surface type. A cylindrical surface gives rise to a cylindrical 
object hypothesis. A planar surface gives rise to a parallelepiped 
object hypothesis. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn irregular surface gives rise to an irregular 
object hypothesis. Irregular objects are handled the same as paral- 
lelepiped objects except that special allowances are made during the 
refinement process to accommodate the irregularity of their surfaces 
and edges. The average surface normal and the major and minor 
axes specify the orientation of the object. The center of mass of the 
surface specifies the position of the object. A homogeneous 
transform for the object pose is computed from the axes and the posi- 
tion. The extents along the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree axes define the size of the object. 
The values originally assigned to these attributes will most likely be 
changed as better estimates are available and values for other attri- 
butes that were not included in the initial hypothesis will be com- 
puted during attribute refinement processing. 

The initial object hypotheses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan be inaccurate in a number of 
ways, all of which can be corrected by the hypothesis refinement 
process. For example, the position, orientation, or dimensions of the 
object may be incorrect but will be recomputed during the attribute 
refinement and geometric reasoning processes. An object with mul- 
tiple surfaces visible in the scene zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill cause multiple object 
hypotheses to be formed. During the merging or aggergation 
processes. these hypotheses will be combined into a single object 
hypothesis. 

4. ATTRIBUTE REFINEMENT 
The task of the Attribute Refinement Module is to compute 

values for object attributes. The processing is essentially data-driven 
except that some procedures use different techniques for the three 
primary types of objects: parallelepipeds, cylinders, and irregulars. 

Currently, there are fourteen refinement procedures which carry 
out the processing of the Attribute Refinement Module. Each 
refinement procedure has a set of object attributes as its input and 
produces a set of attributes as its output. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn attribute may be used as 
input to several procedures and may also be produced as output by 
several procedures. This arrangement allows for the bootstrapping 
of attributes. One procedure can find a rough estimate for a particu- 
lar attribute and another procedure can then use this estimate along 
with other attributes to determine a superior estimate. 

The Attribute Refinement Module is called upon many times 
during the recognition process. It is called for the first time immedi- 
ately after hypothesis generation. In this step, known as the Initial 
Attribute Refinement step, every object hypothesis has its attributes 
computed by every refinement procedure. Subsequently, the calling 
of the Attribute Refinement Module is known as Supplementary 
Attribute Refinement and is triggered when another module changes 
an attribute of an object hypothesis. For this case, the Attribute 
Refinement Module is given an object and a list of attributes that 
have been changed for that object and it calls all of the refinement 
procedures that depend on those attributes. Forward chaining is used 
to determine which other procedures depend (directly or indirectly) 
on those attributes and therefore need to be called to propagate the 
change. 

Here we offer a brief description of some of the more important 
refinement procedures. The surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconfidence refinement procedure 
produces a measure of the confidence of the classification of the sur- 
face types for the object’s constituent surfaces. The general object 
type refinement procedure examines the types of the surfaces and 
relations of the object hypothesis and its dimensions in order to 
determine the general object type: parallelepiped, cylinder, irregular, 
prism, or other. The align refinement procedure looks at the edges of 
the object and defines new object axes if certain conditions are 
satisfied. The procedure looks for object edges that are either 
occluding or convex type. Using only these edge types ensures that 
the system is not fooled by shadows or occlusion effects. If the long- 

est of these edges has a length that is a significant fraction of the ini- 
tially computed length of the object, then the direction of the major 
axis is changed to the direction of this edge and the direction of the 
minor axis is changed to be perpendicular to the major axis and the 
normal axis. If no appropriate edges are found then the initially 
computed moment-based major and minor axes are retained. In refer- 
ence to example scene 1, the major axes for the leftmost box and the 
letter are changed only slightly by the refinement process because the 
letter is unmluded and the box is only slightly occluded. The 
moment-based method provides good estimates of the axes of 
objects that are unoccluded but can be very inaccurate for occluded 
objects. The rightmost box in example scene 1 demonstrates this 
problem. Three complete edges of the object are visible but due to 
occlusion only about half of area of the object is visible. The edge- 
based method produces a much better estimate of the major axis in 
this case. The extent refinement procedure looks at all of the object 
vertices and finds their distances from the object position. The max- 
imum distances in both directions along each axis are used to define 
the dimensions of the object. The position is also redefined to be 
centered on the major and minor axes and to lie on the primary sur- 
face of the object. Extent refinement is necessary whenever axis 
refinement adjusts the orientation of the object. The height to table 
refinement procedure defines the object height to be the vertical com- 
ponent of the object position This gives exact results for an object 
lying flat on the table. For objects that are tilted or lying on other 
objects the Geometric Reasoning Module will produce better esti- 
mates. Thus, in example scene 1 the two boxes have their heights 
estimated accurately but the letter height is overestimated. The 
heighr combine refinement procedure produces a value for the object 
height attribute based on the object type, the minimum and max- 
imum height estimates from the extent attributes, the height above 
the table, and values produced by the Geometric Reasoning Module. 
The homogeneous traanrfrmution refinement procedure uses the 
object axes and the object position to define the homogeneous 
transformation for the object. This transformation is suitable for use 
by a robot with a suction gripper for picking up the object. It is also 
used by the bounding box fitting procedure to find the model-to- 
scene and scene-to-model transformations. The area refinement pro- 
cedure finds the visible area of the object and the area of the object 
that should be visible. These values can be used to determine the 
degree to which the object is occluded. The confidence refinement 
procedure produces a measure of the confidence in the object 
hypothesis. The postal type refinement procedure determines the 
appropriate postal category for the object based on size and shape 
information. The bounding box refinement procedure fits a bounding 
box around the object hypothesis and determines the model-to-scene 
and scene-to-model transformations for the object which are used by 
the Geometric Reasoning Module. 

Figs. 6 and 7 show the results for the two example scenes after 
the hypothesized objects have been through Initial Attribute 
Refinement. Each figure shows four views of the scene in wireframe 
form. Included are olthographic projections for the top (x-y plane), 
front (y-z plane), and side (x-z plane) views and an axonometric pro- 
jection. In the first scene, note that the letter is hypothesized as a 
box with its estimated height being its height above the table. This 
results in the letter intersecting both of the other objects and the 
table. In the second scene note that the leftmost box has been 
hypothesized as two objects, the flat lying on that box has also been 
hypothesized as two objects, and the table has been hypothesized as 
six objects. 

5. MERGING 
In cluttered scenes object surfaces will frequently be separated 

into multiple adjacent surface segments due to segmentation errors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3r into non-adjacent surface segments because of occlusion. By 
merging object hypotheses based on compatibility and continuity cri- 
teria the Merging Module can solve these problems. 

Merging takes place in two phases. The first phase, merging 
based on compatibility, uses information derived from the relations 
between adjacent surfaces (and objects) to merge them. The second 
phase, merging based on alignment, uses information about surface 
and object characteristics to merge surfaces which are not adjacent. 
The use of object attributes makes it necessary to do the merging 
after object hypotheses have been formed. Attempts to carry out 
merging without object information led to problems with merging 
distinct objects and not merging parts of objects. The primary reason 
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Figure 6: Hypothesized objects for scene zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. 

for using object information is the object major axes provided by the 
refinement procedures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare superior to the moment based axes for 
each individual surface. 

Our first example scene did not require any merging. In the 
second example scene merging was critical to finding the correct 
scene interpretation. The large box was divided into two widely 
separated segments because it was occluded by the flat. Also note 
that the flat itself was segmented into two adjacent segments because 
of dropouts in the range data caused by the black outline of the mail- 
ing label. In both cases the two surfaces are merged together into a 
single object hypothesis. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6. AGGREGATION 
The Aggregation Module combines pairs of object hypotheses 

that correspond to different surfaces of the same object into single 
hypotheses. The difference between this module and the Merging 
Module is that in this module we are not looking for parts of the 
same surface in two hypotheses. Instead, we are looking for distinct 
surfaces of a single object that have been hypothesized as separate 
objects. 

Because we have only a few object types and assume that all 
objects are convex we can make the assumption that two surfaces 
that are convexly adjacent are likely to be surfaces of the same 
object. This approach also has the advantage that is can handle 
objects that we don’t have models for. Any group of convexly 
related surfaces can be considered to be an object of type other. 

7. GEOMETRIC REASONING 
The task of the Geometric Reasoning Module is to determine 

size parameters for object hypotheses that can’t be determined from 
the scene data. It resolves uncertainty in one of the dimensions of an 
object by “growing” it until it contacts another object in the scene. 
The point of contact need not be visible in the scene data. This pro- 
cess also helps to ensure that the scene interpretation is geometri- 
cally consistent by ensuring that object hypotheses do not intersect 
each other. 

The geometric reasoning algorithm used in INGEN is based on 
a single operation: finding the maximal extent of an object 
hypothesis in a particular direction. Before we describe our algo- 
rithm we must introduce some terminology that will help to clarify 
the discussion. The object is the object hypothesis for which we 
wish to determine the maximum value of a particular size parameter. 
The obstacles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare all of the other object hypotheses in the scene 
which potentially physically constrain the object. We use this termi- 
nology because it is convenient to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthink of the computation of the 
maximal extent of an object as the “growing” of the object until it 
comes in contact with an obstacle. 

Side 
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Figure 7: Hypothesized objects for scene 2. 

The algorithm consists of four steps. 
1. Find the scene-to-model transformation for the object. We 

assume, without loss of generality, that the parameter to be found 
is the object’s extent along the positive z axis. 

2. Use the scene-to-model transformation to transform all obstacles 
into the model coordinate frame of the object. 

3. Find the maximum extent of the object along the positive z axis 
such that the object is in contact with at least one obstacle in the 
scene and its volume does not intersect the volume of any obsta- 
cle in the scene. 

4. Use the model-to-scene transformation to transform the extent 
measurement back into the scene coordinate frame and thus find 
its actual value. 

7.1. Step 1 
The determination of the scene-to-model transformation in step 

one is carried out during the attribute refinement stage of processing 
by the bounding box refinement procedure. INGEN uses bounding 
boxes to model objects as parallelepipeds but this algorithm will 
work with more complex object models. 

For the typical recognition problem, the relationship between a 
point, p ~ ,  in the model coordinate frame and a point, ps, in the scene 
coordinate frame is defined by ps = TpM where T is a homogene- 
ous transformation matrix for the object pose (position and orienta- 
tion). On the other hand, in INGEN, the object models do not con- 
tain metrical information so a pose transformation done does not 
completely specify the relationship between the object and the 
model. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAll objects are modeled by a parallelepiped.mode1 which is 
defined by their bounding box. The parallelepiped model is a unit 
cube which requires three scale factors as well as a pose transforma- 
tion in order to be matched with objects in the scene. The scale fac- 
tors define the length of the objects along the three perpendicular 
axes in the model coordinate frame. When the scale factors are 
incorporated into the transformation between the scene and model 
coordinate frames we have ps = T S ~ M  where the scale transforma- 
tion, S, is defined by: 

s , o o o  

O s , O O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 O s , O  

0 0 0 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS =  

Thus, the transformations between the model and scene coordinate 
frames are defined by: 

~s = TSPm = Tm2Pm 
pm = S-’T’p, = T,hp, 
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It is important to note that in the first equation the scaling 
transformation is pre-multiplied by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApose transformation so that 
scaling takes place in the model coordinate frame. Likewise with the 
second equation where the inverse scaling transformation is post- 
multiplied by the inverse pose transformation 

73. Step2 
In step two all of the objects zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare transformed into the model 

coordinate frame of the object of interest. Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 shows the 
hypothesized objects of scene 1 after being transformed into the 
model coordinate frame of the letter. The leaer is transformed into a 
unit cube, which is upside down with respect to Fig. 6, and the other 
objects are transformed accordingly. i.e. The visible top surface of 
the letter becomes the bot” surface of the unit cube in the model 
coordinate frame and the other objects appear above the letter. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Si& 

Front Axonometric 

Figure 8: Hypothesized objects for scene 1 after being transformed 
into the model coordinate frame of the topmost object. 

73. Step3 
Clearly, step three of this algorithm is the most difficult one. 

However, the transformation of the obstacles into the model coordi- 
nate frame of the object which was canied out in step two simplifies 
the computations in step zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree. Our approach bormws some compu- 
tational techniques from ray casting algorithms in the computer 
graphics field and from path planning algorithms in the robotics 
field. The ray casting technique that we borrow is to transform our 
object and obstacles into a coordinate frame where the object 
hypothesis is a simple primitive object of fixed size and shape. The 
path planning technique that we borrow is the use of both parametric 
and implicit representations of surfaces and edges to aid in the com- 
putation of intersections. Roth [24] discusses ray casting techniques 
and algorithms and Lozano-P6rez [ZO] discusses the configuration 
space approach to robot motion planning. 

Three types of contact are possible between polyhedral objects 
and polyhedral obstacles. We use the traditional convention zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ZO] to 
name these interactions: Type A - an object surface contacting an 
obstacle vertex, Type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB - an object vertex contacting an obstacle sur- 
face, and Type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC - an object edge contacting an obstacle edge. 

The three types of contact are shown in Fig. 9. Note that the 
objects and the obstacles are positioned in the object’s object- 
centered model coordinate frame. Thus, the obstacles which are 
below the object in the scene appear above the object in the model 
coordinate frame. 

For each object-obstacle interaction we need to check for all 
three types of contact. The maximum object height (in the model 
coordinate frame) is determined by the minimum height contact with 
the obstacle. This process is carried out for each obstacle in the 
scene and the results are then combined to find the maximum height 

for the object which is determined by the minimum height contact 
with any obstacle. 

In the following sections we describe the computational tech- 
niques for dealing with the three types of contact. It is important to 
note that a l l  of the computations are carried out in the model coordi- 
nate frame of the object of interest. We will always be finding the 
maximum extent of the object along the positive z axis, which we 
refer to as the height of the object, in the model coordinate frame. 
Thus, when we refer to the top surface of the object we are referring 
to the surface which has a surface normal that points in the positive z 
direction in the model coordinate frame regardless of it’s actual loca- 
tion and orientation in the scene. 

Figure 9: Type A, B, and C contacts. 

73.1. Type A - An object surface contacting an obstacle vertex 
For type A contact we need to find the obstacle vertex which 

will contact the top surface of the object at the lowest point. The 
procedure is to find all obstacle vertices that could potentially con- 
tact the top surface of the object and then find the one with the smal- 
lest z component. For parallelepiped obstacles the only vertex that 
can contact the topmost surface of the object is the one with the 
smallest z component. For all of the other vertices an edge will 
necessarily contact the object at a point that is lower than the vertex 
so these vertices can be ignored. Thus, only one of the the eight ver- 
tices for each parallelepiped obstacle is tested for constraining the 
object. 

For a parallelepiped object the scene-to-model coordinate 
transformation results in the object being a unit cube in the positive 
octant with a vertex at the origin. Only obstacle vertices which 
satisfy 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 x I 1 and 0 5 y S 1 can potentially contact the top surface 
of the parallelepiped. 

7.3.2. Type B - An object vertex contacting an obstacle surface 
For parallelepiped objects we need to find the obstacle surface 

which will contact an object vertex at the lowest point. The pro- 
cedure is to find the contact points for all obstacle surfaces that could 
potentially contact the top vertices of the object and then find the one 
with the smallest z component. Potential contact points are the inter- 
section points of the four lines defined by the vertical edges (parallel 
to the z axis) of the parallelepiped object and the obstacle surfaces. 
The four lines are defined by: ( x = O , y = O ) ,  ( x = O , y = l ) ,  
{ x =  1, y = O ) ,  and ( x =  1.y = 1 ). We only need consider obsta- 
cle surfaces that have their average surface normal pointing in the 
negative z direction. For all of the other surfaces some other part of 
the obstacle will necessarily contact the object at a point that is lower 
than the surface so these surfaces can be ignored. Thus, only three of 
the six surfaces of each parallelepiped obstacle are tested for con- 
straining the object. 

All of the planar obstacle faces belong to rectangular paral- 
lelepipeds so the faces will be parallelograms when transformed into 
the model frame of the object. By using the parametric representa- 
tion for these faces the intersection problem can be solved 
efficiently. We select one vertex, ( X O .  yo. Z O ) ,  of the face as its ori- 
gin and use the two adjacent vertices, (XI. y1. 21) and (x2. y2.  22). 
to defme oblique axes for the parameterization of the surface. The 
numbering of the adjacent vertices should be defined so that the nor- 
mal of the face points away from the object. Using U and v as 
parameters the parametric equations for the parallelogram face are: 

x = x o + u f l + v f ~ .  y =yo+ug1+vg2,  z = zo+uh1+vhz 
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where: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= x1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-xo. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
fz = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 2  - x o .  

g1 = y1 -yo. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g2 = yz -yo. 

By substituting the x and y values from the line equation pairs into 
the x and y parametric equations for the plane we can solve for the 
two surface parameters U and v: 

hl = Z l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
hz = 22 -20 

-g1(x-xo)+f101 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Y o )  
, v =  

g2(x-xo)-fz(Y -Yo) 
U =  

f1g2 - f ig1 f1g2 - f ig1  
If 0 I U S 1 and 0 I v I 1 then the intersection point lies within the 
obstacle face. We then substitute U and v into the z parametric equa- 
tion to find the z coordinate of the intersection point. 

73.3. Type C - An object edge contacting an obstacle edge 
For type C contact we need to find the obstacle edge which will 

contact the top edge of the object at the lowest point The procedure 
is to find all points at which obstacle edges intersect the vertical sur- 
faces of the object and then find the one with the smallest z com- 
ponent. We can exclude some edges from consideration because of 
the surfaces that they bound. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAll of the edges of the surface with a 
surface normal that forms the most positive dot product with the 
positive z axis are excluded. Also, the edge between the other two 
surfaces with surface normals that form positive dot products with 
the positive z axis are excluded. Thus, only seven of the twelve 
edges of each parallelepiped obstacle are tested for constraining the 
object. 

For parallelepiped objects the contact points are the intersec- 
tion points between obstacle edges and the four vertical faces (pad- 
le1 to the z axis) defined by the four plane equations: x = 0, x = 1, 
y=O, a n d y = l .  Forp lanesx=Oandx= l  weareinterestedin 
intersection points such that 0 5 y S 1. For planes y = 0 and y = 1 we 
are interested in intersection points such that 0 I x 5 1. 

By using the parametric representation for obstacle edges we 
can simplify the intersection computations. Edges are defined by 
their endpoint vertices: (XO,  yo. 20) and (XI. y1. 21). Using t as the 
parameter, the parametric equations for the edge are: 

x = xo  + tf, y = yo + tg. z = z0 + th 

where: 

f = x1 - x o ,  g = y1 -yo, h = 21 -zo  

By substituting the x or y value from the plane equation into the 
appropriate edge equation we can solve for the edge parameter t: 

2 -20 
, f = -  

x - X O  Y -Yo 
f = -  

f ' r = -  g h 
If 0 5 t S 1 then the intersection point lies within the obstacle edge. 
We then substitute t into the other parametric equations to find the 
other coordinates of the intersection point. 

7.4. Step4 
The result from step h e  is a value for the maximum extent of 

the object along the positive z axis in the current model coordinate 
frame of the object. Note that this coordinate frame depends on the 
previous dimensions of the object. A maximum extent value less 
than one indicates that the old dimension was too large and a value 
greater zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthan one indicates that the old dimension was too small. The 
new object dimension is obtained in step four by simply multiplying 
the value found in step three by the previous value for the object 
dimension. 

Figs. 10 and 11 show the final results produced by INGEN for 
the two example scenes. Notice that in the first scene the letter has 
been recognized correctly. Also notice that one of the boxes extends 
below the other one so it appears to be floating in air. There is no 
way for the system to know how far the box extends under the other 
one and we don't test for or require physical stability. One approach 
that would help to solve this problem would be to extend the box 
under the other one until it contacts known empty space. The same 
basic approach would be used but the representation of empty space 
would necessarily be more complex than the parallelepipeds that we 
currently deal with. In the second scene the object that is resting on 
top of the box has been correctly identified as a flat because of 
geometric reasoning. 

While we currently use only bounding boxes the approach 
described here can be extended to handle more complex objects in 
two ways. The first is to define other types of primitive objects 
besides the parallelepiped bounding box. Spheres, trapezoids, tori, 
generalized cylinders, and polyhedra are candidates that could be 
considered. However, with the possible exception of polyhedra and 
cylinders, they will probably be of limited usefulness in most cases. 
This approach requires the development of new intersection algo- 
rithms for each new type of object The second path is to consider 
composite objects which are constructed from combinations of the 
primitive objects. For the simplest case, primitives are combined by 
the attachment operation. In this case, the techniques that we are 
currently using are directly applicable. All that is required is that we 
consider each of the primitives individually (even if they are part of a 
more complex object) and then combine the results as if each primi- 
tive was a separate obstacle. The only changes necessary would be 
the overhead required to group the primitives together as objects. 
Objects would be defined by a single object coordinate frame and a 
set of primitives with transformations relating them to the object 
coordinate frame. The more complex, and more general, approach is 
to use Constructive Solid Geometry (CSG) to define objects. The 
CSG representation represents objects as sets of primitives combined 
by regularized volumetric union, intersection, and subtraction opera- 
tions. As with composite objects, primitives can be considered indi- 
vidually and the results combined for each object. However, the 
union, intersection, and subtraction operations make the combination 
of results much more complex. Ray casting programs use this 
approach successfully [24] for finding the intersections of lines with 
CSG objects. Our problem of finding the intersections between CSG 
objects is not quite as simple but is computationally feasible. 

TOP Side TOP Side 

Front 

Figure 10: Final results for scene 1. 

Axonomeuic Front 

Figure 1 1 : Final results for scene 2. 

Axonometric 
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8. CONCLUSION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
We have discussed the INGEN system which addresses the 

problem of generic object recognition in the postal domain. There 
are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree important aspects of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis system which make it particularly 
useful for generic object recognition. Data-driven processing 
reduces its sensitivity to surface and edge irregularities. The 
hypothesize-and-refine control structure allows varied approaches to 
computing object attributes and incremental updating of the scene 
interpretation. The use of information derived from geometrical con- 
tacts between objects enables it to determine object dimensions. 
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