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Abstract

Compared to typical scanners, handheld cameras offer convenient, flexible, portable, and non-contact

image capture, which enables many new applications and breathes new life into existing ones. However,

camera-captured documents may suffer from distortions caused by non-planar document shape and

perspective projection, which lead to failure of current OCR technologies. We present a geometric

rectification framework for restoring the frontal-flat view of a document from a single camera-captured

image. Our approach estimates 3D document shape from texture flow information obtained directly

from the image without requiring additional 3D/metric data or prior camera calibration. Our framework

provides a unified solution for both planar and curved documents and can be applied in many, especially

mobile, camera-based document analysis applications. Experiments show that our method produces

results that are significantly more OCR compatible than the original images.

Index Terms

Camera-based OCR, image rectification, shape estimation, texture flow analysis.

I. INTRODUCTION

Recent technical advances in digital cameras have led the OCR community to consider using

them instead of scanners for document capture [1]. Cameras are portable, long range, and non-

contact imaging devices that enable many new document analysis applications. Secondly, cameras

can be easily integrated with portable computing devices such as PDAs, cell phones, or media

players. And lastly, many more digital cameras are manufactured, distributed and owned than

scanners. Together, these factors contribute to the growing interest in camera-based document

analysis.

For example, handheld devices equipped with cameras, such as PDAs and cell phones, are ideal

platforms for mobile OCR applications such as recognition of street signs in foreign languages,

out-of-office digitization of documents, and text-to-voice input for the visually impaired. In the

industrial market, high-end cameras have been used for digitizing thick books and fragile historic

manuscripts unsuitable for scanning; in the consumer market, camera-based document capture

is utilized in the desktop environment [2].

The challenge in camera-based applications is that, due to the differences between scanners and

cameras, traditional scanner-oriented OCR techniques are usually not applicable. In particular,

non-planar document shape and perspective projection, which are common in camera-captured
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images, are not expected at all by traditional OCR algorithms. As a result, the performance of

some of the state-of-the-art OCR packages on camera-captured documents is unacceptable.

For instance, Fig. 1 compares a clean scan to a synthetic camera image. First, curved text

lines and margins in Fig. 1(c) can easily defeat most page segmentation techniques (e.g., [3],

[4], [5]). Second, skewed characters make both segmentation and recognition difficult. To a

lesser degree, these challenges also apply to planar pages. Our experiments show that the OCR

performance on camera-captured documents, whether planar or curved, is substantially lower

than for scanned images. Since we use noise-free, blur-free, high resolution images in these

experiments, the influence of other effects is reduced to the minimum, which proves that pure

2D image enhancement will not be helpful.

(a) (b) (c) (d) (e) (f)

Fig. 1. Comparison between scanned and camera-captured document images. (a) A clear scan of a document. (b) An enlarged

sub-image of (a). (c) The same document with curved shape captured by a projective camera. (d) An enlarged sub-image of

(c) with similar content as (b). (e) Text line segmentation might be possible (locally) after rotating (d) so that text lines are

roughly horizontal. (f) At character level, segmentation is still difficult even after local deskewing, and distorted characters are

also difficult for OCR.

The key problem in document image rectification is to obtain the 3D shape of the page. In

the literature, there have been three major approaches. The first assumes explicit 3D range data

obtained through special equipments [6], [7], [8]; the second approach simplifies the problem

by assuming flat pages [9], [7]; and the third approach assumes restricted shape and pose of

the page [10], or additional metric information of markings on the page [11], [12]. There are

also methods that only rely on 2D warping techniques [13]. However, because of the lack of

3D information, such methods are restricted to flat pages with small perspective distortion (see

discussion in Sec. III-B.1).

In this paper, we present a rectification framework that extracts the 3D document shape from
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a single 2D image and performs a shape-based geometric rectification to restore the frontal-

flat view of the document. Fig. 2 illustrates the system level concept of our framework. The

output image is comparable to scanned images and is significantly more OCR compatible than

the input. Compared to previous approaches, our method does not need additional 3D/metric

data, prior camera calibration, or special restrictions on document shape and pose. Our method

borrows insights from previous work ([14], [9], [15], [16], [13]). One of our contributions is

that our framework unifies the processing of planar and curved pages. Secondly, our approach

removes the cylinder shape assumption or restricted pose assumption for curved pages, and as

such allows most general cases of smoothly curved pages to be handled. These properties make

our approach suitable to unconstrained mobile applications.

OR

Image
Rectification

Fig. 2. High level illustration of geometric document image rectification.

Our framework requires three basic assumptions. First, the document page should contain

sufficient printed text content. Second, the document is either flat or smoothly curved (i.e.,

not torn or creased). And third, the camera is a standard pin-hole camera in which the x-to-y

sampling ratio is one and the principal point (where the optical axis intersects the image plane)

is located at the image center. Most digital cameras satisfy this third assumption. Under these

assumptions, we show that we can constrain the physical page by a developable surface model,

obtain a planar-strip approximation of the surface using texture flow data extracted from the text

in the image, and use the 3D shape information to restore the frontal-flat document view.
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II. BACKGROUND AND RELATED WORK

A. Document Capture Without Rectification

In the industry, cameras have been used for a long time in projects such as digitizing library

collections, where precious books cannot be disassembled. Special care is taken to keep the pages

as flat as possible. For example, thick books are only half opened. In the desktop environment,

fixed overhead cameras [17] or mouse-mounted cameras [18] are used to replace scanners. In

all these cases, the document is assumed flat and the hardware is set up so that there is no

perspective distortion. However, this is difficult to achieve in mobile applications.

B. Document Capture With Rectification

In cases where non-planar shape and perspective projection cause distortion in camera-captured

document images, geometric rectification is necessary before other document analysis algorithms

can be applied. The key issue involved in rectification is to obtain the 3D information of the

document page. A direct approach is to measure the 3D shape using special equipment such

as structured light projector [6], [7], or stereo vision techniques with camera calibration [8].

Another approach requires the measurement of 2D metric data about the document page to infer

the 3D shape [11], [12]. The dependence on additional equipment or prior metric knowledge

prevents these approaches from being used in an unconstrained mobile environment.

Under the assumption that document surfaces are planar, the rectification can be achieved

using only 2D image data [7], [14], [9], [19]. Apparently, these methods cannot handle curved

documents such as opened books. In [15], [10], opened books are rectified under the condition

that the camera’s optical axis is perpendicular to the book spine.

Because of the difficulty involved in estimating 3D shape from 2D images, there is also

work on rectification using pure 2D warping techniques to restore the linearity of text lines that

appear curved in captured images [13]. These methods usually demand carefully positioning of

the document with respect to the camera. For example, [13] describes a system for scanning

thick books in which the scanning camera must have its optical axis orthogonal to the flat portion

of the document page.
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C. Shape Estimation From Images

There are many shape-from-X techniques that extract 3D shape from 2D images. However,

we find that generally they are not appropriate for our task. Structure-from-motion is excluded

because, in this paper, we assume a single image as the input. Shape-from-shading is excluded

because it requires strong knowledge of lighting which is unknown in most cases. Shape-from-

texture is a possible solution since printed text presents a regular pattern. However, traditional

texture gradient analysis ([20], [21]) may be less accurate with document images since it is

difficult to define textons in text. Shape-from-contour utilizes the symmetry or other metric

information of two-dimensional contours on the surface. In practice, metric data is usually absent,

while symmetry is vulnerable to occlusion. Therefore, in general, most shape-from-X techniques

can provide a rough qualitative shape estimation but not accurate quantitative data to support

rectification of document images.

D. Physical Modeling of Curved Documents

The shape of a curved document belongs to a family of 2D surfaces called developable

surfaces, as long as the document is not torn, creased, or deformed by a soak-and-dry process.

In mathematical terms, developable surfaces are 2D manifolds that can be isometrically mapped

to an Euclidean plane. In other words, developable surfaces can unroll to a plane without tearing

or stretching. This developing process preserves intrinsic surface properties, such as arc length

and angle between lines on the surface.

The developable surface model is used in [7], [6], [8] to fit the 3D range data of a curved

document. In our work, we do not assume a priori 3D data. Instead, we use the developable

surface model to constrain the 3D shape estimation process.

E. Texture Flow and Shape Perception

Psychological observations suggest that a texture pattern which exhibits local parallelism gives

a viewer the perception of a continuous flow field [22], [23], which we call a texture flow field.

A typical example is the pattern of a zebra’s stripes. Through a projection process (performed

by a camera or a human visual system), a 3D flow field projects to a 2D field on the image

plane. Under some mild assumptions, 2D flow fields effectively reveal the underlying 3D surface

shape [24].
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In documents, there are two important clues that a human visual system can use to infer the

shape. First, document pages form developable surfaces. Second, there exist two well-defined

texture flow fields representing local text line and vertical character stroke directions, respectively.

On a flat document, the two fields are individually parallel and mutually orthogonal everywhere.

This property is preserved locally for curved documents under the developable surface model.

Therefore, a human visual system can quickly grasp the local surface orientations using the

texture flow fields and integrate them using the global surface model to obtain depth perception.

III. APPROACH

A. Overview

We propose a framework that rectifies the image of a generally curved document, from the

analysis of a page shape model and texture flow properties. It requires that there is sufficient

text in the view. Our workflow begins with detecting the text area and the texture flow fields

(Sec. III-B.1), then distinguishes planar and curved pages by verifying the linearity property of

texture flow fields (Sec. III-B.2). Next it uses geometric properties of planar surfaces (Sec. III-C)

or curved developable surfaces to estimate the 3D shape of the page (Sec. III-D), and lastly uses

the 3D shape to unwarp the image. The output image is a frontal view of the flat page, just as

from a scan.

B. Preprocessing

1) 2D Texture Flow Detection in Document Images: The first step in our processing is text

identification, which locates the text area in the image and binarizes the text. Our algorithm is a

gradient-based method [25]. Text identification is a difficult problem in itself deserving further

research [1]. Therefore we do not address its details in this paper.

After text is found, we detect the local text line and vertical character stroke directions, which

we define as the major and minor texture flows, respectively.

We formulate the major texture flow detection as a local skew detection problem. In document

image analysis, skew detection finds the orientation of text lines with respect to the horizontal

axis. In scanned documents, there is typically one global skew angle for the entire page.

In camera-captured curved documents, the local skew angle varies across the entire image.

Nevertheless, locally, it is roughly consistent. We apply the classic projection profile analysis
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[26] to detect the skew angle in a small neighborhood. Then we use a relaxation labeling approach

[27] to smooth out possible errors and obtain a coherent result [25].

We use directional filters to extract the linear structures of characters [28]. Vertical strokes

are very common in text, thus the response of the filter usually exhibits a maximum when the

filter’s direction aligns with vertical strokes. Horizontal strokes also result in a maximum, but it

can be detected and removed by comparing its direction to the major texture flow.

Fig. 3 shows estimated texture flows in real images. Note that in Fig. 3(b) the minor texture

flow lines are straight and aligned with the cylinder generatrix, while in Fig. 3(c) both texture

flow lines are curved, which represents the most general case. The synthetic image in Fig. 1(c)

belongs to the latter case. For such cases, skipping 3D structure computation and using texture

flows alone to rectify the images by 2D warping would result in an incorrect output. The rest

of this paper describes our method of extracting 3D structure from texture flows and using it to

process general curved document images. Nevertheless, in Sec. V we discuss simplifications for

constrained cases (e.g., Fig. 3(b)).

(a) (b) (c)

Fig. 3. Texture flow results on real images. (a) A planar page, (b) an open book with cylindrical shape and (c) a page with

non-cylindrical shape.

2) Surface Classification: Perspective projection preserves linearity, so straight text lines on

planar documents remain straight in camera-captured images. Furthermore, these coplanar and

parallel 3D lines share a common vanishing point in the image [29]. These two properties do

not hold true for curved text lines on curved documents. Under perspective projection, while

one curve lying on a plane of sight (a plane passing through the optical center) has a straight

line as its projection in the image, multiple text lines on a curved document surface cannot

simultaneously satisfy this requirement. Their projections cannot converge at a single point,
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either. Therefore, we can determine whether the document is planar or curved by testing the

linearity and convergence of text lines, which, in our case, can be verified using the major texture

flow field. The minor texture flow field can be used, too.

Let {li} be a set of texture flow tangent lines (lines in the direction of the texture flow passing

through any point) represented with the formalism of projective geometry. Under the planar page

hypothesis, all these flow tangent lines {li} converge at a vanishing point, say v (in homogeneous

representation, too), which can be written as

l⊤i v = 0,∀i.

This means that v lies in the null space of the sub-space spanned by {li}; in other words, the

rank of L = (l1, . . . , lN) is less than three. By contrast, under the curved document hypothesis,

v does not exist, which means that the null space of L is ∅ and L has full rank.

We use SVD decomposition to compute the eigenvalues of L. Let S1 and S3 be the largest

and smallest eigenvalues, respectively. We use S3/S1 as the convergence quality measure. If it

rests below a predefined threshold, we decide that L does not have full rank.

C. Rectification of Planar Documents

This section covers the rectification of planar document images. From projective geometry,

we know that the homography depends on the plane orientation N and camera focal length f .

Together, they determine the position of the plane in the camera’s coordinate system. In the

following, we first deduce N and f from texture flow fields. Then we construct the homography,

and show that at the end N and f do not need to be explicitly sought. Although N and f do

not show up in the final formula, their estimates can help us to benchmark the precision of our

method.

1) Page Plane Estimation: From the surface classification step described in the previous

section, we obtain vh and vv, the vanishing points of major and minor texture flow tangent

lines. As [30] shows, a full metric rectification for a general projective transformation has five

degrees of freedom. The line l∞ connecting vh and vv is the vanishing line of the world plane,

which involves two degrees of freedom and reduces the projective transformation to an affine

transformation. The positions of the vanishing points in the world plane (the infinity points at

North and East) allow us to remove the shearing and rotation from the affine transformation.
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This leaves us with an unknown x-to-y aspect ratio1 which cannot be determined using only the

two vanishing points (see Fig. 4).

(a) (b) (c)

Fig. 4. Non-unique image rectification results. (a) A perspective distorted image. (b) and (c) are two possible rectification

results that have different x-to-y aspect ratios. Both (b) and (c) are OCR compatible.

It is shown [30] that additional metric data, such as a length ratio or an angle (other than the

right angle between the two texture flows) on the world plane can help solve for the last degree

of freedom. We take a different approach; we assume that the principal point rests at the image

center. This is usually true unless the image is cropped. Under this assumption, suppose that the

two vanishing points are vh = (xh, yh)
⊤ and vv = (xv, yv)

⊤, then the 3D directions of the major

and minor texture flows in the camera coordinate system are given by

Vh = (v⊤

h , f)⊤,

Vv = (v⊤

v , f)⊤,
(1)

where f is the focal length. Due to their orthogonality in the 3D plane, i.e.,

V⊤

h Vv = 0, (2)

it follows that

f =
√

−v⊤

h vv =
√

−(xhxv + yhyv), (3)

if v⊤

h vv < 0. When f is known, the plane normal N is also fixed by

N = (Vh × Vv)/|Vh × Vv|,

1This is different from the x-to-y sampling ratio in the camera model, which we assume to be one.
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Special care should be taken when either vh or vv lies at the infinity of the image plane.

When a vanishing point lies at infinity, say vh, then the z-component of Vh is 0, regardless

of f . Therefore Eq. 2 does not involve the focal length and we cannot solve for it. If both

vanishing points lie at infinity, the document is simply parallel to the image plane and there is

no perspective distortion. We need only rotate the image such that the two vanishing points map

to the East and North. If only one vanishing point is at infinity, there is foreshortening along

the direction of the other vanishing point. In this case, we are back to the situation where we

can remove the perspective distortion up to an unknown aspect ratio.

When either vh or vv lies near the infinity, due to the noise in texture flow detection, we may

arrive at vanishing point positions that are theoretically impossible. It could be that v⊤

h vv > 0;

or at least one vanishing point lies at the infinity, but the directions of the two vanishing points

are not orthogonal.

Note that these cases where we cannot solve for f happen most often when the camera’s

optical axis is nearly perpendicular to the document. In such cases, the rectification homography

is underdetermined. Fortunately, for such camera configurations the error introduced by the

uncertainty in the rectification homography is small.

2) Metric Rectification: When perspective foreshortening is strong and rectification is most

needed, we can compute f and N and then compute the full metric homography in the following

way:

Consider an arbitrary point, (x0, y0), in the image plane. In the camera’s 3D coordinate system,

its position is (x0, y0, f)⊤. It follows that the corresponding 3D point located in the plane of

the document is W = d(x0, y0, f)⊤, where d (> 0) is an unknown depth factor. Define unit

vectors Vh = Vh/|Vh| and Vv = Vv/|Vv|. Suppose that we set up a 2D coordinate system in the

document plane so the x-axis is aligned with Vh while the y-axis is (must be) aligned with Vv.

Every point on the document plane, thus, has a 2D coordinate. Assume that W has coordinate

(x′

0, y
′

0) on the page, then the 3D position of any point (x′, y′) on the page is

P = (x′ − x′

0)Vh + (y′ − y′

0)Vv + W

=
(

Vh Vv W

)













1 0 −x′

0

0 1 −y′

0

0 0 1

























x′

y′

1













.
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A general projective camera model can be parameterized by a 3×3 upper triangular matrix K

[29]. Most digital cameras have unit x-to-y ratio and zero shear. Also, the principal point offset

is typically zero. Therefore, the matrix K simplifies to

K =













f 0 0

0 f 0

0 0 1













,

where f is the focal length. A 3D point P = (X, Y, Z)⊤ in the camera’s coordinate system

projects to a point (x, y) in the image by













u

v

w













= K













X

Y

Z













, (4)

where x = u/w, and y = v/w.

Overall, the homogeneous transformation from document plane to image plane is the concate-

nation

H = K

(

Vh Vv W

)













1 0 −x′

0

0 1 −y′

0

0 0 1













. (5)

The inverse of H maps every point in the image plane back to the frontal-flat view of the

document page and is called the rectification matrix. That is,

(x, y)
H

−1

→ (x′, y′). (6)

In Eq. 5, d and (x′

0, y
′

0) can take any value. The value of (x′

0, y
′

0) determines the translation

of the rectified image within the destination plane. This translation cannot be derived from the

image itself, nor is it relevant from the viewpoint of rectification. The depth factor d determines

the scale of the rectified image — the larger the depth, the larger the rectified image. Similarly,

this depth factor cannot be determined using only the image. Additional metric information must

be known to fix d.

In our implementation, we choose d = 1, (x0, y0) = (0, 0), and (x′

0, y
′

0) = (0, 0). Therefore,

W = (0, 0, f)⊤. Let vh = (xh, yh)
⊤ and vv = (xv, yv)

⊤. And let
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α = 1/|Vh| = 1/
√

x2
h + y2

h − (xhxv + yhyv)

β = 1/|Vv| = 1/
√

x2
v + y2

v − (xhxv + yhyv),

where we replaced f by its expression found in Eq. 3. Then, Eq. 5 becomes

H =













f 0 0

0 f 0

0 0 1

























αxh βxv 0

αyh βyv 0

αf βf f













= f













αxh βxv 0

αyh βyv 0

α β 1













.

(7)

Computing the inverse of H allows us to compute the component x′ and y′ of the rectification

mapping described by Eq. 6.

x′ = α yvx−xvy

(yh−yv)x+(xv−xh)y+(xhyv−xvyh)
,

y′ = β xhy−yhx

(yh−yv)x+(xv−xh)y+(xhyv−xvyh)
,

(8)

which maps a point (x, y) in the input image to the point (x′, y′) in the rectified image. Since f

and N do not appear in Eq. 8, we can rectify a planar document even if they are not available

because of the reasons discussed in the previous section. In those cases, the metric rectification

is partial.

Because we cannot determine from texture flow analysis alone whether Vh points toward left

or right of the flat document and whether Vv points toward top or bottom,the rectified image may

end up being flipped vertically, horizontally, or both. In the last case the page is simply rotated

by 180◦, as if it was scanned upside down. There is no simple way to tell that a document is

upside down (sophisticated training based methods do exist [31]). The flipping in the first two

cases can be removed easily, though. We take any three non-collinear points in the input image

and record their clockwise order. In the output image we find their clockwise order too. If the

two orders are different, then we flip the image vertically (or horizontally).

Some rectified results for real images are shown in Fig. 5 and Fig. 6. Fig. 5 consists of

examples where perspective is absent or weak so that full metric rectification is unnecessary or

only partial metric rectification is available. Fig. 6 shows images of strong perspective and the

documents restored with full metric homography.
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Fig. 5. Rectification results for real images with small perspective distortion.

Fig. 6. Rectification results for real images with strong perspective distortion.
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D. Rectification of Curved Documents

A curved document is more difficult to rectify than a planar page. Our approach is to

decompose the curved surface to piecewise planar strips, based on the developable surface model.

1) Surface Modeling with Strip Approximation: A smoothly curved document can be modeled

by a developable surface. Developable surfaces represent particular cases of a more general class

of surfaces called ruled surfaces. Ruled surfaces are envelopes of a one-parameter family of

straight lines (called rulings) in 3D space and each ruling lies entirely on the underlying surface.

In other words, a ruled surface is the locus of a moving line in 3D space.

Developable surfaces are further constrained as they are envelopes of a one-parameter family

of planes. As a result, all points along a ruling on a developable surface share one tangent plane.

Given this property, we can approximate a developable surface with a finite number of planar

strips that come from the family of tangent planes. More specifically, we divide a developable

surface into pieces defined by a group of rulings. Each piece is approximated by a planar strip on

the tangent plane along a ruling centered in this piece. Then, the de-warping of the developable

surface can be achieved by rectifying planar strips piece by piece (see Fig. 7). As the number of

planar strips increases, the approximation becomes more reliable, and the piecewise rectification

becomes more accurate.

Fig. 7. Strip-based approximation to a developable surface

2) Projected Ruling Estimation: We call the projections of 3D rulings in the image projected

rulings, or 2D rulings. Similarly, we distinguish 2D texture flows and their 3D counterparts. In

this section, we describe our method of detecting 2D rulings using 2D texture flow fields in

document images.

Recall that all points along a ruling on a curved document share the same tangent plane. It

follows that the 3D texture flow vectors at these points all lie in this tangent plane. Furthermore,

all these 3D major (and minor) texture vectors are parallel. This claim becomes apparent once
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we develop the document onto the tangent plane, in which process any vector on the tangent

plane remains intact. In the developed document, the major texture flow vectors are obviously

parallel, and so are the minor texture flow vectors. On the other hand, if major (and minor)

texture flow vectors at all points along a 3D curve on a curved document are parallel, this curve

must be a straight 3D ruling. In this case, the tangent planes at these points must be all parallel

since their normals are the cross products of major and minor texture flow vectors. Because

of the continuity of the 3D curve, these tangent planes collapse to just one. On a developable

surface, this is possible only if the points are all on a ruling or the surface is a plane. Based on

the above analysis, we have the following properties:

The 3D major and minor texture flow vectors along any 3D ruling on a developable document

surface are parallel, respectively.

The 3D major and minor texture flow vectors along a non-ruling curve on a non-planar

developable document surface cannot both be parallel.

As a result, under the perspective projection of a camera system, if a given line in the image

is a 2D ruling, the 2D major (and minor) texture flow vectors along it converge at a common

vanishing point (see Fig. 8). This vanishing point may be at infinity if the 3D flow vectors are

parallel to the image plane. If these 2D major (or minor) texture flow vectors do not converge

at a single point, this line is certainly not a projected ruling. Suppose we have a reference point,

and parameterize any line through it by its angle θ. Let the convergence quality measure (defined

in Sec. III-B.2) of the 2D vectors along this line be c(θ), then the optimal ruling estimate should

minimize c(θ). We name c(θ) the ruling quality measure of the line in question.

Fig. 8. 3D texture flow vectors along a 3D ruling are parallel and project to convergent 2D texture flow vectors along a 2D

ruling. The 3D vectors do not have to be orthogonal to the 3D ruling.

Based on the analysis in the previous section, we need a finite number of rulings to divide
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a developable surface into strips. For a group of 2D rulings, there is another global constraint.

Through any point on a non-planar ruled surface there is one and only one ruling. This means

that any two 3D rulings do not intersect. Consequently, the non-occluded parts of the two 2D

rulings do not intersect, either. The only exception is the apex of a cone, which cannot appear

inside the text area of a page, or the page would have a crease at the cone apex and would no

longer be smooth.

We combine the individual and global constraints in computing a group of optimal 2D rulings.

First we find the text area bounding box, and use the c(θ) measure to find an initial ruling estimate

through the box center. Along the line orthogonal to this estimated ruling, we select N points.

These points will serve as the reference points. Through each point we find an optimal ruling, and

these rulings provide a division of the surface. Let the rulings be denoted as {ri}
N
i=1, the angles

between them be {θi}
N
i=1, and the quality measure of each ruling be c(θi). The non-intersecting

constraint is captured by

Ψ(θi, θj) =











∞, if ri and rj intersect in text area,

0, otherwise, or if i = j.

We define

Q({θi}) =
N

∑

i=1

c(θi) +
N

∑

i,j=1

Ψ(θi, θj)

as the overall objective function of the group of 2D ruling candidates, which combines the local

and global constraints. The optimal 2D rulings, then, are the ones that minimize Q. Because of

the way we define Ψ, we actually are looking for a solution that minimizes the first term in Q

while keeping the second term zero.

To solve this minimization problem, we first simplify the second term in Q by redefining

Q({θi}) =
∑N

i=1 c(θi) +
∑N−1

i=1 Ψ(θi, θi+1)

=
∑N−1

i=1 [c(θi) + Ψ(θi, θi+1)] + c(θN),

i.e., we only require that the neighboring rulings do not intersect. Because the reference points are

lined up sequentially, when no neighboring rulings intersect in the text area, the non-neighboring

rulings cannot intersect, either. That is,
∑N−1

i=1 Ψ(θi, θi+1) = 0 implies that
∑N

i,j=1 Ψ(θi, θj) = 0.

Hence our simplification does not change the minimization point in the solution space. Second,

for each θi, we only consider a finite set of candidate values, or states. In other words, we
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quantize the angles. Now we have a series of N points (or nodes) each with a number of

candidate states, and the objective function Q is the sum of terms where each term only depends

on the states of two subsequent nodes. This is a typical case where Q can be minimized using

the classic dynamic programming method [32]. Fig. 9 shows two real images with the estimated

2D rulings overlaid.

Fig. 9. Projected rulings detected in real images.

3) Vanishing Point Estimation for Rulings: Under perspective projection, a 3D line projects

to a 2D line terminating at its vanishing point [29]. Given the position of the optical center, the

direction of the 3D line is solely determined by the vanishing point, and vice versa. Similar to

[9], our method of vanishing point detection is inspired by the following observation: Text lines

are equally spaced on the page but, due to perspective, have varying distances in the image.

The changes in text line spacing along a 2D ruling reveals the vanishing point of the ruling.

In [9], Clark et al. implicitly use the margin of a justified paragraph (or the central line of a

centered paragraph) as the ruling, apply projection profile analysis to find text line positions,

and relate them to the vanishing point using two parameters. These two unknowns are solved

by a search in a 2D parameter space. This method works only on a planar page consisting of a

single justified or centered paragraph, and the search space is quite large.

Our method offers four improvements. First, we do not rely on justified or centered paragraphs

to establish the 2D ruling. Second, we can handle multiple paragraphs with different text line

spacing. Third, we address curved pages with curve-based projection profile (CBPP) analysis.

And fourth, we simplify the computation to a one-parameter linear system which provides a

stable, fast, and closed form solution.

Fig. 10 shows an example of finding intersections of text lines with a 2D ruling using CBPP
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analysis. The peaks in the binarized profile (Fig. 10(c)) indicate the text line positions. Suppose

r and R are the 2D and 3D rulings, respectively (see Fig. 11). Let {pi}
M
i=1 and {Pi}

M
i=1 be the

text line positions along r and R, where M is the number of text lines. The actual values of

{pi} and {Pi} are not important since only the line spacings are used. Within a paragraph,

∆ = |Pi+1 − Pi| is constant. By the invariant cross-ratio property [29], we have:

|pi+1−pi||pi+3−pi+2|
|pi+2−pi||pi+3−pi+1|

= |Pi+1−Pi||Pi+3−Pi+2|
|Pi+2−Pi||Pi+3−Pi+1|

= ∆·∆
2∆·2∆

= 1
4
,∀i,

(9)

if pi through pi+3 come from the same paragraph. Otherwise, if Eq. 9 does not hold, then at

least one gap between them is different, which divides two paragraphs.

1 

2 

3 

(a) (b) (c) (d)

Fig. 10. Finding the intersections of text lines with 2D rulings. (a) Two nearby 2D rulings define the base lines of the projection,

while the local text line directions define the curved projection path. (b) The curve-based projection profile. (c) Smoothed result

of (b). (d) Binarized result of (c), in which three paragraphs are identified.

Pi+4

r

R

v

O

Pi+3Pi+2
Pi+1Pi

pi

pi+4 P 8

Fig. 11. Vanishing point v of a 2D ruling r corresponds to the point at infinity on the 3D ruling R.
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If we let Pi+3 converge toward ∞, then pi+3 converges toward v, which is the position of the

vanishing point along r. In that case, Eq. 9 becomes

|pi+1−pi||v−pi+2|
|pi+2−pi||v−pi+1|

= limPi+3→∞

|Pi+1−Pi||Pi+3−Pi+2|
|Pi+2−Pi||Pi+3−Pi+1|

= 1
2
,∀i,

(10)

for any (pi, pi+1, pi+2) in a paragraph. Eq. 10 represents a linear system in terms of v. With

multiple text lines grouped into multiple paragraphs, we solve for optimal v in a Least Square

sense.

4) Global Shape Optimization: Based on the planar strip approximation model, a curved

document is divided into strips by the rulings. Ideally, each strip can be rectified independently

using the method designed for planar documents. As a result, we obtain the surface normals

to the strips and the camera focal length which fully describe the 3D shape of the document.

However, such a result is usually noisy because each strip is small and does not contain sufficient

information. Our solution is to globally constrain the strips by the properties of developable

surfaces and printed text in documents.

Let us first define the variables used in this section (see Fig. 12). All points and vectors are

defined in the camera’s 3D coordinate system and consist of three components. All vectors are

of unit length, unless otherwise noted. For any point s in the image plane, we use two vectors, ts

and bs, to represent the 2D major and minor texture flow directions. Across the document area,

we have a group of M reference points, {pi}
M
i=1, and the estimated 2D rulings through them,

whose directions are represented by a group of vectors, {ri}
M
i=1. The z component of either s

or any pi simply equals f , while the z components of vectors t and b are both equal to 0. On

the 3D surface, the corresponding variables are denoted by upper case letters. The 3D surface

normal to the planar strip between Ri and Ri+1 is defined as Ni. The 3D surface normal Ni along

Ri is then approximated by η(Ni−1 +Ni) where η(·) represents the normalization operation (i.e.,

η(v) = v/|v|).

Except for surface normals, the other vectors on the 3D surface can be computed from their

2D projections using the following back-projection equations [24]:
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Ni
B

T

Ri

Ri-1

Ri+1

Pi-1

Pi

Pi+1
S

r

b

t

r i

i-1

r i+1

pi-1

pi

pi+1
s

f

O

y

x

z

Fig. 12. Definitions of variables. O denotes the optical center, (x, y, z) represent the camera’s coordinate system, and focal

length f defines the distance between O and the image plane.

Ri = η((ri × pi) × Ni),

T(s) = η((ts × s) × Ni),

B(s) = η((bs × s) × Ni),

(11)

where s is any point within the ith planar strip (with Ni as its normal). Our global shape

optimization process involves constraints expressed in terms of N, R, T and B. Through Eq. 11,

these constraints are fundamentally functions of {Ni} and f .

The following four constraints are derived from the properties of developable surfaces and

printed text in documents:

• Orthogonality between surface normals and rulings:

When two rulings are very close, we have that the normal at any point on the surface between

the two rulings are approximately orthogonal to either ruling, i.e., N⊤

i−1Ri ≈ N⊤

i Ri ≈ 0.

Eq. 11 ensures that R⊤

i (Ni − Ni−1) = 0, so we only need to check if R⊤

i (Ni − Ni−1) = 0.

We define µ1 =
∑L−1

i=1 (∆N⊤

i Ri)
2 as the measurement, where ∆Ni = Ni − Ni−1.

• Parallelism of text lines within each strip:

Suppose that we select J sample points inside the ith strip. The 3D text line directions

at these points are denoted by {Tij}
J
j=1. We use µ2 =

∑

i

∑

j(Tij − Ti)
2 to measure their

parallelism, where Ti = (
∑J

j=1 Ti)/J .

• Geodesic property of text lines:

Let the angle between Ti−1 and Ri be θi, and the angle between Ti and Ri be γi. When

we flatten the document strip by strip, the two angles must remain intact. On the flat
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document, the text lines should be straight, which means θi +γi = π, or, cos θi +cos γi = 0,

i.e., T
⊤

i−1R + T
⊤

i R = 0. Overall, this is measured by µ3 =
∑

i((Ti+1 − Ti)
⊤Ri)

2.

• Orthogonality between 3D major and minor texture flow fields:

This constraint is measured by µ4 =
∑

i

∑

j(T
⊤

ijBij)
2, where Bij is defined similar to Tij .

Ideally, all the four constraint measurements should be zero.

We have two regularization terms that help us stabilize the solution:

• Smoothness:

We use µ5 =
∑

i(∆Ni)
2 to measure the surface smoothness. A large value indicates abrupt

changes in normals to neighboring strips and should be avoided.

• Unit length:

Each normal should be of unit length. We measure this by µ6 =
∑

i(1 − |Ni|)
2.

The overall optimization objective function is the weighted sum of all constraint measurements,

F =
6

∑

s=1

αsµs,

where αs is the weight representing the importance and our confidence in µs. Notice that each

µs is the sum of terms where each term depends only on the normal to one strip, or the normals

of two neighboring strips. This property is inherited by F . Based on Eq. 11, F is fundamentally

determined by {Ni} and f . The optimization problem is to find {N∗

i } and f ∗ that minimize F .

The unit length constraint is actually a “hard” condition under which F should be optimized.

It is incorporated into F so that the optimization becomes unconditional and easier to formulate.

The smoothness weight depends on the curvature of the specific page. The other four factors,

ideally, should reflect the accuracies of estimated features. For example, the accuracy of texture

flow translates into the accuracy of T and B, and thus affects the choice of α4. In practice,

however, both curvature and accuracies are unknown. Our decision is to assume the same

accuracy for all estimated features and set all of α1 through α4 to 1. We set α6 twice as large

to emphasize the “hard” condition. As for α5, we find that 10−2 works fine for our dataset.

In our experiments, we tested different weight values, changing each individual factor by

as much as 30%. For certain inputs, slight changes in corresponding outputs were observed.

However, our experiments show that on average the effect is not significant.

Good initial values of {Ni} and f are essential for solving the non-linear optimization problem.

We obtain them with the help of vanishing points of rulings. First, we assume that f is known,
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then the vanishing point of ri determines the direction of Ri, which eliminates one degree of

freedom from Ni since R⊤

i Ni = 0. The remaining degree of freedom allows Ni to rotate in the

plane orthogonal to Ri. Our problem turns into finding the rotation angles.

Notice that we have a sequence of nodes {Ni}, each of them having an unknown angle which

we can quantize into a finite number of states, and the objective function is the sum of terms

where each term depends only on the states of two subsequent nodes. Again, similar to the

problem of finding a group of 2D rulings (see Sec. III-D.2), F is optimized using the dynamic

programming method.

As for the focal length, we select a set of feasible values based on the physical lens constraint

and perform the above process for each value. The f that results in minimum F is chosen as

the best initial focal length.

Once we have the initial f and {Ni}, we perform the non-linear optimization using a subspace

trust region method based on the interior-reflective Newton method [33]. Fig. 13 presents the

reconstructed surface normals and rulings corresponding to the right image in Fig. 9. The page

shape is satisfactorily captured.

Fig. 13. Reconstructed surface normals (solid short lines) and rulings (dashed long lines) for the right image in Fig. 9

5) Piecewise Rectification: Given focal length, f , and its normal, Ni, each strip can be rectified

using Eq. 5 developed in Sec. III-C.2. The camera matrix K is determined by f , and the two

axes, Vh and Vv, are replaced by T and B, which are computed using Eq. 11. We need to supply

W and (x′

0, y
′

0) to complete the computation. For the ith strip, we rename (x′

0, y
′

0) as (x′

i, y
′

i) and

choose Pi defined in Sec. III-D.3 as W. The value of (x′

i, y
′

i) controls the position of the ith

strip in the result image, and it should be such that neighboring strips are seamlessly connected.

Once all strips are rectified, the flat document is obtained.

We start by setting an arbitrary depth, d1, for P1. That is, P1 = d1p1, where p1 = (x1, y1, f)⊤
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is the projection of P1 on the image plane and it is known. In our implementation, we choose

d1 = 1 and (x′

1, y
′

1) = (0, 0). These settings fulfill the requirement for computing H1 (defined in

Eq. 5). Since we assume that both P1 and P2 are on the first strip, the point in the destination

image where p2 maps to is given by (x2, y2)
H

−1

1
→ (x′

2, y
′

2). Also, we have (P1 − P2)
⊤N1 = 0.

Furthermore, if we write P2 = (X2, Y2, Z2)
⊤, we have











x2 = fX2/Z2

y2 = fY2/Z2

.

After some manipulation, we obtain












N⊤

1

f 0 −x2

0 f −y2













P2 =













N⊤

1 P1

0

0













,

which gives us P2 based on f , P1, N1, and p2. In the same way, we can obtain Pi recursively

from Pi−1, Ni−1 and pi, for any i.

Ideally, the rectified strips form the “mosaic” of the flat document. However, in practice, the

mosaic is not seamless, due to the estimation noise at various steps. The problems include

overlapping or gaps between neighboring strips (in order to keep text lines in both strips

horizontal), and broken text line pieces not at the same horizontal level. The reason is that

each strip is rectified with one homogeneous transformation consisting of only eight degrees

of freedom. These eight parameters rectify the strip in an overall sense but are not sufficient

to control the local behavior of the rectification. We address it with a local warping process.

Essentially, we divide the strips into triangles and for each triangle we compute an affine

transformation such that all the triangles in the original image map to seamless triangles in

the destination image while keeping all text lines horizontal and straight. See Fig. 14 for a

comparison before and after this warping process.

IV. EXPERIMENTS AND EVALUATION

A. Example Results

We tested our system with both synthetic and real images. Fig. 15 compares the input and

output. Overall, the rectified images are close to the frontal-flat view of the documents, despite

some imperfection near text boundaries. Fig. 16 magnifies the top left and bottom left regions
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(a) (b)

Fig. 14. Post-processing flattened strips to obtain seamless document image. (a) Piecewise rectification result with discontinuities

between strips. (c) Triangle based warping result ensures a seamless flat document.

in the last input image in Fig. 15 and shows the corresponding output regions side by side. The

zoomed regions show significant skew, and the character size in the bottom image is clearly larger

than the top one because of foreshortening. Rectification removes skew and restores uniform

character size. Even though rectification does not take care of the blur in the top image, the

output image is much more readable than the input.

B. Evaluation Methodology

Since it is difficult to obtain ground truth 3D data for real images, we use synthetic images

to quantitatively evaluate our algorithms. Synthetic images are generated using a module [28]

that takes as input a flat document image, a shape model, a pose of the page with respect to the

camera, a camera focal length, and outputs the perspective image along with ground truth data

such as 2D texture flow fields, 2D rulings, vanishing points of rulings, and 3D surface normals.

Our evaluation module automatically generates a set of synthetic images, compares the ground

truth against the estimation, and summarizes the average errors. Furthermore, we use the OCR

performance to measure the image quality from an application point of view. That is, we apply

OCR to the original flat document, the synthetic curved document, and the rectified document.

We take the OCR text of the flat document as ground truth, and use that to compute the OCR

rates of the images before and after rectification.

For 2D texture flow fields, 2D rulings and 3D surface normals, which are vectors representing

directions, we measure their precision by their direction errors which are angles. Such mea-
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Fig. 15. Comparison of curved documents (top row) and rectification results (bottom row). In the top row, the left two inputs

are synthetic images and the right two inputs are real images.

Fig. 16. Enlarged regions of original image and rectified result. These images are taken from the last pair of images in Fig. 15.

surements are independent of the image scale. For vanishing points of rulings or camera focal

length, which are scalar numbers, a direct difference between the truth and estimate is, however,

dependent on the image scale. Instead, we choose the following alternative benchmarks that are

scale independent.

First, the precision of the vanishing point of a ruling can be equivalently measured by the

precision of induced 3D ruling direction. This gives us an angle value. Since the 3D ruling
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direction is also related to the position of the optical center, we assume perfect knowledge of

the focal length at this step.

Second, we benchmark the focal length estimation in a similar way. We take a reference point

(other than the principal point) in the image and compare two rays from this point to the optical

centers given by the correct focal length and the estimated value, respectively, which provides

an angle difference. In our test, we choose one image corner — any corner produces equivalent

result if the principal point coincides with the image center — so the angle between the ray

and the optical axis has the physical interpretation of being half of the field of view. By this

interpretation, the error in field of view measures the focal length accuracy.

C. Evaluation Results

In the first experiment, we collected five clean document images at 300dpi. Their sizes are all

1600×2500 pixels. For each image, we created two other versions that have some parts cropped

to test our algorithms’ ability to handle occlusion. We designed four sets of pose parameters,

including the rotation and translation of the document page in the camera’s coordinate system,

plus the camera focal length. The combination of five pages, three cropped versions (one without

cropping), and four poses gives us 60 synthetic images of planar documents (see Fig. 17(a)(b)(c)).

For curved pages, we designed two cylinder shapes (see Fig. 17(d)), which doubled the total

number to 120. The first and last images in Fig. 17(d) represent typical opened books, while the

other two images represent more general cases.

Due to the limit of space, we summarize the quantitative evaluation results in Table I. As for

rectified images, not all of them are shown. The output images corresponding to the first and

last input images in the last row in Fig. 17 are given in Fig. 15. For more rectified images, see

Fig. 5, 6, 15, and 16.

The first half of Table I shows the evaluation on 2D and 3D features represented by angles in

degree. The second half of the table compares the OCR performance before and after rectification.

We used OmniPage Pro 12 for OCR. All the numbers are averages.

Overall, the accuracies of both 2D and 3D features are satisfactory. In particular, we obtain an

encouraging accuracy of about 2.4 degrees in terms of 3D surface normals. For curved pages,

the effect of global shape optimization on top of initial estimation is evident. Between curved

and planar pages, although the accuracies of 2D texture flow fields (especially the major one) of
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(a)

(b)

(c)

(d)

Fig. 17. Synthetic document image samples. From left to right (a) flat page no. 1 through no. 5, (b) pose no.1 through no. 4,

(c) images with different croppings, (d) curved documents in which the first and the third come from one shape and the second

and the fourth come from another shape; the second and the third are cropped.
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curved pages is lower than that of planar pages, the difference between 3D feature accuracies is

almost negligible. This demonstrates the robustness of our model based global shape optimization

method.

We can draw two conclusions from the OCR comparison data. First, even for planar pages, the

character and word recognition rates before rectification are below 30%. This means that even

without curved shape, perspective distortion presents a significant obstacle by itself. Second, the

image quality measured by OCR performance shows an improvement of about three to four folds

after rectification. Although there is still room for further improvement, these rates are already

acceptable in many document analysis applications such as indexing and retrieval.

Accuracy Planar pages Curved pages

Major texture flow 0.31◦ 0.80◦

Minor texture flow 0.91◦ 1.12◦

2D ruling N/A 1.82◦

3D ruling N/A 2.91◦

Field of view (initial) N/A 3.21◦

Surface normal (initial) N/A 3.90◦

Field of view (final) 3.30◦ 3.08◦

Surface normal (final) 2.40◦ 2.44◦

OCR character rates (original) 26.14% 23.05%

OCR character rates (rectified) 97.08% 87.64%

OCR word rates (original) 22.92% 14.29%

OCR word rates (rectified) 95.91% 83.83%

TABLE I

EVALUATION SUMMARY OF 2D/3D FEATURES AND OCR PERFORMANCE.

In the second experiment, we investigate our system’s applicable range in terms of the curvature

of the document shape and its pose relative to the camera. In the first step, we fix the pose

parameter set and vary the shape parameter set. We design seven shape models that gradually

change from almost flat to extremely curved (see Fig. 18(a)). Each shape is applied to five

document pages. The 3D feature evaluation results are summarized in the first half of Table II.

In the second step, we fix the shape and vary the pose. Again we design seven poses with

gradually increasing tilt (Fig. 18(b)). The evaluation results are shown in the second half of
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Table II. It is not surprising to see the accuracy drop as the curvature or tilt increases. The last

shape and pose are rather challenging as illustrated by Fig. 18(c) which shows enlarged portions

of the most curved and tilted images, respectively.

Shape no.1 no.2 no.3 no.4 no.5 no.6 no.7

FOV 0.98◦ 1.40◦ 1.33◦ 1.23◦ 0.61◦ 1.43◦ 1.10◦

N 1.06◦ 1.34◦ 1.57◦ 1.43◦ 1.86◦ 2.52◦ 4.65◦

Pose no.1 no.2 no.3 no.4 no.5 no.6 no.7

FOV 0.67◦ 1.62◦ 0.87◦ 0.92◦ 1.73◦ 4.15◦ 7.66◦

N 1.55◦ 2.00◦ 1.66◦ 1.54◦ 1.56◦ 3.09◦ 3.78◦

TABLE II

EFFECTS OF CURVATURE/POSE ON 3D SHAPE ESTIMATION. (FOV: FIELD OF VIEW; N: SURFACE NORMAL)

V. DISCUSSION

A. Implementation Variations

The rectification method described in Sec. III-D involves more complicated computation than

the steps for planar pages (Sec. III-C). The additional complexity is necessary because we

assume a general developable surface model and unconstrained camera position. When additional

constraints are available, the framework can be tailored to reduce the complexity of the approach

and improve its accuracy.

Opened books present a typical case of curved documents in real life. An opened book usually

forms a cylinder shape, and the minor texture flow vectors are all parallel and coincide with

the rulings of the surface. Under these conditions, the ruling detection step (Sec. III-D.2) is

no longer needed. Furthermore, the vanishing point of rulings is simply the convergence point

of minor texture flow vectors. Thus the step illustrated in Sec. III-D.3 is not necessary, either.

Inside the global shape optimization step (Sec. III-D.4), multiple rulings {Ri} reduce to a single

R. Combined together, these simplifications can result in a more efficient and accurate system,

provided that the input is indeed an opened book.

May 19, 2007 DRAFT



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, YY 2006 31

(a)

(b)

(c)

Fig. 18. Images used for testing the applicable range of the rectification system. From left to right: (a) seven shapes with

increasing curvature (no. 1 through no. 7), (b) seven poses with increasing tilt (no. 1 through no. 7), and (c) enlarged details

from the top part of the most curved page in (a) and most tilted page in (b).

Another even simpler customization is to implement only planar page rectification and shape

classification modules. When the input is classified as non-planar, it is rejected; or the user can

be prompted by an interactive interface to flatten the page and take another picture.

B. Parameter Selection

Beside the six weighting factors discussed in Sec. III-D.4, there are two other user defined

parameters in our framework.

The first one is a shape threshold (see Sec. III-B.2) that classifies a document as planar or

curved. It is preferable to set this parameter slightly in favor of a “planar” decision. Firstly, due

to the inevitable noise in texture flow estimation, a threshold that is too tight will in practice

label any document as “curved”. Secondly, the ultimate risk of labeling a weakly curved page as

planar is that text lines in the rectified image may still be weakly bent; however, when a nearly

planar page is misclassified, the computation is much more expensive and the output is more

prone to errors. In our implementation, we set this first threshold to 10−4.
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The second parameter controls the division of text lines into paragraphs (see Sec. III-D.3).

Because the vanishing point computation (Eq. 10) requires at least three text lines in a paragraph,

usually we tune the parameters in favor of fewer paragraph cuts and more text lines in each

paragraph. In our experiments, the threshold is 10−2.

C. Future Work Directions

There are several limitations in our current method and we would like to address them in

the future. First, one of our basic assumptions is that the principal point is at the center of the

image. While this is usually true for the entire camera-captured image, this does not hold if

the image is cropped. To deal with this, we would need a method for estimating the position

of the principal point. Second, currently our method only takes a single image as input. If

multiple views are available, they provide complementary information that could improve the

shape estimation accuracy. Third, our method does not rely on 3D range scanning or 2D metric

data. However, when such information is available (e.g., from an inexpensive and low resolution

IR camera attached to the optical camera), it is desirable to incorporate it into the computation.

VI. CONCLUSION

For camera-based document analysis, especially mobile applications, the distortion introduced

by non-planar document surfaces and perspective projection is one of the critical challenges, if

not the most important. We solve this problem with an automatic rectification approach which

takes advantage of the developable surface constraint on curved pages and the properties of

printed text in documents. Given a camera-captured image of a document, we estimate the 3D

shape of the page as well as the camera’s focal length based on texture flow fields extracted

from the view, then restore the flat document image. With this method, a camera can emulate

the function of a scanner and be used in various situations that scanners would be cumbersome

or impractical. In experiments, we obtained significant improvement in OCR performance after

rectification. The accuracy of shape estimation is also satisfactory, especially considering that we

have only a single image without camera calibration. Our system can serve as a preprocessing unit

in camera-based OCR applications, or the rectified images can be directly archived or presented

for human viewing.

May 19, 2007 DRAFT



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, YY 2006 33

REFERENCES

[1] J. Liang, D. Doermann, and H. Li, “Camera-based analysis of text and documents: A survey,” International Journal on

Document Analysis and Recognition, vol. 7, no. 2+3, pp. 84–104, July 2005.

[2] M. J. Taylor, A. Zappala, W. M. Newman, and C. R. Dance, “Documents through cameras,” Image and Vision Computing,

vol. 17, no. 11, pp. 831–844, 1999.

[3] L. O’Gorman, “The document spectrum for page layout analysis,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 15, no. 11, pp. 1162–1173, Nov. 1993.

[4] G. Nagy, S. Seth, and M. Viswanathan, “A prototype document image analysis system for technical journals,” Computer,

vol. 25, no. 7, pp. 10–22, 1992.

[5] A. K. Jain and B. Yu, “Document representation and its application to page decomposition,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 20, no. 3, pp. 294–308, 1998.

[6] M. S. Brown and W. B. Seales, “Image restoration of arbitrarily warped documents,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 26, no. 10, pp. 1295–1306, October 2004.

[7] S. Pollard and M. Pilu, “Building cameras for capturing documents,” International Journal on Document Analysis and

Recognition, vol. 7, no. 2+3, pp. 123–137, July 2005.

[8] A. Ulges, C. H. Lampert, and T. Breuel, “Document capture using stereo vision,” in Proceedings of the 2004 ACM

Symposium on Document Engineering, 2004, pp. 198–200.

[9] P. Clark and M. Mirmehdi, “On the recovery of oriented documents from single images,” in Proceedings of Advanced

Concepts for Intelligent Vision Systems, 2002, pp. 190–197.

[10] H. Cao, X. Ding, and C. Liu, “A cylindrical surface model to rectify the bound document image,” in Proceedings of the

International Conference on Computer Vision, vol. 1, 2003, p. 228.

[11] Y.-C. Tsoi and M. S. Brown, “Geometric and shading correction for images of printed materials a unified approach using

boundary,” in Proceedings of the Conference on Computer Vision and Pattern Recognition, 2004, pp. 240–246.

[12] N. Gumerov, A. Zandifar, R. Duraiswarni, and L. S. Davis, “Structure of applicable surfaces from single views,” in

Proceedings of European Conference on Computer Vision, 2004, pp. 482–496.

[13] Z. Zhang and C. L. Tan, “Correcting document image warping based on regression of curved text lines,” in Proceedings

of the International Conference on Document Analysis and Recognition, vol. 1, 2003, pp. 589–593.

[14] P. Clark and M. Mirmehdi, “Estimating the orientation and recovery of text planes in a single image,” in Proceedings of

the British Machine Vision Conference, 2001, pp. 421–430.

[15] A. Ulges, C. H. Lampert, and T. M. Breuel, “Document image dewarping using robust estimation of curled text lines,” in

Proceedings of the International Conference on Document Analysis and Recognition, 2005, pp. 1001–1005.

[16] H. Cao, X. Ding, and C. Liu, “Rectifying the bound document image captured by the camera: A model based approach,”

in Proceedings of the International Conference on Document Analysis and Recognition, 2003, pp. 71–75.

[17] A. Zappala, A. Gee, and M. J. Taylor, “Document mosaicing,” Image and Vision Computing, vol. 17, no. 8, pp. 585–595,

1999.

[18] T. Nakao, A. Kashitani, and A. Kaneyoshi, “Scanning a document with a small camera attached to a mouse,” in Proceedins

of IEEE Workshop on Applications of Computer Vision, 1998, pp. 63–68.

[19] G. K. Myers, R. C. Bolles, Q.-T. Luong, J. A. Herson, and H. B. Aradhye, “Rectification and recognition of text in 3-D

scenes,” International Journal on Document Analysis and Recognition, vol. 7, no. 2+3, pp. 147–158, July 2005.

May 19, 2007 DRAFT



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. X, NO. X, YY 2006 34

[20] J. Malik and R. Rosenholtz, “Computing local surface orientation and shape from texture for curved surfaces,” International

Journal on Computer Vision, vol. 23, no. 2, pp. 149–168, 1997.

[21] J. Gårding, “Shape from texture for smooth curved surfaces in perspective projection,” Journal of Mathematical Imaging

and Vision, vol. 2, pp. 327–350, 1992.

[22] O. Ben-Shahar and S. W. Zucker, “The perceptual organization of texture flow: A contextual inference approach,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 4, pp. 401–417, April 2003.

[23] A. R. Rao and R. C. Jain, “Computerized flow field analysis: Oriented texture fields,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 14, no. 7, pp. 693–709, July 2003.

[24] D. C. Knill, “Contour into texture: Information content of surface contours and texture flow,” Journal of the Optical Society

of America Association, vol. 18, no. 1, pp. 12–35, Jan 2001.

[25] J. Liang, D. DeMenthon, and D. Doermann, “Flattening curved documents in images,” in Proceedings of the Conference

on Computer Vision and Pattern Recognition, 2005, pp. 338–345.

[26] D. X. Le, G. R. Thomas, and H. Weschler, “Automated page orientation and skew angle detection for binary document

images,” Pattern Recognition, vol. 27, no. 10, pp. 1325–1344, 1994.

[27] R. A. Hummel and S. W. Zucker, “On the foundations of relaxation labeling processes,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 5, pp. 267–287, 1983.

[28] J. Liang, “Processing camera-captured document images: Geometric rectification, mosaicing, and layout structure recog-

nition,” Ph.D. dissertation, University of Maryland, College Park, 2006.

[29] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision. Cambridge University Press, 2000.

[30] D. Liebowitz and A. Zisserman, “Metric rectification for perspective images of planes,” in Proceedings of the Conference

on Computer Vision and Pattern Recognition, 1998, pp. 482–488.

[31] A. Vailaya, H. Zhang, C. Yang, F.-I. Liu, and A. Jain, “Automatic image orientation detection,” IEEE Transactions on

Image Processing, vol. 11, no. 7, pp. 746–755, 2002.

[32] D. B. Wagner, “Dynamic programming,” The Mathematica Journal, vol. 5, no. 4, pp. 42–51, 1995.

[33] T. Coleman and Y. Li, “An interior trust region approach for nonlinear minimization subject to bounds,” SIAM Journal on

Optimization, vol. 6, pp. 418–445, 1996.

May 19, 2007 DRAFT


