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One of the major shortcomings of Hopfield neural network (HNN) is that the network may not always converge to a fixed point.
HNN, predominantly, is limited to local optimization during training to achieve network stability. In this paper, the convergence
problem is addressed using two approaches: (a) by sequencing the activation of a continuous modified HNN (MHNN) based on the
geometric correlation of features within various image hyperplanes via pixel gradient vectors and (b) by regulating geometric pixel
gradient vectors. These are achieved by regularizing proposed MHNNs under cohomology, which enables them to act as an
unconventional filter for pixel spectral sequences. It shifts the focus to both local and global optimizations in order to strengthen
feature correlations within each image subspace. As a result, it enhances edges, information content, contrast, and resolution.
The proposed algorithm was tested on fifteen different medical images, where evaluations were made based on entropy, visual
information fidelity (VIF), weighted peak signal-to-noise ratio (WPSNR), contrast, and homogeneity. Our results confirmed
superiority as compared to four existing benchmark enhancement methods.

1. Introduction

Artificial intelligence is one of the most celebrated fields in
science. Key components in artificial intelligence are neural
networks, which have been integrated into image processing
and computer vision. Integrating neural networks and other
mathematical computation tools into computer science can
be useful because they enable the exploitation of a wide range
of applications related to image classification, driving auto-
mation, and text translation [1]. In this paper, a proposal
aimed at integrating the benefits derived from modifying
the Hopfield neural network (HNN) with geometric algebra
to improve image quality is presented and evaluated.

HNNs, just like other neural networks, have contributed
to the growth of various image processing tasks. They have
been used widely in the detection of image features such as
in quantification and segmentation [2], in feature tracking
of satellite images [3], and in a variety of image restoration

techniques [4]. However, HNNs have had limited success in
image enhancement and have displayed several shortcom-
ings compared to other techniques [5]. One of the common
problems with HNN-based image enhancement is that it
converges to a fixed point, which makes it focus on local opti-
mization during the training stage in order to ensure the sta-
bility of the network [6]. This improves optimization
processing. It, however, could hinder the quality of the proc-
essed image [7].

In order to achieve a highly reliable performance, many
training data sets are also required; however, this may limit
its application in some areas [8, 9]. The premise of the cur-
rent proposal is that combining HNN with geometric prop-
erties of input images may expand the usability of HNN-
based imaging [10]. Previous results have shown that this
improvement is still an ongoing process [11–17]. One solu-
tion is to integrate the geometric hyperplane complex prop-
erties of an image with a modified HNN to optimize the
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mapping of image features such as edges and other physical
properties. This will help improve image quality in terms of
human visual perception.

Human visual perception defines image quality based on
image features [18]. Image quality depends on the position-
ing of pixel arrays within the image dimensional space, where
each dimension corresponds to a specific feature [19, 20].
Images with a higher number of pixels within the dimen-
sional space pose problems during enhancement, leading to
either poorly formed features or reduced information con-
tent [21]. The creation of a high-quality image based on
human visual perception requires the alignment of correlated
pixels within and among adjacent local and global neighbor-
hoods [22]. Such alignment is based on the global and local
adaptation of the reference image axis during image
enhancement [23]. Therefore, a suitable computation results
in better edge preservation, low errors, high signal-to-noise
ratios, and a high conformance with the original image.
The majority of image enhancement techniques are based
on either global or local image features. These techniques
result in high errors [11], a low conformance with the origi-
nal image [12], or lower information than the original image
[15]. Histogram-based image enhancement methods are the
most commonly used, while those based on artificial neural
networks (ANNs) are rarely applied. ANN-based image
enhancement techniques are inspired by the biological neural
networks that constitute the human brain [13]. They provide
better outcomes than most other computational methods.
Image enhancement techniques based on ANNs have been
affected by optimization issues, which lead to noisy images
with poorly formed edges, as well as a low similarity and
information content in reference to the original image.
Geometric-based image enhancement techniques, on the
other hand, such as that of [24], focus on improving edges
and structural similarities between the original and final out-
put. [25] uses geometric mean filtering to reduce Gaussian
noise present in wireless capsule endoscopy (WCE) images.
The results in [25] were only compared with those achieved
via arithmetic mean filtering, and the outcomes show
improved qualities in terms of signal-to-noise ratio (SNR)
and peak signal-to-noise ratio (PSNR). [26] used geometric
parameters on local pixel intensity distributions in a novel
anisotropic diffusion method for radiography image
enhancement. [26] combined noise reduction, edge preserva-
tion, and sharpening operations, and the authors compared
the results with only those from other anisotropic diffusion
methods. In summary, the existing image enhancement
methods lack proven human visual perception features since
none of the current approaches focus on improving all image
qualities [27]. Multiple scholars have attempted to solve these
problems by introducing preprocessing [28–30] and regular-
izing filters [31].

Recent studies based on regularized or modified HNNs
have been used extensively in image restoration, especially
in confocal microscopy [32]. Modifying an HNN with other
mathematical concepts, like geometric algebra, allows the
network to concentrate on contextualizing information
about pixels in a neighborhood [33]. Geometric algebra, par-
ticularly cohomology, allows for the exploitation of the image

hyperplane; hence, it yields information-rich output images
with clear edges. Therefore, the idea of regularizing HNNs
under cohomology concepts technically enables HNNs to
act as unconventional filters for image pixel spectral
sequences [34]. The existing research has attempted to solve
the fixed-point convergence problem of HNN. For instance,
Tsang et al. [35] investigated and proposed updating rules
associated with the convergence theorems associated with a
discrete Hopfield neural network (DHNN) with delay. The
serial and parallel mode updating rule proposed resulted in
a faster speed than any existing rules. Hillar et al. [36] used
minimum probability flow (MFP) on discretized Hopfield
neural network for grayscale digital photography. The MPF
surpasses the convergence problem associated with HNN,
thus allowing high-quality regime compression of digital
images. Kasihmuddin et al. [37] attempt to solve the mini-
mum energy problem associated with confinement to limited
solution spaces of neurons by combining the estimation dis-
tribution algorithms’ global search capacity. The combina-
tion resulted in HNN exploring other solution spaces,
which led to the estimation of possible neuron states to yield
minimum global energy. Nour-eddine et al. [38] solved the
fluctuation behaviors resulting from hard limit activators by
setting parameters to settle a stable network. The current
study proposes this new piece of knowledge by demonstrat-
ing its significance on image enhancement through practical
examples. HNNs are preferred to traditional artificial intelli-
gence due to their ability to allow for structural modifications
and extensions for feature enhancement and pattern empha-
sis. Therefore, HNNs remove chances of disordered geomet-
rical formations. HNNs’ ability to retrieve and recognize
features and patterns lies in the cost function, which operates
similar to that of a Hamiltonian function (the minima of a
Hamiltonian match similar patterns). This makes HNNs
robust since the cost function can be modeled to fit various
applications, such as the recognition and separation of pixel
correlations within neighborhoods in order to enhance image
quality [39]. This is made possible by minimizing the cost
(energy) function. The mechanical extension of relativity
permits HNNs to alienate free energy (loose or uncorrelated
pixels) from closed or correlated pixels in the image. Altering
the sign of the HNN cost function by mechanical analogy
makes Hopfield’s piecewise function appealing for research
in other areas and has significantly influenced this paper.

The operation of a classical HNN is based on a simple
quadratic energy function. Its periodic update via dynamic
parameters iteratively minimizes the energy until it con-
verges to a minimum, which corresponds to the geometric
correlation of image pixels. Many different learning rules
can be used to attain this outcome; however, a traditional
HNN lacks the means for modeling real-world, higher-
order dependencies [40] such as pixel correlation, and hence,
the energy function needs to be modified. For instance,
images (whether gray or red, green, blue (RGB)) have large
dimensions, which makes simultaneously modeling global
and local geometric dependencies difficult. Many existing
HNNs can model perceptual data efficiently without interfer-
ing with model fidelity by using either existing algorithms or
machine learning tools [39].
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The rest of the paper is organized as follows. Section 2
summarizes the contribution of the paper. Section 3 outlines
the background information of the Hopfield neural network
and geometric algebra, specifically cohomology and residues,
and then summarizes the proposed geometric regularized
Hopfield neural network for image enhancement. Section 4
describes the detailed experimental procedures, results, and
comparison of the proposed results with the existing state-
of-the-art results. Finally, Section 5 presents the theoretical
and experimental conclusion.

2. Contribution Outline

In this paper, the need for a more efficient protocol for pro-
cessing high-dimensional geometric dependencies in order
to allow for global and local pixel correlations is recognized
and addressed. The paper presents a modification of the
HNN based on the geometric correlation of pixels with the
goal of improving the pixel gradient vector. This optimizes
the local energy function and improves the image informa-
tion content while preserving image features.

3. Materials and Method

3.1. Materials

3.1.1. Hopfield Neural Networks. In this paper, a new method
for image enhancement is presented (see Figure 1). HNNs
have two significant limitations: the learning process and
the convergence process [41]. These limitations often lead
to the alteration of geometric correlations. The HNN classifi-
cation process depends on an energy function and therefore
aims at reaching local rather than global geometric minima
[42]. This tendency creates correlation problems, especially
when single images are used as inputs, as is the case in the
algorithm proposed in this paper. This limitation has sur-
passed the primary efforts based on HNNs alone [43] in the
areas of image restoration, segmentation, and object classifica-
tion. Various modifications of HNNs by different researchers
have also shown significant limitations in terms of the extrac-
tion of the learning vector space and, therefore, have often led
to the wrong choice of vector space [4, 44]. Modified Hopfield
neural networks (MHNNs) are also time consuming due to
the presence of looping and self-connecting architectures. Nei-
ther MHNNs nor HNNs have been validated, and both yield
noisy results, whichmake them unsuitable in terms of improv-
ing image perceptual quality [41].

In this paper, a novel method based on a geometricMHNN
aimed at improving the human perceptual quality of images is
presented and evaluated. Unlike existing methods, this method
focuses on addressing the disadvantages associated with exist-
ing MHNNs, as well as basic and continuous HNNs in order
to improve image quality. The proposed MHNN, unlike any
other method previously proposed, considers a geometric cor-
rection of pixels within an image neighborhood, so that the
usual focus of HNNs (minimizing energy) is replaced by the
search of a global optimum to help improve image quality.

HNNs are iterative, autoassociative networks that consist
of a single layer of processing elements, so they are catego-

rized as associative memory [45]. HNNs are categorized into
recurrent and fully connected neural networks and have two
versions: binary and continuous [45]. In the binary version,
all of the neurons are connected to each other, but there is
no self-connection. The continuous version allows for all
possible connections [45]. The N-node HNN parlance is an

N-dimensional vector ξ = ½ξ1,⋯, ξN � from the space Ξ =

f−1, 1gN . A special subset of Ξ represents the reference pat-

tern Γ = fγη : 1 ≤ η≤∞g, where γη = ½γ
η
1,⋯, γ

η
N �. HNNs link

a vector from Ξ into classes whose members have similar
characteristics to the reference subset Γ. Just like any other
neural network, HNNs have the following basic components:

(1) A finite set of neurons δðiÞ, 1 ≤ i ≤N , which serve as
processing units and are described by the value or

Training samples

Pixel gradient-based geometric
correlated samples

Calculate weight of vectors of
geometrically correlated

features

Convenge to minimum pixel
gradient vector

Random tangential
sequence identi�cation

of hypersurface

Partition image into 440
�attened images

Figure 1: Schematic diagram indicating key steps of the proposed
algorithm for the results presented in Figures 3 and 4. The
MHNN proposed is composed of 4 layers: one input layer, two
hidden layers, and one output layer.
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state δtðiÞ at time t. The state can either be −1 or
+1 and are therefore represented as δtðiÞ ∈ −1, +1
[45, 46]

(2) A synaptic connection where the learned information
of the neural network resides, which is defined as
interconnections between neurons. A synaptic con-
nection ψij, which exists between any two neurons

δðiÞ and δðjÞ such that ψij = ψji and ψij = 0 for j = i,

as portrayed in Figure 2(a) [45, 46]. Synaptic changes
in the network for the case of continuous HNNs are
nonexistent, and excitation and inhibition is achieved
by means of a weighted sum of the contributions of
the neighboring neuron outputs

(3) A propagation rule, as presented in Figure 2(b),
defines how states and synapses influence the input
of each neuron [46] as follows:

ϕt ið Þ = 〠
n

j=1

δt jð Þψij + ℘i, ð1Þ

where ℘i is the neuron bias, which depends on external
conditions

(4) An activation function f , which determines the sub-
sequent state of neuron δt+1ðiÞ based on the propaga-
tion value ϕtðiÞ computed using (1) and the current
state of neuron δtðiÞ. The activation function is
accomplished by the network as it attempts to learn
patterns that are N-dimensional vectors from image

space Ξ, where Ξ ∈ ½−1, 1�N . Defining γη = ½γ
η
1, γ

η
2,⋯

, γηn� as the ξth exemplar pattern, where 1 ≤ η ≤ ζ.
Then, the dimensionality pattern space of the HNN
is reflected in the number of nodes in the network
in Figure 2(b) and in the network with N nodes δð1
Þ, δð2Þ,⋯, δðNÞ [45, 46]:

δt+1 ið Þ = f ϕt ið Þ, δt ið Þð Þ =
1, ϕt ið Þ > 0,

−1, ϕt ið Þ < 0

 
ð2Þ

The basic HNN training process entails four steps:

(1) Learning: this step involves assigning weights ψij to

all synaptic connections:

ψij =
〠
ζ

η=1

γ
η
i γ

η
j , i ≠ j

0, i = j:

0

BB@ ð3Þ

Keeping in mind that ψij = ψji, that is, weights are sym-

metric, the preceding computation needs only be performed
for i < j

(2) Initialization: this is where the pattern is presented to
the network based on the similarity from the learning
process such that if ξ = ½ξ1, ξ2,⋯, ξN � is the unknown
patterns, then set the initial state defined by [45, 46] is

δ0 ið Þ = ξi, 1 ≤ i ≤N ð4Þ

(3) Adaptation: this is iterative learning convergence
where (1) and (2) are used to obtain the next state
defined by [45, 46]:

δt+1 ið Þ = f 〠
N

j=1

δt jð Þψij, δt ið Þ

 !
ð5Þ

(4) Continuation: this step represents the repetition of
steps 2 and 3. The iterative learning continues until
no further changes are observed in the state of any
node

The steps outlined above are common and remain similar
for all HNNs. However, there are some variations in the con-
tinuous version such as in image processing (where ψij ≠ 0)

and in the case of the sigmoid function in the activation func-
tion, as defined by [45, 46]:

f δ ið Þð Þ =
1

1 + e−δ ϕi−ιð Þ
, ð6Þ

where ι controls the shift along the horizontal axis. The con-
vergence property of the basic HNN depends on the structure
of Ψ (the matrix with elements ψij) and the update model.

One of the main advantages of the basic HNN is the opera-
tion in sequential mode, where Ψ is symmetrical with non-
negative diagonal elements. Thus, the energy function is
defined by [45, 46]:

E tð Þ =
1

2
〠
n

i=1

〠
n

j=1

ψijδj tð Þδi tð Þ − 〠
n

i=1

℘iδi tð Þ: ð7Þ

EðtÞ in (7) is a Lyapunov function. It is nonincreasing
and converges to a fixed point. The energy function in (7)
represents the overall status of the network [46]. Energy
values increase at each iteration and become stable when
(7) reaches its minimum [40].

3.1.2. Geometric Algebra: Cohomology and Residues. The dif-
ference between continuous and chain maps in the bijection
between the categories in the image geometric hyperplane
represented in Figure 3 can be summarized as follows;

(i) Continuous map is often represented by fCnðXÞ, ∂ng
while chain is C = fCn, ∂ng
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(ii) Continuous maps function shows f : X→ Y while
chain maps functions summarizes f : C →D

where fCnðXÞ, ∂ng represent image pixels, xi, yi and f
Cn, ∂ng ≃ xn, yn. This can be simply interpreted as a geomet-
ric correlation existing between pixels within an image sub-
space. This suggests that geometric mapping of these points
via the Lefshetz formula links local and global features of
the image. The homotopy and chain homotopy suggests that

A:A = detA:I =

detA 0

detA

⋱

0 detA

2

666664

3

777775
: ð8Þ

We use this odd formalism to understand how to com-
pute the Euler characteristic (the middle cohomology) of a
smooth image projective hypersurface in ℙ

n+1. The first step
is to identify the tangent sequence for a hypersurface [47] of
an image to ensure geometric correlations are enhanced, that
is,

0→ TX → T
ℙ
n+1j

X

→ OX dð Þ→ 0: ð9Þ

It is possible to go one step further to give a more explicit
description of the cohomology of a smooth image hypersur-
face Xd ⊂ ℙ

n+1. To do this, consider HnðX,ℤÞ and its com-
plexity HnðX,ℂÞ. By the Lefschetz theorem on a
hyperplane, decomposition of HnðX,ℂÞ ≅Hnðℙn+1,ℂÞ ⊕A
is plausible. The summed A is called the primitive cohomol-
ogy of X and is denoted by Hn

primðXÞ. Next, a question arises

of whether there is any relation between this primitive coho-
mology and the ambient space ℙn+1 of an image to ensure a
sequence of closed subvarieties of image global and local fea-
tures exist. The answer is determined based on the following
theorem [48].

Theorem 1. Let Xd ⊂ℙ
n+1 be a smooth hypersurface of degree

d. The Hn
primðX,ℂÞ is generated by [47]

Res
Adx0dxn+1

fp

� �� �n

p=0

, ð10Þ

�(1) �(2) �(N)

(a)

�(2)

�(1)

�(i)

�(N)

(b)

Figure 2: (a) HNN and (b) propagation rule and activation function.

xn+2

xn+5

xn+3

xn

xn+4
xn+6

xn+1

Figure 3: A visual of a geometric Lefshetz hyperplane in an image.
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where

Res
Adx0dxn+1

fp

� �
= 2πi〠A

dx0dxn+1ð Þi1ip

f i1 f ip
ð11Þ

and A ∈ Rpd−n−2:

More precisely, one can find that

Hn
prim X,ℂð Þ ≅ ⊕

p=0

n
MFð Þ p+1ð Þd−n−2

: ð12Þ

Finally, a simple but enlightening application of these
results in relation to the proposed algorithm can be formu-
lated as

Lemma 2. Let Q be a smooth quadratic hypersurface in ℙ
n+1.

Then,

X Qð Þ =
n + 3, n + 1 is odd,

n + 2, n + 1 is even:

(
ð13Þ

Proof. Use a matrix of signs to determine ð−1Þi+j as the sign
sequencing activation function in proposed HNN.

+ − +

− + −

+ − +

⋮ ⋮ ⋮ ⋱

2

666664

3

777775
: ð14Þ

Therefore, we have ker ð∂1Þ = hx + y − zi ≅ℤ.

3.2. Geometric Regularized Hopfield Neural Network for
Image Enhancement. Improving human visual perception
in images through the explicit operation of arrays of strongly
correlated pixels is subtle and remains unaddressed. How-
ever, several studies have reported the existence of weaker
constraints that can be modified in order to enhance image
perception [49, 50]. The standard image quality enhance-
ment techniques have not addressed the challenges associ-
ated with intricate features arising from failure by other
methods to recognize geometric variations in pixel correla-
tion within regions in images. Even the use of biologically
inspired neural networks has not addressed the inability to
match the undifferentiated range of pixel intensities and cor-
relation within images. As a result, many techniques focus on
image segmentation [44, 51], classification [52, 53], and con-
trast or resolution enhancement [43, 54], but none has
attempted to implicitly improve image perception quality
based on geometric variations in pixel correlations.

In this paper, image pixel neighborhood geometric corre-
lations are demonstrated given that regions with similar fea-
tures have high pixel geometric correlations. These pixels
become highly geometrically correlated when small changes
are introduced into their arrangements, and they neither
obey homotopy nor chain homotopy when features become

uncorrelated [55]. The details of the proposed algorithm are
summarized in Figure 1 and described below.

The proposed MHNN presented in Figure 1 exploits the
fact that features within an image utilize similar pixel geo-
metric correlations [56, 57]. Such geometric correlations,
therefore, can be used to model and reproduce an enhanced
image with better feature representation. Finding an optimal
pixel geometric correlation within image neighborhoods
ensures that the final image has a better human perception.
Assuming that an image region or patch consisting of M ×
M pixels is perceived to have some geometric correlation,
image pixels can be extracted and transformed into row vec-
tors. Consequently, the image is comprised of N ×N patches,

each described by a group of pixels Λ and each pixel δi. Let-

ting δi such that 1 ≤ i ≤N2 be anM-dimensional feature vec-
tor for pixels within each image hyperplane, and assuming

that Λ is a known feature, then all δi belong to Λ. Given a
known number of hyperplanes Λ, discrete geometric feature

pixel δi, and that the position of the pixel when the maximum
geometric correlation will only be achieved if (14) is true,
then a feature optimization problem can be expressed as

Π δð Þ = 〠
N2

i=1

Π δi,I1,⋯,IQ, δi

� �

− κf δð Þ ; subject to κ, are gulating parameter given by,

ð15Þ

where δ = δ1,⋯, δN2 is a set of pixels with Q-dimensional
vectors that have a geometric correlation as represented in
Figure 3 that describe features in an image hyperplane in

class of vectors δi. The conditions on the vector pixels δiq ∈

½0, 1� and ∑Q
q=1δiq = 1∀1 ≤ i ≤N2 are imposed. The optimal

pixel gradient,Iq : q = 1,⋯,Q, depends on the local orienta-

tion bχ . The pixels within the region are represented by f ðδÞ
= f ðδ1,⋯, δN2Þ, and κ is a parameter regulating the geomet-
ric pixel gradient vectors represented by

∇κT�χ
� 	2

= ∇κj j2cos2 ∠ ∇κ, bχð Þð : ð16Þ

Equation (16) is used to emphasize the geometric orien-
tation of the pixel gradient vector within the image neighbor-
hood, such that

ð
ϵ δ − δ′
� �

∇κ δ′
� �T

χ∧

� �2

dMδ′ = �∇κχ∧ð Þ2, ð17Þ

where ϵ determines the size and shape of the hyperplane
around δ (as shown in (3)). The maximum sequencing must
be achieved for each δ within eachM-directional local neigh-
borhood. This will ensure that the resultant pixel has the
optimum pixel geometric orientation to allow for the recon-
struction of a better image. However, in order to effectively
enhance images through minimum global variance and max-
imum local variance, the quantity in (17) is minimized within
unit pixels’ orientation vector bυ at time t so that (18) is
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minimized,

ð
ϵ δ − δ′, δj − δj′
� �

∇δtκ δ′δj ′
� �T

υ∧

� �2

dMδ′δ′dδ j
′=

�
∇δtκ

Tυ∧
� 	2

,

ð18Þ

where ϵ extends to determine the size and shape of the neigh-

borhood around the hyperplane ½δi, δj�
T with similar pixel

coordinates. Minimization ofΠ inΠðδÞ based on (18) repre-
sents the optimal pixel of the image patches that has maxi-
mum perceptual quality and is feasible only if

Π δð Þ = 〠
Q

q=1

ξi −Iq



 

2
2
δiq + κ〠

j∈μi

δTj δi, ð19Þ

where μi is the set of all pixels within the image regions that
are neighbors of i selected for enhancement.

During pixel selection, the number of neurons in the pro-
posed HNN is the same as the number of pixels in the
selected hyperplane. The energy of this proposed HNN is
thus defined as

E = −〠
N2

i=1

〠
N2

j=1

ψijδi tð Þδj tð Þ − 〠
i=1

N2

℘iδi tð Þ, ð20Þ

where ψij are the net weights, δi is the state of the i
th neuron

and ℘i is the bias input to the ith neuron. A stable HNN has
decreasing energy over time and is therefore useful in solving
Q-class pixel selection using (19) where ψij and ℘i are

Input MOBA Proposed

Input ABC Proposed

Figure 4: Summary of the example of the test comparison between the original image and the results from the MOBA [60]), ABC [59], and
the proposed algorithm.
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estimated using (21) and (22), respectively,

ψij = 2κ∀j ∈ μi, i ≠ j, ð21Þ

℘
i
q =

1

Q
〠
Q

q=1

ξi −Iq



 

2
2
−
8κ

Q
− ξi −Iq



 

2
2
, ð22Þ

where Q is defined by Lemma 2. The activation function is
defined as

δi =
1, ϕ > 0

0, ϕ ≤ 0

 
, ð23Þ

where ϕ is defined in (1).
The proposed algorithms is summarized in the following

steps:

(1) Given the image hyperplane, as visualized in Figure 3,
geometric correlated pixels are extracted and trans-
formed into row vectors

(2) Initialization: calculate the gradient of these vectors
using ℘q and neuron output δi. Pixel vectors must

be such that δiq ∈ ½0, 1�, and ∑qδiq = 1∀1 ≤ i ≤N2, 1

≤ q ≤Q and ℘q depends on local orientation bχ ,
which is subject to (16) and (17)

(3) Repeat: during each iteration, η, for each neuron, δi,
compute the input of the neuron using (21), which
must be sequenced by (14), and stable based on
(23), and obtain a hypothesis νt

(4) The output gives geometric correlated pixels with
global and local mapped features such that the image
is smooth and has better visual perception

4. Experiments

4.1. Data Set and Implementation. The proposed method
uses 8-bit gray-level images with 8 layers (see Figures 3 and
4). The images were selected and proposed from the existing
state-of-the-art methods [58–61]. These images were proc-
essed to 8-bit layers since HNN is a bipolar system, allowing
only input data with −1 and +1.

We constructed the proposed HNN with geometric
algebra defined in Section 3.1.2 where pixel patterns acted
as memories. The network converged the energy function
by Equation (7). The learning rule stored patterns without
errors in the network. Parameters were estimated using
minimum probability flow (MPF) based on the energy
equation (Equation (7)), thus increasing efficiency during
computation training. MPF assumed neighborhood pixels
are binary vectors that are 1 unit apart, that is, 1 bit dif-
ferent from each other. The binary vectors of the 8-bit
layer image maps (see Figure 3) are normalized based on
Theorem 1. This normalization is inspired by the response
property of ON/OFF of the mammalian retinal ganglion
cells. The mean and variance of each pixel of the 8-bit
layer image map patch were computed and normalized
to 1, respectively. Each pixel intensity was then mapped
onto proposed HNN based ‘ON’ and ‘OFF.’ Neuron firing
was based on pixel intensity values, that is, lowest, middle,
and highest intervals pixels inspires ‘OFF’ no, and ‘ON’
neuron firing, respectively. This permitted the conversion
of any 8-bit gray level image into a 32-bit binary vector
of abstract ‘ON’ and ‘OFF’ neurons. 25 image data set
(with each single image having 440 partition) whose
examples are presented in Figures 3 and 4 were prepared
according to [62]. The training processed for the proposed
HNN with n = 32 nodes using an optimum number of 440
partition images where MPF was used to estimate param-
eters on BIZON X5000 G2 with 16GB RAM was ≃8
minutes.

Input WCO PSO Proposed

Figure 5: Summary of the example of the test comparison between the original image and the results from the WCO [58], PSO [61], and the
proposed algorithm.
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4.2. Evaluation Metrics. The proposed method was applied to
various images (presented in Figures 4 and 5) sourced from
different databases. These include MRI images of brain
tumor, breast cancer, liver cancer, and skin cancer. Nonmed-
ical images such as those of boy and penguin (see Figure 4)
were also tested in order to show versatility of the proposed
method. The preprocessing also included scale normalization
to ensure pixel intensity values fall between 0 and 1. The final
processed images, which were in partition of 440, were recon-
structed to form the final image.

To evaluate our method, the following metrics were
employed: entropy, visual information fidelity, weighted
peak signal-to-noise ratio (WPSNR), contrast, and homoge-
neity. These metrics were chosen based on the objective of
the proposed method, that is, improve information content,
human visual quality, and textural features of an image.

(1) Entropy: it is a measure of information content in an
image [63]. Therefore, higher entropy is indicative of
more detailed the image

(2) VIF: it is similar to HVS and is based on quality
assessment (QA) methods. VIF is nonnegative since

it’s a ratio between the original image and processed
image. Therefore, higher values (i.e., VIF⟶ 1) are
desirable and shows improvement in visual quality [64]

(3) WPSNR: it is based on the human visual system
(HVS) and portrays better results than peak signal-
to-noise ratio (PSNR) [65]. WPSNR uses the redun-
dancy rule of the human eye against high-frequency
cases in images. Higher WPSNR values indicate
higher quality of the enhanced image

(4) Contrast: it is a statistical measure which results in
the difference in the value between image intensity
and its neighbor for the input image [58]. Higher
contrast values are desirable as it indicate better
visual appearance

Table 1: Comparison of mean μ and standard deviation σ of performance evaluation metrics of the proposed method and existing state-of-
the-art algorithm.

Algorithm Entropy VIF WPSNR Contrast Homogeneity

MOBA [60]
μ 6.9633 0.6973 18.757 0.8738 0.8524

σ ±0:4113 ±0:5603 ±5:7184 ±0:7250 ±0:0514

Proposed
μ 7.5011 2.6666 18.8048 1.7137 0.8905

σ ±0:34639 ±1:9890 ±3:1614 ±0:2770 ±0:0292

ABC [59]
μ 7.3544 0.8019 23.835 0.7327 0.8770

σ ±0:4400 ±0:1730 ±4:2695 ±0:1824 ±0:0003

Proposed
μ 7.7311 1.2826 24.4 1.8141 0.8987

σ ±0:4448 ±0:1375 ±4:0574 ±0:5766 ±0:0116

WCO [58]
μ 6.6093 3.9243 20.6034 0.6098 0.8525

σ ±0:8891 ±2:6601 ±4:5830 ±0:2183 ±0:0525

PSO [61]
μ 6.2710 2.3258 18.7493 0.3043 0.9013

σ ±0:7374 ±0:1:2584 ±9:6409 ±0:1738 ±0:0373

Proposed
μ 7.2647 4.5668 28.8092 1.2119 0.9436

σ ±0:4600 ±2:7800 ±1:6148 ±0:4897 ±0:02765

Figure 6: Sample of the zoomed sections comparing proposed
method with existing methods.

Classical HNN Proposed HNN

Figure 7: Sample comparing results produced by classical HNN
with proposed.
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(5) Homogeneity: it is a measure of likeliness of the
image intensities [58]. This measure suggests that
higher values of homogeneity are desirable and indi-
cate higher quality image

4.3. Result Analysis and Comparison. The proposed method
was evaluated with the corresponding input image as the ref-
erence image as presented in examples in Figures 4 and 5.
The state-of-the-art methods used for comparison purposes
are sampled based on the similarities between the objectives
of the existing works and those of the present investigation
(that is, image enhancement rather than image reconstruc-
tion). Table 1 shows the comparison performance evaluation
of the proposed method in terms of mean μ and standard
deviation σ. Standard deviation values shows how closely
the data is to each other; hence, lower values are desirable.
The tables are segmented as per the comparison method.

In all cases (see Table 1), the images resulting from the
application of the proposed algorithm have averagely higher
entropy, VIF, WPSNR, contrast, and homogeneity. This sug-
gests that the proposed method improved information con-
tent, visibility, and human perceptual quality of the input
image when compared to the existing methods. The tabu-
lated results in Table 1, the extract of sampled zoomed areas
in Figure 6, and comparison with classical HNN in Figure 7
also show results produced by the proposed method are
superior. These shows that a modification of the HNN based
on the geometric correlation of pixels improves the pixel gra-
dient vector and ultimately optimizes the local energy func-
tion, which enhances the image information content while
preserving image features. The standard deviation values in
all cases, as presented in Table 1, show lower values com-
pared to the corresponding benchmark algorithms. This
indicates that the proposed method gives more consistent
and predictable results than existing algorithms.

5. Conclusion

In this paper, we have presented a solution to the HNN con-
vergence problem. The problem was solved by sequencing
the activation of a continuous modified HNN based on the
geometric correlation of features within various image hyper-
planes via pixel gradient vectors and regulated geometric
pixel gradient vectors. Solution to the problems was attained
by regularizing proposed MHNNs under cohomology, which
enables them to act as an unconventional filter for pixel spec-
tral sequences. These enables shifting of the focus to both
local and global optimizations to help strengthen feature cor-
relations within each image subspace. The results of the pro-
posed algorithm tested via the selected image performance
evaluation metrics showed that including the variance of
the pixel gradient vector optimizes local and global minima
of the energy function, which subsequently increases the per-
ceived image quality. For future studies, we have anticipated
an extension to video graphics, as well as hyperspectral and
natural images, our research will consider combining these
techniques with other algorithms.

Data Availability

The data used in this study is available in the references of the
manuscript.
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