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GEOMETRIC REPRESENTATION
OF SUBSTITUTIONS OF PISOT TYPE

VINCENT CANTERINI AND ANNE SIEGEL

Abstract. We prove that a substitutive dynamical system of Pisot type con-
tains a factor which is isomorphic to a minimal rotation on a torus. If the
substitution is unimodular and satisfies a certain combinatorial condition, we
prove that the dynamical system is measurably conjugate to an exchange of
domains in a self-similar compact subset of the Euclidean space.

Introduction

In [27], G. Rauzy proves that the dynamical system generated by the substitution
σ(1) = 12, σ(2) = 13, σ(3) = 1, is measure-theoretically conjugate to an exchange
of domains in a compact subset R of the complex plane. This compact subset has
a self-similar structure: using methods introduced by F. M. Dekking in [11], S.
Ito and M. Kimura obtain in [19] an alternative construction of R and prove that
each of the exchanged domains has fractal boundary. In the same paper they also
study the Hausdorff dimension of the boundary of R. A. Messaoudi in [24] obtains
additional properties of the fractal R including boundary parametrization.

By studying the numeration system of the Tribonacci number (root of the poly-
nomial x3 − x2 − x − 1 of modulus smaller than one), G. Rauzy proves that R
projects onto the torus in a measure-theoretically one-to-one way. This implies
that the compact set R generates a periodic tiling of the plane with fractal bound-
ary. The self-similarity of R implies that the induced tiling is quasi-periodic. This
is analogous to the well understood connection between sturmian sequences, tilings
of the line and the structure of quasi-crystals (see [1]), and more generally to the
theory of quasi-crystals: via methods similar to those used by G. Rauzy in [27],
E. Bombieri and J. Taylor use substitutions to exhibit a connection between quasi-
crystals and number theory in [5].

From the point of view of ergodic theory, the result of G. Rauzy means that
the subshift generated by the substitution σ is measure-theoretically conjugate to
a rotation on the 2-torus. M. Queffélec defines in [26] (page 140) a geometric rep-
resentation of a symbolic system (Ω, S) as a geometrical dynamical system (X , T ),
on which there exists a partition indexed by the alphabet, such that every word in
Ω is the itinerary of a point of (X , T ) with respect to the partition. She asks which
systems admit such a geometric representation.
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5122 V. CANTERINI AND A. SIEGEL

There have been many partial answers given to Queffélec’s question: in [3], G.
Rauzy and P. Arnoux study a class of uniformly recurrent sequences of block com-
plexity 2n+ 1 satisfying a certain combinatorial criterion (the so-called * condition
of Arnoux-Rauzy) and show that each such sequence codes the orbit of a point
under an exchange of six intervals on the circle. In [6], M. Boshernitzan and I.
Kornfeld study the dynamics of a self-similar interval translation mapping which is
measure isomorphic to a subshift generated by a substitution. In [12], S. Ferenczi
obtains a geometric realization of the Chacon sequence as exduction of a triadic
rotation. In [15, 16] C. Holton and L. Zamboni define real and complex repre-
sentations associated to each substitution whose occurrency matrix has a nonzero
eigenvalue of modulus less than one.

From the point of view of spectral theory, representing a substitutive system
by a translation means than the coordinates of the translation vector are eigen-
values for the unitary operator associated to the shift map, each coordinate of the
representation map being an eigenfunction of the unitary operator. Thus, look-
ing for continuous representations of a substitutive system as toral translations is
strongly linked with the determination of the dynamical system’s spectrum and its
continuous eigenfunctions.

B. Host has made a significant advance in this subject by proving that all eigen-
functions of primitive substitutive dynamical systems are continuous [17]. Thus,
very happily, the two main dynamical classifications (up to measure-theoretic and
topological isomorphisms) are equivalent for primitive substitutive systems. More-
over, B. Host [17, 18], A. N. Livshits [23], B. Solomyak [32], have given conditions
for a substitutive dynamical system to have discrete spectrum. Some are neces-
sary conditions, others are sufficient. In particular, B. Host and independently A.
N. Livshits (whose work was restated and generalized by M. Hollander) defined
a combinatorial condition on two-letter substitutions called the coincidence con-
dition. This condition generalizes a definition of F. M. Dekking [10] for constant
length substitutions. M. Hollander [13] proved that this condition is equivalent to
the fact that a two-letter primitive substitutive system has a discrete spectrum (see
the survey in [30]). This combinatorial condition was generalized to all substitu-
tions by P. Arnoux and S. Ito in [2]. It is conjectured that every substitution of
Pisot type satisfies the coincidence condition, but this is still unknown, even for
d = 2.

Nevertheless, an explicit description of the spectrum and the eigenfunctions of
substitutive systems was obtained only for a few examples. In [32], B. Solomyak
shows that the substitution on d letters defined by σ(1) = 12 . . . d, σ(2) = 1,
σ(3) = 2, . . . , σ(d) = d − 1, may be realized as an explicit translation on the
(d− 1)-dimensional torus. In [33], M. Solomyak proves that a class of unimodular
substitutions of Pisot type on d letters admit as a metric factor a translation on
the (d− 1)-dimensional torus. B. Host, in an unfortunately unpublished work [18],
explicitly realizes every substitution of Pisot type on 2 letters as a translation on the
1-torus. In contrast, J. Cassaigne, S. Ferenczi and L. Zamboni exhibit an example
of an Arnoux-Rauzy sequence on 3-letters which cannot be geometrically realized
as a rotation on the n-torus [9].

In this paper we generalize the results of G. Rauzy, M. Solomyak and B. Host:
for all substitutive dynamical systems of Pisot type, we give an explicit continuous
semi-conjugacy between the shift on the system and a translation on a torus. Unlike
most of the above mentioned papers, our semi-conjugacy is defined everywhere and
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not just on a set of full measure. This allows us to give a new proof of the results
in [32, 33] which makes the representation explicit.

In Section 1, we recall some of the results in [8] and [16] on the connection
between primitive substitutive systems and subshifts of finite type. Indeed, primi-
tivity of the substitution implies that it is possible to map any point of the system
to a path in an automaton, in a unique way except on a countable subset. This map
measure-theoretically conjugates the shift map on the substitutive system with an
adding machine on the subshift of finite type, considered as a Markov compactum
in which the order is naturally defined by the substitution.

If the substitution is of Pisot type on a d letters alphabet, this coding allows us
in Section 2 to realize any element of Ω as a point in Rd−1. On each coordinate,
this mapping coincides with the real or complex representations of C. Holton and L.
Zamboni in [15]. Gathering all the one-dimensional realizations together is natural
in the sense that each is a different expression of the same formal numeration system
(the one generated by the characteristic polynomial of the occurrency matrix of the
substitution).

We prove in Section 3 that this representation map projects onto the (d−1)-torus
and satisfies a commutation relationship with a translation.

Theorem. Every dynamical system generated by a substitution of Pisot type on d
letters admits as a topological factor a minimal translation on the torus Td−1.

In [2], P. Arnoux and S. Ito associate to any unimodular substitution of Pisot
type on d letters a set in Rd−1 called Rauzy fractal, which can be naturally divided
in d domains. They prove that when the domains are disjoint up to a set of
measure zero, one can define an exchange of domains on the Rauzy fractal which
is measure-theoretically conjugate to the shift map on Ω. They also prove that a
sufficient condition for the domains to be disjoint in measure is that the substitution
satisfies the combinatorial coincidence condition.

In Section 4, we use the representation defined in Section 2 to give a new proof
of P. Arnoux and S. Ito theorem.

Theorem. If σ is a substitution on d letters, of Pisot type, unimodular, and sat-
isfying the coincidence condition, the symbolic dynamical system generated by σ is
measure-theoretically conjugate to an exchange of domains in a self-similar compact
subset of Rd−1.

The self-similar compact subset of Rd−1 we get is exactly the Rauzy fractal
associated to the substitution in [2]. The interest of our methods is that the Rauzy
fractal is obtained as the image of an explicit map, so that it makes it possible to
derive various topological properties of the fractal. For instance, the surjectivity of
the toral representation yields a new proof of the fact that the fractal has a non-
empty interior, which was first proved by V. Sirvent and Y. Wang in [31]. Moreover,
the first author gives in [7] a criterion for the connectedness of the fractal.

In [30], the second author defines a criterion for the injectivity in measure of the
toral realization for unimodular substitutions. When this criterion is satisfied, the
results and methods contained in this paper can be used to obtain explicit fractal
tilings of the plane and produce Markov partitions for Pisot toral automorphisms,
generalizing the work of A. Messaoudi in [24] about the Rauzy substitution. The
existence of such Markov partitions is established by R. Kenyon and A. Vershik
in [22], although their proof is not constructive. The formalism of substitutions
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5124 V. CANTERINI AND A. SIEGEL

induces a natural order on the Markov compactum and yields a Markov parti-
tion which is explicit, so that its topological properties can be studied (boundary,
connectedness, simply connectedness).

In the nonunimodular case, it is sometimes possible to complete the represen-
tation by translations on p-adic groups Zp: this depends on the ramifications of
the determinant of the incident matrix of σ in the Galois extension of its dominant
eigenvalue [29].

Acknowledgments. The authors wish to thank P. Arnoux for his guidance and for
many useful comments and suggestions. We also wish to thank B. Host for sharing
with us his profound insight in the subject. Finally we wish to thank V. Berthé and
L. Q. Zamboni for their attention and support in the preparation of the manuscript.

1. Generalities

1.1. Substitutive dynamical systems. Let A be a finite alphabet, A∗ the set
of finite words in A and A+ the subset of A∗ of nonempty words. The empty word
is denoted ε.

A two-sided sequence in A, also called doubly infinite word, is denoted w =
. . . w−2w−1.w0w1 . . . . The topology of the set of doubly infinite words AZ will be
the product of the discrete topology on A. This topology is metrizable. A cylinder
of AZ is a clopen set of the form:

[U1.U2] = {(wi)i ∈ AZ|w−|U1| . . . w−1w0 . . . w|U2|−1 = U1U2}, U1, U2 ∈ A∗

(if U1 is empty, the cylinder is denoted [U2]); the cylinders form a basis of the
topology on AZ.

A substitution σ is an endomorphism of the free-monoid A∗, such that the im-
age of each letter of A is nonempty, and that for at least one letter a, we have
limn→∞ |σn(a)| = +∞. A substitution naturally extends to the set of doubly infi-
nite words AZ:

σ(. . . w−2w−1.w0w1 . . . ) = . . . σ(w−2)σ(w−1).σ(w0)σ(w1) . . . .

A doubly infinite word u = (ui)i∈Z in AZ such that there exists a positive integer
k with σk(u) = u is called a periodic point of σ. If σ(u) = u, then u is a fixed point
of σ. Every substitution has at least one periodic point (see [26]).

Denote by S the shift map on AZ:

S( (wi)i∈Z ) = (wi+1)i∈Z.

A word w in AZ such that there exists a positive integer h with Sh(w) = w is called
S-periodic. A substitution is said to be S-periodic when there exists a periodic
point of σ which is also S-periodic.

The language L(w) of a doubly infinite word w is the set of finite words which
appear in w. The symbolic dynamical system generated by a word u is the pair
(Ω(u), S), with Ω(u) = {w ∈ AZ,L(w) ⊂ L(u)}. Note that Ω(u) is the closure in
AZ of the shift orbit of u, and that Ω(u) is finite if and only if u is S-periodic. This
set is a compact subset of AZ, and S is an homeomorphism on Ω(u).

We call a substitution primitive if there exists k such that σk(a) contains at
least one occurrence of b for every pair of letters (a, b), k being independent of the
letters. If σ is primitive and u is a periodic point of σ, then Ω(u) does not depend
on u and we denote by (Ω, S) the symbolic dynamical system generated by σ.
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If the substitution is primitive, the system (Ω, S) is a minimal dynamical system:
it has no non-trivial closed S-invariant subset (see [26]). This system is uniquely
ergodic: there exists a unique S-invariant probability measure on Ω, denoted by
µΩ. The measure of a cylinder [U1.U2] is the frequency of the finite word U1U2 in
any element of Ω.

In the primitive case, one can remark the system (Ω, S) is finite if and only if
the substitution is S-periodic. From here on, all substitutions are assumed to
be primitive and non-S-periodic.

1.2. Substitutions of Pisot type. If the alphabet A is A = {1, . . . , d}, let l :
A∗ 7→ Nd be the natural homomorphism obtained by abelianization of the free
monoid: if |W |a denote the number of occurrences of the letter a ∈ A in a finite
word W , then we have l(W ) = (|W |i)i=1,...,d ∈ Nd.

Note that d-tuples are considered as column vectors in this paper.
To each substitution σ on A is canonically associated its abelianized linear map

whose matrix Mσ = (mi,j)1≤i,j≤d (called occurrency matrix of σ) is defined by
mi,j = |σ(j)|i, so that we have

∀W ∈ A∗ l(σ(W )) = Mσl(W ).(1.1)

A matrix M is said to be primitive if there exists a power of M whose coefficients
are strictly positive. The formula (1.1) implies that a substitution is primitive if and
only if its matrix is primitive. If σ is primitive, the Perron-Frobenius theorem says
that there exists a real positive eigenvalue α which is simple and strictly greater
than the modulus of all the other eigenvalues. One can refer to [26] for more details
about all those definitions.

Definition 1.1. An algebraic integer is a Pisot-Vijayaraghavan number or a Pisot
number if all its algebraic conjugates β verify |β| < 1.

A substitution σ is of Pisot type if its characteristic polynomial Pσ is irreducible
over Q and has a root α which is a Pisot number.

A substitution of Pisot type σ is unimodular if detMσ = ±1.

The next proposition gives a result about the eigenvalues of Mσ.

Proposition 1.2. Let σ be a primitive substitution and Pσ the characteristic poly-
nomial of the occurrency matrix Mσ.

The substitution σ is of Pisot type if and only if every nondominant root of Pσ
verifies 0 < |β| < 1.

If σ is of Pisot type, then σ cannot be of constant length, the roots of Pσ are all
simple, and the matrix Mσ is diagonalizable with simple eigenvalues.

Proof. From the Gauss lemma, Pσ is irreducible overQ if and only if it is irreducible
over Z. If σ is not, there exists two polynomials Q and R with integer coefficients
such that Pσ = QR, then Q and R each have at least one root whose modulus is
greater than 1, so that Pσ has at least two roots of modulus greater than 1. Two
of those roots are different since the dominant eigenvalue is simple.

Consequently, if every nondominant root of Pσ verifies 0 < |β| < 1, then Pσ is
irreducible over Q and σ is of Pisot type. Conversely, if σ is of Pisot type, Pσ is
irreducible over Q so that 0 is not a root of Pσ and every nondominant root of Pσ
verifies 0 < |β| < 1.
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5126 V. CANTERINI AND A. SIEGEL

If σ is of constant length l, that is the image of each letter contains exactly l
letters, then l is an eigenvalue for the eigenvector (1, . . . , 1) and Pσ is reducible over
Q.

This proposition implies that every substitution of Pisot type is primitive:

Proposition 1.3. Every substitution of Pisot type is primitive.

Proof. Let σ be a substitution of Pisot type and Mσ be its occurrency matrix. We
need to to prove that Mσ is a primitive matrix.

By definition of substitutions of Pisot type, Pσ is irreducible overQ. This implies
that Mσ is an irreducible matrix: if Mσ is reducible, there exists a permutation
matrix P such that

PMσ
tP =

(
B 0
D C

)
is a block-triangular matrix with integer entries, and the characteristic polynomial
Pσ is reducible over Z.

By a classic theorem (see for instance [4]), for a nonnegative matrix A, the
following conditions are equivalent: (1) A is primitive, (2) A is irreducible and
ρ(A) is greater in magnitude than any other eigenvalue.

Since σ is of Pisot type, ρ(Mσ) is a Pisot number and then is greater in magnitude
than any other eigenvalue.

In [15], C. Holton and L. Zamboni prove that a substitution of Pisot type cannot
be S-periodic:

Proposition 1.4 (see [15]). If σ is a primitive substitution whose matrix has an
eigenvalue of modulus strictly smaller than 1, then any fixed point u of σ is not
S-periodic.

Thus, the symbolic dynamical system associated with a substitution of Pisot
type is well-defined and uniquely ergodic.

1.3. Coding of the symbolic dynamical system. Let σ be a primitive and non-
S-periodic substitution. Our choice of considering the dynamical system consisting
of sequences indexed by Z instead of N comes from the fact that every primitive
substitution satisfies a property of bilateral recognizability while not every primitive
substitution satisfies the property of unilateral recognizability. Indeed, in [25] B.
Mossé proves that every word w in Ω has a unique decomposition w = Sk(σ(y)),
with y ∈ Ω and 0 ≤ k < |σ(y0)|, where y0 is the 0th coordinate of y. This means
that any word of the dynamical system can be uniquely written on the form

w = . . . | . . .︸︷︷︸
σ(y−1)

| w−k . . . w−1.w0 . . . wl︸ ︷︷ ︸
σ(y0)

| . . .︸︷︷︸
σ(y1)

| . . .︸︷︷︸
σ(y2)

| . . .

with . . . y−n . . . y−1y0y1 . . . yn . . . in Ω.
Denote p = w−k . . . w−1 the prefix of σ(y0) of length k and s the suffix s =

w1 . . . wl. The word w is completely defined by the word y and the decomposition
of σ(y0) on the form pw0s. Let P be the finite set of all such decompositions:

P = {(p, a, s) ∈ A∗ ×A×A∗; ∃ b ∈ A and σ(b) = pas} .
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The work of B. Mossé implies that we can define on one hand a desubstitution
map θ on Ω (which sends w to y), and a partition map γ from Ω to P , corresponding
to the decomposition of σ(y0). These two maps are continuous.

θ : Ω→ Ω, w 7→ y such that w = Skσ(y) and 0 ≤ k < |σ(y0)|,
γ : Ω→ P , w 7→ (p, w0, s) such that σ(y0) = pw0s and k = |p| .

In [8] the itineraries of the points of Ω through the desubstitution according to
the partition defined by γ are studied.

Definition 1.5. We call the map Γ : Ω → PN which maps a word w in Ω to the
sequence (γ ( θiw) )i≥0 in PN the prefix-suffix development

Γ(w) = (γ ( θiw) )i≥0 = (pi, ai, si)i≥0 .

Definition 1.6. The prefix-suffix automaton of the substitution σ has A as a set
of vertices and P as a set of label edges. There is an edge e = (p, a, s) from a to b
if and only if pas = σ(b).

The set of labels of infinite walks in this automaton is denoted D.

A consequence of σ primitivity is that this automaton is strongly connected. We
prove in [8] that Γ is a measure-theoretic isomorphism between Ω and D, similar
results being obtained independently in [16]:

Theorem 1.7 (see [8, 16]). Let σ be a primitive non-S-periodic substitution and
(Ω, S) the dynamical system generated by σ. The map Γ defined above is continuous
and onto the subshift of finite type D. This map is one-to-one except on the orbit
of periodic points of σ.

This implies that the sets Snσk[i] partition Ω:

Corollary 1.8 (see [8]). For every k ∈ N, let Pk = {Snσk[a]; n ∈ N, a ∈ A, n <
|σk(a)|}. The sequence (Pk)k∈N of partitions of Ω is generating in measure.

More precisely, there exists a countable set N such that for every k ∈ N, Ω\N =⋃
A∈Pk A \ N , the union being disjoint. Every sequence (Ak)k≥0 with Ak ∈ Pk is

such that ∩Ak consists either in zero or one point, or in a finite number of points
of N .

We prove in [8] that the action of the desubstitution map θ on Ω is conjugate via
Γ with the map shift on D. The action of the substitution map σ on Ω is conjugate
with the left extension of elements of D by an element of P which has an empty
prefix. Finally, the shift map S on Ω is conjugate with an adic transformation on
D. More precisely, we will need the following result:

Lemma 1.9 (see [8]). Let w in Ω and Γ(w) = (pi, ai, si)i≥0 its prefix-suffix devel-
opment. The development Γ(σ w) = (qi, bi, ti)i≥0 is such that

∀i ≥ 0 q0 = ε and qi+1 = pi.(1.2)

If Sw is a periodic point of σ and Γ(S w) = (ri, ci, ui)i≥0 its development, then
the sequence (pi)i≥0 is periodic, and the sequence (ri)i≥0 is the sequence of empty
word ε.

If Sw is not periodic for σ, Γ(S w) = (ri, ci, ui)i≥0 is such that there exists an
integer n0 with

∀n ≥ n0 σn(pn) . . . σ0(p0)a0 = σn(rn) . . . σ0(r0).(1.3)
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2. Representation of a substitutive system of Pisot type

In this section, as in [27], the prefix-suffix development and an arithmetic nor-
malization of the eigenvectors of the matrix of σ are used to represent a substitutive
system of Pisot type on a hyperplane.

2.1. Digit vectors for substitutions of Pisot type. Let σ be a substitution of
Pisot type, Mσ the matrix associated to σ, and Pσ its characteristic polynomial.

We denote by α the dominant eigenvalue of Mσ, by α1 = α, α2, . . . , αr the r real
roots of the polynomial Pσ and by αr+1, . . . , αr+s, αr+1, . . . , αr+s its 2s complex
roots. With this notation, we have 2s + r = d. Let Kk be the complete field
containing αk, that is to say R if 1 ≤ k ≤ r and C if k > r.

Any right eigenvector u for the eigenvalue α satisfies (Mσ − α I)u = 0. This
system has solutions in the field Q(α), so that there exists a vector u1 6= 0 such
that

Mσu1 = αu1 with u1 ∈ Q(α)d.

Basic linear algebra tells us that u1 is orthogonal to each left eigenvector of Mσ

for an eigenvalue different from α. Since the matrix Mσ is diagonalizable, this
implies that u1 is not orthogonal to any left eigenvector of Mσ for α. Thus, if
〈u,v〉 = tuv denote the scalar product in Cd, there exists a vector v1 6= 0 such
that

tv1Mσ = α tv1 and 〈u1,v1〉 = 1 with v1 ∈ Q(α)d.

We obtain in the next lemma two bases of right and left eigenvectors of Mσ by
replacing α with each eigenvalue αi in the coordinates of u1 and v1. We recall that
the canonical morphism from Q(α) onto Q(αk) is the field homomorphism which
sends α on αk and is equal to the identity map on Q.

Lemma 2.1. Let αk be an eigenvalue of Mσ and let σk be the canonical morphism
from Q(α) onto Q(αk), extended to Q(α)d.

Let uk and vk be the vectors defined by

uk = σk(u1) and vk = σk(v1).

Then the family {u1, . . . ,ur,ur+1,ur+1, . . . ,ur+s,ur+s} is a basis of Cd consist-
ing of right eigenvectors of Mσ, while {v1, . . . ,vr,vr+1,vr+1, . . . , vr+s,vr+s} is
a basis of left eigenvectors

Mσuk = αk uk and tvkMσ = αk
tvk with uk,vk ∈ Q(αk)d.

If we apply the canonical morphisms to the normalization formula 〈u1,v1〉 = 1
and remember that left and right eigenvectors for different eigenvalues are orthog-
onal, we get the following formulas, which mean that the two bases are dual bases:

if k = 1 . . . r
{
〈uk,vk〉 = 1,
〈uj,vk〉 = 〈uj,vk〉 = 0 for j 6= k,

if k = r + 1 . . . r + s

 〈uk,vk〉 = 1,
〈uk,vk〉 = 0,
〈uj,vk〉 = 〈uj,vk〉 = 0 for j 6= k.

(2.1)

Let Rc = {α2, . . . , αr, αr+1, . . . , αs+r} be the set of eigenvalues of modulus
smaller than 1, in which there is no pair of complex conjugates. For every eigen-
value αk in Rc, let δk be the map which sends any finite word W of A∗ to the scalar
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Figure 1. The Rauzy fractal

product of vk by the vector l(W ) = (|W |i)i=1,...,d.

δk : A∗ → Kk
W 7→ 〈l(W ),vk〉.

The following equations are easily deduced from scalar product bilinearity, the
fact that vk is a left eigenvector of Mσ, and from formula (1.1).

∀ j ∈ A δk(j) = (vk)j ,
∀W1,W2 ∈ A∗ δk(W1W2) = δk(W1) + δk(W2),
∀W ∈ A∗ δk(σ(W )) = αk δk(W ).

Set the digit map:

δ : A∗ → Rr−1 × Cs(2.2)
W 7→ (δk(W ))2≤k≤r+s.

The map δ is a homomorphism on A∗ with respect to concatenation

∀W1,W2 ∈ A∗ δ(W1 W2) = δ(W1) + δ(W2).(2.3)

Moreover, if Mdiag ∈ Ms+r−1(C) denotes the diagonal matrix of size s + r − 1
containing the contracting eigenvalues in Rc, Mdiag and σ satisfy a commutation
relation:

∀W ∈ A∗, δ(σ(W )) = Mdiag δ(W ) Mdiag =

 α2 (0)
. . .

(0) αr+s

 .(2.4)

The Rauzy fractal (Figure 1) is obtained in [27] as the closure of the points
δ(W ), over all the prefixes W of a fixed point of the substitution. With the same
definition, one can build a compact set for every substitution of Pisot type (see
[2, 31]). Some properties of these compact sets are proved in [15, 24, 31]. The aim
of Section 2.2 is to extend all Ω onto this compact set, and the map defined on the
orbit of the periodic points of Ω to obtain the compact set.

2.2. Representation of the substitutive system in a geometrical space.
Proposition 1.4 implies that Theorem 1.7 is satisfied by every substitution of Pisot
type: the prefix-suffix development Γ is well defined on Ω. In the next lemma,
thanks to this development, we define on Ω a map which is equivalent to gathering
in a vector all the geometric representations of C. Holton and L. Zamboni [15].
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Lemma 2.2. Let w be a word in Ω and let Γ(w) = (pi, ai, si)i≥0 be its prefix-suffix
development. The sequence of points δ(σn(pn) . . . σ0(p0)) has a limit in the space
Rr−1 × Cs as n tends to infinity. The following map ϕ, called the representation
map of Ω in the space, is well-defined from Ω on Rr−1 × Cs and is continuous.

ϕ(w) = lim
n→+∞

δ(σn(pn) . . . σ0(p0) )

=
∑
i≥0

Mi
diag δ(pi) =


∑

i≥0 δ2(pi)α2
i

...∑
i≥0 δr+s(pi)αr+s

i

 .

Proof. The three equalities are deduced from formula (2.4) which implies

δ(σn(pn) . . . σ0(p0) ) =
n∑
i=0

Mi
diag δ(pi).

The map ϕ is well-defined and continuous because it is the limit of a power series
which is normally convergent, since the number of vectors δ(pj) is finite and the
norm of Mdiag smaller than 1: ||Mdiag|| = max{|β|, β ∈ Rc} < 1.

The way the shift map S and the substitution σ operate on the prefix-suffix
development map (Lemma 1.9) permits us to express how S and σ operate in the
space Rr−1 × Cs via the map ϕ:

Proposition 2.3. For every w in Ω, if w0 is the 0th coordinate of w, we have

ϕ(Sw) = ϕ(w) + δ(w0),(2.5)
ϕ(σw) = Mdiag ϕ(w).(2.6)

Proof. Let Γ(w) = (pi, ai, si)i≥0, Γ(S w) = (qi, bi, ti)i≥0 and Γ(σ w) = (ri, ci, ui)i≥0,
be the prefix-suffix developments of w, Sw and σw respectively.

According to Lemma 1.9, if Sw is not a periodic point of σ, we have

∃n0, ∀n ≥ n0 σn(pn) . . . σ0(p0)w0 = σn(qn) . . . σ0(q0).

This is enough to prove the equality (2.5) if Sw is not periodic :

ϕ(Sw) = lim
n→+∞

δ(σn(qn) . . . σ0(q0) )

= lim
n→+∞

δ(σn(pn) . . . σ0(p0)w0 )

= lim
n→+∞

δ(σn(pn) . . . σ0(p0) ) + δ(w0)

= ϕ(w) + δ(w0).

If Sw is a periodic point of σ, from Lemma 1.9, the development of Sw has
empty prefixes, which imply ϕ(Sw) = 0. Moreover, the sequence (pi)i≥0 is periodic
of period l. Thus, we get for every integer n and every i < l,

σi+nl(pi+nl) . . . p0w0 = σnl(σi(pi) . . . p0w0 ),

which implies

δ(σi+nl(pi+nl) . . . p0w0 ) = Mdiag
nl δ(σi(pi) . . . p0w0 ).
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Figure 2. Fractals generated by 132,21323,321323132 and 12,3,31

Since the number of vectors δ(σi(pi) . . . p0w0 ) is finite and Mdiag is a contracting
linear map, we conclude:

ϕ(w) = lim
n→+∞

δ(σn(pn) . . . p0 )

= lim
n→+∞

δ(σn(pn) . . . p0w0 )− δ(w0)

= lim
n→+∞

Mdiag
nl δ(σi(pi) . . . p0w0 )− δ(w0)

= 0− δ(w0) = ϕ(Sw) − δ(w0).

Finally, the definition of ri = pi−1 for i ≥ 1 leads to formula (2.6):

ϕ(σw) = M0
diag δ(ε) +

∑
j≥1

Mj
diag δ(pj−1)

= Mdiag ϕ(w).

Set F = ϕ(Ω) and Fi = ϕ([i]) for each letter i. Two examples are given in Figure
2.

Relations (2.5) and (2.6) suggest that we could define an exchange of domains
T on F which satisfies a conjugacy relation with the shift S. As the map exchange
would be different on each image cylinder ϕ[i] = Fi, such a definition is possible
only if the images of cylinders are completely disjoint, which is not the case even for
Rauzy substitution (see [24]). Nevertheless, for Rauzy substitution, the domains
Fi are disjoint up to a set of measure zero, and it is possible to define an exchange
of domains in F which is measurably conjugate with the shift on Ω. We will prove
in Section 4 that this is more generally true when the substitution verifies the
combinatorial condition of coincidences.

Another way to define a factor of (Ω, S) is to quotient the space in such a way
that the projections of the vectors δ(k) defining the exchange of domains are equal.
This is done in Section 3, using the geometrical interpretation of the map ϕ given
in the next subsection.

2.3. Geometrical interpretation: equivalent representation in Rd−1. In the
next lemma, we modify the basis of Cd consisting of right eigenvectors of Mσ and
obtain a basis in Rd.

Lemma 2.4. The following family B of vectors is a basis of Rd:

B = {u1, . . . ,ur,Re ur+1, Im ur+1, . . . ,Re ur+s, Im ur+s} .
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Proof. Consider a real linear combination of the vectors equal to zero:
r∑

k=1

ak uk +
r+s∑

k=r+1

(bk Re uk + ck Im uk) = 0.

This can be rewritten in Cd:
r∑

k=1

akuk +
r+s∑

k=r+1

((
bk − ick

2
) uk + (

bk + ick
2

) uk+s) = 0.

Linear independence of the vectors ui in Cd (Lemma 2.1) implies that ak =
bk−ick

2 = 0 for all k, that is ak = bk = ck = 0 for all k.

We call a contracting hyperplane of Mσ the hyperplane of Rd generated by the
vectors

u2, . . . ,ur,Re ur+1, Im ur+1, . . . ,Re ur+s, Im ur+s.

The space Rr−1 × Cs embeds onto this hyperplane:

Corollary 2.5. The following linear map pH : Rr−1×Cs → Rd is one-to-one from
Rr−1 × Cs onto the contracting hyperplane of Mσ.

pH(λ2, . . . , λr+s) =
r∑

k=2

λk uk +
r+s∑

k=r+1

(2 Re(λk) Re uk − 2 Im(λk) Im uk).(2.7)

The next lemma means that applying the map δ to a finite word W is equivalent
to projecting the vector l(W ) onto the contracting hyperplane of the matrix Mσ

parallel to the expanding direction of Mσ.

Lemma 2.6. If qH denote the linear projection of Rd onto the contracting hyper-
plane of Mσ parallel to the expanding direction of Mσ, then

∀W ∈ A∗ pH δ(W ) = qH l(W ).

Proof. By definition of pH and δ, we have

pH δ(W )=
r∑

k=2

〈l(W ),vk〉uk+
r+s∑

k=r+1

2 Re〈l(W ),vk〉Re uk − 2 Im〈l(W ),vk〉 Im uk.

Write the vector l(W ) in the basis B of the contracting hyperplane H:

l(W ) =
r∑

k=1

λkuk +
r+s∑

k=r+1

(µk Re uk + νk Im uk)

=
r∑

k=1

λkuk +
r+s∑

k=r+1

(µk − i νk)/2 uk + (µk + i νk)/2 uk.

The fact that the uk are the dual basis of the vk (formula (2.1)) implies that

k = 1 . . . r 〈l(W ),vk〉 = λk,
k = r + 1 . . . r + s 〈l(W ),vk〉 = (µk − i νk)/2.

So that we get

l(W ) = 〈l(W ),v1〉u1 + pH δ(W ).
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Figure 3. Projection on the hyperplane

Since qH sends u1 to zero and leaves the contracting hyperplane of Mσ un-
changed, we conclude that

qH l(W ) = 〈l(W ),v1〉qH(u1) + qH pH δ(W ) = pH δ(W ).

Consequently, one way to construct the image ϕ(Ω) is to consider an infinite
word w in Ω, embed it as a broken line in the space Rd (replacing each letter i by
the ith canonical vector), and then project each “vertex” of the broken line on the
contracting hyperplane of Mσ parallel to the expanding direction of Mσ. The set
ϕ(Ω) is the closure of the projections.

The prefix-suffix development brings us to consider on the broken line the points
corresponding to the prefixes σn(pn) . . . σ0(p0): the sequence of projections in the
hyperplane of these points has a limit which belongs to ϕ(Ω), and this limit is ϕ(w)
(see Figure 3).

3. Representation of (Ω, S) on the torus

To define, in the Pisot case, a commutation relation with a translation, we need
to quotient the space so that the projections of the vectors δ(k) are equal. We prove
in this section that the set L defined by

L =

{
d∑

k=1

nkδ(k); nk ∈ Z ,
d∑
k=1

nk = 0

}
(3.1)

is a lattice of the R vector space Rr−1×Cs, that is a discrete subgroup of rank d−1,
so that the quotient of Rr−1 × Cs modulo this lattice is isomorphic to the torus
Td−1. We obtain in that way a representation of Ω on the torus, which satisfies a
commutation relation with a translation. We prove that this translation is minimal.

The main argument in this section is the following proposition:
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Proposition 3.1. The coordinates in the canonical basis of Rd of the expanding
right eigenvector u1 of Mσ are rationally independent.

Proof. Let (λk)1≤k≤d be the coordinates of the vector u1 in the canonical basis of
Rd. Consider a rational combination of λk which is equal to zero:

d∑
j=1

qjλj = 0, (qj)1≤j≤d ∈ Qd.

Since the vector u1 was defined so that every λj belongs to Q(α), it is possible
to apply the canonical automorphisms σk : Q(α)→ Q(αk) and σk : Q(α)→ Q(αk)
to the preceding equality, for every 1 ≤ k ≤ r + s, so that we get

k = 1 . . . r + s,

d∑
j=1

σk(qj)σk(λj) =
d∑
j=1

qj σk(λj) = 0,

k = r + 1 . . . r + s,
d∑
j=1

qj σk(λj) = 0.

Thus, the vector (qj)1≤j≤d is orthogonal in Cd to the vectors (σk(λj))1≤j≤d and
(σk(λj))1≤j≤d, which are by construction equal to uk and uk. This means that the
vector (qj)1≤j≤d is orthogonal to a full basis of the space Cd, and must be zero.

By definition, the set L is discrete and generated by the d − 1 vectors (δ(k) −
δ(1))2≤k≤d in Rr−1 × Cs. Thus, this set is a lattice if and only if the vectors
(δ(k)− δ(1))2≤k≤d are linearly independent.

Lemma 3.2. The d − 1 vectors (δ(k) − δ(1))2≤k≤d are R-linearly independent in
Rr−1 × Cs, so that they form a basis of this R vector space.

Proof. Since the embedding pH is linear and one-to-one, the vectors δ(k)− δ(1) are
free if and only if the vectors pH δ(k) − pH δ(1) are free in Rd. Consider a linear
combination of those vectors which is equal to zero:

d∑
k=2

λk (pH δ(k)− pH δ(1)) = 0.

Denote by e1, . . . ed the canonical basis of Rd. Lemma 2.6 implies

qH

(
d∑
k=2

λk (ek − e1)

)
= 0.

Since qH is a projection parallel to u1, its kernel is generated by u1 and there exists
a real ν such that

−(
d∑
k=2

λk) e1 +
d∑
k=2

λk ek = ν u1.

If ν is different from zero, the coordinates of u1 in the canonical basis are ratio-
nally dependent, which is impossible (Proposition 3.1). Thus, ν is zero and the
independence of the vectors ek implies that all the λk are also equal to zero.
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Corollary 3.3. The following map iL is an isomorphism from the (d − 1)-torus
Td−1 onto the quotient

(
Rr−1 × Cs

)
/L.

iL : Td−1 = Rd−1/Zd−1 →
(
Rr−1 × Cs

)
/L

(λ2, . . . , λd) mod Zd−1 7→
∑d

k=2 λk (δ(k)− δ(1)) mod L

We can define the geometric representation map on the torus of the dynamical
system:

Corollary 3.4. If ϕ is the representation map of Ω in Rr−1 × Cs (Lemma 2.2),
the following map is well defined and continuous. We call it the representation map
of Ω on the torus.

ϕL : Ω →
(
Rr−1 × Cs

)
/L ' Td−1

w 7→ ϕ(w) mod L.

For every w ∈ Ω, the following equality is satisfied in
(
Rr−1 × Cs

)
/L:

ϕL(Sw) = ϕL(w) + δ(1).

Thus, the diagram commutes:

Ω S−−−−→ Ω

ϕL

y yϕL(
Rr−1 × Cs

)
/L −−−−−−−−→

R(z)=z+δ(1)

(
Rr−1 × Cs

)
/L

Corollary 3.3 means that the dynamical system (
(
Rr−1 × Cs

)
/L,R) is conjugate

to the addition of iL−1(δ(1)) on the torus Td−1, so that the minimality of one of
these dynamical systems is equivalent to the minimality of the other. However,
minimal translations on the torus are characterized by the following property.

Proposition 3.5 (see [20]). The translation of vector t = (t1, . . . , tn) ∈ Rn over
the n-dimensional torus Tn is minimal if and only if the numbers t1, . . . , tn and 1
are rationally independent.

Thus, the map R is minimal if and only if the coordinates of iL−1(δ(1)) in
the canonical basis are rationally independent from 1. We note that this is not
equivalent, but in fact stronger than to prove that the vector iL−1(δ(1)) is rationally
independent of the vectors generating the lattice Zd−1, that is the canonical basis.

Proposition 3.6. The number 1 is rationally independent from the coordinates of
δ(1) in the family (δ(k)− δ(1))2≤k≤d.

Proof. Denote λk the coordinates of δ(1) in the basis (δ(k)−δ(1))2≤k≤d of Rr−1×Cs:

δ(1) =
d∑
k=2

λk ( δ(k)− δ(1) ).

If {e1, . . . , ed} denote the canonical basis of Rd, applying the embedding pH to this
equality and using Lemma 2.6 implies

qH

(
(1 +

d∑
k=2

λk) e1 −
d∑
k=2

λk ek

)
= 0.
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But the kernel of qH is the expanding direction of Mσ, so that their exists a real ν
with

ν u1 = (1 +
d∑
k=2

λk) e1 −
d∑
k=2

λk ek.

The number ν cannot be zero, otherwise every λk would be zero and the preceding
equality would become e1 = 0. If the λk and 1 are rationally dependent, then the
first coordinate of u1 is a rational combination of λk, which are the other coordinates
of u1 in the canonical basis. Proposition 3.1 tells us that this is impossible.

As iL is an isomorphism, we get that the addition of iL−1(δ(1)) on the torus
Td−1 is minimal, so that:

Corollary 3.7. The dynamical system (
(
Rr−1 × Cs

)
/L,R) is minimal.

We deduce from this that ϕL is onto.

Theorem 3.8. Any dynamical system (Ω, S) generated by a substitution of Pisot
type on d letters admits as a topological factor a minimal translation on the torus
Td−1.

Indeed, the map iL−1◦ϕL is continuous and onto, and realizes a semi-conjugation
between the shift map S on Ω and a minimal translation on Td−1.

Proof. The representation map ϕL is such that for all w ∈ Ω

ϕL(S(w)) = R(ϕL(w)).

The map R in minimal so that if w is a point of Ω, the orbit of ϕL(w) under R
is dense in

(
Rr−1 × Cs

)
/L. Thus we have(

Rr−1 × Cs
)
/L = {ϕL(w) + nδ(1), n ∈ Z} = {ϕL(Snw), n ∈ Z}

= ϕL({Snw, n ∈ Z}) = ϕL(Ω).

Hence, ϕL is onto and
((
Rr−1 × Cs

)
/L,R

)
is a factor of (Ω, S).

This theorem gives some information about the image F of ϕ.

Corollary 3.9. The compact subset F = ϕ(Ω) of Rr−1×Cs has nonempty interior
and strictly positive Lebesgue measure.

Proof. The fact that ϕL(Ω) is equal to the full torus
(
Rr−1 × Cs

)
/L means that⋃

u∈L(F+u) contains the parallelogram
{∑d

k=2 tk(δ(k)− δ(1)) | 0 ≤ tk ≤ 1
}

, which
has nonempty interior since the (δ(k)− δ(1)) are a basis. As F is a closed subset of
Rr−1×Cs, Baire’s theorem implies that there exists a vector u such that F+u has
nonempty interior, and so does F . Thus, the measure of this set must be strictly
positive.

In what follows, we study more precisely the image F in the unimodular case.
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4. Representation with an exchange of domains

We suppose from here on that σ is of Pisot type and unimodular. We
prove in Section 4.1 that the induced measure on F of the measure on Ω by the
representation map ϕ is proportional to the Lebesgue measure on each cylinder of
Ω, which implies that ϕ is one-to-one almost everywhere on cylinders. Furthermore,
if the substitution satisfies a certain combinatorial condition, we prove in Section
4.2 that ϕ is one-to-one almost everywhere, which allows us to define in Section 4.3
an exchange of domains on F which is measure-theoretically conjugate to the shift
map on Ω.

4.1. Identification of the induced measure. Recall that by primitivity of σ, the
symbolic dynamical system (Ω, S,B, µΩ) is uniquely ergodic, where the Borel sets
are generated by the cylinders [U1.U2] for U1, U2 ∈ A∗, and µΩ is defined on cylin-
ders as follows: µΩ[U1.U2] = limn→+∞(1/n) card {i < n; Si(u) begins with U1U2}
(u denotes a periodic point for σ).

The vector of the measure of the cylinders [i] is an eigenvector of Mσ correspond-
ing to the Perron-Frobenius eigenvalue. Denote by µF the restriction to F = ϕ(Ω)
of the Lebesgue measure on Rr−1 × Cs.

The following lemma gives a generalization of the work on substitutions on two
letters of B. Host in [18].

Lemma 4.1. If σ is of Pisot type and unimodular, there exists a nonzero constant
C such that for every letter i,

µF (ϕ([i])) = C µΩ ([i]) .

Proof. The recognizability of σ implies that every cylinder [i] can be decomposed
in terms of cylinders [j]:

[i] =
⋃

j∈A, (p,i,t)∈P ;
σ(j)=pit

S|p| σ[j] the union being disjoint.

Proposition 2.3 then implies

ϕ
(
S|p| σ[j]

)
= δ(p) + Mdiagϕ[j].

The map associated to Mdiag is a diagonal mapping. So, for every Borel set B
of Rr−1 × Cs:

µF (MdiagB) =
r∏
i=2

|αi|
r+s∏
j=r+1

|αj |2 µF (B)

=
| det Mσ|

α
µF (B) =

1
α
µF (B).

As µF is invariant under translation, we can write

µF(ϕ[i]) ≤
∑

σ(j)=pit

µF (δ(p) + Mdiagϕ[j]) =
∑

σ(j)=pit

1
α
µF (ϕ[j])

=
1
α

d∑
j=1

mi,j µF (ϕ[j]) =
1
α

( Mσ (µF (ϕ[j]))1≤j≤d)i.

The number α is the dominant eigenvalue of the matrix Mσ, so by Perron-
Frobenius theorem it follows that the above inequalities are in fact equalities. The
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vector (µF (ϕ[j]) )1≤j≤d is then a dominant eigenvector of Mσ and is, since α is a
simple eigenvalue, proportional to the eigenvector for α: (µΩ([j]) )1≤j≤d. Moreover,
the constant of proportionality can not be zero as µF (F) is not zero, by Corollary
3.9.

Corollary 4.2. Let σ be a unimodular substitution of Pisot type. If σ(j) = pit and
σ(k) = qiu, with (p, i, t), (q, i, u) ∈ P, then

µF (ϕ(S|p| σ[j]) ∩ ϕ(S|q| σ[k]) ) = 0.

Each ϕ[i] is a union, disjoint in measure, of ϕ(S|p| σ[j]):

ϕ[i] =
⋃

j∈A, (p,i,t)∈P;
σ(j)=pit

ϕ(S|p| σ[j]).

Proof. In the proof of Lemma 4.1, there is equality in measure on every line.

Proposition 4.3. If σ is of Pisot type and unimodular, the induced measure on F
of the measure of Ω under the representation map ϕ is proportional to the Lebesgue
measure on each cylinder of Ω: there exists a constant C such that for every letter
i and for every Borel set B ⊂ [i] of Ω,

µF (ϕB) = C µΩ(B) .

Proof. From Corollary 1.8, the sequence of partitions is generating in measure:

Ω =
⋃

n,i;n<|σk(i)|

Snσk[i].

It suffices to prove the equality of the measures on every subset Snσk[i]. However,
if p is the prefix of length n of σk(i), we have

µF (ϕ(Snσk[i])) = µF(δ(p) + Mk
diagϕ[i]) =

1
αk
µF(ϕ[i]).

Furthermore, µΩ(Snσk[i]) = µΩ(σk[i]) from the shift invariance. A similar cal-
culation as in the Lemma 4.1, gives that

(µΩ([i]))1≤i≤d = Mσ (µΩ(σ[i]))1≤i≤d = Mk
σ (µΩ(σk[i]))1≤i≤d.

Since (µΩ([i]))1≤i≤d is an eigenvector of Mσ we deduce that

µΩ(Snσk[i]) =
1
αk
µΩ([i]) =

1
C
µF (ϕ(Snσk[i])) .

As ϕ is continuous and F is the image of this map, the formula µF(ϕB) = C µΩ(B),
means that µΩ is proportional to the induced measure on F .

We deduce from this that ϕ is almost everywhere one-to-one on each cylinder [i]
of Ω:

Proposition 4.4. If σ is of Pisot type and unimodular, the representation map ϕ
is one-to-one almost everywhere on each cylinder [i]: there exists a subset N ⊂ Ω
of measure zero such that

w1, w2 ∈ [i]\N , ϕ(w1) = ϕ(w2) =⇒ w1 = w2.
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Proof. From Corollary 4.2, the sets

Ni =
⋃

j 6=k or (p,i,t)6=(q,i,u)
σ(j)=pit,σ(k)=qiu

ϕ(S|p| σ[j]) ∩ ϕ(S|q| σ[k])

have measure zero in F . Thus, by Proposition 4.3, the sets Mi = ϕ−1(Ni) have
measure zero in Ω, and the same is true for

N = {Sn(w), ∀n ∈ Z, ∃ l ∈ N, σl(w) = w}
⋃

j≤d, k≥0, n<|σk(j)|

Sn σkMj .

Let w1 6= w2 ∈ [i] such that ϕ(w1) = ϕ(w2). We have to prove that w1 and w2

are then in N .
There exists unique (p, i, t), (q, i, u), j and k such that w1 ∈ S|p| σ[j] and w2 ∈

S|q| σ[k]. If (p, i, t) 6= (q, i, u) or j 6= k, w1 and w2 belong to ϕ−1(Ni) ⊂ N .
Otherwise, w1 and w2 satisfy w1 = S|p| σ(w′1) and w2 = S|p| σ(w′2), with w′1, w

′
2 ∈

[i1]. This implies that ϕ(w′1) = ϕ(w′2). Applying this calculation an infinite number
of times, we obtain that w1 and w2 belong to N or they have the same prefix-suffix
development. But the development map Γ is one-to-one everywhere off the orbit
of the periodic points of σ, which is contained in N . Thus, w1 and w2 belong to
N .

For every x ∈ F , let nx denote the number of points w in Ω such that ϕ(w) = x.
An easy consequence of the injectivity on cylinders is that for almost every x ∈ F ,
we have nx ≤ d. Propositions 4.3 and 4.4 mean that the induced measure ϕ?µΩ

has density Cnx for the Lebesgue measure µF .
In [16], C. Holton and L. Zamboni give other sufficient conditions for injectivity

on cylinders.

4.2. Pisot unimodular case with coincidences. Propositions 4.3 and 4.4 also
mean that the injectivity in measure of the map ϕ can be expressed in terms of
measures of a finite number of sets:

Corollary 4.5. The injectivity in measure of the representation map ϕ is equiva-
lent to the fact that the images of cylinders overlap on a set of measure zero.

For substitutions on two letters, B. Host [18] and C. Holton [14] have proved
independently that if a geometric representation map is measure-theoretically one-
to-one, then the substitution σ satisfies the following coincidence condition.

Definition 4.6. A substitution σ satisfies the coincidence condition on prefixes
(respectively suffixes) if for every couple of letters (j, k), there exists a constant n
such that σn(j) and σn(k) can be decomposed in the following way:

σn(j) = pit and σn(k) = qir, with l(p) = l(q)
(respectively l(t) = l(u)) .

This condition was introduced by F. M. Dekking in [10] for substitutions of
constant length and generalized to all substitutions by P. Arnoux and S. Ito in [2].
It is unknown, even in the case d = 2, if every substitution of Pisot type satisfies
the coincidence condition.
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Proposition 4.7. If σ is of Pisot type, unimodular and satisfies the coincidence
condition, then the representation map ϕ is one-to-one almost everywhere: there
exists a subset N0 ∈ Ω of measure zero such that

w1, w2 ∈ Ω\N0, ϕ(w1) = ϕ(w2) =⇒ w1 = w2.

Proof. Fix (j, k) in A × A. By hypothesis, there exists i such that σn(j) = pit
and σn(k) = qiu, with l(p) = l(q) or l(t) = l(u). According to Corollary 4.2,
ϕ(S|p| σn[j]) ∩ ϕ(S|q| σn[k]) has measure zero.

If the coincidence condition is on the prefixes, the two vectors δ(p) and δ(q) are
equal. Hence, the set ϕ(S|p| σn[j]) ∩ ϕ(S|q| σn[k]) of measure zero is equal to

ϕ(S|p| σn[j]) ∩ ϕ(S|q| σn[k]) = (δ(p) + Mn
diag ϕ[j]) ∩ (δ(q) + Mn

diag ϕ[k])

= δ(p) + Mn
diag(ϕ[j] ∩ ϕ[k]).

Since the Lebesgue measure is invariant under translation and Mdiag is a linear
map of determinant ±1/α, we deduce that

0 = µF (ϕ(S|p| σn[j]) ∩ ϕ(S|q| σn[k]) ) = µF ( δ(p) + Mn
diag(ϕ[j] ∩ ϕ[k]) )

= (1/αn)µF (ϕ[j] ∩ ϕ[k] ) = (1/αn)µΩ(ϕ−1(ϕ[j] ∩ ϕ[k]) ).

Let N be the subset of measure zero defined in Proposition 4.4. Then the
following subset N0 of Ω is of measure zero:

N0 = N
⋃
j 6=k

ϕ−1(ϕ[j] ∩ ϕ[k]).

Let w1, w2 ∈ Ω such that ϕ(w1) = ϕ(w2). Then, if (w1)0 = (w2)0, by definition of
N , w1 and w2 belong to N . Otherwise, w1 and w2 are in ϕ−1(ϕ[(w1)0]∩ϕ[(w2)0]).
In each case, w1 and w2 belong to N0, that is to say ϕ is one-to-one off a subset of
measure zero.

However, if the coincidence condition is on the suffixes, the vectors δ(t) and δ(u)
are equal. Similar arguments than before lead to the calculation:

0 = µF(ϕS|p| σn[j] ∩ ϕS|q| σn[k] )
= µF( (δ(p) + ϕσn[j]) ∩ (δ(q) + ϕσn[k]) )
= µF( (δ(σn(j))− δ(s) + ϕσn[j]) ∩ (δ(σn(k)) − δ(r) + ϕσn[k]) )
= µF(−δ(s) + (δ(σn(j)) + ϕσn[j]) ∩ (δ(σn(k)) + ϕσn[k]) )
= µF( (δ(σn(j)) + ϕσn[j]) ∩ (δ(σn(k)) + ϕσn[k]) )

= µF(ϕS|σ
n(j)|σn[j] ∩ ϕS|σ

n(k)|σn[k] ) = µF (ϕσnS[j] ∩ ϕσnS[k] )
= (1/αn)µF(ϕS[j] ∩ ϕS[k]) = (1/αn)µΩ(S−1ϕ−1(ϕS[j] ∩ ϕS[k]) ).

In this case we consider the set of measure zero defined by

N ′0 = N
⋃
j 6=k

S−1ϕ−1(ϕS[j] ∩ ϕS[k]) .

A similar argument yields that ϕ is one-to-one on Ω\N ′0.
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Figure 4. Exchange of domains generated by 131,1,1132

4.3. Exchange of domains in the coincidence case. We suppose now that σ is
of Pisot type, unimodular and satisfies the coincidence condition. The fact that the
representation map ϕ is measure-theoretically one-to-one implies that the image of
Ω under ϕ can be decomposed as a disjoint union:

ϕ(Ω) = F =
d⋃
i=1

ϕ[i] disjoint almost everywhere.

As a consequence, if we set Fi = ϕ[i], the following exchange of domains T is
defined almost everywhere on F (see an example in Figure 4):

T : F → F
x ∈ Fi 7→ x+ δ(i).

Proposition 2.3 now means that the following diagrams commute:

Ω S−−−−→ Ω

ϕ

y yϕ
F −−−−→

T
F

Ω σ−−−−→ Ω

ϕ

y yϕ
F −−−−→

Mdiag

F

But the set F has a self-similar structure in the following sense: if for each prefix
p we call hp the contracting map defined by

hp : Rr−1 × Cs → Rr−1 × Cs
x 7→ Mdiag x + δ(p),

then the partition of each cylinder on the form [i] =
⋃
σ(j)=pit S

|p|σ[j] and the
injectivity of ϕ imply that the images Fi of cylinders decompose as the following
partition, which is disjoint almost everywhere:

Fi =
⋃

σ(j)=pit

hp(Fj) disjoint almost everywhere.(4.1)

Thus, the compact set F is tiled by the self-similar tiles Fi as defined in [21].
This proves that the representation map ϕ is a measure-theoretic isomorphism

between (Ω, S) and the transformation T on the self-similar set F . As the transfor-
mation p is a linear isomorphism from Rr−1 × Cs onto Rd−1, we get the following
theorem.

Theorem 4.8. If σ is a substitution on d letters which is of Pisot type, unimodular
and satisfies the coincidence condition, (Ω, S) is measure-theoretically conjugate to
an exchange of domains on a self-similar compact subset of Rd−1.
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Figure 5. The fractal generated by 12,31,1

More precisely, the representation map pH◦ϕ is continuous from Ω onto its image
pH(F), one-to-one off a subset of Ω of measure zero, and realizes a conjugation
between the shift map on Ω and an exchange of domains defined almost everywhere
on pH(F).

Example 4.9 (see Figure 5). Let σ be the substitution 1 7→ 12, 2 7→ 31, 3 7→ 1
and β be a contracting eigenvalue of Mσ. The matrix Mdiag is simply (β) and
the vector δ = (δ(1), δ(2), δ(3)) can be chosen as (1, β − 1, β2 − β − 1). Then
F = F1 ∪ F2 ∪ F3 has the following self-similar structure:

F1 = βF1 ∪ (βF2 + β2 − β − 1) ∪ βF3,

F2 = βF1 + 1,
F3 = βF2.

One can remark that formula (4.1) is verified by all substitution of Pisot type if
we replace the disjoint union by a simple union. This gives a new proof of a recent
result due to V.S. Sirvent and Y. Wang in [31].

Proposition 4.10 ([31]). If σ is of Pisot type, the sets Fi have nonempty interior.

Proof. By Corollary 3.9, F has nonempty interior, so that there exists an integer
i0 such that Fi0 has nonempty interior. The self-similar structure of F (Formula
(4.1)), and the fact that the prefix-suffix automaton is strongly connected imply
that each Fi contains a copy of Fi0 : there exists a finite sequence of prefix p1, . . . ,
pk such that hp1 . . . hpk(Fi0) ⊂ Fi, so that Fi have nonempty interior.

In [31], the authors also prove that each Fi is the closure of its interior.

5. Suffixes construction

The representation map ϕ that we defined takes only into account the prefixes
pi of the prefix-suffix development of points of Ω. It is also possible, as in [28] to
define a representation map with the suffixes of this development:

∀w ∈ Ω ϕ′(w) =
∑
i≥0

Mj
diag δ(si) ∈ Rr−1 × Cs with Γ(w) = (pi, ai, si)i≥0.

Formula (2.4) implies that the maps ϕ and ϕ′ are linked by the relation

∀w ∈ Ω ϕ′(w) = −ϕ(w)− δ(w0) = −ϕ(Sw).
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So that the prefix and suffix constructions are completely equivalent. This is
coherent if one considers the fact that every substitutive system has zero entropy:
thus, knowledge of the past of a point of Ω, that is its negative part described by
ϕ, is “equivalent” to knowledge of the future, that is its positive part described by
ϕ′.
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