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École Polytechnique Fédérale de Lausanne

{can.kanbak, seyed.moosavi, pascal.frossard} @epfl.ch

Abstract

Deep convolutional neural networks have been shown to

be vulnerable to arbitrary geometric transformations. How-

ever, there is no systematic method to measure the invari-

ance properties of deep networks to such transformations.

We propose ManiFool as a simple yet scalable algorithm to

measure the invariance of deep networks. In particular, our

algorithm measures the robustness of deep networks to ge-

ometric transformations in a worst-case regime as they can

be problematic for sensitive applications. Our extensive ex-

perimental results show that ManiFool can be used to mea-

sure the invariance of fairly complex networks on high di-

mensional datasets and these values can be used for analyz-

ing the reasons for it. Furthermore, we build on ManiFool

to propose a new adversarial training scheme and we show

its effectiveness on improving the invariance properties of

deep neural networks.1

1. Introduction

Although convolutional neural networks (CNNs) have

been largely successful in various applications, they have

been shown to be quite vulnerable to additive adversarial

perturbations [25, 10, 18] which can negatively affect their

applicability in sensitive applications such as autonomous

driving [6]. Deep networks have also been shown to be vul-

nerable to rigid geometric transformations [7, 9], which are

more natural than additive perturbations: they can simply

represent the change of the viewpoint of an image. There-

fore, invariance to such transformations is certainly a key

feature in practical vision systems. In this paper, we focus

on studying the robustness of deep networks to geometric

transformations in the worst-case regime as these can be

quite problematic for sensitive applications. We approach

this problem by searching for minimal ’fooling’ transforma-

tions, i.e., transformations that change the decision of image

classifiers, and we use these transformed examples to mea-

sure the invariance of a deep network. We further show that

1To encourage reproducible research, the code of our method will be

later published.

Figure 1: An example of a worst-case ’fooling’ affine transform

for AlexNet [15]. While the image on top is correctly classified

as sorrel (a type of horse), a small transformation in the bottom

image can cause it to be classified as basset (a type of dog), even

though the change in the image is imperceptible.

fine-tuning on such worst-case transformed examples can

improve the invariance properties of deep image classifiers.

Our main contributions are as follows:

• We propose a scalable algorithm, ManiFool, for find-

ing small worst-case transformations and define a mea-

sure to compare the invariance properties of different

networks.

• As far as we know, we perform the first quantitative

study on the robustness of deep networks to geomet-

ric transformations that are trained on a large scale

dataset, i.e., ImageNet, and show that these networks

are susceptible to small and sometimes imperceptible

transformations.

• We use the ManiFool algorithm to perform adversar-

ial training using geometric transformations and show

that it actually improves the invariance of deep net-

works.

4441



The adversarial examples are first introduced in [25]. Since

then, many methods to find additive adversarial perturba-

tions have been proposed such as [18, 10, 4]. Other types

of adversarial examples are later found in [3, 20]. The work

[25] also introduces the concept of adversarial training to

increase the accuracy of networks. The authors in [10] later

show that adversarial training can also be used for increas-

ing the robustness of networks against adversarial examples

constructed by additive perturbations.

The vulnerability of CNNs against geometric transfor-

mations, on the other hand, has been studied in [17] and [24]

that analyze image and visual representations to find theo-

retical foundations of transformation invariant features. The

work in [2] uses the information about human visual system

to understand and improve the transformation invariance. In

addition, several practical solutions have been suggested for

improving the invariance characteristics. One approach is to

modify the layers of the networks; e.g., pooling layer[5] or

convolutional layers [22]. Another method is to add mod-

ules to the network, like the spatial transformer networks

[12]. Even though these works focus on improving the in-

variance, they do not offer methods for measuring invari-

ance properties of classification architectures. This problem

is the main focus of [9], where the invariance is measured by

using the firing rates of neurons in the network for one di-

mensional transformations. On the other hand, the authors

of [8] propose a probabilistic framework for estimating the

robustness of a classifier by using a Metropolis algorithm to

sample the set of transformations. Lastly, another approach

is given by Manitest [7], where the invariance is measured

using the geodesic distances on the manifold of transformed

images. In this work, we also use a manifold-based defini-

tion of invariance and propose a new scalable algorithm for

evaluating invariance in more complex networks and im-

proving it by fine-tuning.

2. Preliminaries

In this section, we briefly introduce the mathematical

tools that we will use to measure the robustness of deep

networks to geometric transformations.

Let T be a Lie group of geometric transformations such

as rotations or projective transformations. Then, let τ ∈ T
be a function τ : R2 → R

2 in this group. For 2D images, τ

can be seen as a bijection that maps the points of an image

to the points of another image. More precisely, let an image

I be defined as a square integrable function I : R2 → R.

The action of τ on I can be represented as Iτ (x, y). This

can also be seen as a function that maps the Lie group T to

the image space, which we denote by ψ(I)(τ) : T → L2,

where L2 is the space of square integrable functions. A

transformation τ can be represented by as many parameters

as the dimensionality of T . For example, the rotation angle

can be used to parameterize the rotation group. These pa-

rameters can be grouped in a vector θ, where each element

represents one of the parameters of τ .

For a given Lie group T , we need to define a metric

d(τ1, τ2) : T ×T → R to measure the actual effect of

transformations on images. A naive metric would consist in

measuring the ℓ2 distance between the parameter vectors of

τ1 and τ2. This however is not a useful metric since it does

not take into account the different nature of the transforma-

tion parameters such as rotation angle or scale. The metric

should rather depend on the image as well as the transfor-

mations. However, another metric such as the squared L2

distance dI(τ1, τ2) = ‖Iτ1 − Iτ2‖
2
L2 still does not fully cap-

ture the properties of the transformation even if it depends

on the image(see [7] for an illustrative example). Thus, a

better metric should be able to capture the intrinsic geomet-

ric structure of the transformed images.

One such metric is to the length of the shortest curve

between τ1, τ2 ∈ T , i.e., the geodesic distance. This met-

ric, however, requires a Riemannian metric to be defined for

T . In this case, the Riemannian metric can be acquired by

mapping T to the set of transformed versions of image I ,

i.e.,M(I) = {Iτ : τ ∈ T }. This set forms a differentiable

manifold called the image appearance manifold (IAM) fol-

lowing the works of [27, 13] and it inherits a Riemannian

metric from its ambient space, L2. From [7], it can be seen

that the Riemannian metric on T can be chosen accordingly,

such that the length of a curve on T , γ(t) : [0, 1] → T ,

will be equal to the length of the mapped curve onM(I),
Iγ(t) : [0, 1] → M(I). Thus, the geodesic distance be-

tween τ1, τ2 ∈ T is equal to the geodesic distance between

Iτ1 , Iτ2 ∈ M(I). Then, for τ1, τ2 ∈ T , the transformation

metric can be finally defined as

dI(τ1, τ2) = min
γ:[0,1]→M(I)

L(γ)

s.t. γ(0) = Iτ1 , γ(1) = Iτ2 ,
(1)

where L(γ) is the length of the curve γ. This metric both

depends on the transformed image and also takes into ac-

count the geometric properties of the transformation set T .

In order to measure the action of a transformation τ , we

therefore use the distance in Eq. (1) –between the transfor-

mation and the identity transformation e, i.e., dI(e, τ). To

compare the effect of transformations on different images,

we normalize dI(e, τ) by the norm the image, that is

d̃I(e, τ) =
dI(e, τ)

‖I‖L2

. (2)

3. Robustness to geometric transformations

As we have now chosen our metric as (2), our approach

to measure robustness of classifiers can be formalized as

follows. Let k be the given classifier, I an image and T
the set of transformations we are interested in. As with [7],
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we define the invariance metric as the minimal normalized

distance between the identity transformation and a transfor-

mation that leads to misclassification. Hence, the invariance

measure is denoted as

∆T (I, k) = min
τ∈T

d̃(e, τ) subject to k(I) 6= k(Iτ ), (3)

Note that this definition is similar to those used in works on

adversarial perturbations such as [18][9]. However, in our

case, instead of looking at minimal fooling additive pertur-

bations, we are interested in the minimal or worst-case ge-

ometric transformation. Thus, for a probability distribution

µ on the set of images, the global invariance score of the

classifier k to transformations in T is defined as

ρT (k) = EI∼µ∆T (I, k). (4)

As the underlying probability distribution of the images is

generally unknown, the invariance score of the classifier is

calculated using the empirical average of the estimated in-

variance over a set of images:

ρ̂T (k) =
1

m

m
∑

j=1

d̃Ij (e, τ̂). (5)

One can also define the invariance of a classifier to a

random transformation by again using the metric d̃I(e, τ).
In this case, we use the probability of misclassification

of transformed images under random transformations with

given geodesic scores to measure the invariance. This can

be defined it as

rT (k) = min r s.t. P
I,τ

(k(Iτ ) 6= k(I) | dI(e, τ) = r) ≥ 0.5.

(6)

Note that 0.5 is chosen as a threshold here, but other thresh-

olds can be used for defining the invariance to random trans-

formations.

In practice, ρ̂T (k) in (5) is computed using the algo-

rithm described in Section 4 to find a small transforma-

tion τ̂ that can fool the image and using the geodesic dis-

tance of this transformation, d̃I(e, τ̂), to estimate ∆T (I, k).
The expectation can then be calculated using multiple im-

ages sampled from a dataset. On the other hand, the es-

timation of rT , r̂T (k), is computed by sampling the set

Mr =
{

Iτ : τ ∈ T , d̃I(e, τ) = r
}

for increasing r and

computing the misclassification percentage of the corre-

sponding transformed samples.

4. ManiFool

In this section, we first introduce the ManiFool algorithm

to find a small fooling transformation τ̂ for binary and mul-

ticlass classifiers. We then present a method to measure the

geodesic distance d̃Ij (e, τ̂) to compute the invariance score

Figure 2: Illustration of Algorithm 1. Assume M is the mani-

fold of transformed images for the input x0 and B is the deci-

sion boundary of classifier f . The algorithm iteratively moves to-

wards the decision boundary. The first iteration is shown where

the movement direction u is found by projecting ∇f to the tan-

gential space of M and the next image x1 is found by mapping u

back onto the manifold

in (5). The main idea of the ManiFool algorithm is simply

to iteratively move from an image sample towards the deci-

sion boundary of the classifier where the classification deci-

sion changes, while staying on the transformation manifold.

Each iteration is then composed of two steps: choosing the

movement direction and mapping this movement onto the

manifold. The iterations will continue until the algorithm

reaches the decision boundary and finds a fooling transfor-

mation example. An illustration of the algorithm can be

found in Figure 2 and a more detailed description of the al-

gorithm is given in the following section.

4.1. ManiFool for binary classifiers

Since a multiclass classifier can be thought as a com-

bination of multiple binary classifiers, we first start from

the binary classifier case. We consider from now on dis-

crete versions of images, denoted as x ∈ R
n where n is

the number of pixels of x. The binary classifier is defined

as k(x) = sign(f(x)), where f : Rn → R is an arbitrary

differentiable classification function. Without loss of gen-

erality, we can assume that the original label of the image is

1.

Let x(i) be the image at the start of iteration i and let

iterations start with i = 0. The first step for any iteration

consists in finding the movement direction. Since we as-

sumed that the original label is 1, f(x(0)) > 0 for the input

image x(0). Thus, to reach the decision boundary where

f(x) = 0 while following the shortest path, we need to

choose the direction which maximally reduces f(x), which

is the opposite of the gradient of f , −∇f(x). However,

since we want to stay on the set of transformed images,

we restrict the classifier to the image appearance manifold,
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Algorithm 1 ManiFool for binary classifiers

Input: Image x, classifier f

Output: Transformation τ̂

1: Initialize with x(0) ← x, i← 0.

2: while f(x(i)) > 0 do

3: û← −J+
x(i)∇f(x

(i))

4: u(i) ← λi
û

‖ûln‖ + γu(i−1)

5: τi ← exp
(

∑

j ujGj

)

6: x(i+1) ← x
(i)
τi

7: i← i+ 1
8: end while

9: return τ̂ = τ0 ◦ τ1 ◦ . . . τi

M(x), as f|M : M(x) → R, and use its gradient ∇f|M.

At point x(i), this gradient can be acquired simply by pro-

jecting ∇f(x(i)) onto the tangent space of x(i), T
x(i)M

[1]. This projection is done using the pseudoinverse opera-

tor as

u = −J+
x(i)∇f(x

(i)) = −(JT
x(i)Jx(i))−1JT

x(i)∇f(x
(i)).

(7)

where J
x(i) is the Jacobian matrix, whose columns form

the basis of the tangential space and u ∈ T
x(i)M is the

projection of∇f(x(i)), i.e., our movement direction for this

iteration.

After finding the movement direction, the next step is

to map u onto M(x). This step depends heavily on the

transformation set. As we want to minimize the geodesic

distance, the natural choice of mapping would be to use the

exponential map for M(x) since it follows the geodesics

[26]. If an exponential map is readily available for M
and does not have high computational complexity, it can

be used. However, for most transformation sets, this does

not hold and a retraction is used instead. Here, we will talk

about one such retraction for the set of projective transfor-

mations and its subsets. Different retractions can be defined

for other Lie groups.

The retraction in our implementation uses the matrix rep-

resentation of projective transformations, where the matrix

exponential forms a map from Te T to T . Let y ∈ M(x),
u ∈ TyM(x) and Gi be the basis of Te T , which are also

called the generators of T . The retraction we use can be

summarized as mapping u to Te T by using the generators,

then mapping it to the matrix Lie group T and lastly, map-

ping it back to M(x) by using ψx
(i)

. More formally, the

retraction at the point y, Ry : TyM →M can be written

as

Ry(u) = ψ(y)



exp





∑

j

ujGj







 . (8)

The image for the next iteration of the algorithm is thus

written as

x(i+1) = R
x(i)(u) = x(i)

τi
, (9)

where τi is the transformation represented by

τi = exp





∑

j

ujGj



 . (10)

Lastly, the label of the generated image is checked. If

k(x(i+1)) = 1, the algorithm continues with the next iter-

ation, this time starting from x(i+1). Otherwise, the algo-

rithm has finished successfully and the transformation that

generated x(i+1) is found as

τ̂ = τ0 ◦ τ1 ◦ . . . τi. (11)

The algorithm is summarized on Algorithm 1. Over-

all, it should be noted that our algorithm is closely related

to manifold optimization techniques, particularly to line-

search methods. The convergence analysis of such methods

can be found for example in [1]. Using this analogy, choos-

ing the movement direction has changed by including line-

search and momentum terms, since it has been seen empiri-

cally that they improve the accuracy and reduce the chance

of converging to a local minimum. This new direction term

can be written as

u(i) = −λi
J+
x(i)∇f(x

(i))

‖J+
x(i)∇f(x(i))‖

+ γu(i−1), (12)

where λi is a step size term that is chosen using line search

to maximize the decrease in f in each step and γ is the con-

stant momentum parameter.

4.2. ManiFool for multiclass classifiers

The most common scheme used in multiclass classifiers

is one-vs-all, which serves as a basis for our method. In this

scheme, the classifier function has c outputs where c is the

number classes. Thus, the function is defined as f : Rn →
R

c and the classification is performed as:

k(x) = argmax
k

fk(x), (13)

where fk is the output of f that corresponds to the kth class.

Let lx = k(x(0)), where x(0) is the input image to the algo-

rithm. Then we can define c−1 binary classifiers for l 6= lx
as:

gl(x) = flx(x)− fl(x). (14)

Since lx = argmaxk fk(x
(0)), flx(x

(0)) > fl(x
(0)) for

all l 6= lx and thus gl(x
(0)) > 0.

As we now have c−1 binary classifiers, we can get c−1
examples of fooling transformations by using each binary

classifier as input to the binary ManiFool from Algorithm

1. When the algorithm is used with gl, it stops iterating
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Algorithm 2 ManiFool for multiclass classifiers

Input: Image x, classifier f

Output: Transformation τ̂

1: Initialize with x(0) ← x, lx ← k(x(0)).
2: for l 6= lx do

3: gl ← flx − fl
4: i← 0
5: while k(x(i)) = lx do

6: û← −J+
x(i)∇gl(x

(i))

7: u(i) ← λi
û

‖ûln‖ + γu(i−1)

8: τi ← exp
(

∑

j ujGj

)

9: x(i+1) ← x
(i)
τi

10: i← i+ 1
11: end while

12: τ̂l ← τ0 ◦ τ1 ◦ . . . τi
13: end for

14: lmin ← argminl 6=lx d̃(e, τl)
15: return τ̂ = τlmin

when k(x(i)) 6= lx, instead of stopping when gl(x
(i)) < 0,

because the classifier we are trying to fool is k, and not gl.

Let τl be the output transformation when gl is used as the

input to the binary ManiFool. As we now have a fooling

transformation example for each class, the class with the

smallest transformation by using the geodesic score from

(2) can be chosen as

lmin = argmin
l 6=lx

d̃
x(0)(e, τl), (15)

and the algorithm will output the corresponding transforma-

tion, τlmin .

The complexity of the algorithm depends on multiple

factors, including the properties of the input classifier, input

image and parameters such as γ. For example, as a separate

single target ManiFool is run for each output class, the com-

plexity depends heavily on c, the number of classes. Thus,

to reduce complexity, only the most probable ĉ classes are

used in the algorithm, which are the ĉ classes with highest

fl(x0) excluding lx. The complexity is also highly depen-

dent on the number of iterations Nit for each single target

ManiFool. Although these cannot be known exactly before

running the algorithm, they are bounded by the maximum

number of iterations Nmax. Thus, the complexity increases

linearly with Nmax, which should be chosen carefully in

order not to unnecessarily increase the complexity.

4.3. Measuring robustness to geometric transfor-
mations

Although we have utilized geodesic distance dx(e, τ)
in the above methods, we have not shown how it can be

computed. One possible method is to use Fast March-

Figure 3: Illustration of the distance measurement. Assume M
be a manifold and p0, p1 ∈ M. We estimate the geodesic dis-

tance between these points using the direct path, by first map-

ping p1 to the tangential space of p0 as v1 vector, dividing v1
into smaller vectors and remapping these back onto the manifold.

Then, d̂(p0, p1) from (17) is given by the sum of distances between

these points, as the length of the grey curve.

ing Method (FMM), which progressively calculates the dis-

tance of points on a grid on the manifold from a refer-

ence point [21]. However, the complexity of this algorithm

increases exponentially with the manifold dimension, and

may rapidly become too complex. Thus, we propose a dif-

ferent method, by assuming that the geodesic path to the

target node is direct, and we estimate the geodesic distance

using this direct path. Let p0, p1 ∈ M, and v1 = R−1
p0

(p1)
where R is a retraction. Then, the direct path from p0 to p1
can be defined as

γ(t) = Rp0(tv1), t ∈ [0, 1]. (16)

For a chosen step-size η, v1 can be divided into parts as

v̂ = η v1

‖v1‖
. Then for N = ⌊‖v1‖

η
⌋, the distance can be

estimated as

d̂(p0, p1) =
N
∑

i=1

‖R(iv̂)−R((i−1)v̂)‖L2+‖p1−R(Nv̂)‖L2 ,

(17)

which is the sum of L2 distances on the sampled direct path.

An illustration is given on Figure 3. In our case, we estimate

dx(e, τ) as d̂(x,xτ ), since from (1), the distance between

the transformations on T is equal to the distance between

their transformed counterparts.

5. Experimental Results

We now test our algorithm on convolutional neural net-

work architectures. In these experiments, the invariance

score for minimal transformations, defined in (5), is cal-

culated by finding fooling transformation examples using

ManiFool for a set of images, and computing the average

of the geodesic distance of these examples. On the other

hand, to calculate the invariance against random transfor-

mations, we generate a number of random transformations

with a given geodesic distance r for each image in a set and
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Figure 4: Examples of MNIST images transformed using outputs of ManiFool and Manitest [7] for translation and similarity sets. Top

rows show the original images, the middle rows show the outputs from ManiFool and the bottom row shows the output of Manitest. The

red numbers indicate the new output labels of the transformed images.

calculate the misclassification rate2 of the network for the

transformed images. A random transformation is created by

sampling the unit sphere of Te T and increasing the magni-

tude of this vector until the corresponding transformation

has score equal to r, i.e., d(e,R(αv)) = r where v ∈ Te T
is the sampled vector with ‖v‖ = 1 and α > 0 is a scal-

ing factor. A more detailed explanation of how the random

transformation is sampled can be found in the supplemen-

tary material. The misclassification rate is calculated for

different r to see the performance of the network on differ-

ent levels of perturbation and to get r̂T from (6). In every

case, the discrete images after transformation are obtained

using bilinear interpolation; they further have the same size

as the original image with zero-padding boundary condi-

tions when necessary.

5.1. Performance of ManiFool

The first experiment compares the ManiFool algorithm

with Manitest [7], to evaluate the performance of the algo-

rithm in terms of speed and accuracy. For this comparison,

on top of calculating the invariance score using ManiFool

with Nmax = 50, we also do the same thing with Man-

itest, i.e., we use it to find fooling transformation examples

for the set of images and use these transformations to mea-

sure invariance. The comparison is done using 1000 images

from the MNIST [16] training dataset and a baseline CNN

with two 5 × 5 layers with 32 and 64 feature maps respec-

tively with ReLU nonlinearity and 2 × 2 max pooling. In

both cases, the geodesic distance is calculated using (17) to

be comparable. Some of the transformed images generated

during the experiment can be seen in Figure 4 and Table

1 reports the invariance score ρ̂T and the running time for

both methods.

Manitest uses the fast marching method to find the trans-

formation that changes the label. This requires measuring

the distance of all the transformed images on a grid over

parameters and evaluate the classifier until it reaches a fool-

ing transformation. Thus, it is guaranteed to find the mini-

mal transformation in the discretized search space and it is

2As we consider the invariance of a network, we define misclassifica-

tion as a change in label, i.e., if k(x) 6= k(xτ ) for the transformed image

xτ

ManiFool Manitest

Transformation ρ̂T time ρ̂T time

T (d = 2) 1.68 2.6 s 1.54 2.7 s

R+T (d = 3) 1.40 3.6 s 1.33 23.9 s

S+T (d = 3) 1.41 6.2 s 1.32 34.6 s

T+R+S (d = 4) 1.26 3.1 s 1.25 29.5 s

Table 1: Comparison of Manitest and ManiFool for different trans-

formation sets on MNIST dataset. In the table, T, R and S stand for

translation, rotation and scaling respectively; while d represents

the number of dimensions of the transformation groups. The time

column lists the average time required to compute one sample. The

experiment was done using a baseline CNN with 2 convolutional

layers. These times are computed on a server with 2 Intel Xeon

CPU E5-2680 v3 without GPU support.

more accurate than ManiFool in this regard. However, as

it can be seen on Table 1, it is more complex than Man-

iFool, especially as the dimension of the manifold is in-

creased. Thus, it is not scalable for high dimensional man-

ifolds. On the other hand, while not being as accurate,

ManiFool is less complex in these situations. For exam-

ple, Table 1 shows that the complexity of ManiFool does

not closely depend on the dimensionality ofM(x). Thus,

ManiFool can be used for measuring the invariance of more

complex networks such as the state-of-the-art architectures

used with ImageNet database. Because of this, we have

only used ManiFool to compare networks in the following

experiments.

5.2. Invariance score of different architectures

The second experiment uses ManiFool to quantitatively

compare the invariance properties of different networks.

For this purpose, we have computed the invariance score of

AlexNet [15], ResNet [11] and VGG [23] pre-trained mod-

els, using 5000 random images from ILSVRC2012 valida-

tion dataset [19]. Some examples that are created during

this experiment can be seen on Figure 5, which shows that

these networks are quite vulnerable against geometric trans-

formations. In addition, we also compute the invariance of

these networks to random transformations for r ∈ [0, 10]
using 5000 images from ILSVRC2012 validation dataset

with 10 random transformations each. The misclassifica-
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Figure 5: Examples of ILSVRC2012 images transformed using outputs of ManiFool using ResNet18 for similarity, affine and projective

sets.Top row shows the original image while the bottom row shows the transformed image. The texts bottom show the output labels of the

images at top and bottom respectively. More examples are found in the supplementary material.
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(a) Similarity transformations
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(b) Affine transformations

Figure 6: Misclassification rates of different networks with respect to the geodesic score of the transformation of the input images. The

rates are calculated using 5000 images from ILSVRC2012 validation dataset with 10 different transformations for each image.

tion rates of the networks for each tested r is seen on Figure

6. Figure 7 reports the invariance scores for all of the net-

works. It can be seen that, for the same type of networks

(e.g., VGGs and ResNets), the invariance increases with the

number of layers in each set of transformations. This re-

sult is in agreement with the previous empirical studies on

smaller datasets such as [9, 7], but we have shown here that

this also holds for deeper, more complex networks. On top

of this, we can also see that neither the number of parame-

ters nor the depth of the networks are the only decisive fac-

tors: ResNet-18 is less invariant than VGG-16, even though

it is deeper and VGG-16 has more parameters than ResNet-

50, yet it is less invariant. Similar results can be observed

for the invariance to random transformations, e.g., the in-

variance again increases with depth. In fact, Figure 7 shows

that there certainly is a correlation between these two in-

variance values. However, interestingly, the ordering is not

exactly the same as can be seen on Figure 6. For example,

ResNet-34 and ResNet-50 perform better against random

transformations compared to VGG networks.

Original Minimal Random Baseline

ρ̂T 1.13 1.78 1.55 1.10

Table 2: The invariance to affine transformations of ResNet18 on

CIFAR10 before and after the first epoch of fine tuning. Invari-

ance score is calculated using 5000 images from CIFAR10 test

set. ’Minimal’, ’Random’ and ’Baseline’ stand for the extra epoch

done using the transformed dataset created using ManiFool, the

dataset created using random transformations and the training set

respectively.

5.3. Adversarial Training using ManiFool

As our last experiment, we have fine-tuned a network

for CIFAR10 [14] classification by performing 5 additional

epochs with a 50% decreased learning rate using images

that were transformed by label changing affine transforma-

tions generated using ManiFool. To be complete, we also

performed 5 extra epochs using the original data and 5 ex-

tra epochs using randomly transformed images. For these

randomly transformed images, the score of the transfor-

mations were equal to the median geodesic score of the

dataset generated with ManiFool. We used ResNet-18 for
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Figure 7: Invariance scores of different networks against similarity and affine transformations. For ρ̂T , the invariance scores are calculated

using 5000 images from ILSVRC2012 validation dataset and for r̂T , they are calculated again using 5000 images with 10 different

transformations for each image.
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Figure 8: Misclassification rate of ResNet18 on CIFAR10 before

and after fine tuning using adversarial geometric transformations

with respect to the geodesic score of the random affine transfor-

mations of the input images. The rates are calculated using 5000

images from the test set with 20 transformations for each image.

this experiment, which was trained using stochastic gradi-

ent descent with softmax loss. The invariance score against

minimal transformations, ρ̂T is then calculated for the net-

works after each epoch using 5000 images from CIFAR-

10 test set. To see the effect of fine tuning on the invari-

ance against random transformations, we also computed

the misclassification rate for a transformation distance of

r ∈ [0, 5] using 5000 images from CIFAR10 test set with

20 transformations each. The results of these experiments

are seen on Figure 8 and Table 2. It can be observed in

Table 2 that fine tuning with adversarial examples has in-

creased the invariance score significantly, even after only

one extra epoch. This is in line with previous works on ad-

ditive adversarial perturbations, where adversarial training

was shown to improve robustness against the examined ad-

ditive perturbation[10][18], but this effect is now seen for

transformations as well. We can also see that its effect

is greater than using only randomly transformed images.

More interestingly, we can also see in Figure 8 that fine

tuning using the worst-case examples has increased the ro-

bustness against random transformations considerably. For

example, for random transformations with d̃(e, τl) = 2.5,

the misclassification rate has decreased more than 20% after

fine tuning. Although there is also a small penalty in accu-

racy of the network (0.6% reduction on test set), this shows

that choosing the worst-case transformation examples for

fine tuning can increase invariance in both worst-case and

random regimes.

6. Conclusion

In this work, we have presented a new constructive

framework for computing the invariance score of deep im-

age classifiers against geometric transformations. We pro-

posed an algorithm, ManiFool, for finding small fooling

transformation examples. The simple idea behind it is

to perform gradient descent on the manifold of geometric

transformations, in other words, it iteratively moves towards

the class decision boundary while staying on the manifold

to generate adversarial examples. Using this method, we

have studied the robustness of networks trained on Ima-

geNet against worst-case and random transformations. We

also showed that adversarial training using ManiFool can

be used as a way to improve the robustness of deep net-

works against both worst-case and random transformations

and leads to more invariant networks. In the future, we

believe this process can be used for empirical analysis of

neural networks under geometric transformations and thus

provide a better understanding of invariance to non-additive

perturbations and the properties of different network archi-

tectures. Also, the ManiFool algorithm can be useful for

generating new and practically relevant types of adversarial

examples by using wider types of natural transformations.
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