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Abstract We show that the geometric lifting of the RSK correspondence in-

troduced by A.N. Kirillov (Physics and Combinatorics. Proc. Nagoya 2000

2nd Internat Workshop, pp. 82–150, 2001) is volume preserving with respect

to a natural product measure on its domain, and that the integrand in Given-

tal’s integral formula for GL(n,R)-Whittaker functions arises naturally in this

context. Apart from providing further evidence that Whittaker functions are

the natural analogue of Schur polynomials in this setting, our results also

provide a new ‘combinatorial’ framework for the study of random polymers.

When the input matrix consists of random inverse gamma distributed weights,

the probability distribution of a polymer partition function constructed from

these weights can be written down explicitly in terms of Whittaker functions.

Next we restrict the geometric RSK mapping to symmetric matrices and show

that the volume preserving property continues to hold. We determine the

probability law of the polymer partition function with inverse gamma weights

that are constrained to be symmetric about the main diagonal, with an addi-

tional factor on the main diagonal. The third combinatorial mapping studied is
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a variant of the geometric RSK mapping for triangular arrays, which is again

showed to be volume preserving. This leads to a formula for the probability

distribution of a polymer model whose paths are constrained to stay below the

diagonal. We also show that the analogues of the Cauchy-Littlewood identity

in the setting of this paper are equivalent to a collection of Whittaker inte-

gral identities conjectured by Bump (Number Theory, Trace Formulas, and

Discrete Groups, pp. 49–109, 1989) and Bump and Friedberg (Festschrift in

Honor of Piatetski-Shapiro, Part II, pp. 47–65, 1990) and proved by Stade

(Am. J. Math. 123:121–161, 2001; Israel J. Math. 127:201–219, 2002). Our

approach leads to new ‘combinatorial’ proofs and generalizations of these

identities, with some restrictions on the parameters.
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1 Introduction

The Robinson-Schensted-Knuth (RSK) correspondence is a combinatorial

mapping which plays an important role in the theory of Young tableaux, sym-

metric functions and representation theory [23, 45]. It is deeply connected

with Schur functions and provides a combinatorial framework for understand-

ing the Cauchy-Littlewood identity and Schur measures on integer partitions.

It is also the basic structure which lies behind the solvability of a particular

family of combinatorial models in probability and statistical physics includ-

ing longest increasing subsequence problems, directed last passage percola-

tion in 1+1 dimensions and the totally asymmetric simple exclusion process,

see for example [1, 3, 33, 40].

The RSK map is defined on matrices with non-negative integer coefficients

and can be described by expressions in the max-plus semi-ring. This was

extended to matrices with real entries by Berenstein and Kirillov [10]. Re-

placing these expressions by their analogues in the usual algebra, A.N. Ki-

rillov [35] introduced a geometric lifting of the Berenstein-Kirillov corre-

spondence which he called the ‘tropical RSK correspondence’, in honor of
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M.-P. Schützenberger (1920–1996). However, for many readers nowadays the

word ‘tropical’ indicates just the opposite, so to avoid confusion we will refer

to Kirillov’s construction as the geometric RSK (gRSK) correspondence, as

in the theory of geometric crystals [8, 9], which is closely related.

The geometric RSK correspondence is a birational mapping from (R>0)
n×m

onto itself. It was introduced by Kirillov [35] for square matrices (n = m) and

generalized to the rectangular setting by Noumi and Yamada [37]. In the pa-

per [19] it was shown that there is a fundamental connection between the

gRSK correspondence and GL(n,R)-Whittaker functions, analogous to the

well-known connection between the RSK correspondence and Schur func-

tions. In particular, it is explained there that the analogue of the Cauchy-

Littlewood identity in the setting of gRSK can be seen as a generalization of

a Whittaker integral identity which was originally conjectured by Bump [15]

and later proved by Stade [43]. The connection to Whittaker functions gives

rise to a natural family of measures (Whittaker measures) which play a similar

role in this setting to Schur measures on integer partitions. It also has appli-

cations to random polymers. In the paper [19], an explicit integral formula is

obtained for the Laplace transform of the law of the partition function asso-

ciated with a random directed polymer model on the two-dimensional lattice

with log-gamma weights introduced in [42]. For related recent developments,

see [11, 12, 38].

In the present work, we first provide further insight into the results of [19]

by showing:

(a) the gRSK mapping is volume preserving with respect to the product mea-

sure
∏

ij dxij/xij on (R>0)
n×m, and

(b) the integrand in Givental’s integral formula for GL(n,R)-Whittaker func-

tions [26, 32] arises naturally through the application of the gRSK map

(see Theorem 3.2 below).

The volume preserving property can be seen as a consequence of a new

description of the gRSK map as a composition of local moves which we in-

troduce in this paper. This description is a re-formulation of the geometric

row-insertion algorithm introduced by Noumi and Yamada in [37]. Combin-

ing (a) and (b) gives a direct ‘combinatorial’ proof of Stade’s identity (with

some restrictions on the parameters) analogous to the bijective proof of the

Cauchy-Littlewood identity via the classical RSK correspondence (see, for

example, Fulton [23, §4.3]).

The second aim of this paper is to initiate a program of understanding the

gRSK mapping in the presence of symmetry constraints in much the same

spirit as the work of Baik and Rains [2, 4, 5] on longest increasing subse-

quence and last passage percolation problems. Here we consider one partic-

ular symmetry, namely the restriction of gRSK to symmetric matrices. We

show that the volume preserving property continues to hold in this setting
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and deduce the analogue of the Whittaker measure. The corresponding Whit-

taker integral identity (Corollary 5.5) involves only a single Whittaker func-

tion, and turns out to be equivalent to a formula for a certain Mellin trans-

form of the GL(n,R)-Whittaker function which was conjectured by Bump

and Friedberg [16] and proved by Stade [44], again with some restrictions on

the parameters. We also consider a degeneration of this model in which the

diagonal entries of the input matrix vanish and the gRSK map rescales to a

new version of gRSK defined on triangles. This model has a surprising and

non-trivial connection to the symmetric case (see remarks at the end of Sect. 6

below).

One particular motivation for our study of the gRSK mapping is the anal-

ysis of directed polymer models. The basic directed polymer in a random

environment is a model from statistical physics introduced by Huse and Hen-

ley [29] that couples a random path with an environment of random weights.

Given random positive weights {wi,j } indexed by the two-dimensional lat-

tice, each directed lattice path π from (1,1) to (n,m) is given the quenched

probability

Qnm(π) = Z−1
nm

∏

(i,j)∈π

wi,j

where the normalization, also called partition function, is

Znm =
∑

π∈Πnm

∏

(i,j)∈π

wi,j (1.1)

and Πnm is the set of such paths. A great deal of work in probability and sta-

tistical physics has been devoted to understanding the large-scale behavior of

the random path π and the partition function Znm, but the subject is far from

complete. The reader is referred to [17, 18, 20] for reviews. The connection

with gRSK is that the partition function appears as an entry in the output

matrix (equation (3.9) below).

As an application of our gRSK results we determine the law of the partition

function of a family of random polymer models with inverse gamma weights

that are constrained to be symmetric about the main diagonal. (The model

with inverse gamma weights is also called the log-gamma polymer because

conventionally the weights are written as exponentials to create a Gibbs-like

measure.) We also consider a degeneration of this model in which the poly-

mer paths are constrained to stay below the diagonal. This can be seen as a

discrete version of the continuum random polymer above a hard wall, which

appeared recently in the physics literature [28]. Formally, our results yield in-

tegral formulae for the Laplace transforms of these laws which we anticipate

will be made rigorous in future work and then used as a starting point for

further asymptotic development. Similar integral formulae obtained in [19]
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for the polymer model without symmetry were used in [12] to prove Tracy-

Widom GUE asymptotics for the law of the partition function. The polymer

models we consider also give rise to a positive temperature version of the in-

terpolating ensembles of Baik and Rains [2, 4]. In the KPZ scaling limit they

should correspond to the KPZ equation on the half-line with mixed boundary

conditions at zero and narrow wedge initial condition.

The outline of the paper is as follows.

• In the next section we give some background on Whittaker functions, in-

troduce a generalization of these functions and explain how these functions

can be regarded as generating functions for patterns. This interpretation

can be seen as a generalization of Givental’s integral formula [24, 26, 32]

and is analogous to the combinatorial interpretation of Schur functions as

generating functions for semistandard Young tableaux.

• In Sect. 3 we give a new description of the gRSK map as a composi-

tion of local moves (based on Noumi and Yamada’s dynamical description

of gRSK) and use this to establish several basic results. In particular, we

show that the gRSK mapping is volume-preserving with respect to a nat-

ural product measure on (R>0)
n×m and establish a fundamental identity

(Theorem 3.2) which provides an elementary explanation of the appear-

ance of Whittaker functions in this setting. This gives further insight into

earlier results from [19] and yields a new proof and generalization of two

of Stade’s Whittaker integral identities (Theorems 7.1 and 7.3).

• In Sect. 4 we explain the relationship between the local-moves descrip-

tion of gRSK and the geometric row-insertion algorithm of Noumi and

Yamada [37].

• In Sect. 5 we consider the restriction of gRSK to symmetric matrices. We

show that the volume preserving property continues to hold in this setting

and deduce several consequences, including a new proof (with some re-

striction on the parameters) of the Whittaker integral identity (Theorem

7.5) involving a single Whittaker function due to Stade [44].

• In Sect. 6 we introduce gRSK for triangular arrays. Again we prove a fun-

damental identity and the volume preserving property, and deduce the prob-

ability distribution of the shape vector of the output array under inverse

gamma distributed initial weights. The polymer version of the problem de-

scribes paths restricted to lie below a hard wall.

• In Sect. 7 we explain how the results of this paper relate to some of the

Whittaker integral identities which have appeared previously in the auto-

morphic forms literature.

• In Sect. 8 we explain how the Berenstein-Kirillov extension of the RSK

correspondence can be recovered by taking a limit (tropicalization). In sta-

tistical physics terminology this is a zero-temperature limit that takes poly-

mer partition functions to last-passage percolation values. By analogy with
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Sect. 3, we give a description of the Berenstein-Kirillov mapping in terms

of local moves which shows that this map is also volume preserving. Under

exponentially distributed weights the probability distribution of the shape

vector of the resulting pair of Gelfand-Tsetlin patterns is given by a non-

central Laguerre ensemble. This connection to random matrix theory has

had important applications to last passage percolation models [4, 13, 21,

22, 33].

2 Whittaker functions and patterns

For λ ∈ C, x, y ∈ (R>0)
n, define

Qn
λ(x, y) =

(
n∏

i=1

yi

xi

)λ

exp

(
−

n∑

i=1

yi

xi

−
n−1∑

i=1

xi+1

yi

)
.

For λ ∈ C, x ∈ (R>0)
n and y ∈ (R>0)

n−1, define

Q
n,n−1
λ (x, y) =

(∏n−1
i=1 yi∏n
i=1 xi

)λ

exp

(
−

n−1∑

i=1

yi

xi

−
n−1∑

i=1

xi+1

yi

)
.

We regard these as integral operators: for suitable test functions,

Qn
λf (x) =

∫

(R>0)
n

Qn
λ(x, y)f (y)

n∏

i=1

dyi

yi

,

Q
n,n−1
λ f (x) =

∫

(R>0)
n−1

Q
n,n−1
λ (x, y)f (y)

n−1∏

i=1

dyi

yi

.

These operators were introduced in the papers [24, 25]. We remark that, in

those papers, they are referred to as Baxter Q-type operators by analogy with

similar operators that were originally introduced by Baxter (see, for exam-

ple, [6, 7]) as a tool for solving the eight-vertex model.

Define Ψ n
λ (x) for λ ∈ C

n, x ∈ (R>0)
n recursively as follows. For n = 1,

λ ∈ C and x ∈ R>0 we set Ψ 1
λ (x) = x−λ. For n ≥ 2 and λ = (λ1, . . . , λn) ∈

C
n,

Ψ n
λ ≡ Ψ n

λ1,...,λn
= Q

n,n−1
λn

Ψ n−1
λ1,...,λn−1

. (2.1)

We note here, for later reference, some identities which follow easily from

the definitions. For a > 0 we have

Ψ n
α (ax) = a−

∑
i αiΨ n

α (x). (2.2)
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If α′
i = αi + c for some c ∈ C then, writing x = (x1, . . . , xn),

Ψ n
α′(x) =

(∏

i

x−c
i

)
Ψ n

α (x). (2.3)

Finally, if we set x′
i = 1/xn−i+1, then

Ψ n
λ (x) = Ψ n

−λ

(
x′). (2.4)

The functions Ψ n
λ are GL(n,R)-Whittaker functions [24, 25] (see also [26,

32]). These functions were first introduced by Jacquet [31]. They play an

important role in the theory of automorphic forms [14–16, 27, 30, 43, 44] and

the quantum Toda lattice [24–26, 32, 34, 36, 41]. In the latter literature they

arise as eigenfunctions of the open quantum Toda chain with n particles with

Hamiltonian given by

H = −
∑

i

∂2

∂x2
i

+ 2

n−1∑

i=1

exi+1−xi .

If we define ψn
λ (x) = Ψ n

−λ(z), where xi = log zi for i = 1, . . . , n, then

Hψn
λ = −

(∑

i

λ2
i

)
ψn

λ .

See, for example, [24] for more details.

In the automorphic forms literature the standard ‘normalization’ is slightly

different. In particular, in the notation of the paper [30], we have the relation,

for n ≥ 2:

Ψ n
−λ(x) =

(∏

i

xi

)(1/n)
∑

i λi
(

n−1∏

j=1

y
−j (n−j)/2
j

)
Wn,a(y), (2.5)

where ak = λk − (1/n)
∑

i λi for k = 1, . . . , n and πyj =
√

xn−j+1/xn−j , for

j = 1, . . . , n−1. This is easily verified by comparing the recursion (2.1) with

a similar recursion obtained by Ishii and Stade [30] for the functions Wn,a(y),

and using the elementary relation (2.3). Indeed, first note that, by (2.3), we

only need to check this for λ = a, that is, when
∑

i λi = 0. In the case n = 2

we have, writing a = (a,−a) and y1 = y,

W2,a(y) = 2
√

yK2a(2πy) = √
yΨ 2

a (x1, x2)
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where πy = √
x2/x1 and Kν is the Macdonald function

Kν(z) = 1

2

∫ ∞

0

tν−1e− z
2 (t+t−1)dt.

For n ≥ 3, in [30] it is shown that

Wn,a(y) =
n−1∏

j=1

y
(n−j)/2+2a1(n−j)/(n−1)
j

∫

(R>0)
n−1

e
−π

∑n−1
j=1 y2

j uj+1/uj

×
n−1∏

j=1

u
(n−2j)/4+na1/(n−1)

j Wn−1,b

(
y2

√
u2

u1
, . . . , yn−1

√
dun−1

un−2

)

× du1

u1
· · · dun−1

un−1
,

where

b =
(

a2 + a1

n − 1
, . . . , an + a1

n − 1

)
.

Making the change of variables

πyj =
√

xn−j+1

xn−j

,
π

uj

= xn−j

zn−j

, πy2
j uj = zn−j+1

xn−j

,

for j = 1, . . . , n − 1, and using (2.5) above, we see that this is equivalent to

the recursion

Ψ n
−a(x) =

∫

(R>0)
n−1

Q
n,n−1
−a1

(x, z)Ψ n−1
−a2,...,−an

(z)
dz1

z1
· · · dzn−1

zn−1
,

which agrees with (2.1) above.

We will also consider the following generalization of the functions Ψ n
λ . For

λ ∈ C
n, x ∈ (R>0)

n and s ∈ C, define

Ψ n
λ;s(x) = e−s/xnΨ n

λ (x); (2.6)

for λ ∈C
n+k , k ≥ 1, and ℜs > 0, define

Ψ n
λ;s = Qn

λn+k
Qn

λn+k−1
· · ·Qn

λn+1
Ψ n

λ1,...,λn;s . (2.7)

It is straightforward to see that Ψ n
λ;s(x) is well-defined, as an absolutely con-

vergent integral, for each x ∈R
n. The functions Ψ n

λ;s can be regarded as gen-

erating functions for ‘patterns’, as we shall now explain.
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Let x ∈ (R>0)
n. We define a pattern P with shape shP = x and height

h ≥ n to be an array of positive real numbers

P =

z11

z22 z21

. .
. . . .

znn . . . zn1

. . .
. . .

zhn . . . zh1

(2.8)

with bottom row zh· = x. The range of indices is

L(n,h) =
{
(i, j) : 1 ≤ i ≤ h, 1 ≤ j ≤ i ∧ n

}
.

If h = n then P is a triangle in the sense of Kirillov [35]. Fix a pattern P as

above. Set ρ0 = 1 and, for 1 ≤ i ≤ h, ρi =
∏i∧n

j=1 zij and τi = ρi/ρi−1. We

shall refer to τ as the type of P and write τ = type P . For α ∈ C
h define

P α =
h∏

i=1

τ
αi

i . (2.9)

For s ∈C, define

Fs(P ) = s

znn

+
∑

(i,j)∈L(n,h)

zi−1,j + zi+1,j+1

zij

(2.10)

with the convention that zij = 0 if (i, j) /∈ L(n,h). Denote by Πh(x) the set

of patterns with shape x and height h. Then, for λ ∈ C
h and ℜs > 0 (this

condition is only required if h > n)

Ψ n
λ;s(x) =

∫

Πh(x)

P −λe−Fs(P )dP (2.11)

where

dP =
∏

(i,j)∈L(n,h−1)

dzij

zij

.

This formula is just a re-writing of the above definition (2.7) of Ψ n
λ;s .

We remark that, although it is not obvious from the above definition, the

function Ψ n
λ is invariant under permutations of the indices λ1, . . . , λn [25,

34]. In fact, the same is true of the function Ψ n
λ;s , where λ ∈ C

n+k , k ≥ 1
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and ℜs > 0. That is, Ψ n
λ;s is invariant under permutations of the indices

λ1, . . . , λn+k . This follows from the definition (2.7), using the relation

Qn
aR

n
s Qn

b = Qn
bR

n
s Qn

a, (2.12)

where Rs denotes multiplication by the function e−s/xn , and the invariance of

Ψ n
λ1,...,λn

under permutations of λ1, . . . , λn. The relation (2.12) is a straight-

forward extension of the commutativity property Qn
aQ

n
b = Qn

bQ
n
a obtained in

[25, Theorem 2.3].

There is a Plancherel theorem for the Whittaker functions [34, 41, 46],

which states that the integral transform

f̂ (λ) =
∫

(R>0)
n

f (x)Ψ n
λ (x)

n∏

i=1

dxi

xi

defines an isometry from L2((R>0)
n,
∏n

i=1 dxi/xi) onto L
sym

2 (ιRn, sn(λ)dλ),

where L
sym

2 is the space of L2 functions which are symmetric in their vari-

ables, ι =
√

−1 and

sn(λ) = 1

(2πι)nn!
∏

i �=j

Γ (λi − λj )
−1,

is the Sklyanin measure.

3 Geometric RSK correspondence

The geometric RSK (gRSK) correspondence is a bijective mapping

T : (R>0)
n×m → (R>0)

n×m.

It is also birational in the sense that both T and its inverse are rational maps.

It was introduced by Kirillov [35] as a geometric lifting of the Berenstein-

Kirillov extension of the RSK correspondence and further studied by Noumi

and Yamada [37]. We will define it here via a sequence of ‘local moves’

on matrix elements. This is essentially a reformulation of the row-insertion

procedure introduced in [37], as will be explained in Sect. 4 below.

For each 2 ≤ i ≤ n and 2 ≤ j ≤ m define a mapping lij which takes as

input a matrix X = (xij ) ∈ (R>0)
n×m and replaces the submatrix

(
xi−1,j−1 xi−1,j

xi,j−1 xij

)
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of X by its image under the map

(
a b

c d

)
→
(

bc/(ab + ac) b

c d(b + c)

)
, (3.1)

and leaves the other elements unchanged. For 2 ≤ i ≤ n and 2 ≤ j ≤ m, define

li1 to be the mapping that replaces the element xi1 by xi−1,1xi1 and l1j to

be the mapping that replaces the element x1j by x1,j−1x1j . For convenience

define l11 to be the identity map. For 1 ≤ i ≤ n and 1 ≤ j ≤ m, set

π
j
i = lij ◦ · · · ◦ li1,

and, for 1 ≤ i ≤ n,

Ri =
{

πm−i+1
1 ◦ · · · ◦ πm

i , i ≤ m,

π1
i−m+1 ◦ · · · ◦ πm

i , i ≥ m.
(3.2)

The mapping T is defined by

T = Rn ◦ · · · ◦ R1. (3.3)

For example, suppose n = m = 2. Then

R1 = π2
1 = l12 ◦ l11 = l12, R2 = π1

1 ◦ π2
2 = l11 ◦ l22 ◦ l21 = l22 ◦ l21

and so

T = R2 ◦ R1 = l22 ◦ l21 ◦ l12.

Here is an illustration:

T :
(

a b

c d

)
l12−→
(

a ab

c d

)
l21−→
(

a ab

ac d

)
l22−→
(

bc/(b + c) ab

ac ad(b + c)

)
.

Note that each lij is birational. For example, the inverse of the map (3.1) is

given by
(

a b

c d

)
→
(

bc/(ab + ac) b

c d/(b + c)

)
.

The birational property of T can thus be seen directly from the above defini-

tion.

Each matrix X ∈ (R>0)
n×m can be identified with a pair of patterns (P,Q)

with respective heights m and n, and common shape

shP = shQ = (xnm, xn−1,m−1, . . . , xn−p+1,m−p+1),
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where p = n ∧ m, as illustrated in the following example:

X =
x31

x21 x32

x11 x22

x12

P = x31

x21 x32
, Q =

x12

x11 x22

x21 x32

shP = shQ = (x32, x21).

In the following, we will simply write X = (P,Q) to indicate that X is iden-

tified with the pair (P,Q).

The mappings Ri defined above can also be written as

Ri = ρi
m ◦ · · · ◦ ρi

2 ◦ ρi
1

where

ρi
j =

{
l1,j−i+1 ◦ · · · ◦ li−1,j−1 ◦ lij , i ≤ j,

li−j+1,1 ◦ · · · ◦ li−1,j−1 ◦ lij , i ≥ j.
(3.4)

Here we are just using the obvious fact that lij ◦ li′j ′ = li′j ′ ◦ lij whenever

|i − i ′| + |j − j ′| > 2. This representation is closely related to the Bender-

Knuth transformations, as we shall now explain. For each 1 ≤ i ≤ n and 1 ≤
j ≤ m, denote by bij the map on (R>0)

n×m which takes a matrix X = (xqr)

and replaces the entry xij by

x′
ij = 1

xij

(xi,j−1 + xi−1,j )

(
1

xi+1,j

+ 1

xi,j+1

)−1

, (3.5)

leaving the other entries unchanged, with the conventions that x0j = xi0 = 0,

xn+1,j = xi,m+1 = ∞ for 1 < i < n and 1 < j < m, but x10 +x01 = x−1
n+1,m +

x−1
n,m+1 = 1. Denote by rj the map which replaces the entry xnj by xn,j+1/xnj

if j < m and 1/xnm if j = m, leaving the other entries unchanged. For j ≤ m,

define

hj =
{

bn−j+1,1 ◦ · · · ◦ bn−1,j−1 ◦ bnj , j ≤ n,

b1,j−n+1 ◦ · · · ◦ bn−1,j−1 ◦ bnj , j ≥ n.
(3.6)

It is straightforward from the definitions to see that ρn
j = hj ◦rj . Now, observe

that if X = (P,Q), then for each j < m, hj (X) = (tj (P ),Q) where tj is
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defined by this relation. It is easy to see that the mappings bij , hj and tj are

all involutions.

In the case n = m, the mappings t1, . . . , tn−1 are the analogues of the

Bender-Knuth transformations in this setting, as discussed in [35]. In this

case, if we define, for i < n,

qi = t1 ◦ (t2 ◦ t1) ◦ · · · ◦ (ti ◦ · · · ◦ t1), (3.7)

then, as explained in [35], the involutions si = qi ◦ t1 ◦ qi , i < n, satisfy the

braid relations (sisi+1)
3 = Id, and hence define an action of Sn on the set of

triangles of height n. The mapping qn−1 is the analogue of Schützenberger’s

involution in this setting.

An immediate consequence of the above re-formulation of gRSK is the fol-

lowing volume preserving property. Denote the input matrix by W = (wij ) ∈
(R>0)

n×m and the output matrix by T = T (W) = (tij ) ∈ (R>0)
n×m.

Theorem 3.1 The gRSK mapping in logarithmic variables

(logwij , 1 ≤ i ≤ n,1 ≤ j ≤ m) → (log tij , 1 ≤ i ≤ n,1 ≤ j ≤ m)

has Jacobian ±1.

Proof It is easy to see that the Jacobians of the mappings lij in logarithmic

variables are all ±1. This follows from the fact that the mappings

(loga, logb) → (loga, loga + logb)

(loga, logb, log c, logd) →
(
log
(
bc/(ab + ac)

)
, logb, log c, log(db + dc)

)

each have Jacobian ±1. The result follows from the definition (3.3) of T . �

We remark that, by a similar argument it can be seen that the involutions

qi, i < n, on the set of triangles of height n, all have Jacobian ±1 in logarith-

mic variables.

We recall here some basic properties of the gRSK map T , which are either

obvious from the definitions or proved in the papers [36, 37]. Suppose W ∈
(R>0)

n×m and T = T (W) = (P,Q). If we define row and column products

Ri =
∏

j wij and Cj =
∏

i wij , then type Q = R and type P = C. Note that

this implies, for λ ∈ C
m and ν ∈ C

n,

∏

ij

w
−νi−λj

ij =
∏

i

R
−νi

i

∏

j

C
−λj

j = P −λQ−ν . (3.8)

Also, the following symmetries hold:



374 N. O’Connell et al.

• T (W t ) = T (W)t ;

• T (W) = (P,Q) ⇔ T (W t ) = (Q,P );

• W is symmetric ⇔ T is symmetric ⇔ P = Q;

• W is symmetric across the anti-diagonal ⇔ Q = qn−1(P ).

The connection to directed polymers is via the following formula for tnm:

tnm = Zn,m =
∑

π∈Πn,m

∏

(i,j)∈π

wij , (3.9)

where Zn,m is the partition function that appeared in (1.1). Recall that Πn,m

is the set of directed nearest-neighbor lattice paths in Z
2 from (1,1) to (n,m),

that is, the set of paths π = {π(1),π(2), . . . , π(n + m − 1)} such that π(1) =
(1,1), π(n + m − 1) = (n,m) and π(k + 1) − π(k) ∈ {(1,0), (0,1)} for 1 ≤
k < n + m − 1. We shall refer to the variable tnm as the polymer partition

function. In this context it is natural to refer to the wij as weights and W as

the weight matrix. In fact, the remaining entries of T = (P,Q) can also be

expressed in terms of similar partition functions, as follows. For 1 ≤ k ≤ m

and 1 ≤ r ≤ n ∧ k,

tn−r+1,k−r+1 · · · tn−1,k−1tnk =
∑

(π1,...,πr )∈Π
(r)
n,k

∏

(i,j)∈π1∪···∪πr

wij , (3.10)

where Π
(r)
n,k denotes the set of r-tuples of non-intersecting directed nearest-

neighbor lattice paths π1, . . . , πr starting at positions (1,1), (1,2), . . . , (1, r)

and ending at positions (n, k−r +1), . . . , (n, k−1), (n, k). (See Fig. 1. When

we use the path representation we draw the weight matrix in Cartesian coordi-

nates.) This determines the entries of P . The entries of Q are given by similar

formulae using T (W t ) = (Q,P ). We note here the following identity, which

follows from the above lattice path representation for T : setting p = n ∧ m,

we have

p∑

i=1

1

wi,p−i+1

= 1

t11

. (3.11)

To see this if n ≤ m, take the ratio of (3.10) for Π
(n−1)
n,n and Π

(n)
n,n. In the

opposite case apply the same to W t .

Now, for X ∈ (R>0)
n×m and s ∈ C, define

Es(X) = s

x11
+
∑

ij

xi−1,j + xi,j−1

xij

, (3.12)
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Fig. 1 Three paths

(π1,π2,π3) of a particular

3-tuple in Π
(3)
n,k

in an n × m

weight matrix. Note that the

picture is in Cartesian

coordinates. The paths start

at the lower left at (1,1),

(1,2) and (1,3) and end at

the upper right at (n, k − 2),

(n, k − 1), (n, k)

where the summation is over 1 ≤ i ≤ n, 1 ≤ j ≤ m with the conventions

xij = 0 for i = 0 or j = 0. Note that, if X = (P,Q), then

Es(X) =
{
F0(P ) +Fs(Q), n ≥ m,

Fs(P ) +F0(Q), n ≤ m,

where Fs is defined by (2.10). An important property of the maps bij defined

by (3.5) above is that they preserve the quantity E0(X), that is, E0 ◦ bij = E0.

To see this, recall that the map bij takes a matrix X = (xqr) and replaces the

entry xij by

x′
ij = 1

xij

(xi,j−1 + xi−1,j )

(
1

xi+1,j

+ 1

xi,j+1

)−1

,

leaving the other entries unchanged, with the conventions that x0j = xi0 = 0,

xn+1,j = xi,m+1 = ∞ for 1 < i < n and 1 < j < m, and x10 +x01 = x−1
n+1,m +

x−1
n,m+1 = 1. It is readily verified that

x′
i,j−1 + x′

i−1,j

x′
ij

+
x′
ij

x′
i+1,j

+
x′
ij

x′
i,j+1

= xi,j−1 + xi−1,j

xij

+ xij

xi+1,j

+ xij

xi,j+1

(3.13)

with the conventions that x0j = xi0 = x′
0j = x′

i0 = 0 and xn+1,j = xi,m+1 =
x′
n+1,j = x′

i,m+1 = ∞ for each i and j . This implies E0(bij (X)) = E0(X). We

remark that, in particular, this implies E0 ◦hj = E0, F0 ◦ tj = F0 for all j < m

and, in the case m = n, F0 ◦qn−1 = F0, where qn−1 is the geometric analogue

of Schützenberger’s involution defined by (3.7).

The cornerstone of the present paper is the following identity which, com-

bined with Theorem 3.1, explains the appearance of GL(n,R)-Whittaker

functions in the context of geometric RSK.
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Theorem 3.2 Let W ∈ (R>0)
n×m, T = T (W) and s ∈ C. Then

p∑

i=1

s

wi,p−i+1
+
∑ ′ 1

wij

= Es(T ),

where p = n ∧ m and
∑′

denotes the sum over 1 ≤ i ≤ n, 1 ≤ j ≤ m such

that j �= p − i + 1.

Proof From the identity (3.11), we can assume without loss of generality that

s = 1. We will prove the theorem by induction on n and m. The statement

is immediate in the case n = m = 1. Write Ri = R
n,m
i , T = T n,m and E

n,m
s

for the mappings defined above. Recall that T m,n(W t ) = [T n,m(W)]t , for any

values of m and n. It therefore suffices to show that the proposition holds for

T n,m, assuming that n ≥ m and that the proposition holds for T n−1,m.

Write Wn−1,m = (wij , 1 ≤ i ≤ n − 1, 1 ≤ j ≤ m), S = T n−1,m(Wn−1,m)

and T = T n,m(W). Then

T = Rn,m
n

(
S

wn1 . . . wnm

)
,

and we are required to show that

E
n,m
1 (T ) = E

n−1,m
1 (S) +

m∑

j=1

1

wnj

.

Now,

Rn,m
n = ρn

m ◦ · · · ◦ ρn
2 ◦ ρn

1

where

ρn
k = hk ◦ rk = bn−k+1,1 ◦ · · · ◦ bnk ◦ rk.

Set

T (0) =
(

S

wn1 . . . wnm

)

and, for k = 1, . . . ,m,

T (k) = ρn
k ◦ · · · ◦ ρn

2 ◦ ρn
1

(
T (0)

)
.

For X ∈ (R>0)
n×m and 0 ≤ k ≤ m, define

E
n,m;k(X) = 1

x11
+

(k)∑

ij

xi−1,j + xi,j−1

xij

+
m∑

j=k+1

1

xnj

,
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where X = (xij ) and the first summation is over pairs of indices (i, j) such

that either 1 ≤ i < n and 1 ≤ j ≤ m or i = n and 1 ≤ j ≤ k, with the conven-

tions xij = 0 for i = 0 or j = 0. Note that

E
n,m;0(T (0)

)
= E

n−1,m
1 (T ) +

m∑

j=1

1

wnj

, E
n,m;m(T (m)

)
= E

n,m
1 (T ).

We will show that

E
n,m;k ◦ ρn

k = E
n,m;k−1 (3.14)

for each k = 1, . . . ,m. Note that this implies

E
n,m;k(T (k)

)
= E

n,m;k−1
(
T (k−1)

)

for each k = 1, . . . ,m, and the statement of the theorem follows.

Let X = (xij ) ∈ (R>0)
n×m and write

X′ =
(
x′
ij

)
= ρn

k (X) = hk ◦ rk(X).

Note that x′
ij = xij for all (i, j) except (n − q + 1, k − q + 1), 1 ≤ q ≤ k.

Applying bnk ◦ rk gives the relation

x′
n,k−1 + x′

n−1,k

x′
nk

= 1

xnk

.

The next three relations follow from the invariance of E0 under the bij map-

pings as discussed earlier, see (3.13). If (i, j) = (n − q + 1, k − q + 1) for

some 1 < q < k, then

x′
i,j−1 + x′

i−1,j

x′
ij

+
x′
ij

x′
i+1,j

+
x′
ij

x′
i,j+1

= xi,j−1 + xi−1,j

xij

+ xij

xi+1,j

+ xij

xi,j+1

.

If k < n, then

x′
n−k,1

x′
n−k+1,1

+
x′
n−k+1,1

x′
n−k+2,1

+
x′
n−k+1,1

x′
n−k+1,2

= xn−k,1

xn−k+1,1
+ xn−k+1,1

xn−k+2,1
+ xn−k+1,1

xn−k+1,2
;

If k = n (this can only occur if m = n), then

1

x′
11

+
x′

11

x′
21

+
x′

11

x′
12

= 1

x11
+ x11

x21
+ x11

x12
.

It follows that En,m;k(X′) = En,m;k−1(X), as required. �
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Let s > 0 and consider the measure on input matrices (wij ) defined by

ν
θ̂ ,θ;s(dw) =

∏

ij

w
−θ̂i−θj

ij exp

(
−

p∑

i=1

s

wi,p−i+1
−
∑ ′ 1

wij

)
∏

ij

dwij

wij

,

where θ̂i + θj > 0 for each i and j . Note that

∫

(R>0)
n×m

ν
θ̂ ,θ;s(dw) = s−

∑p
i=1(θ̂i+θp−i+1)

∏

ij

Γ (θ̂i + θj ).

Suppose W ∈ (R>0)
n×m and T = T (W) = (P,Q). Define a mapping σ :

(R>0)
n×m → (R>0)

p by

σ(W) = shP = shQ = (tnm, tn−1,m−1, . . . , tn−p+1,m−p+1), (3.15)

where p = n∧m. The next two corollaries are essentially a re-formulation of

two of the main results in [19].

Corollary 3.3 The push-forward of the measure ν
θ̂ ,θ;s under the geometric

RSK map T is given by

ν
θ̂ ,θ;s ◦ T −1(dt) = P −θQ−θ̂e−Es(T )

∏

ij

dtij

tij
.

Proof This follows immediately from Theorems 3.1, 3.2 and the relation

(3.8). �

Corollary 3.4 The push-forward of ν
θ̂ ,θ;s under σ is given by

ν
θ̂ ,θ;s ◦ σ−1(dx) =

{
Ψ

p
θ (x)Ψ

p

θ̂;s(x)
∏p

i=1
dxi

xi
, n ≥ m,

Ψ
p

θ;s(x)Ψ
p

θ̂
(x)
∏p

i=1
dxi

xi
, n ≤ m.

Proof This follows from Corollary 3.3 and the integral formula (2.11) for

Ψ
p

λ;s . �

We also obtain from Theorems 3.1 and 3.2 the following integral identity.

This is the analogue of the Cauchy-Littlewood identity in this setting.

Corollary 3.5 Suppose s > 0, λ ∈ C
m and ν ∈C

n, where n ≥ m and ℜ(λi +
νj ) > 0 for all i and j . Then

∫

(R>0)
m

Ψ m
ν;s(x)Ψ m

λ (x)

m∏

i=1

dxi

xi

= s−
∑m

i=1(νi+λi)
∏

ij

Γ (νi + λj ). (3.16)
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Proof From the definitions (2.11), (3.12), the identity (3.8), Theorems 3.1

and 3.2, and Fubini’s theorem,

s−
∑m

i=1(νi+λi)
∏

ij

Γ (νi + λj )

=
∫

(R>0)
n×m

∏

ij

w
−νi−λj−1

ij exp

(
−

m∑

i=1

s

wi,m−i+1
−
∑ ′ 1

wij

)
∏

ij

dwij

=
∫

(R>0)
n×m

P −λQ−νe−Es(T )
∏

ij

dtij

tij

=
∫

(R>0)
m

(∫

Πn(x)

Q−νe−Fs(Q)dQ

)(∫

Πm(x)

P −λe−F0(P )dP

) m∏

i=1

dxi

xi

=
∫

(R>0)
m

Ψ m
ν;s(x)Ψ m

λ (x)

m∏

i=1

dxi

xi

,

as required. �

When m = n − 1 this is equivalent to an integral identity which was con-

jectured by Bump [15] and proved by Stade [44, Theorem 3.4], see Theo-

rem 7.4 below. We note that in this case, the identity is proved in [44] without

assuming the condition ℜ(λi + νj ) > 0 for all i and j . In this case, the in-

tegral is associated with Archimedean L-factors of automorphic L-functions

on GL(n − 1,R) × GL(n,R).

When n = m, (3.16) becomes:

Corollary 3.6 Suppose s > 0 and λ, ν ∈ C
n, where ℜ(λi + νj ) > 0 for all i

and j . Then

∫

(R>0)
n

e−s/xnΨ n
ν (x)Ψ n

λ (x)

n∏

i=1

dxi

xi

= s−
∑n

i=1(νi+λi)
∏

ij

Γ (νi + λj ).

Using (2.4), this is equivalent to the following integral identity for

GL(n,R)-Whittaker functions, due to Stade [43], see Theorem 7.2 below.

Corollary 3.7 Stade Suppose r > 0 and λ, ν ∈ C
n, where ℜ(λi + νj ) > 0 for

all i and j . Then

∫

(R>0)
n

e−rx1Ψ n
−ν(x)Ψ n

−λ(x)

n∏

i=1

dxi

xi

= r−
∑n

i=1(νi+λi)
∏

ij

Γ (νi + λj ).
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Again, we note that this identity is proved in [43] without assuming the

condition ℜ(λi +νj ) > 0 for all i and j . In this case, the integral is associated,

via the Rankin-Selberg method, with Archimedean L-factors of automorphic

L-functions on GL(n,R) × GL(n,R).

Corollary 3.8 Suppose s > 0 and ν ∈ C
n with ℜνi > 0 for each i. Then,

for each m ≤ n, the function Ψ m
ν;s is in L2((R>0)

m,
∏m

i=1 dxi/xi), and the

function e−sx1Ψ n
−ν(x) is in L2((R>0)

n,
∏n

i=1 dxi/xi).

Proof The first claim follows from Corollary 3.5 and the Plancherel theorem,

as follows. We first note that, under the above hypotheses,

Ψ̂ m
ν;s(λ) = s−

∑m
i=1(νi+λi)

∏

ij

Γ (νi + λj ) ∈ L2

(
ιRm, sm(λ)dλ

)
.

This is easily verified using Stirling’s approximation

lim
b→∞

∣∣Γ (a + ιb)
∣∣e π

2 |b||b| 1
2 −a =

√
2π, a, b ∈R.

Now, suppose f ∈ L2((R>0)
m,
∏m

i=1 dxi/xi) such that f̂ is continuous and

compactly supported on ιRm. By the Plancherel theorem, such functions are

dense in L2((R>0)
m,
∏m

i=1 dxi/xi) and, moreover, satisfy

f (x) =
∫

ιRm

f̂ (λ)Ψ m
λ (x)sm(λ)dλ (3.17)

almost everywhere. Indeed, for any g ∈ L2((R>0)
m,
∏m

i=1 dxi/xi) which is

continuous and compactly supported we have, by Fubini’s theorem,

∫

(R>0)
m

(∫

ιRm

f̂ (λ)Ψ m
λ (x)sm(λ)dλ

)
g(x)

m∏

i=1

dxi

xi

=
∫

ιRm

f̂ (λ)ĝ(λ)sm(λ)dλ

=
∫

(R>0)
m

f (x)g(x)

m∏

i=1

dxi

xi

.

This implies (3.17). Now, by Corollary 3.5,

∫

(R>0)
m

∣∣Ψ m
ν;s(x)Ψ m

λ (x)
∣∣

m∏

i=1

dxi

xi

≤
∫

(R>0)
m

Ψ m
ℜν;s(x)Ψ m

0 (x)

m∏

i=1

dxi

xi

< ∞.
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It follows that, for f ∈ L2((R>0)
m,
∏m

i=1 dxi/xi) such that f̂ is continuous

and compactly supported on ιRm, the integral

∫

(R>0)
m

∫

ιRm

Ψ m
ν;s(x)f̂ (λ)Ψ m

λ (x)sm(λ)dλ
dxi

xi

is absolutely convergent, and so, by Fubini’s theorem,

∫

(R>0)
m

Ψ m
ν;s(x)f (x)

m∏

i=1

dxi

xi

=
∫

(R>0)
m

Ψ m
ν;s(x)

(∫

ιRm

f̂ (λ)Ψ m
λ (x)sm(λ)dλ

) m∏

i=1

dxi

xi

=
∫

ιRm

Ψ̂ m
ν;s(λ)f̂ (λ)sm(λ)dλ.

Hence, using the Cauchy-Schwarz inequality,

∣∣∣∣∣

∫

(R>0)
m

Ψ m
ν;s(x)f (x)

m∏

i=1

dxi

xi

∣∣∣∣∣

=
∣∣∣∣
∫

ιRm

Ψ̂ m
ν;s(λ)f̂ (λ)sm(λ)dλ

∣∣∣∣

≤
(∫

ιRm

∣∣Ψ̂ m
ν;s(λ)

∣∣2sm(λ)dλ

)1/2(∫

ιRm

∣∣f̂ (λ)
∣∣2sm(λ)dλ

)1/2

.

This proves the first claim. The second claim follows from the first, letting

m = n and using (2.4). �

Consider the probability measure on input matrices W defined by

ν̃
θ̂ ,θ;s(dw) = Z−1

θ̂ ,θ;sνθ̂ ,θ;s(dw)

where

Z
θ̂ ,θ;s = s−

∑p
i=1(θ̂i+θi)

∏

ij

Γ (θ̂i + θj ).

The following result was obtained in [19].

Corollary 3.9 Suppose θ̂i +θj > 0 for each i and j , and (w.l.o.g.) that n ≥ m,

θi < 0 for each i and θ̂j > 0 for each j . Then, the Laplace transform of the
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law ν̃
θ̂ ,θ;s ◦ t−1

nm of the polymer partition function tnm under ν̃
θ̂ ,θ;s is given by

∫
e−rtnm ν̃

θ̂ ,θ;s(dw)

=
∫

ιRm

(rs)
∑m

i=1(θi−λi)
∏

ij

Γ (λi − θj )
∏

ij

Γ (θ̂i + λj )

Γ (θ̂i + θj )
sn(λ)dλ.

Proof By Corollary 3.4,

∫
e−rtnm ν̃

θ̂ ,θ;s(dw) = Z−1

θ̂ ,θ;s

∫

(R>0)
m

e−rx1Ψ m
θ (x)Ψ m

θ̂;s(x)

m∏

i=1

dxi

xi

.

By Corollary 3.8, the functions e−rx1Ψ m
θ (x) and Ψ m

θ̂;s(x) are in the space

L2((R>0)
m,
∏m

i=1 dxi/xi). The result follows, by Corollaries 3.6, 3.7 and the

Plancherel theorem. �

4 Equivalence of old and new description of geometric RSK

We explain here the equivalence of the Noumi-Yamada row insertion con-

struction [37] and the definition of geometric RSK given in Sect. 3. The input

weight matrix (wij ) is n × m, where m is fixed and n represents time. After

n time steps the Noumi-Yamada process gives two patterns P = {zkℓ} and

Q = {z′
ij }. P has height m, Q has height n, and their common shape vector

zm� = z′
n� is of length p = m ∧ n. The rows of Q indexed by s = 1, . . . , n

from top to bottom are the successive shape vectors (bottom rows) zm�(s) =
(zm,ℓ(s))1≤ℓ≤m∧s of the temporal evolution {z(s) : 1 ≤ s ≤ n} of the P pat-

tern. Thus as in classic RSK the Q pattern serves as a recording pattern.

The Noumi-Yamada process begins with an empty pattern at time n = 0.

Then the following step is repeated for n = 1,2,3, . . . .

Noumi-Yamada construction for time step n − 1 → n. Let z = z(n − 1) de-

note the P pattern obtained after n − 1 steps. Insertion of row wn� of weights

into z transforms z into ž = z(n) as follows.

(i) If n ≥ m + 1 (in other words, the triangle was filled by time n − 1), then

ak,1 = wn,k for 1 ≤ k ≤ m,

ak+1,ℓ+1 = ak+1,ℓ

zk+1,ℓžk,ℓ

žk+1,ℓzk,ℓ

for 1 ≤ ℓ ≤ k < m,

žk,ℓ = ak,ℓ(zk,ℓ + žk−1,ℓ) for 1 ≤ ℓ < k ≤ m,

žk,k = ak,kzk,k for 1 ≤ k ≤ m.

(4.1)
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(ii) If n ≤ m, then the equations above define žk,ℓ for 1 ≤ ℓ ≤ k ∧ (n − 1).

Set

žk,n = an,n · · ·ak,n for k = n, . . . ,m, (4.2)

while žk,ℓ for ℓ ≥ n + 1 remain undefined.

Proposition 4.1 Let (wij ) be an n×m weight matrix and T = T (W) defined

by (3.3). Then the output T is equivalent to the patterns (P,Q) obtained from

n steps of the Noumi-Yamada evolution, through these equations:

P pattern: zkℓ = tn−ℓ+1,k−ℓ+1, 1 ≤ ℓ ≤ k ∧ n,1 ≤ k ≤ m, (4.3)

Q pattern: z′
sℓ = ts−ℓ+1,m−ℓ+1, 1 ≤ ℓ ≤ m ∧ s,1 ≤ s ≤ n. (4.4)

Note in particular the common shape vector

zm� = z′
n� = (tn−ℓ+1,m−ℓ+1)1≤ℓ≤p.

Here is an illustration for n × m = 3 × 6.

T =

⎡
⎢⎣

z33 z43 z53 z63 = z′
33 z′

22 z′
11

z22 z32 z42 z52 z62 = z′
32 z′

21

z11 z21 z31 z41 z51 z61 = z′
31

⎤
⎥⎦ . (4.5)

Proof of Proposition 4.1 We keep m fixed and do induction on n. In the case

n = 1, the m-vector ž�1 described by (4.2) is the same as that obtained by

applying R1 = πm
1 = l1m ◦ · · · ◦ l11 to the top row w1� of the weight matrix.

Suppose the statement is true for T n−1,m. Add the nth weight row wn� to

T n−1,m and call the resulting n × m matrix T̃ n,m = ( T n−1,m

wn�
). Then T n,m =

Rn(T̃
n,m). From the definition of Rn we see that on row i ∈ {1, . . . , n − 1} it

alters only elements t̃ij for j − i ≤ m − n. Consequently after the application

of Rn, the induction assumption implies that (4.4) remains in force for 1 ≤
s ≤ n−1. It only remains to check that (4.3) holds after the application of Rn.

Again we do induction, starting from the bottom row of T n,m and moving

up row by row. This corresponds to executing Rn = π
(m−n)∨0+1
(n−m)∨0+1 ◦· · ·◦πm−1

n−1 ◦
πm

n step by step.

Before applying πm
n , the two bottom rows of T̃ n,m are

T̃ n,m =

⎡
⎣

· · · · · ·
z11 z21 · · · zm1

wn1 wn2 · · · wnm

⎤
⎦=

⎡
⎣

· · · · · ·
z11 z21 · · · zm1

a11 a21 · · · am1

⎤
⎦
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where we used the first row of (4.1). Apply πm
n = lnm ◦ ln,m−1 ◦ · · · ◦ ln1. Only

the bottom two rows are impacted. Use the notation from (4.1).

[
z11 z21 z31 · · · zm1

a11 a21 a31 · · · am1

]

ln1−→
[
z11 z21 z31 · · · zm1

ž11 a21 a31 · · · am1

]

ln2−→
[
a22 z21 z31 · · · zm1

ž11 ž21 a31 · · · am1

]
ln3−→
[
a22 a32 z31 · · · zm1

ž11 ž21 ž31 · · · am1

]

ln4−→ · · · lnm−→
[
a22 a32 a42 · · · am2 zm1

ž11 ž21 ž31 · · · žm−1,1 žm1

]
.

Now the bottom row of T n,m is in place. Note that the transformations above

left in place zm1 = z′
n1 as they should, for this entry is in accordance with

(4.4).

Next, an application of πm−1
n−1 = ln−1,m−1 ◦ ln−1,m−2 ◦ · · · ◦ ln−1,1 trans-

forms rows n − 2 and n − 1 in this manner:
⎡
⎣

z22 z32 z42 · · · zm−1,2 z′
n2 z′

n−1,1

a22 a32 a42 · · · am−1,2 am2 z′
n1

ž11 ž21 ž31 · · · žm−2,1 žm−1,1 žm1

⎤
⎦

πm−1
n−1−→

⎡
⎣

a33 a43 a53 · · · am−2,3 z′
n2 z′

n−1,1

ž22 ž32 ž42 · · · žm−1,2 žm2 z′
n1

ž11 ž21 ž31 · · · žm−2,1 žm−1,1 žm1

⎤
⎦ .

The bottom two rows of T n,m are in place. These steps continue until we

arrive at T n,m. �

5 Symmetric input matrix

As it is needed in the following, we will write R
n,m
i and T = T n,m for the

mappings defined in (3.2)–(3.3), and note the following recursive structure.

Let W = (wij ) ∈ (R>0)
n×m and write Wk,m = (wij , 1 ≤ i ≤ k, 1 ≤ j ≤ m).

Recall that

T n,m = Rn,m
n ◦ R

n,m
n−1 ◦ · · · ◦ R

n,m
1 .

Now, for each i ≤ n, the mapping R
n,m
i acts only on the first i rows of W and

leaves the remaining rows of W unchanged. In fact, for each i ≤ k ≤ n, we

have

R
n,m
i (W) =

(
R

k,m
i (Wk,m)

W c
k,m

)
,
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where W c
k,m = (wij , k + 1 ≤ i ≤ n, 1 ≤ j ≤ m). This property is immediate

from the definitions. This gives the basic recursion

T n,m(W) = Rn,m
n

(
T n−1,m(Wn−1,m)

wn1 . . . wnm

)
. (5.1)

Recall that

T m,n
(
W t
)
=
[
T n,m(W)

]t
. (5.2)

In particular, if n = m and W is symmetric, then T n,n(W) is also symmetric.

Lemma 5.1 Suppose that n = m and W is symmetric.

(a) The following recursion holds:

T n,n(W) = Rn,n
n

⎛
⎝
[
R

n,n−1
n

(
T n−1,n−1(Wn−1,n−1)

w1n . . . wn−1,n

)]t

w1n . . . wnn

⎞
⎠ . (5.3)

Moreover, if we denote by (sij ) the elements of the (n − 1) × n matrix

S =
[
Rn,n−1

n

(
T n−1,n−1(Wn−1,n−1)

w1n . . . wn−1,n

)]t

(5.4)

and by (tij ) the elements of T n,n(W), then

tij = sij for 1 ≤ i < j ≤ n,

t11 = s12/2s11,

tii = si,i+1si−1,i/sii, for 2 ≤ i ≤ n − 1,

tnn = 2sn−1,nwnn.

(5.5)

(b) For n ≥ 1 we have this identity:

4⌊n/2⌋
n∏

i=1

wii =
∏⌊ n−1

2 ⌋
j=0 tn−2j,n−2j

∏⌊ n−2
2 ⌋

j=0 tn−1−2j,n−1−2j

=
∏

iodd zni∏
ieven zni

. (5.6)

Proof Part (a). Using (5.1), (5.2) and the fact the W is symmetric,

T n,n(W) = Rn,n
n

(
T n−1,n(Wn−1,n)

wn1 . . . wnn

)

= Rn,n
n

(
[T n,n−1([Wn−1,n]t )]t

wn1 . . . wnn

)

= Rn,n
n

(
[T n,n−1(Wn,n−1)]t

wn1 . . . wnn

)
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= Rn,n
n

⎛
⎝
[
R

n,n−1
n

(
T n−1,n−1(Wn−1,n−1)

wn1 . . . wn,n−1

)]t

wn1 . . . wnn

⎞
⎠

= Rn,n
n

⎛
⎝
[
R

n,n−1
n

(
T n−1,n−1(Wn−1,n−1)

w1n . . . wn−1,n

)]t

w1n . . . wnn

⎞
⎠ .

This proves the first claim. So we have

T n,n(W) = Rn,n
n

(
S

w1n . . . wnn

)
,

where S ∈ (R>0)
(n−1)×n. To prove the second claim, first note that the map-

ping R
n,n
n leaves the elements of its input matrix which are strictly above the

diagonal unchanged. Thus, tij = sij for 1 ≤ i < j ≤ n. Using this, the symme-

try of T , and recalling how the row insertion procedure works (see Sect. 4),

we see that

tnn = wnn(tn−1,n + sn−1,n) = 2sn−1,nwnn,

tn−1,n−1 = tn−1,nsn−1,n

sn−1,n−1(tn−1,n + sn−1,n)
(tn−2,n−1 + sn−2,n−1)

= sn−1,nsn−2,n−1/sn−1,n−1,

and so on; for 2 ≤ i ≤ n − 1 we have tii = si,i+1si−1,i/sii and then finally,

t11 = t12s12

s11(t12 + s12)
= s12/2s11,

as required.

Part (b). The second equality in (5.6) is a consequence of (4.3). The first

equality is proved by induction on n. Cases n = 2 and n = 3 are checked by

hand.

Suppose (5.6) is true for n − 1. Observe first from the definition of the

mappings that R
n,n−1
n operating on

(
T n−1,n−1

w1n ... wn−1,n

)
does not alter the diagonal

{tn−1
ii }1≤i≤n−1 of T n−1,n−1. Consequently (5.4) implies that sii = tn−1

ii for

1 ≤ i ≤ n − 1.

Suppose n is even. Then the middle fraction of (5.6) develops as follows,

through equations (5.5), sii = tn−1
ii and by induction:

tnntn−2,n−2 · · · t22

tn−1,n−1tn−3,n−3 · · · t11
=

2sn−1,nwnn · sn−2,n−1sn−3,n−2

sn−2,n−2
· · · s23s12

s22

sn−1,nsn−2,n−1

sn−1,n−1
· sn−3,n−2sn−4,n−3

sn−3,n−3
· · · s12

2s11
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= 4wnn · sn−1,n−1sn−3,n−3 · · · s11

sn−2,n−2sn−4,n−4 · · · s22

= 4wnn · 4
n
2 −1

n−1∏

i=1

wii = 4⌊n/2⌋
n∏

i=1

wii .

The case of odd n develops similarly except that now the product in the nu-

merator finishes with s12/2s11 and consequently the factors of 2 cancel each

other. �

Theorem 5.2 Suppose that n = m and W is symmetric. Then T = T (W) =
(tij ) is also symmetric, and the Jacobian of the map

(logwij ,1 ≤ i ≤ j ≤ n) → (log tij ,1 ≤ i ≤ j ≤ n)

is ±1.

Proof We prove this by induction on n. When n = 2, we have t11 = w12/2,

t12 = w11w12, t22 = 2w11w12w22 and the result is immediate. Now, by the

previous lemma,

T = Rn,n
n

⎛
⎝
[
R

n,n−1
n

(
T n−1,n−1(Wn−1,n−1)

w1n . . . wn−1,n

)]t

w1n . . . wn−1,n wnn

⎞
⎠ .

Denoting by (sij ) the elements of the matrix

S =
[
Rn,n−1

n

(
T n−1,n−1(Wn−1,n−1)

w1n . . . wn−1,n

)]t

,

we have, by the previous lemma,

tij = sij for 1 ≤ i < j ≤ n,

t11 = s12/2s11,

tii = si,i+1si−1,i/sii for 2 ≤ i ≤ n − 1,

tnn = 2sn−1,nwnn.

(5.7)

This expresses the n(n + 1)/2 variables tij , 1 ≤ i ≤ j ≤ n as a function,

which we shall denote by F , of the n(n + 1)/2 variables sij ,1 ≤ i < j ≤ n

and s11, . . . , sn−1,n−1,wnn.

Denote by tn−1
ij the elements of the symmetric matrix T n−1,n−1(Wn−1,n−1).

By the induction hypothesis, the map

(logwij ,1 ≤ i ≤ j ≤ n − 1) →
(
log tn−1

ij ,1 ≤ i ≤ j ≤ n − 1
)
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has Jacobian ±1. The mapping R
n,n−1
n on the whole of (R>0)

n×(n−1) is a

composition of lij -maps and hence has Jacobian ±1 in logarithmic variables;

since it leaves matrix elements above the diagonal unchanged, its restriction

to the space of matrix elements on and below the diagonal also has Jacobian

±1 in logarithmic variables. It follows that the mapping

(logwij ,1 ≤ i ≤ j < n; logwin,1 ≤ i < n)

→ (log sij ,1 ≤ i < j ≤ n; log sii,1 ≤ i < n)

has Jacobian ±1. It therefore remains only to show that the Jacobian sub

matrix of the map F (in logarithmic variables) which corresponds to the vari-

ables (log s11, . . . , log sn−1,n−1, logwnn) and (log t11, . . . , log tnn) has deter-

minant ±1. From (5.7), this sub matrix is given by

⎛
⎜⎜⎜⎜⎜⎝

log s11 log s22 . . . log sn−1,n−1 logwnn

log t11 −1

log t22 −1
...

. . .

log tn−1,n−1 −1

log tn,n 1

⎞
⎟⎟⎟⎟⎟⎠

,

which completes the proof. �

Consider the measure on symmetric input matrices with positive entries

defined by

να,ζ (dw) =
∏

i<j

w
−αi−αj

ij

∏

i

w
−αi−ζ
ii exp

(
−
∑

i<j

1

wij

−
∑ 1

2wii

)∏

i≤j

dwij

wij

,

(5.8)

where α ∈ R
n and ζ ∈ R satisfy αi + ζ > 0 for each i and αi + αj > 0 for

i �= j . Note that

∫

(R>0)
n(n+1)/2

να,ζ (dw) = 2
∑n

i=1(αi+ζ )
∏

i

Γ (αi + ζ )
∏

i<j

Γ (αi + αj ).

In this setting we have R = C and so, using (3.8) and Lemma 5.1(b),

∏

i<j

w
−αi−αj

ij

∏

i

w
−αi−ζ
ii = 4⌊n/2⌋ζ ∏

i

z
(−1)iζ
ni R−α.

Thus, by Theorems 3.2 and 5.2, we obtain the following result.
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Corollary 5.3 The push-forward of να,ζ under σ is given by

να,ζ ◦ σ−1(dx) = 4⌊n/2⌋ζ f (x)ζ e
− 1

2xn Ψ n
α (x)

n∏

i=1

dxi

xi

, (5.9)

where

f (x) =
∏

i

x
(−1)i

i .

If λ ∈ C
n and γ ∈ C satisfy ℜ(λi + γ ) > 0 for each i, and ℜ(λi + λj ) > 0

for i �= j , then

∫

(R>0)
n

f (x)γ e
− 1

2xn Ψ n
λ (x)

n∏

i=1

dxi

xi

= 4−⌊n/2⌋γ 2
∑n

i=1(λi+γ )
∏

i

Γ (λi + γ )
∏

i<j

Γ (λi + λj ).

Now, using (2.2) we can strengthen this to:

Corollary 5.4 Suppose λ ∈ C
n and γ ∈ C satisfy ℜ(λi + γ ) > 0 for each i,

and ℜ(λi + λj ) > 0 for i �= j . Then, for s > 0,

∫

(R>0)
n

f (x)γ e−s/xnΨ n
λ (x)

n∏

i=1

dxi

xi

= cn(s, γ )s−
∑n

i=1 λi
∏

i

Γ (λi + γ )
∏

i<j

Γ (λi + λj ),

where

cn(s, γ ) =
{

1 if n is even,

s−γ if n is odd.

By (2.4) this is equivalent to the following identity which is equivalent

to an integral identity conjectured by Bump and Friedberg [16] and proved

by Stade [44, Theorem 3.3], see Theorem 7.5 below. We note that in [44] the

corresponding statement is proved without any restrictions on the parameters.

This integral is associated with an Archimedean L-factor of an exterior square

automorphic L-function on GL(n,R).
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Corollary 5.5 (Stade) Suppose λ ∈ C
n and γ ∈ C satisfy ℜ(λi + γ ) > 0 for

each i, and ℜ(λi + λj ) > 0 for i �= j . Then, for s > 0,

∫

(R>0)
n

f
(
x′)γ e−sx1Ψ n

−λ(x)

n∏

i=1

dxi

xi

= cn(s, γ )s−
∑n

i=1 λi
∏

i

Γ (λi + γ )
∏

i<j

Γ (λi + λj ),

where x′
i = 1/xn−i+1.

Note that f (x′) = f (x) if n is even and f (x′) = 1/f (x) if n is odd.

Now, consider the probability measure on symmetric matrices with posi-

tive entries defined by

ν̃α,ζ (dw) = Z−1
α,ζ να,ζ (dw), (5.10)

where

Zα,ζ = 2
∑n

i=1(αi+ζ )
∏

i

Γ (αi + ζ )
∏

i<j

Γ (αi + αj ).

From Corollary 5.3, we obtain:

Corollary 5.6 The Laplace transform of the law of the polymer partition

function tnn under ν̃α,ζ is given for r > 0 by

∫
e−rtnn ν̃α,ζ (dw) = 4⌊n/2⌋ζ Z−1

α,ζ

∫

(R>0)
n

f (x)ζ e
−rx1− 1

2xn Ψ n
α (x)

n∏

i=1

dxi

xi

.

Remark (A formal computation) In the following, we formally rewrite the

above formula as a multiple contour integral which we expect to be valid,

at least in some suitably regularized sense. Let ǫ > 0 and set α′
i = αi + ǫ.

It follows from Corollary 3.6 (or 3.8) that the function e
− 1

2xn Ψ n
α′(x) is in

L2((R>0)
n,
∏n

i=1 dxi/xi). Moreover, by Corollary 3.6, for λ ∈ ιRn,

∫

(R>0)
n

e
− 1

2xn Ψ n
α′(x)Ψ n

λ (x)

n∏

i=1

dxi

xi

= 2
∑

i(λi+αi+ǫ)
∏

i,j

Γ (αi + λj + ǫ).

(5.11)

Thus, by the Plancherel theorem, for any g ∈ L2((R>0)
n,
∏n

i=1 dxi/xi) we

can write
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∫

(R>0)
n

g(x)e
− 1

2xn Ψ n
α′(x)

n∏

i=1

dxi

xi

=
∫

ιRn

ĝ(λ)2
∑

i(λi+αi+ǫ)
∏

i,j

Γ (αi + λj + ǫ)sn(λ)dλ. (5.12)

Suppose n is even. By Corollary 5.5, if r > 0 and ℜλi > 0 for each i,

∫

(R>0)
n

f (x)ζ e−rx1Ψ n
−λ(x)

n∏

i=1

dxi

xi

= r−
∑n

i=1 λi
∏

i

Γ (λi + ζ )
∏

i<j

Γ (λi + λj ).

By (2.3) it follows that, for ǫ > 0 and λ ∈ ιRn,

∫

(R>0)
n

f (x)ζ e−rx1

(∏

i

xǫ
i

)
Ψ n

−λ(x)

n∏

i=1

dxi

xi

= r−
∑n

i=1(λi+ǫ)
∏

i

Γ (λi + ζ + ǫ)
∏

i<j

Γ (λi + λj + 2ǫ). (5.13)

Formally, combining (5.11), (5.13) and (5.12) yields the following integral

formula for the Laplace transform of the law of the polymer partition function

tnn under the probability measure ν̃α,ζ :

∫
e−rtnn ν̃α,ζ (dw)

=
∫

ιRn

(
r

2

)−
∑

i(λi+ǫ)∏

i

Γ (λi + ζ + ǫ)

Γ (αi + ζ )

∏

i,j

Γ (αi + λj + ǫ)

×
∏

i<j

Γ (λi + λj + 2ǫ)

Γ (αi + αj )
sn(λ)dλ (5.14)

or, equivalently,

∫
e−rtnn ν̃α,ζ (dw)

=
∫ (

r

2

)−
∑

i λi ∏

i

Γ (λi + ζ )

Γ (αi + ζ )

∏

i,j

Γ (αi + λj )
∏

i<j

Γ (λi + λj )

Γ (αi + αj )
sn(λ)dλ

(5.15)
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where the integration is along vertical lines with ℜλi > 0 for each i. If n

is odd, we similarly formally obtain, this time using Theorem 7.4 instead of

Corollary 5.5 because in this case f (x′)ζ = f (x)−ζ and ζ > 0,
∫

e−rtnn ν̃α,ζ (dw)

=
∫ (

r

2

)−
∑

i λi ∏

i

Γ (λi − ζ )

Γ (αi + ζ )

∏

i,j

Γ (αi + λj )
∏

i<j

Γ (λi + λj )

Γ (αi + αj )
sn(λ)dλ

(5.16)

where the integration is along vertical lines with ℜλi > 0 for each i. It seems

reasonable to expect the integral formulas (5.15) and (5.16) to be valid, at

least in some suitably regularized sense.

6 Geometric RSK for triangular arrays and paths below a hard wall

In this section we introduce a birational, geometric RSK type mapping T �
n

that maps triangular arrays Xn = (xij ,1 ≤ j < i ≤ n) to triangular arrays

T = (tij ,1 ≤ j < i ≤ n), both with positive real entries. The motivation

comes from the symmetric polymer of Sect. 5, with a (de)pinning parame-

ter ζ that tends to infinity. This will become clear later on in Proposition 6.4

(see also the remarks at the end of the section). Notions like the type and

the shape can be defined also for this mapping. We prove that it satisfies a

version of the fundamental identity (Theorem 3.2) and preserves volume in

logarithmic variables. Moreover, we can relate the shape to partition func-

tions of nonintersecting paths below a “hard wall”, that is, paths restricted to

{(i, j) : j < i}.
For n = 2 the mapping is defined by

T �
2 (x21) = x21. (6.1)

For n ≥ 3 we define inductively

T �
n (Xn) = R�

n

(
T �

n−1(Xn−1)

xn1 . . . xn,n−1

)
, (6.2)

with Xn−1 = (xij ,1 ≤ j < i ≤ n − 1) and

R�
n = ρ

�,n
n−1 ◦ · · · ◦ ρ

�,n
1 (6.3)

where

ρ
�,n
j = ρn

j for j = 1, . . . , n − 2, and

ρ
�,n
n−1 = b

�,n
2,1 ◦ · · · ◦ b

�,n
n−1,n−2 ◦ b

�,n
n,n−1 ◦ r�

n,n−1,
(6.4)
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and ρn
j is defined in (3.4). To complete the definition of T �

n we define the

mappings b
�,n
j,j−1 and r�

n,n−1 on a triangular array Xn = (xij ,1 ≤ j < i ≤ n).

This is done as follows. The mapping r�
n,n−1 replaces xn,n−1 by 1/xn,n−1.

Observing the conventions xi0 = xn+1,n−1 = 1, make these definitions:

• For k = 0,1,2, . . . , ⌊n
2
⌋ − 1, b

�,n
n−2k,n−2k−1 replaces xn−2k,n−2ki−1 with

x′
n−2k,n−2k−1 = xn−2k+1,n−2k−1xn−2k,n−2k−2

xn−2k,n−2k−1
. (6.5)

• For k = 1,2, . . . , ⌊n−1
2

⌋, b
�,n
n−2k+1,n−2k is the identity mapping.

We present explicitly the cases n = 3,4 to clarify the definitions. For n = 3,

T �
3

(
x21

x31 x32

)
= ρ

�,3
2 ◦ ρ

�,3
1

(
T �

2 (x21)

x31 x32

)
= ρ

�,3
2 ◦ ρ

�,3
1

(
x21

x31 x32

)

= ρ
�,3
2

(
x21

x21x31 x32

)
=
(

x21

x21x31 x21x31x32

)
.

For n = 4,

T �
4

⎛
⎝

x21

x31 x32

x41 x42 x43

⎞
⎠

= ρ
�,4
3 ◦ ρ

�,4
2 ◦ ρ

�,4
1

⎛
⎝T �

3

(
x21

x31 x32

)

x41 x42 x43

⎞
⎠

= ρ
�,4
3 ◦ ρ

�,4
2 ◦ ρ

�,4
1

⎛
⎝

x21

x21x31 x21x31x32

x41 x42 x43

⎞
⎠

= ρ
�,4
3 ◦ ρ

�,4
2

⎛
⎝

x21

x21x31 x21x31x32

x21x31x41 x42 x43

⎞
⎠

= ρ
�,4
3

⎛
⎜⎝

x21

x21x32x41

x32+x41
x21x31x32

x21x31x41 x21x31x42(x32 + x41) x43

⎞
⎟⎠

=

⎛
⎜⎝

x32x41

x32+x41

x21x32x41

x32+x41
x21x31x32

x21x31x41 x21x31x42(x32 + x41) x21x31x42x43(x32 + x41)

⎞
⎟⎠ .
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For a triangular array X = (xij , 1 ≤ j < i ≤ n) define

E
�(X) = 1

x21
+
∑

j≤i−1

xi−1,j + xi,j−1

xij

,

with the convention that xi0 = xii = 0 for i = 1, . . . , n. Here is the analogue

of Theorem 3.2 for triangular arrays.

Theorem 6.1 Let Wn = (wij , 1 ≤ j < i ≤ n ) with wij ∈ R>0. Then the out-

put array Tn = T �
n (W) satisfies

E
�(Tn) =

∑

1≤j<i≤n

1

wij

. (6.6)

Proof We will show that

E
�(Tn) = E

�
(
T �

n−1(Wn−1)
)
+

n−1∑

j=1

1

wnj

.

To this end, let T 0 = T �
n−1(Wn−1) and T k = ρ

�,n
k ◦ · · · ◦ ρ

�,n
1 (T �

n−1(Wn−1))

for k = 1,2, . . . , n − 1. For a triangular array X define

E
�,n,k(X) = 1

x21

+
(k)∑

i,j

xi−1,j + xi,j−1

xij

+
n−1∑

j=k+1

1

xij

,

where summation
∑(k)

ij is over all indices (i, j) such that 1 ≤ j < i ≤ n, but

(i, j) �= (n, k + 1), . . . , (n, n − 1). The boundary conventions xi0 = xii = 0

are still in force. We will show that

E
�,n,k

(
T k
)
= E

�,n,k−1
(
T k−1

)
for k = 1,2, . . . , n − 1,

and this will conclude the proof. Notice that for k = 1,2, . . . , n − 2 this fact

is already included in the proof of Theorem 3.2, since ρ
�,n
i = ρn

i for i ≤
n−2. To check the case k = n−1, let X = T n−2 and X′ = ρ

�,n
n−1(X) = T n−1.

Since ρ
�,n
n−1 alters only the elements xi,i−1, i = 2, . . . , n, and leaves the rest

unchanged,

E
�,n,n−1

(
X′)= E

�,n,n−1
(
ρ

�,n
n−1(X)

)

= 1

x′
2,1

+
∑

j<i

x′
i−1,j + x′

i,j−1

x′
ij
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=
∑̃

j<i−1

xi−1,j + xi,j−1

xij

+ 1

x′
2,1

+
x′

2,1

x3,1

+
n−1∑

i=3

(
xi,i−2

x′
i,i−1

+
x′
i,i−1

xi+1,i−1

)
+ xn,n−2

x′
n,n−1

(6.7)

where in the summation
∑̃

we set appearances of terms xi,i−1, i = 2, . . . , n,

equal to zero. Consider the three parts of line (6.7).

First

1

x′
21

+
x′

21

x31

= 1

x21

+ x21

x31

because either n is odd and x′
21 = x21, or n is even and x′

21 = x31/x21. The

middle terms satisfy

xi,i−2

x′
i,i−1

+
x′
i,i−1

xi+1,i−1
= xi,i−2

xi,i−1
+ xi,i−1

xi+1,i−1
,

either by virtue of (6.5) if i = n − 2k, or because x′
i,i−1 = xi,i−1 when i =

n − 2k + 1. Finally,

x′
n,n−2

x′
n,n−1

= 1

xn,n−1

by (6.5) and the definition of r�
n,n−1. Making these substitutions on line (6.7)

converts E�,n,n−1(X′) into E�,n,n−2(X) and completes the proof. �

The following theorem states the volume preserving property of the map

T �
n . It follows from the volume preservation of the individual steps in (6.4).

Theorem 6.2 Let W = (wij ,1 ≤ j < i ≤ n) ∈ (R>0)
n(n−1)/2 as above, and

consider the mapping W → T �
n (W) = (tij ,1 ≤ j < i ≤ n). In logarithmic

variables

(logwij ,1 ≤ j < i ≤ n) → (log tij ,1 ≤ j < i ≤ n)

has Jacobian equal to ±1.

Consider a triangular array W = (wij ,1 ≤ j < i ≤ n) and the output pat-

tern P � = T �
n (W) = (tij ,1 ≤ j < i ≤ n). The shape of the pattern P � is

defined as

shP � = shT �
n (W) = (tn,n−1, tn−1,n−2, . . . , t21).
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Fig. 2 A pair

(π1,π2) ∈ Π
(2)
8

. We have

used matrix representation,

as opposed to Cartesian

coordinates. On the upper

left the paths begin at (2,1)

and (3,2). On the lower

right the paths end at (8,7)

and (7,6). The diagonal

(dashed line) runs from

(1,1) to (8,8)

Our next goal is to relate the shape to ratios of partition functions. Let Π
(r)
n

be the collection of r-tuples of non-intersecting nearest-neighbor lattice paths

π1, . . . , πr that start at positions (2,1), (3,2), . . . , (r + 1, r), end at positions

(n,n − 1), (n − 1, n − 2), . . . , (n − r + 1, n − r), and stay strictly below the

diagonal in the matrix picture, i.e. never leave the set {(i, j) : 1 ≤ j < i ≤ n}.
See Fig. 2. Naturally 1 ≤ r ≤ n/2. Denote the partition sums by

zr =
∑

(π1,...,πr )∈Π
(r)
n

∏

(i,j)∈π1∪···∪πr

wij . (6.8)

The definition includes the case of a path consisting of a single point, which

happens when n is even and r = n/2.

The next theorem states that the odd coordinates of the shape vector shP �

are given by ratios of partition functions.

Theorem 6.3 Consider a triangular array W = (wij ,1 ≤ j < i ≤ n) ∈
(R>0)

n(n−1)/2, the output pattern P � = T �
n (W) = (tij ,1 ≤ j < i ≤ n) and

the partition functions zr , r = 1,2, . . . , ⌊n/2⌋ as defined in (6.8). Then

(tn,n−1, tn−2,n−3, . . . , tn−2⌊n/2⌋+2,n−2⌊n/2⌋+1)

= (z1, z2/z1, . . . , z⌊n/2⌋/z⌊n/2⌋−1).

The proof of this theorem will be presented after Proposition 6.4 below.

Define an operator Λε
n acting on n × n matrices W by

wij → εwij , i �= j,

wn−2i,n−2i → 2ε2wwn−2i,n−2i
, i = 0,1, . . . , ⌊n/2⌋ − 1,

wn−2i+1,n−2i+1 → 1
2
wn−2i+1,n−2i+1, i = 1,2, . . . , ⌊n/2⌋ − 1,

and w11 → 1
2
w11, if n is even, while w11 → εw11, if n is odd.
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Let W�
n = (w

�,n
ij , 1 ≤ j < i ≤ n) be a given triangular array. Let W ε

n be

the symmetric n × n matrix with wε
ii = ε for 1 ≤ i ≤ n and wε

ij = w
�,n
ij

for 1 ≤ j < i ≤ n. Finally, denote by T ⋄
n (W�

n ) = (w
⋄,n
ij , 1 ≤ i, j ≤ n) a

symmetric n × n output matrix whose lower triangular part (tij , 1 ≤ j <

i ≤ n) agrees with the output array T �
n (W�

n ), while the diagonal elements

(tii)i=1,...,n are determined by

tn−2k,n−2k = tn−2k−1,n−2k−1 = tn−2k,n−2k−1 for k = 0,1, . . . and

t11 = 1 if n is odd.
(6.9)

Proposition 6.4 Let T n,n be the geometric RSK mapping on n × n matrices

with positive entries, defined in (3.3), and W ε
n , Λε

n, T ⋄
n , W�

n as above. Then,

as ε ց 0,

T n,n
(
W ε

n

)
= Λε

n ◦ T ⋄
n

(
W�

n

)
+ Sε

n (6.10)

where Sε
n is an n × n matrix of lower order terms, specifically

(
Sε

n

)
ij

= o(ε), i �= j,

(
Sε

n

)
n−2i,n−2i

= o
(
ε2
)
, i = 0,1, . . . , ⌊n/2⌋ − 1,

(
Sε

n

)
n−2i+1,n−2i+1

= o(1), i = 1,2, . . . , ⌊n/2⌋ − 1,

(
Sε

n

)
1,1

=
{

o(ε), n is odd,

o(1), n is even.

(6.11)

Proof From (5.3) we have this recursion:

T n,n
(
W ε

n

)
= ρn

n ◦
(
ρn

n−1 ◦ · · · ◦ ρn
1

)
⎛
⎝
[
R

n,n−1
n

(
T n−1,n−1(W ε

n−1)

wn1 . . . wn,n−1

)]t

w1n . . . wn,n−1 ε

⎞
⎠ .

(6.12)

Symmetry of W ε
n makes T n,n(W ε

n ) also symmetric. Since ρn
n alters only diag-

onal elements, the matrix must be symmetric just before the last application

of ρn
n . The mappings ρn

n−1 ◦ · · · ◦ ρn
1 alter only entries strictly below the diag-

onal. Consequently we can skip the steps ρn
n−1 ◦ · · · ◦ρn

1 if we simply take the

upper triangular part of the matrix just before and extend it to a symmetric

matrix. We insert one extra transposition and then keep the lower triangular

instead of the upper triangular part. In other words, let

W ′ = Rn,n−1
n

(
T n−1,n−1(W ε

n−1)

wn1 . . . wn,n−1

)
(an n × (n − 1) matrix)
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and define the symmetric matrix W̃ = {w̃ij , 1 ≤ i, j ≤ n} by w̃ij = w′
ij for

1 ≤ j ≤ i ∧ (n− 1) and w̃nn = ε. Then T n,n(W ε
n ) = ρn

n(W̃ ). In particular, the

part of T n,n(W ε
n ) strictly below the diagonal is already present in W ′.

We prove (6.10) by induction on n. Case n = 2 begins with W�
2 = (w21),

from which

Λε
2 ◦ T ⋄

2

(
W�

2

)
=
(

1
2
w21 εw21

εw21 2ε2w21

)
= T 2,2

(
ε w21

w21 ε

)
= T 2,2

(
W ε

2

)
.

Assume that

T n−1,n−1
(
W ε

n−1

)
= Λε

n−1 ◦ T ⋄
n−1

(
W�

n−1

)
+ Sε

n−1.

Abbreviate T ε = (tεij , 1 ≤ i, j ≤ n− 1) = T n−1,n−1(W ε
n−1) so that the induc-

tion assumption reads:

tεij = εw
⋄,n−1
ij + o(ε), i �= j,

tεn−2i−1,n−2i−1 = 2ε2w
⋄,n−1
n−2i−1,n−2i−1 + o

(
ε2
)
, i = 0,1, . . . ,

tεn−2i,n−2i = 1

2
w

⋄,n−1
n−2i,n−2i + o(1), i = 1, . . . ,

tε11 =
{

εw
⋄,n−1
11 + o(ε), if (n − 1) is odd,

1
2
w

⋄,n−1
11 + o(1), if (n − 1) is even.

We now perform the mapping

W ′ = ρn
n−1 ◦ · · · ◦ ρn

1

(
T n−1,n−1(W ε

n−1)

wn1 . . . wn,n−1

)

inductively. Assume that we have applied the transformations

ρn
k−1 ◦ · · · ◦ ρn

1 , k < n − 1,

and this has resulted in output entries

w′
ij = εw

⋄,n
ij + o(ε), 1 ≤ j < k − (n − i), n − k + 1 < i ≤ n,

where w
⋄,n
ij denotes the entries of the matrix T ⋄

n (W�
n ) (recall that the lower

triangular part of T ⋄
n (W�

n ) is identical to T �
n (W�

n )). This is readily checked

when k − 1 = 1. We will show that this is also true after the transformation

ρn
k . To this end, using the relations (3.6) and (3.5), we have that

w′
nk = wnk

(
w′

n,k−1 + tεn−1,k

)
= εwnk

(
w

⋄,n
n,k−1 + w

⋄,n−1
n−1,k

)
+ o(ε)
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= εw
⋄,n
n,k + o(ε),

w′
n−j,k−j =

w′
n+1−j,k−j tεn−j,k−j+1

tεn−j,k−j

w′
n−j,k−j−1 + tεn−j−1,k−j

w′
n+1−j,k−j + tεn−j,k−j+1

=
(εw

⋄,n
n+1−j,k−j + o(ε)) (εw

⋄,n−1
n−j,k−j+1 + o(ε))

εw
⋄,n−1
n−j,k−j + o(ε)

×
ε(w

⋄,n
n−j,k−j−1 + w

⋄,n−1
n−j−1,k−j ) + o(ε)

ε(w
⋄,n
n+1−j,k−j + w

⋄,n−1
n−j,k−j+1) + o(ε)

= ε
w

⋄,n
n+1−j,k−j w

⋄,n−1
n−j,k−j+1

w
⋄,n−1
n−j,k−j

w
⋄,n
n−j,k−j−1 + w

⋄,n−1
n−j−1,k−j

w
⋄,n
n+1−j,k−j + w

⋄,n−1
n−j,k−j+1

+ o(ε)

= εw
⋄,n
n−j,k−j + o(ε),

and this verifies the proposition for the above entries. The next step is to

confirm that w′
n−j,n−j−1 = εw

⋄,n
n−j,n−j−1 + o(ε) for j = 0, . . . , n − 2. To this

end, assume that we have performed the transformations ρn
n−2 ◦ · · · ◦ ρn

1 and

then we operate with ρn
n−1. First for j = 0,

w′
n,n−1 = wn,n−1

(
w′

n,n−2 + tεn−1,n−1

)

= wn,n−1

(
εw

⋄,n
n,n−2 + 2ε2w

⋄,n−1
n−1,n−1 + o(ε)

)

= εwn,n−1w
⋄,n
n,n−2 + o(ε)

= εw
⋄,n
n,n−1 + o(ε).

For j > 0

w′
n−j,n−j−1 =

w′
n+1−j,n−j−1 tεn−j,n−j

tεn−j,n−j−1

w′
n−j,n−j−2 + tεn−j−1,n−j−1

w′
n+1−j,n−j−1 + tεn−j,n−j

.

To develop this further we distinguish between odd and even j . For even j ,

w′
n−j,n−j−1 =

(εw
⋄,n
n+1−j,n−j−1 + o(ε)) (1

2
w

⋄,n−1
n−j,n−j + o(1))

εw
⋄,n−1
n−j,n−j−1 + o(ε)

×
εw

⋄,n
n−j,n−j−2 + o(ε) + 2ε2w

⋄,n−1
n−j−1,n−j−1 + o(ε2)

εw
⋄,n
n+1−j,n−j−1 + o(ε) + 1

2
w

⋄,n−1
n−j,n−j + o(1)
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= ε
w

⋄,n
n+1−j,n−j−1 w

⋄,n
n−j,n−j−2

w
⋄,n−1
n−j,n−j−1

+ o(ε)

= εw
⋄,n
n−j,n−j−1 + o(ε)

where the last step came from (6.5). In the odd case

w′
n−j,n−j−1 =

(εw
⋄,n
n+1−j,n−j−1 + o(ε)) (2ε2w

⋄,n−1
n−j,n−j + o(ε2))

εw
⋄,n−1
n−j,n−j−1 + o(ε)

×
εw

⋄,n
n−j,n−j−2 + o(ε) + 1

2
w

⋄,n−1
n−j−1,n−j−1 + o(1)

εw
⋄,n
n+1−j,n−j−1 + o(ε) + 2ε2w

⋄,n−1
n−j,n−j + o(ε2)

= ε
w

⋄,n−1
n−j,n−j w

⋄,n−1
n−j−1,n−j−1

w
⋄,n−1
n−j,n−j−1

+ o(ε)

= εw
⋄,n−1
n−j,n−j−1 + o(ε) = εw

⋄,n
n−j,n−j−1 + o(ε).

The second last equality follows from the fact that T ⋄
n−1(W

�
n−1) satisfies (6.9)

with n replaced by n − 1. The last equality comes from the definition of

b
△,n
n−j,n−j−1 as the identity mapping (see the bullet below (6.5)). In the case

(n − j, n − j − 1) = (2,1) we need to distinguish between the case n is even

or odd. In the even case we have

w′
21 = tε11

w′
31t

ε
22

tε21(w
′
31 + tε22)

=
(
εw

⋄,n−1
11 + o(ε)

) (εw
⋄,n
31 + o(ε))(1

2
w

⋄,n−1
22 + o(1))

(εw
⋄,n−1
21 + o(ε))(εw

⋄,n
31 + o(ε) + 1

2
w

⋄,n−1
22 + o(1))

= εw
⋄,n−1
11

w
⋄,n
31

w
⋄,n−1
21

+ o(ε) = ε
w

⋄,n
31

w
⋄,n−1
21

+ o(ε) = εw
⋄,n
21 + o(ε),

where the second to last equality follows from (6.9), since (n − 1) is odd and

therefore w
⋄,n−1
11 = 1. The case that n is odd follows similarly.

To complete the construction of T n,n(W ε
n ), extend W ′ to the symmet-

ric matrix W̃ as explained above and define W ′′ = ρn
n(W̃ ). By computa-

tions similar to the ones above and by symmetry, the diagonal elements

(w′′
ii)i=1,...,n satisfy w′′

n−2k,n−2k = 2ε2w
⋄,n
n−2k,n−2k−1 and w′′

n−2k−1,n−2k−1 =
1
2
w

⋄,n
n−2k,n−2k−1 for k = 0,1, . . . . The proof is then complete. �
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Proof of Theorem 6.3 Consider a symmetric, n × n, matrix, W ε
n , with diag-

onal weights, wii = ε, i = 1,2, . . . , n. Let vr denote the partition sum intro-

duced in (3.10) with k = m = n:

vr =
∑

(π1,...,πr )∈Π
(r)
n,n

∏

(i,j)∈π1∪···∪πr

wij . (6.13)

The key observation is the following. For 1 ≤ k ≤ ⌊n/2⌋,

v2k =
(

k∏

i=1

wiiwn−i+1,n−i+1

)
z2
k + V (2k + 1) (6.14)

and

v2k−1 =
(

k∏

i=1

wiiwn−i+1,n−i+1

)
2zk−1zk + V (2k + 1) (6.15)

where z0 = 1, zr is defined by (6.8), and the unspecific notation V (ℓ) rep-

resents any sum of products of weights where each term contains at least ℓ

diagonal weights wii .

To see the origin of (6.14)–(6.15), consider first v1, the sum of products∏
(i,j)∈π wij over all paths π from (1,1) to (n,n). Those products that contain

only weights w11wnn from the diagonal correspond to paths that stay either

strictly above or strictly below the diagonal, except at points (1,1) and (n,n).

By the symmetry of the weights this gives two copies of z1. Similarly for v2,

pairs (π1, π2) that intersect the diagonal only at {(1,1), (n,n)} correspond

to pairs such that π2 connects (1,2) to (n − 1, n) above the diagonal and

π1 connects (2,1) to (n,n − 1) below the diagonal. Weights of paths are

multiplied, and so symmetry gives z2
1. The higher cases work the same way.

For the symmetric weight matrix the shape vector x = (x1, . . . , xn) is given

by

x1 = v1, xi = zn,i = vi

vi−1
for 2 ≤ i ≤ n. (6.16)

Here we recalled that the shape vector is the bottom row zn· of the P pattern,

see (2.8), and combined (3.10) with (4.3).

Since wii = ε, (6.14)–(6.16) combine to give the following asymptotics for

k = 1,2, . . . , ⌊n/2⌋ as ε ց 0:

x1 = v1 = 2ε2z1 + o
(
ε2
)
,

x2k = v2k

v2k−1
=

ε2kz2
k + o(ε2k)

ε2k 2zk−1zk + o(ε2k)
= 1

2

zk

zk−1
+ o(1),
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x2k+1 = v2k+1

v2k

= ε2(k+1)2zkzk+1 + o(ε2(k+1))

ε2k z2
k + o(ε2k)

= 2ε2 zk+1

zk

+ o
(
ε2
)
.

The proof can be now completed by comparing to (6.10) and using (6.9). �

For a triangular array X = (xij , 1 ≤ j < i ≤ n) ∈ (R>0)
n(n−1)/2 we define

its type, τ = (τn
j )0≤j≤n−1 = typeX, as the vector with entries

τn
j (X) = Dnj (X)

Dn,j−1(X)

where

Dn0(X) = 1 and

Dnj (X) = xnjxn−1,j−1 · · ·xn−j+1,1, j = 1,2, . . . , n − 1.

Proposition 6.5 Let Wn = (wij , 1 ≤ j < i ≤ n) with wij ∈ R>0. We have

τn
j

(
T �

n (Wn)
)
=

j−1∏

ℓ=1

wj,ℓ

n∏

k=j+1

wkj , 1 ≤ j ≤ n − 1. (6.17)

Proof Let us first notice that if X = (xij , 1 ≤ j < i ≤ n) is a triangular array

and X′ = ρ
�,n
j (X), then

x′
nj · · ·x′

n−j+1,1

x′
n,j−1 · · ·x′

n−j+2,1

= xnj

xn−1,j · · ·xn−j,1

xn−1,j−1 · · ·xn−j+1,1
, j < n − 1. (6.18)

To check this we notice that ρ
�,n
j = ρn

j = hj ◦ rj , where hj and rj are defined

in (3.6) via the Bender-Knuth transformations. Let us recall that

(
bij (X)

)
ij

= x′
ij = xi+1,j xi,j+1

xij

xi,j−1 + xi−1,j

xi+1,j + xi,j+1

, (6.19)

with the same convention as in (3.5). Multiplying the various relations (6.19)

for (i, j) = (n, j), . . . , (n − j + 1,1) leads to (6.18). Iterating this leads to

τn
j

(
T �

n (Wn)
)
= wn,jτ

n−1
j

(
T �

n−1(Wn−1)
)

= wn,j · · ·wj+2,j τ
j+1
j

(
T �

j+1(Wj+1)
)
. (6.20)



Geometric RSK correspondence, Whittaker functions 403

Denoting by w′
ij the elements of T �

j+1(Wj+1), by w
†
ij the elements of

T �
j (Wj ) and using the transformations in (6.5) we obtain that

τ
j+1
j

(
T �

j+1(Wj+1)
)
=

w′
j+1,j · · ·w′

21

w′
j+1,j−1 · · ·w′

31

= wj+1,j

∏⌊j/2⌋−1
ℓ=0 w

†
j−2ℓ,j−2ℓ−1

∏⌊(j−1)/2⌋−1
ℓ=0 w

†
j−2ℓ−1,j−2ℓ−2

.

Using Theorem 6.3 we have that

⌊j/2⌋−1∏

ℓ=0

w
†
j−2ℓ,j−2ℓ−1 =

∏

1≤ℓ<k≤j

wkℓ.

The definition below (6.5) implies that

w
†
j−2ℓ−1,j−2ℓ−2 = T �

j−1(Wj−1)(j−1)−2ℓ,(j−1)−2ℓ−1

for ℓ = 0, . . . , ⌊(j − 1)/2⌋ − 1 and using again Theorem 6.3 we obtain

⌊(j−1)/2⌋−1∏

ℓ=0

w
†
j−2ℓ−1,j−2ℓ−2 =

∏

1≤ℓ<k≤j−1

wkℓ.

Combining the last three relations gives

τ
j+1
j

(
T �

j+1(Wj+1)
)
= wj+1,j

∏

1≤ℓ<j

wjℓ,

and this completes the proof. �

By combining Theorems 6.1 and 6.2 and Proposition 6.5 we identify

the probability distribution of the shape vector of the triangular array un-

der inverse gamma weights. The mapping that gives the shape vector is

σ� : (R>0)
n(n−1)/2 → (R>0)

n−1 defined by

σ�(W) = shT �
n (W) = (tn,n−1, tn−1,n−2, . . . , t2,1). (6.21)

Consider the probability measure

λα(dw) = Z−1
α

∏

1≤j<i≤n

w
−αi−αj

ij exp

(
−

∑

1≤j<i≤n

1

wij

) ∏

1≤j<i≤n

dwij

wij

(6.22)
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on the space of triangular arrays (wij , 1 ≤ j < i ≤ n) ∈ (R>0)
n(n−1)/2, where

α = (α1, . . . , αn), αi + αj > 0 and the normalization is

Zα =
∏

1≤j<i≤n

Γ (αi + αj ).

Corollary 6.6 For the λα-distributed triangular array of weights, the distri-

bution of the shape vector is given by

λα ◦
(
σ�
)−1

(dt)

=
∏

1≤j<i≤n

Γ (αi + αj )
−1

(∏⌊ n−1
2 ⌋−1

ℓ=0 tn−2ℓ−1,n−2ℓ−2

∏⌊ n
2 ⌋−1

ℓ=0 tn−2ℓ,n−2ℓ−1

)αn

× e
− 1

t2,1 Ψ n−1
α′ (t)

∏

0≤i≤n−2

dtn−i,n−i−1

tn−i,n−i−1

where α′ = (α1, . . . , αn−1).

Proof Let T = (tij , 1 ≤ j < i ≤ n) = T �
n (W). We convert the density (6.22)

into tij variables. By Proposition 6.5,

∏

j<i

w
−αi−αj

ij =
n∏

j=1

(
j−1∏

ℓ=1

wjℓ ·
n∏

k=j+1

wkj

)−αj

=
n−1∏

j=1

(
τn
j

)−αj ·
(

n−1∏

j=1

wnj

)−αn

.

From the proof of Proposition 6.5 (after relation (6.20)),

⌊n/2⌋−1∏

ℓ=0

tn−2ℓ,n−2ℓ−1 =
∏

1≤j<i≤n

wij and

⌊(n−1)/2⌋−1∏

ℓ=0

tn−2ℓ−1,n−2ℓ−2 =
∏

1≤j<i≤n−1

wij .

Combine these with Theorem 6.1 to obtain

∏

j<i

w
−αi−αj

ij exp

(
−
∑

j<i

1

wij

)

=
(∏⌊ n−1

2 ⌋−1

ℓ=0 tn−2ℓ−1,n−2ℓ−2

∏⌊ n
2 ⌋−1

ℓ=0 tn−2ℓ,n−2ℓ−1

)αn n−1∏

j=1

(
τn
j

)−αj e−E
�(T ).
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By the volume preserving property of the W → T map (Theorem 6.2),

λα ◦
(
T �
)−1

(dt) =
(∏⌊ n−1

2 ⌋−1

ℓ=0 tn−2ℓ−1,n−2ℓ−2

∏⌊ n
2 ⌋−1

ℓ=0 tn−2ℓ,n−2ℓ−1

)αn

×
n−1∏

j=1

(
τn
j

)−αj e−E
�(T )

∏

j<i

dtij

tij
.

The result then follows by integrating over the variables (tij ,1 ≤ j < i − 1,

1 ≤ i ≤ n) and the definition of the Whittaker function. �

As a further corollary we record the distribution of the vector (z1, z2/z1,

. . . , z⌊n/2⌋/z⌊n/2⌋−1) of ratios of partition functions zr defined by (6.8). The

result comes by combining Corollary 6.6 with Theorem 6.3.

Corollary 6.7 Let the array of weights (wij , 1 ≤ j < i ≤ n) have distribution

λα of (6.22), and as before α = (α1, . . . , αn) = (α′, αn). Then the distribution

of the vector (z1, z2/z1, . . . , z⌊n/2⌋/z⌊n/2⌋−1), with the partition functions zr

defined in (6.8), is given as follows in terms of the integral of a bounded Borel

function ϕ:

∫
ϕ(z1, z2/z1, . . . , z⌊n/2⌋/z⌊n/2⌋−1) λα(dw)

=
∏

1≤j<i≤n

Γ (αi + αj )
−1

∫

(R>0)
⌊ n

2
⌋

∏

0≤i≤n−2:
ieven

dtn−i,n−i−1

tn−i,n−i−1

× ϕ(tn,n−1, tn−2,n−3, . . . , tn−2⌊ n
2 ⌋+2,n−2⌊ n

2 ⌋+1)

×
∫

(R>0)
⌈n/2⌉−1

(∏⌊ n−1
2 ⌋−1

k=0 tn−2k−1,n−2k−2

∏⌊ n
2 ⌋−1

k=0 tn−2k,n−2k−1

)αn

e
− 1

t2,1 Ψ n−1
α′ (t)

×
∏

1≤i≤n−2:
iodd

dtn−i,n−i−1

tn−i,n−i−1
. (6.23)

The results above are related to those of symmetric weight matrices in

several ways.

(i) Replace n with n − 1 in Corollary 5.3 and consider a symmetric

(n − 1) × (n − 1) weight matrix with distribution (5.10), and set ζ = αn.

Let σ1 = tn−1,n−1 be the polymer partition function of the symmetric matrix,

or equivalently, the front element of its shape vector. Then a comparison of
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(6.23) and (5.9) reveals that the distribution of the partition function z1 is

identical to the distribution of 2tn−1,n−1.

(ii) Corollary 6.6 can be obtained as the ζ → ∞ limit of Corollary 5.3.

Using the recursive structure (2.1) of Whittaker functions, namely Ψ n
α =

Qn,n−1
αn

Ψ n−1
α′ , one can show that

ν̃α,ζ ◦ σ−1 ⇒ λα ◦
(
σ�
)−1

as ζ → ∞,

where “⇒” denotes weak convergence of probability measures. Under the

measure ν̃α,ζ the diagonal element wii of the symmetric input matrix has

probability distribution

ρii(du) = u−αi−ζ e−1/(2u)

2αi+ζΓ (αi + ζ )
· du

u
on 0 < u < ∞,

and hence its reciprocal w−1
ii is twice a gamma variable with parameter αi +ζ .

Consequently ζwii → 1/2 almost everywhere as ζ → ∞. Thus wii decays

as (1/2)ζ−1. This corresponds to the appearance, in our proof, of triangular

arrays with diagonal elements ε → 0.

(iii) From a physical point of view, the limit ζ → ∞, or equivalently ε →
0, introduces a depinning effect on the polymer, which is responsible for the

appearance of the hard wall phenomenon.

7 Whittaker integral identities

In this section, we recall three integral identities for Whittaker functions

which were proved in the papers [43, 44], and explain how they are equiv-

alent to (and in fact generalized by) those which have appeared naturally in

the context of the present paper (Corollaries 3.5, 3.7 and 5.5). We first note

that the functions Wn,a(y) introduced in Sect. 2 are denoted by Wn,2a(y) in

the papers [43, 44]. The following identity was conjectured by Bump [15] and

proved by Stade [43, Theorem 1.1].

Theorem 7.1 (Stade) For s ∈C, a, b ∈ C
n with

∑
i ai =

∑
i bi = 0,

∫

(R>0)
n−1

Wn,a(y)Wn,b(y)

n−1∏

j=1

(πyj )
2js
(
2y

−j (n−j)
j

)dyj

yj

= Γ (ns)−1
∏

j,k

Γ (s + aj + bk). (7.1)
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This integral is associated, via the Rankin-Selberg method, with Archimed-

ean L-factors of automorphic L-functions on GL(n,R) × GL(n,R). Using

(2.5), it is straightforward to see that this is equivalent to:

Theorem 7.2 (Stade) Suppose r > 0 and λ, ν ∈ C
n. Then

∫

(R>0)
n

e−rx1Ψ n
−ν(x)Ψ n

−λ(x)

n∏

i=1

dxi

xi

= r−
∑n

i=1(νi+λi)
∏

ij

Γ (νi + λj ). (7.2)

Indeed, if we let

aj = λj − (1/n)
∑

i

λi, bj = νj − (1/n)
∑

i

νi

and s = (1/n)
∑

i(λi + νi) then, using (2.5) and (2.3), (7.1) becomes

Γ (ns)

∫

(R>0)
n−1

Ψ n
−ν(x)Ψ n

−λ(x)x−ns
1 2n−1

n−1∏

j=1

dyj

yj

=
∏

ij

Γ (νi + λj ),

where πyj =
√

xn−j+1/xn−j for j = 1, . . . , n−1. It is important to note here

that we are regarding Ψ n
−ν(x)Ψ n

−λ(x)x−ns
1 as a function of y1, . . . , yn−1. Now,

writing

Γ (ns) =
∫ ∞

0

xns
1 e−x1

dx1

x1

we can absorb this into the integral, changing variables from y1, . . . , yn−1, x1

to x1, . . . , xn, to obtain

∫

(R>0)
n

e−x1Ψ n
−ν(x)Ψ n

−λ(x)

n∏

i=1

dxi

xi

=
∏

ij

Γ (νi + λj ).

The identity (7.2) follows, using (2.2).

The second identity is a formula for the Mellin transform

Nn,b,a(s) =
∫

(R>0)
n−1

Wn,a(y1, . . . , yn−1)Wn−1,b(y1, . . . , yn−2)

×
n−1∏

j=1

(πyj )
2js
(
2y

−j (n−j−1/2)
j

)dyj

yj

,

for s ∈ C, n ≥ 3 and a ∈ C
n, b ∈ C

n−1 with
∑

i ai =
∑

j bj = 0. This inte-

gral is associated with Archimedean L-factors of automorphic L-functions
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on GL(n − 1,R) × GL(n,R). The following identity was conjectured by

Bump [15] and proved by Stade [44, Theorem 3.4].

Theorem 7.3 (Stade)

Nn,b,a(s) =
∏

i,j

Γ (s + ai + bj ).

Now, for λ ∈ C
n and r > 0,

Ψ n−1
λ;r (x1, . . . , xn−1) = rλnΨ n

λ (x1, . . . , xn−1, r).

Using this, and the relations (2.5) and (2.4), it is straightforward to see that

Theorem 7.3 is equivalent to:

Theorem 7.4 (Stade) Let r > 0, λ ∈ C
n−1 and ν ∈ C

n. Then

∫

(R>0)
n−1

Ψ n−1
ν;r (x)Ψ n−1

λ (x)

n−1∏

i=1

dxi

xi

= r−
∑n−1

i=1 (νi+λi)
∏

ij

Γ (νi + λj ). (7.3)

The third identity is a formula for the Mellin transform

Mn,a(s) =
∫

(R>0)
n−1

Wn,a(y)

n−1∏

j=1

(πyj )
2sj
(
2y

−j (n−j)/2
j

)dyj

yj

,

for particular values of s = (s1, . . . , sn−1) lying on a two-dimensional sub-

space of Cn−1. This integral is associated with an Archimedean L-factor of

an exterior square automorphic L-function on GL(n,R). The following iden-

tity was conjectured by Bump and Friedberg [16] and proved by Stade [44,

Theorem 3.3].

Theorem 7.5 Stade Let s1, s2 ∈ C and a ∈ C
n with

∑
i ai = 0. Suppose

that, for 2 < j ≤ n − 1, sj = ǫ(j)s1 + (j − ǫ(j))s2/2, where ǫ(j) = 1

if j is odd and 0 otherwise. Set sn = ǫ(n)s1 + (n − ǫ(n))s2/2. Then for

s = (s1, . . . , sn−1),

Γ (sn)Mn,a(s) =
∏

i

Γ (s1 + ai)
∏

i<j

Γ (s2 + ai + aj ). (7.4)

In terms of the Ψ n
λ , this is equivalent to the following identity, which is

straightforward to verify using (2.5) and (2.2) as above.
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Theorem 7.6 (Stade) Suppose r > 0, λ ∈ C
n and γ ∈ C. Then

∫

(R>0)
n

f
(
x′)γ e−rx1Ψ n

−λ(x)

n∏

i=1

dxi

xi

= cn(r, γ )r−
∑n

i=1 λi
∏

i

Γ (λi + γ )
∏

i<j

Γ (λi + λj ),

where x′
i = 1/xn−i+1, f (x) =

∏
i x

(−1)i

i and

cn(s, γ ) =
{

1 if n is even,

s−γ if n is odd.

Note that f (x′) = f (x) if n is even and f (x′) = 1/f (x) if n is odd.

8 Tropicalization, last passage percolation and random matrices

The geometric RSK correspondence is a geometric lifting of the (Berenstein-

Kirillov extension of the) RSK correspondence. Going the other way, let

xǫ
ij = eyij /ǫ where Y = (yij ) ∈ R

n×m and ǫ > 0. Let Xǫ = (xǫ
ij ) and T ǫ =

(tǫij ) = T (Xǫ). Then the mapping U : Rn×m → R
n×m defined by U(Y ) =

(uij ) where uij = limǫ→0 ǫ log tǫij is the extension of the RSK mapping to

matrices with real entries introduced by Berenstein and Kirillov [10]. We

identify the output U(Y ) with a pair of patterns as before, but now the en-

tries are allowed to take real values. In this context, we define a real pattern

of height h and shape x ∈ R
n as an array of real numbers

R =

r11

r22 r21

. .
. . . .

rnn . . . rn1

. . .
. . .

rhn . . . rh1

with bottom row rh· = x. The range of indices is

L(n,h) =
{
(i, j) : 1 ≤ i ≤ h, 1 ≤ j ≤ i ∧ n

}
.

Fix a real pattern R as above. Set s0 = 1 and, for 1 ≤ i ≤ h, si =
∑i∧n

j=1 rij
and ci = si − si−1. We shall refer to c as the type of R and write c =
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type(R). Denote by Σh(x) the set of real patterns with shape x and height

h. We say that a real pattern R is a (generalized) Gelfand-Tsetlin pattern

if rnn ≥ 0 and it satisfies the interlacing property ri+1,j+1 ≤ rij ≤ ri+1,j

for all (i, j) ∈ L(n,h) with i < h, with the conventions ri+1,n+1 = 0 for

i = n, . . . , h − 1. Denote the set of generalized Gelfand-Tsetlin patterns with

height h and shape x ∈ R
n
+ by GTh(x). This is a Euclidean polytope of di-

mension d = n(n−1)/2+ (h−n+1)n. Denote the corresponding Euclidean

measure by dR. The analogue of the Whittaker functions in this setting are

the functions Jλ(x) defined, for λ ∈ C
h and x ∈R

n
+ by

Jλ(x) =
∫

GT h(x)

e−λ·type(R)dR.

Note that, from (2.11), we have

lim
ǫ→0

ǫdΨ n
ǫλ;1
(
ex/ǫ

)
= Jλ(x).

If h = n then Jλ(x) = det(e−λixj )/�(λ) where �(λ) =
∏

i>j (λi − λj ) (see,

for example, [39]).

The analogue of Theorem 3.2 in this setting is the following. This result

can be inferred directly from results of [10] (see Property 8 after the statement

of Theorem 1.1) or seen as a consequence of Theorem 3.2. We identify the

output U(Y ) with a pair of real patterns (R,S) of respective heights m and n,

and common shape (unm, . . . , un−p+1.n−p+1), where p = n ∧ m.

Corollary 8.1 The output U(Y ) = (R,S) is a pair of generalized Gelfand-

Tsetlin patterns if, and only if, all of the entries of Y are non-negative.

We note that the corresponding statement for matrices with integer entries

follows as a particular case. If Y has non-negative integer entries then the

pair of generalized Gelfand-Tsetlin patterns obtained can be interpreted in

the usual way as the pair of semistandard tableaux obtained via the RSK

correspondence.

The Berenstein-Kirillov [10] definition of U in terms of lattice paths is

given as follows. For 1 ≤ k ≤ m and 1 ≤ r ≤ n ∧ k,

un−r+1,k−r+1 + · · · + un−1,k−1 + unk = max
(π1,...,πr )∈Π

(r)
n,k

∑

(i,j)∈π1∪···∪πr

yij ,

(8.1)

where Π
(r)
n,k denotes the set of r-tuples of non-intersecting directed nearest-

neighbor lattice paths π1, . . . , πr starting at positions (1,1), (1,2), . . . , (1, r)

and ending at positions (n, k − r + 1), . . . , (n, k − 1), (n, k) (see Fig. 1). This
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determines the entries of R. The entries of S are given by similar formulae

using U(Y t ) = (S,R). In particular,

unm = max
π∈Π

(1)
n,m

∑

(i,j)∈π

yij , (8.2)

where Π
(1)
n,m is the set of directed nearest-neighbor lattice paths in Z

2 from

(1,1) to (n,m). This formula provides a connection to last passage directed

percolation which we will discuss shortly. The formula (8.1) is the analogue

of Greene’s theorem in this setting (see, for example, [23, §3.1]).

The local move description of Sect. 3 carries over to the tropical setting,

as follows. For convenience and clarity we adopt the same notation as in the

geometric setting. For each 2 ≤ i ≤ n and 2 ≤ j ≤ m define a mapping lij
which takes as input a matrix Y = (yij ) ∈R

n×m and replaces the submatrix

(
yi−1,j−1 yi−1,j

yi,j−1 yij

)

of Y by its image under the map

(
a b

c d

)
→
(

b ∧ c − a b

c d + b ∨ c

)
, (8.3)

and leaves the other elements unchanged. For 2 ≤ i ≤ n and 2 ≤ j ≤ m, define

li1 to be the mapping that replaces the element yi1 by yi−1,1 + yi1 and l1j to

be the mapping that replaces the element y1j by y1,j−1 + y1j . As before we

define l11 to be the identity map. For 1 ≤ i ≤ n and 1 ≤ j ≤ m, set

π
j
i = lij ◦ · · · ◦ li1,

and, for 1 ≤ i ≤ n,

Ri =
{

πm−i+1
1 ◦ · · · ◦ πm

i , i ≤ m,

π1
i−m+1 ◦ · · · ◦ πm

i , i ≥ m.

Then the Berenstein-Kirillov map is given by

U = Rn ◦ · · · ◦ R1. (8.4)

Now observe that each lij is invertible. Indeed, the inverse of the map (8.3) is

given by
(

a b

c d

)
→
(

b ∧ c − a b

c d − b ∨ c

)
, (8.5)
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and the boundary moves l1j , li1 are clearly invertible. It follows that the map

U is invertible. Moreover, U preserves the Lebesgue measure on R
n×m. The

Jacobians of the lij are clearly almost everywhere equal to ±1. Combining

this with Corollary 8.1 we conclude that the restriction of U to R
n×m
+ is vol-

ume preserving with respect to the Euclidean measure, injective and its image

is given by the Euclidean set of pairs of generalized Gelfand-Tsetlin patterns

with respective heights m and n, having the same shape in

C(p) =
{
x ∈ R

p
+ : x1 ≥ · · · ≥ xp

}
.

Finally, we recall the following straightforward fact. If we define row and

column sums ri =
∑

j yij and cj =
∑

i yij , then type(S) = r and type(R) = c.

Note that this implies, for λ ∈ C
m and ν ∈ C

n,

∑

ij

(νi + λj )yij =
∑

i

νiri +
∑

j

λjcj . (8.6)

The analogue of the Cauchy-Littlewood identity in this setting (cf. Corol-

lary 3.5) is thus given as follows.

Proposition 8.2 Suppose λ ∈C
m and ν ∈ C

n, where n ≥ m and ℜ(λi +νj ) >

0 for all i and j . Then

∫

C(m)

Jν(x)Jλ(x)

m∏

i=1

dxi =
∏

ij

(νi + λj )
−1. (8.7)

This basic structure has been exploited in the papers [4, 13, 21, 22, 33] to

study last passage percolation models with exponential weights, as we shall

now explain. We note that the development in those papers is via a discrete

approximation and as such differs from the present framework, but the main

ideas are the same. Let a ∈ R
n and b ∈ R

m such that ai + bj > 0 for all i

and j . Consider the measure on input matrices (yij ) ∈R
n×m
+ defined by

νa,b(dy) =
∏

i,j

e−(ai+bj )yij dyij .

From the above, it follows that the push-forward of νa,b under the map U is

given by

νa,b ◦ U−1(du) = e−a·type(S)−b·type(R)
∏

i,j

duij .

Now, the variable unm defined by (8.2) has the interpretation as a last passage

time in the percolation model on the lattice with weights given by the yij .
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Choosing these weights at random so that they are independent and exponen-

tially distributed with respective parameters ai + bj corresponds to choosing

the input matrix (yij ) according to the probability measure

ν̃a,b(dy) =
∏

ij

(ai + bj )νa,b(dy).

From the above, under this probability measure, the law of the random vari-

able unm is the same, assuming n ≥ m, as the first marginal of the probability

measure on C(m) defined by

μa,b(dx) =
∏

ij

(ai + bj )Ja(x)Jb(x)

m∏

i=1

dxi .

In other words, for bounded continuous f ,

∫

R
n×m
+

f (umn)ν̃a,b(dy) =
∫

C(m)

f (x1)μa,b(dx).

The probability measures μa,b are non-central Laguerre (or complex Wishart)

ensembles and the integrals (8.7) are the corresponding Selberg-type inte-

grals [4, 13, 21, 22, 33].

Similarly, in the symmetric case, one arrives at the interpolating ensembles

of Baik and Rains [2, 4]. These are probability measures on R
n
+ defined for

α ∈ R
n
+ and ζ ∈ R+ by

μα;ζ (dx) =
∏

i<j

(αi + αj )Jα(x)

n∏

i=1

(αi + ζ )e(−1)iζxidxi .

We note that, in the notation of Sect. 5, as ǫ → 0,

νǫα;ǫζ ◦ σ−1
(
dex/ǫ

)
⇒ μα;ζ (dx),

where “⇒” denotes weak convergence of probability measures. In this setting

(see [4]) if the input matrix (yij ) ∈ R
n×n
+ is symmetric and chosen according

to the probability measure

∏

i<j

(αi + αj )e
−(αi+αj )yij dyij

∏

i

(αi + ζ )e−(αi+ζ )yiidyii

then the last passage time unn is distributed as the first marginal of μα;ζ .
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