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In few-body physics, Efimov states are an infinite series of three-body bound states that obey
universal discrete scaling symmetry when pairwise interactions are resonantly enhanced. Despite
abundant reports of Efimov states in recent cold atom experiments, direct observation of the discrete
scaling symmetry remains an elusive goal. Here we report the observation of three consecutive
Efimov resonances in a heteronuclear Li-Cs mixture near a broad interspecies Feshbach resonance.
The positions of the resonances closely follow a geometric series 1, λ, λ2. The observed scaling
constant λexp = 4.9(4) is in good agreement with the predicted value of 4.88.

The emergence of scaling symmetry in physical phe-
nomena suggests a universal description that is insen-
sitive to microscopic details. Well-known examples are
critical phenomena, which are universal and invariant
under continuous scaling transformations [1]. Equally
intriguing are systems with discrete scaling symmetry,
which are invariant under scaling transformations with a
specific scaling constant [2]; a classic example is the self-
similar growth of crystals, as in snowflakes. Surprisingly,
such discrete scaling symmetry also manifests in the infi-
nite series of three-body bound states that Vitaly Efimov
predicted in 1970 [3].

In the Efimov scenario, while pairs of particles with
short-range resonant interactions cannot be bound, there
exists an infinite series of three-particle bound states.
These bound states have universal properties that are in-
sensitive to the details of the molecular potential and dis-
play discrete scaling symmetry; the size Rn and binding
energy En of the Efimov state with the nth lowest energy
scale geometrically as Rn = λRn−1 and En = λ−2En−1,
where λ is the scaling constant. An alternative pic-
ture to understand discrete scaling symmetry is based
on renormalization group limit cycles [4]. Away from
the two-body scattering resonance, Efimov states couple
to the scattering continuum and induce a series of three-

body scattering resonances at scattering lengths a
(n)
−

< 0,

which also follow the scaling law a
(n)
−

= λa
(n−1)
−

[5]
(Fig. 1).

Ultracold atom systems are ideal to test Efimov scal-
ing symmetry given that their interatomic interactions
can be tuned over several orders of magnitude using Fes-
hbach resonances [6]. The first evidence of an Efimov
state was reported in ultracold Cs atoms [7]; subsequent
observations of Efimov resonances [8] in homonuclear sys-
tems were also reported in 7Li [9, 10], 39K [11], 85Rb [12],
133Cs [13, 14], and 6Li [15, 16]. Despite these numerous
observations, experimental confirmation of discrete scal-
ing symmetry remains a challenging goal.

The confirmation of universal discrete scaling sym-
metry requires the observation of multiple Efimov res-
onances. With two consecutive Efimov resonances, the
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FIG. 1. Discrete scaling symmetry of Efimov states. A
series of Efimov states (dashed curves) exists near a Feshbach
resonance located at B0. Away from the resonance, on the
side with scattering length a < 0, they merge into the three-
body scattering continuum (crosses). Physical observables in
the Efimov scenario — including the molecular size Rn, the
binding energies En, and the Efimov resonance positions at
the scattering length an (associated with the magnetic field
Bn) — show discrete scaling symmetry. The discrete scaling
law is graphically represented by the location of the reso-
nances on the B-axis and the size of the spheres, respectively.

scaling symmetry can be tested through a comparison
between the ratio of the resonance positions and the-
ory; with three or more resonances one can perform a
model-independent test. The observation of multiple
resonances is experimentally challenging because higher
order Efimov resonances diminish when the scattering
rate is unitarity limited [7, 17, 18]. This challenge is
acute in homonuclear systems with large scaling constant
λ ≈ 22.7 [3], such that the detection of an additional
Efimov state demands a reduction of temperature by a
factor of λ2 ≈ 515. Features from excited Efimov states
in homonuclear systems have been observed in 6Li [19],
39K [11], 7Li [20], and 133Cs [14]. These results are con-
sistent with the scaling prediction, but do not provide an
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independent test of the scaling symmetry.
Heteronuclear systems consisting of one light atom res-

onantly interacting with two heavy atoms can have a
scaling constant significantly lower than 22.7 [4, 21–23];
however, experiments in heteronuclear systems are con-
siderably more challenging than those in homonuclear
systems. Before our work, observations of Efimov res-
onances in heteronuclear systems were reported in K-
Rb mixtures [24, 25]. Recently, in a Li-Cs mixture [26],
two Efimov resonances are found in the measurement of
three-body loss coefficients, and the number loss data
hint at the existence of a third Efimov resonance.
Here we report the observation of discrete scaling sym-

metry of Efimov states in a Fermi-Bose mixture of 6Li
and 133Cs. Taking advantage of the large mass ratio be-
tween Li and Cs atoms, with a predicted scaling constant
λ = 4.88 [21, 23], we identify three consecutive Efimov
resonances near a wide, isolated s-wave interspecies Fes-
hbach resonance [27]. From the measured locations of
the resonances, we provide a model-independent proof of
the geometric scaling symmetry and determine a scaling
constant λexp = 4.9(4).

Our experiment is based on a mixture of 6Li and
133Cs atoms near quantum degeneracy in an optical
dipole trap. In our experiment, both species are pre-
pared in their lowest states, |F = 1/2,mF = 1/2〉 for Li
and |F = 3,mF = 3〉 for Cs, where F is the total angu-
lar momentum and mF is its projection. We prepare
mixtures with up to NLi = 3.4 × 104 Li atoms, and
NCs = 5.2 × 104 Cs atoms at temperatures in the range
190 nK < T < 800 nK [28]. Efimov resonances man-
ifest themselves as enhanced three-body recombination
losses. In such collisions three atoms resonantly couple
to an Efimov state and then decay into a deeply bound
molecule and a free atom; the released binding energy al-
lows them to escape the trap. We measure the Li and Cs
atom numbers from which we infer atom loss and identify
the Efimov resonances.
The mixture of 6Li and 133Cs has two primary in-

elastic collision pathways: three-body recombination of
Cs-Cs-Cs and Li-Cs-Cs. At low temperatures, Li-Li-Cs
as well as Li-Li-Li collisions are strongly suppressed by
Fermi statistics. We investigate Efimov resonances near
the broad Li-Cs Feshbach resonance located at 842.75 G
with a width of 61.6 G and a strength parameter sres of
∼ 0.7 [27]. The Efimov resonances reported in this work
are away from p-wave Feshbach resonances [32], as well
as Cs Feshbach and Efimov resonances [13, 33].
Around the magnetic field region probed in this work,

the Cs-Cs scattering length is large and negative, and Cs-
Cs-Cs recombination is the major competing loss process,
imposing a limitation on the lifetime of Cs. Away from
the Li-Cs Feshbach resonance, Cs decay is dominated
by Cs-Cs-Cs recombination collisions [Fig. 2(a)]; on the
other hand, Li decays much faster in the presence of Cs,
indicating the dominance of interspecies collisional loss.
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FIG. 2. Atom number decay of single-species and

Li-Cs mixture samples. a. At B =848.0 G, ∼5 G
away from the Li-Cs Feshbach resonance (aLiCs = −354 a0,
aCsCs = −1240 a0) Li loss increases significantly when Cs
is introduced (left panel). Cs loss is dominated by Cs-Cs-
Cs recombination (right panel). Sample temperature is T =
390 nK. b. Near the Li-Cs Feshbach resonance B = 842.7 G
(aCsCs = −1570 a0), enhanced atom loss is evident in both
the Li and Cs atom number evolution when both species are
present. Sample temperature is T = 340 nK. Data in a. and
b. are scaled to the initial atom numbers, NLi = 2 ∼ 3× 104

and NCs = 4 ∼ 5×104, obtained from double exponential fits
(continuous and dotted lines), which also serve as guides to
the eye.

Near the Feshbach resonance [Fig. 2(b)] both decays of
Li and Cs are enhanced by interspecies collisions.

Our measurements of atom loss and observation of Efi-
mov resonances are summarized in Fig. 3. To eliminate
the long-term drift in atom number, we scale the atom
number so that it averages to unity over a fixed magnetic
field range. Each panel shows resonant loss features in
the scaled atom number. The main loss feature in both Li
and Cs scans is associated with a broad Li-Cs Feshbach
resonance [27, 32]. Loss features associated with excited
Efimov resonances on the negative scattering length side
of the Feshbach resonance are only evident in low tem-
perature scans, and indicated by arrows in Fig. 3. Efimov
features are weaker in Cs data due to fast competing Cs-
Cs-Cs recombination processes.

We determine the position of each Efimov resonance
by using both Lorentzian and Gaussian fits with a linear
background. Results from different fit functions and fit
ranges are analyzed and combined to determine the final
resonance positions and uncertainties. Further details on
the fit and the determination of the resonance positions
and uncertainties are given in Ref. [28]. We determine
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FIG. 3. Observation of three Li-Cs-Cs Efimov resonances. a. Scaled Li number versus magnetic field showing the first
Li-Cs-Cs Efimov resonance, from the average of 13 individual scans. Here NLi = 1.3× 104 and NCs = 2.7× 104 with typical
temperature T = 800 nK and hold time 225 ms. b. Scaled Li and Cs (inset, d) numbers near the second and third Li-Cs-Cs
Efimov resonances, from the average of 68 scans with typical temperature T = 360 nK and hold time 115 ms. The mean atom
numbers are NLi = 1.4× 104 and NCs = 2.1× 104. c. Scaled Li and Cs (inset, e) numbers close to the third Li-Cs-Cs Efimov
resonance and the Li-Cs Feshbach resonance, from the average of 327 scans with typical temperature T = 270 nK and hold time
115 ms. The mean atom numbers are NLi = 9.1× 103 and NCs = 1.4× 104. The scaled atom numbers come from the average
of the individual scans divided by their respective mean values. The vertical dashed lines indicate the Feshbach resonance and
arrows indicate the Efimov resonances. The dashed curves correspond to an interpolation of the data and serve as a guide to
the eye.

the positions of the three Efimov resonances to be B1 =
848.55(12)stat(3)sys G, and B2 = 843.82(4)stat(3)sys G,
and B3 = 842.97(3)stat(3)sys G, where ( )stat denotes the
statistical uncertainty and the systematic uncertainty of
30 mG arises from the daily magnetic field drift.

A precise determination of the Feshbach resonance po-
sition is crucial to check the scaling symmetry. Two inde-
pendent methods are developed here. First, we observe
that the strongest dip (Fig. 3) is ubiquitous in all mea-
surements, even at high temperatures where Efimov fea-
tures are indiscernible. This indicates that the strongest
dip is associated with the Feshbach resonance. Fits to
the lowest temperature data [Fig.3(c)] locate the Fesh-
bach resonance at B0 =842.75(1)stat(3)sys G.

We convert our atom loss measurement into a spectrum
of the recombination loss coefficient, see Fig. 4, based on
a rate equation model [28]. The spectrum shows clearly
three Efimov resonance features and can be compared
with theoretical calculation. In addition, after comparing
the extracted K3 with a model that captures the steep
rise of K3 for a > 0 [28], we find the best agreement
between the experiment and the model when B0 = 842.75
(1)stat(3)sys G. The results from both our methods to
determine B0 agree with each other.

The separations between the Efimov resonances and

the Feshbach resonance ∆Bn = Bn −B0 are ∆B1 =
5.80(12) G, ∆B2 = 1.07(4) G, and ∆B3 = 0.22(3) G;
the uncertainties include both statistical and system-
atic errors. Remarkably, they closely follow a geomet-
ric progression ∆B1 : ∆B2 : ∆B3 ≈ 1 : 1/5 : 1/52

and provide direct evidence of the discrete scaling sym-

metry. (Note that ∆Bn ∝ −1/a
(n)
−

near the Feshbach
resonance.) More precisely, using an updated scattering
model for the Li-Cs Feshbach resonance [28], we deter-
mine the Efimov resonances in scattering length to be

a
(1)
−

= −323(8) a0, a
(2)
−

= −1635(60) a0, and a
(3)
−

=
−7850(1100) a0, where a0 is the Bohr radius. Two scal-

ing constants are extracted: λ21 = a
(2)
−

/a
(1)
−

= 5.1(2) and

λ32 = a
(3)
−

/a
(2)
−

= 4.8(7), which mutually agree within
uncertainty. The averaged scaling constant λexp = 4.9(4)
is in good agreement with the predicted value λ = 4.88
for LiCs2 Efimov states [21, 23].

Even though the observed scaling ratios are consistent
with the predicted value, we would like to point out the
practical factors that could contribute to differences be-
tween experiment and theory. The first Efimov resonance
can be shifted by finite-range corrections given that it oc-
curs at a scattering length near the van der Waals length
of Cs-Cs (rCsCs = 101 a0) and Li-Cs (rLiCs = 45 a0).
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FIG. 4. Feshbach and Efimov resonance structure

in recombination coefficient. We extract and normal-
ize the recombination coefficient K3 from the atom num-
ber measurement based on a rate equation model [28]. Us-
ing the data in Fig. 3(a) (T = 800 nK, open circles) and
Fig. 3(b) (T = 360 nK, solid circles), we show that the ex-
tracted K3 displays four peaks. The three peaks at magnetic
fields B1, B2 and B3 are associated with Efimov resonances,
and the global maximum at the lower field B0 represents the
Feshbach resonance. K0 = 10−25cm6/s is the loss coefficient
we obtain at ∼852 G. The inset shows the zoom-in view of
the resonance structure from the lower temperature measure-
ment, which offers higher resolution to the higher order Efi-
mov resonances. The solid line represents a four-Lorentzian
fit to the data, and serves as a guide to the eye.

The location of the Efimov resonance can also be shifted
by finite temperature and finite trap size effects, which
are stronger for excited Efimov states [34, 35]. Based on
a closer inspection, our data do not detect a clear po-
sition shift of the third Efimov resonance due to finite
temperature effect. Finite size effects are estimated to
be negligible in our experiment [28].

In conclusion, we observed three Efimov resonances
in a Li-Cs mixture and extracted two scaling constants.
From their mutual agreement and that with theoretical
calculations, our results provide experimental evidence
of discrete scaling symmetry of Efimov states. Based
on our observations, an intriguing question is whether
the discrete scaling symmetry can be tested in the orig-
inal Efimov scenario of three identical bosons, which re-
quires extremely low temperature. In addition, our result
also hints at the persistence of discrete scaling symme-
try when the scattering length diverges (unitary Bose
gas) [36], in contrast with the continuous scaling symme-
try of a unitary Fermi gas [37].
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Experimental setup and procedure. Our experi-
mental apparatus relies on a dual magneto-optical trap
(MOT) and dynamic optical dipole traps to produce an
ultracold mixture of 6Li and 133Cs. We sequentially load
Li and Cs atoms into two independent, spatially sepa-
rated dipole traps (denoted here as A and B) to avoid
light-assisted collisional loss, and adiabatically merge
them in a single trap. Both Li and Cs are polarized
into their lowest hyperfine states to prevent inelastic two-
body collisions. Following the merge process, we com-
press the trap to maximize the spatial overlap of the two
species and prepare the sample at an initial magnetic
field of 890 G, where the mixture is stable at a small in-
terspecies scattering length aLiCs = −21 a0, where a0 is
the Bohr radius. Then the magnetic field is ramped in
∼ 1 ms to a variable value B near the Feshbach resonance
at B0, giving a variable scattering length aLiCs.

Trap A is primarily used to confine Li atoms in the
initial stage of the experiment and is generated by a pair
of 1070 nm laser beams generated from a 200 W Yb fiber
laser. The beams propagate parallel to the x-axis before
the focusing lens, and then are focused at the position
of the Li atoms. The beams cross at an angle θ = 15◦

at the focus with 1/e2 radii of 40 µm. After loading Li
atoms, trap A is spatially displaced up to 25 mm along
the x-axis by moving the focusing lens [27]. This step
is essential to avoid light-assisted interspecies collisional
loss.

Trap B initially captures laser-cooled Cs atoms, and
eventually confines both atomic species. The trap is
formed at the intersection of two orthogonally propa-
gating 1064 nm laser beams, whose intensities are inde-
pendently controlled. The beam propagating along the
z-axis has a 1/e2 radius of 400 µm, while the beam prop-
agating along the x-axis has an elliptical cross section
with 1/e2 radii of wz = 200 µm and wy = 60 µm. The
elliptical beam is spatially modulated at 1.2 MHz along
the y-axis (gravity direction) to dynamically increase the
vertical size of trap B by about a factor of 3.

Following the loading and evaporation of Li in trap A,
we displace trap A and begin the loading and optical cool-
ing of Cs. After a series of Raman sideband cooling stages
Cs atoms are loaded into trap B. We denote the time fol-
lowing the last sideband cooling stage as t1 = 0 ms. At
this point the modulation of the elliptical beam is maxi-

mum (Fig. S5(a)) and a magnetic field gradient is applied
to levitate only the lowest hyperfine state of Cs, resulting
in a high Cs spin purity. Subsequently we compress Cs
atoms by reducing the modulation of the elliptical beam
and increasing the intensity of trap B. Simultaneously
we ramp the magnetic field gradient to zero, until a tight
optical trap is achieved at t2 = 2515 ms. The tighter
trap B improves evaporation efficiency, and does not re-
quire magnetic levitation. This allows us to relax the Li
in trap A from t2 to t3 = 3705 ms. At t3 we also jump
the magnetic field over 25 ms to 890 G where Cs evapo-
ration can be most efficient. From t3 to t4 = 10754 ms
we evaporate Cs by increasing the modulation of the el-
liptical beam and decreasing its intensity. During this
time we move trap A into the round beam of trap B
(Fig. S5(b)). From t4 to t5 = 11802 ms we release the Li
atoms from trap A into trap B by ramping the intensity
of trap A to zero (Fig. S5(c)). The relative position of
the traps before the release of Li atoms is offset vertically
by ∼ 100 µm and horizontally by ∼ 200 µm; these coor-
dinates are optimized experimentally to achieve suitable
conditions for the atom-number loss measurements. If
trap A is positioned too close to trap B, Cs atoms will
leak and cause severe Li loss. On the other hand, if trap
A is too far from trap B, the Li transfer efficiency into
trap B will be low. Between t5 and t6 = 12711 ms, trap B
intensity is decreased while the modulation is ramped to
zero so as to evaporate and compress into a trap where
Li and Cs overlap. We also fire a short burst of light
resonant with the second-to-lowest Li hyperfine state to
remove these unwanted atoms while preserving the Li
atoms in the lowest hyperfine state. At t6, the mag-
netic field is jumped to a variable value, and finally the
atoms are imaged at t7 = 12801 ms. During the inter-
action period there is a minimum trap depth at which
the species can be made to overlap, limiting Cs tempera-
ture to about 200 nK. The relevant experimental param-
eters are depicted in Fig. S5(d). At the final trap where
both Li and Cs number are recorded, the trapping fre-
quencies are (ωx, ωy, ωz)/2π = (10, 75, 20) Hz for Cs and
(60, 220, 120) Hz for Li.

Magnetic field calibration and scattering

length. We use microwaves to drive Cs atoms from
the lowest to the highest hyperfine state of the 6 2S1/2
manifold, and convert the observed transition frequency
(typically 11.3 GHz at 850 G) into a magnetic field value
using the Breit-Rabi formula. The average width of the
spectroscopic signals is 30 kHz, corresponding to 12 mG
in magnetic field. Day-to-day drifts in the magnetic field
of up to 30 mG are corrected by regular calibrations to a
precision of < 10mG. We take 30 mG as our conservative
estimation on the uncertainties of the absolute magnetic
field values reported in this work. To evaluate the uncer-
tainties of the relative separations between Feshbach and
Efimov resonances ∆Bn = Bn −B0, we include both the
statistical and systematic uncertainties from Bn and B0.

http://dx.doi.org/ 10.1103/PhysRevA.87.010701
http://dx.doi.org/10.1103/PhysRevA.87.032517
http://dx.doi.org/10.1103/PhysRevLett.93.123201
http://dx.doi.org/10.1103/PhysRevLett.93.123201
http://dx.doi.org/10.1063/1.2400657
http://dx.doi.org/10.1063/1.2400657
http://dx.doi.org/10.1103/PhysRevLett.92.090402
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along x. b. Location of trap A prior to the transfer of Li atoms from trap A to trap B. c. Schematic of the combined mixture
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In the magnetic field range discussed in this work,
800∼900 G, the scattering length can be described to
an accuracy of 99.9% by

a(B) = −29.1a0(1 +
61.60 G

B − 842.75 G
)(1 +

2.00 G

B − 892.91 G
),

(S1)
where the two parentheses on the right hand side contain
the contributions from a 61.60 G-wide resonance around
which our experiments were performed, and a narrow one
with 2.00 G width. The above expression was obtained
from a multichannel molecular model for both Li ad Cs
atoms in the lowest internal state [35], based on the re-
vised Feshbach resonance position B0 = 842.75 G (see
Fig. S6). We used this expression to calculate the scat-
tering lengths reported in this work.
The three Efimov resonances reported in this work oc-

cur within 1/10 of the resonance width; in this regime,
the scattering length can be excellently approximated by
a = A/(B − B0), see Fig. S6. Remarkably, this means
that the Efimov geometric scaling law can be recast in
terms of the relative magnetic field separations as

∆Bn ≈
∆Bn−1

λ
, (S2)

where λ is the scaling factor.

Extracting the three-body recombination coef-

ficient K3 from atom number evolution. After each
experimental cycle, we perform absorption imaging on
both atomic species. Li images are taken in situ at a
magnetic field of 853 G, while Cs images are recorded
after a 15 ms time of flight (TOF) near zero magnetic
field, from which we measure the atom number and tem-
perature. Modeling the atom number evolution in a Li-Cs
mixture needs to take into account several experimental
complications. Firstly, the Li and Cs clouds only par-
tially overlap because of the large differences in their
masses, magnetic moments, overall trapping potentials
and consequently their different gravitational sags in the
trap. The typical separation between the two atomic
samples is 16 µm and prevents our experiments from
reaching temperatures below 200 nK. (For T < 200 nK
the Li and Cs clouds completely separate.) Secondly,
Cs-Cs-Cs recombination plays a crucial role in the evo-
lution of the Cs number, which also influences indirectly
the Li number. Finally, near the Li-Cs Feshbach reso-
nance and Li-Cs-Cs Efimov resonances, fast two-, three-,
and higher-body collisions can drive the sample out of
thermal equilibrium, which not only can influence the
overlap of the clouds, but also can introduce tempera-
ture evolution. These effects can significantly contribute



7

FIG. S6. Scattering length near Feshbach resonance. Based on the updated value of the Feshbach resonance B0 =
842.75 G, scattering lengths obtained from a multi-channel calculation [35] (open circles) are shown, and compared to an
empirical fit (Eq. S1, blue line), and the threshold behavior a = A/(B − B0), where A = −1793a0G. In the range of our
experiment, the empirical fit is accurate to 99.9 %, and the threshold law is good to better than 95%.

to systematic uncertainties in the extracted three-body
recombination coefficient K3.

Despite the aforementioned concerns, we have devel-
oped an effective model capable of describing the mea-
sured particle number evolutions assuming thermal equi-
librium and that loss is dominated by the three-body
recombination (Fig. S7). In our model, the atom number
N and temperature T are governed by the following rate
equations:

dNLi

dt
= −K3G(T )N2

CsNLi −ANLi −B exp(−Ct)NLi,(S3)

dNCs

dt
= −2αK3G(T )N2

CsNLi −DN3
CsT

−3, (S4)

dT

dt
= −FNCsT

−1, (S5)

where G(T ) is a temperature dependent overlap func-
tion which we calculate independently, K3 is the desired
Li-Cs-Cs loss coefficient, α is the scaling factor to ac-
count for atom number calibration error, and A, B, C,
D, and F are loss parameters. Here A represents one-
body losses due to background collisions, while B and
C characterize the loss from the Li trap following the fi-
nal trap adjustment and magnetic field ramping, which
perturbs the sample and leads to trap loss during the
equilibration process. Collisions between cold 6Li atoms
are forbidden due to the Pauli exclusion principle. D de-
scribes three-body Cs loss, and F describes the decrease
of temperature due to Cs evaporation. No evaporative
number loss term is added as the number loss of evap-
oration is negligible compared to three-body loss. Fur-
thermore, since Cs three-body loss also dominates over
any non-adiabatic trap ramping or one-body effects only

the former is included. The overlap G(T ) is given by

G(T ) =
1

N2
CsNLi

∫
nCs(x, T )

2nLi(x, T ) d
3x, (S6)

where n represents density and the integration runs over
the whole trap. The sample density distributions are as-
sumed to be in equilibrium at temperature T for simplic-
ity. The density profiles are derived from the measured
trapping frequencies and gravitational sags.
The constants A, B, C, D, and F are obtained from

fits to decay profiles from pure Li and Cs samples in
isolation. The data at all fields are well described with
the same parameters. Subsequently, K3 is determined
from fits to decay profiles of mixed samples. We obtain
α = 0.26, which differs from one due to imperfect parti-
cle number calibration, and because the Li-related loss of
Cs is difficult to separate from the high background rate
of Cs loss. This has little effect on K3 however, as K3 is
determined primarily from the Li loss. With this model,
we can determine the expected number of Li atoms re-
maining after a fixed hold time as a function of K3, and
the initial atom numbers and temperature (Fig. S7). For
each point of a number loss trace (Fig. 3), we interpo-
late NLi to find its predicted K3 value. We estimate that
the derived recombination coefficients K3 can suffer from
an overall scaling uncertainty on the order of 10. In the
main manuscript, Fig. 4 shows our calculated dimension-
less three-body loss coefficient K3/K0 as a function of
magnetic field, where K0 = 10−25cm6/s is the loss coef-
ficient we obtain at ∼852 G.



8

2

1

0

N
L
i  

[x
1

0
4
]

543210

Time [s]

B = 848.7 G
 Pure Li 
 Li-Cs mixture 

3

2

1

0

N
C

s
  

[x
1

0
4
]

B = 844.5 G
 Pure Cs 
 Li-Cs mixture 

3

2

1

0

N
C

s
  

[x
1

0
4
]

543210

Time [s]

B = 848.7 G
 Pure Cs 
 Li-Cs mixture 

6

4

2

0

T
 [

x
1

0
-7

K
]

B = 844.5 G
 Pure Cs 
 Li-Cs mixture 

6

4

2

0

T
 [

x
1

0
-7

K
]

543210

Time [s]

B = 848.7 G
 Pure Cs
 Li-Cs mixture 

2

1

0

N
L
i  

[x
1

0
4
]

B = 844.5 G
Pure Li 
Li-Cs mixture 

a. b. c.

d. e. f.
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Determination of the Efimov and Feshbach res-

onance positions. In order to obtain the necessary
statistics to precisely identify the Efimov resonances, we
averaged many scans taken over several days. As a result,
drifts in experimental parameters can have significant ef-
fects on atom number. To remove these drifts, we rescale
our data so that it averages to one over a fixed magnetic
field range. Small drifts in the magnetic field (on the
order of 10 mG over 6 to 8 hours) mean that nominally
identical scans taken at different times will include points
at different values of the true magnetic field. In order to
average these data together, we employ an interpolation
scheme. After rescaling and interpolating, we remove the
outliers of the data points and average our data. The re-
moval of outliers shifts the resonance position by no more
than 5 mG.
Since analytic forms of the Efimov resonance lineshape

at finite temperature are unavailable, we used empirical
fits to determine the positions of Efimov resonances. Fit
functions based on a Gaussian or a Lorentzian plus a
linear background were adopted, see Fig. S8. We also
determined the peak positions from fitting the derived
recombination coefficient K3 to a Gaussian with a linear
background. We also determine the decay parameter η of
the first Efimov resonance, where the finite temperature
effect is minimal. Using the analytic function in Ref. [37]
to fit the recombination coefficient K3, we obtain η =
0.26(6).

In addition to different fit functions, we also repeated
those fits with peripheral data points excluded to de-
termine their influence on resonance positions and un-
certainties. All fits gave consistent results. We defined
the final resonance position for each resonance as the
mean of all fits. Furthermore, the final uncertainty for
each resonance was determined by the square root of the
quadrature sum of the mean statistical uncertainty and
the standard deviation of all fitted resonance positions.
Our final values and uncertainties are summarized in Ta-
ble S1.

To determine the Feshbach resonance position, we em-
ployed two independent methods. The first one was
based on the position of the strongest dip in the atom
loss spectrum. We assign this feature as the Feshbach
resonance position, since it persists in both Li and Cs
data at all temperatures (up to 800 nK in this work and
few µK in previous work [27]). It exists even when the
Efimov features are significantly weakened above 500 nK.
We consider that the strongest dip may be coming from
fast evaporative loss due to resonantly-enhanced two-
body collisions. Indeed, at temperatures around 250 nK,
Li-Cs two-body collisions reach the unitary limit only at
scattering lengths |a| > 1/k = 11000 a0 or within 150 mG
of the Feshbach resonance. Here k is the Li-Cs relative
wavenumber.

An independent method to determine the Feshbach
resonance position is to use the steep rise of the loss on

the positive scattering length side to fit the experiment
data. This steep slope, clear in both experiment (Fig. S9)
and calculation [36] (Fig. S11), allows us to determine the
Feshbach resonance position with high precision and, in
principle, only requires data below the Feshbach reso-
nance.

To apply this idea, an empirical function, interpolat-
ing the asymptotic behavior K3 ∼ T−2 on resonance and
K3 ∼ a2LiCs in the threshold regime, is found to well fit
the calculations at all temperatures (see Fig. S9). Armed
with the fit function, we fit the recombination loss data
near the Feshbach resonance at T = 270 nK by taking
the Feshbach resonance position B0 and the overall scale
of the loss as the only two fitting parameters. We find
that the function captures the data very well for a > 0,
see Fig. S9(b), and the resonance position is determined
to be B0 = 842.75(1)stat G, see Table S2. Our result is
consistent with the dip position measurement. It, how-
ever, deviates from our previous work by −0.65 G [27].
We attribute the deviation to the much higher tempera-
tures reported of few µK in our former work, where the
Efimov features were indiscernible, resulting in a single
smooth and broad loss profile.

Finite temperature and finite trap volume ef-

fects. Signatures of higher order Efimov resonances suf-
fer from finite temperature effects when the thermal de
Broglie wavelength λdB of the atoms is small compared
to the scattering length at which the resonance occurs

a
(n)
−

. At the lowest temperature reported here (250 nK)
λCs
dB = 5700 a0 and λLi

dB = 27000 a0, which are both
much larger than the second Efimov resonance position

|a
(2)
−

| = 1635 a0, but comparable with that of the third

resonance |a
(3)
−

| = 7850 a0. This is consistent with our
capability to see only three resonances. In addition, finite
temperature can lead to a shift of the resonance position.

Experimentally we investigated the temperature de-
pendence of the third Efimov resonance by performing
experiments with temperatures T = 190 ∼ 500 nK. We
separated the data into two groups with mean tempera-
tures T = 250 and 405 nK, see Fig. S10. Because of the
limited data quality, we cannot conclude whether there
is a temperature shift. The data, however, confirms that
the third Efimov resonance feature is weaker at high tem-
perature, consistent with Fig. 3.

Complementary to our experiment, an independent
three-body calculation conducted by Y. Wang shows the
expected recombination loss coefficient in the tempera-
ture range of interest [36] (Fig. S11). The calculation
shows signatures of Efimov resonances at various tem-
peratures, and confirms the suppression of the resonance
features at higher temperatures. Based on a Gaussian
plus linear fit to the calculation, we find that the res-
onance position shifts in the range of 100-1000 nK are
210 mG, 95 mG and 7 mG for the first, second and third
resonances, respectively. Those shifts are comparable to
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TABLE S1. Determination of Efimov resonance positions using different methods

Efimov Atom loss K3

resonance Gaussian Lorentzian Gaussian Final value Scattering length

B1 [G] 848.60(11) 848.55(11) 848.49(12) 848.55(12) -323(8) a0

B2 [G] 843.82(5) 843.83(5) 843.81(3) 843.82(4) -1635(62) a0

B3 [G] 842.97(3) 842.97(3) 842.97(2) 842.97(3) -7850(1124) a0

The number in parenthesis represents statistical uncertainty. Systematic uncertainties are 30 mG.

the experimental uncertainties of the first and the second
resonance; however, they do not lead to significant cor-
rections in the scaling constants we derived. We estimate
that the finite temperature effects in our experiment can
offset the scaling ratios λ21 and λ32 by -1% and -3%, re-
spectively, which are both small compared to our quoted
uncertainties of 4% and 15%.
The calculation also supports the identification of the

Feshbach resonance position based on the leftmost res-
onant loss feature, see Fig. S11 inset. At experimental
temperatures, the fourth Efimov state does not form a
clear resonance feature, consistent with our observation,
but can lead to an asymmetric lineshape. Since we de-
termine the same Feshbach resonance position using data
taken on the positive scattering length side (Fig. S9(b)),
as by fitting the loss feature directly, we conclude that
our procedure to determine the Feshbach resonance posi-
tion only suffers weakly from the asymmetric line shape

with systematic uncertainty of 10 mG or less.

The trapping potential can also affect the position of
higher Efimov states if the Efimov binding energy ap-
proaches the trap vibrational frequency. In this case
Efimov trimers bind not relative to the scattering con-
tinuum, but relative to the discrete set of bound states
determined by the trap. The binding energy scale
for heteronuclear Efimov trimers is ~

2/(µa2LiCs), with
µ = [mLim

2
Cs/(mLi + 2mCs)]

1/2 the three body reduced
mass [36]. In the case of the third Efimov state we ob-
served here, this energy scale is h×3 kHz, much greater
than the largest trap vibrational energy of Cs (h×75 Hz)
or that of a bound LiCs molecule (h×90 Hz). [For LiCs
molecules, we assume the polarizability of the dimer is
the sum of the atoms and the trap frequency is given by
(mLi + mCs)ω

2
LiCs = mLiω

2
Li + mCsω

2
Cs.] We therefore

conclude that the trap effect is negligible.
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TABLE S2. Determination of the Feshbach resonance position using different methods

Feshbach Atom loss dip K3

resonance Gaussian Lorentzian Steep slope Final value

B0 [G] 842.75(1) 842.75(1) 842.75(1) 842.75(1)

The number in parenthesis represents statistical uncertainty. Systematic uncertainties are 30 mG.
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FIG. S9. Steep rise of the recombination coefficient K3 for a > 0. a. Numerical calculation for a > 0 (solid dots) [36]
are fitted to an empirical function of K3 = Aa2k∗−2/(1+k∗2a2) (continuous curves). With fitting parameters A = 1154~2/mLi

and k∗ = (T/nK)1/2(2.41 × 105 a0)
−1, the fit function well captures the calculations at all three temperatures. b. Based on

the fit function, including an overall scaling as the third fitting parameter, we fit the data on the steep slope of the extracted
recombination rate K3 at T = 270 nK and obtain B0 = 842.75(1) G (red curve). A Gaussian fit to the third Efimov feature is
shown for comparison.
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