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Geometric Shock�Capturing ENO Schemes for Subpixel

Interpolation� Computation and Curve Evolution

Kaleem Siddiqi� Benjamin B� Kimia and Chi�Wang Shu

Abstract Subpixel methods that locate curves and their singularities� and that accurately measure

geometric quantities� such as orientation and curvature� are of signi�cant importance in computer

vision and other applications� Such methods often use local surface �ts or structural models for a local

neighborhood of the curve� to obtain the interpolated curve� Whereas their performance is good in

smooth regions of the curve� it is typically poor in the vicinity of singularities� Similarly� the computation

of geometric quantities is often regularized to deal with noise present in discrete data� However� in the

process� discontinuities are blurred over� leading to poor estimates at them� and in their vicinity� In

this paper we propose a geometric interpolation technique to overcome these limitations by locating

curves and obtaining geometric estimates while� �� not blurring across discontinuities� and �� explicitly

and accurately placing them� The essential idea is to avoid the propagation of information across

singularities� This is accomplished by a one�sided smoothing technique� where information is propagated

from the direction of the side with the 	smoother
 neighborhood� When both sides are non�smooth� the

two existing discontinuities are relieved by placing a single discontinuity� or shock� The placement of

shocks is guided by geometric continuity constraints� resulting in subpixel interpolation with accurate

geometric estimates� The interpolations are shown to be better than spline�like interpolations in smooth

regions� and far better in discontinuous ones� Since the technique was originally motivated by curve

evolution applications� we demonstrate its usefulness in capturing not only smooth evolving curves� but

also discontinuous ones� In particular� the technique is shown to be far better than traditional methods

when multiple or entire curves are present in a very small neighborhood�
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� Introduction

Hyperacuity� or the ability of the human visual system to detect features at resolutions an order of mag�

nitude better than retinal resolution� is a remarkable phenomenon� This phenomenon is particularly

impressive since locating curves� e�g�� for image registration ���� ��� as well as obtaining reliable esti�

mates of geometric quantities� e�g�� orientation and curvature� from discrete data at normal resolution�

have traditionally been di�cult problems� Nevertheless� accurate estimates of orientation and curva�

ture are important for a number of computer vision problems� e�g�� orientation for computing stereo

disparity ��� ��� and boundary�based optical �ow ��� ���� accurately locating curvature extrema and

in�ection points ��� � ��� �� ���� and �nally for curve evolution applications where the PDE governing

the deformation of the curve is often a function of the curve�s local geometry� In fact� while the latter

application has been the main driving force behind the development of this paper� the �ndings have

general applications�

We follow ���� in exploiting two main sources of information to obtain measurements of di�erential

structure in images� �� normal conditions to utilize information along pro�les orthogonal to image

curves� and �� tangential conditions to take advantage of continuity along image curves� However�

our goal is to achieve robust localization and accurate geometric estimates� not only at normal� but

also at subpixel resolution� First� observe that image structure� e�g�� shape� is rarely present in binary

form� Hyde and Davis considered the problem of locating image edges with subpixel accuracy� using

	contrast
 information orthogonal to the edges ����� They showed that taking the intensities of the

edge pixels into account yields little or no improvement over a least squares �t through edge pixel

locations in smooth regions� They also observed that a major di�culty in subpixel estimation arises in

the vicinity of discontinuities in the image� e�g�� corners� Kiryati and Bruckstein addressed the question

of how the digitization process maps a binary shape onto grayscale ����� Focussing on silhouettes of

straight�edged planar shapes they demonstrated the importance of gray levels for accurate binary shape

reconstruction� In particular� whereas error�free reconstruction is possible when the gray levels are not

quantized and the spatial sampling resolution is su�ciently high� in the presence of quantization and

limited spatial sampling resolution a low spatial�resolution gray�level digitizer can potentially introduce

less ambiguity than a high spatial�resolution binary scanner� Recently� Kwok and Dong have extended

these results� with an emphasis on curved edges ���� see also ���� �� for related research� In other work�

curves have been viewed as level sets of a surface� e�g�� edges as the zero�crossings of the Laplacian of

a Gaussian operator ���� isophotes of image intensity for scale ����� for shape from shading ���� etc� In
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addition� more recently curve evolution applications have used an embedding surface to represent the

evolving curve� thus utilizing the additional dimension to regularize computations ��� ��� ���� e�g�� shape

representation ���� ��� ���� shape from shading ���� ���� image smoothing ���� �� ��� a�ne invariant

curve evolution ���� �� ��� shape modeling ���� ��� ���� optical �ow ���� and stereo ����� In the above

examples the process of locating the curve� and computing its geometric properties� e�g�� orientation

and curvature� can bene�t from the information contained in the embedding surface in the direction

orthogonal to the curve�

Second� since slight variations in pixel data can cause large variations in computations of orientation

and curvature� smoothing along the boundary is also often employed to make the estimation procedure

more robust� e�g�� spline interpolation ��� with regularization ����� A critical factor in such methods

is the choice of the regularization parameter� which determines the tradeo� between the smoothness of

the interpolation curve and its faithfulness to the data� In general it is desirable to have an objective

data�driven method for estimating it� The technique of generalized cross�validation ���� has proven

useful for this purpose� where the basic idea is to pick that parameter for which a model �e�g�� a

polynomial spline�� estimated from some of the data samples� gives the best least squares prediction

of the the remaining samples� This method has been e�ectively used by Shahraray and Anderson for

the estimation of geometric properties of contours� While in smooth regions the method gives excellent

geometric estimates� as noted in ���� it produces inaccurate estimates in the presence of discontinuities�

because these are smoothed over� Figure � �middle column� illustrates this e�ect this for a simple

cubic spline interpolant� In such cases it is necessary to �nd the discontinuities prior to applying the

algorithm to the smooth segments lying inbetween�

As argued by Terzopoulos ����� the application of regularization theory encounters di�culties in

in a host of visual reconstruction problems� due to the de�ciency of global smoothness constraints�

What is required is a method for spatially controlling smoothness� so that visual discontinuities can be

accomodated� This is accomplished by the introduction of controlled�continuity stabilizers where various

order splines are blended using weighting functions that are allowed to make jump transitions to zero

values� This powerful technique applies in arbitrary dimensions and has been successfuly used for a

variety of visual reconstruction problems with discontinuities Terzopoulos�Computation�Visible� The

stabilizers are related to geometric modelling primitives used in approximation theory and computer

graphics� splines under tension ��� � and Beta�splines with varying bias and tension parameters ����

In recent years� a large number of nonlinear approaches to smoothing shapes and images have been

introduced� with the goal of preserving discontinuities� e�g�� see the articles in ���� for an overview�
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The ideas expressed in this literature� which lead to a scale�space or a family of progressively blurred

shapes or images� can also be used in the localization and geometric estimation procedure itself� In

general surfaces of objects in the world� and hence their projections in retinal images� do not contain

an arbitray number of discontinuities� Rather� these discontinuities are usually �nite in number and

are isolated� the object boundaries being smooth between them� In this paper we present a geometric

interpolation technique that utilizes smoothnes constraints both across and along the boundaries to

locate curves and obtain geometric estimates� with the following properties� �� the technique does not

blur across discontinuities� and �� it explicitly and accurately places the discontinuities� The resulting

geometric estimates are vastly improved and discontinuities� or shocks�� which are often the salient

features� are captured at subpixel resolution� The proposed interpolation technique is useful for� �i�

traditional interpolation applications� �ii� the reliable computation of orientation and curvature� and

�iii� accurate curve evolution and representation� As a preview of the results� and a comparison against

the commonly used bilinear interpolation method� see Figure ��

The paper is organized as follows� In Section � we review the essentially non�oscillatory �ENO�

interpolation method� originally proposed for the purpose of obtaining accurate geometric estimates in

regions neighboring discontinuities� in �uid dynamics applications� In the current context� the original

technique su�ers from two limitations� �� the geometric estimates are not reliable in intervals containing

a discontinuity� and �� the scheme is developed for one dimensional ��D� data and it is not immediately

clear how to extend it to two�dimensional ��D� data� In Section � we tackle the �rst problem� and

suggest a modi�cation of the ENO scheme to explicitly capture and represent the discontinuities� thus

leading to highly accurate geometric estimates� In Section � we extend the technique for interpolating

�D functions to one for interpolating a curve� Speci�cally� we develop a geometric ENO style method to

accurately interpolate the curve� and at the same time� explicitly capture and place curve discontinuities�

The approach is in two stages� First a set of subpixel sample points are obtained and ordered along

the shape�s boundary� Section �� and Appendix B� Second� we develop a geometric ENO �GENO�

interpolation scheme using geometric basis functions consisting of lines� circular arcs� Euler spirals� etc��

Section ��� Several examples illustrate that discontinuities are preserved and detected with subpixel

accuracy� and that the process is robust to Euclidean transformations of the underlying data� In

Section �� we analyze the computational errors associated with three methods to compute curvature�

and numerically examine their accuracies� We �nd that numerical estimates from GENO are typically

�We informally use the word �shock�� or �discontinuity�� to refer to either a discontinuity in the function itself� or in

its derivatives�
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Figure �� A preview comparison of interpolation techniques� Top� The original ���x��� images are obtained by

sampling an exact signed distance function of a triangle with a �� degree right vertex� oriented at �� ��� and 	�

degrees respectively� The box depicts a ��x�� region under examination� Second Row� The shape
s interior at

the resolution of the grid� Third Row� Bilinear interpolation� Observe that the corner is truncated or rounded�

and gross artifacts are introduced� Fourth Row� Geometric ENO interpolation� detected corners are marked

with circles� The corners are preserved and accurately placed to subpixel resolution� the distance errors in pixels

between detected and true corner locations are� from left to right� �� ������ and �����





better in smooth regions� and far better in regions containing discontinuities� Finally� we illustrate the

advantages of GENO with a number of curve evolution examples in Section �� and conclude with a

summary of the results in Section ��

� Background� ENO

Splines or polynomials are commonly used to interpolate discrete data in a variety of computer vision

and graphics applications� With low computational cost� they provide a continuous representation of the

data� from which geometric estimates �orientation� curvature� etc�� can be obtained� However� whereas

such estimates are generally reliable in regions where the data is smooth� they are prone to error in

the vicinity of discontinuities� This follows because such �tting techniques blur over discontinuities by

propagating information across them� Figure � �middle column��� Recently a class of schemes have been

proposed in the numerical analysis literature to address this problem� in application to the numerical

solution of conservation laws and the propagation of fronts� These Essentially Non�Oscillatory schemes

were introduced by Harten et al� ���� ���� and were later made more e�cient by Shu and Osher ����� The

basic idea is to select between two contiguous sets of data points for interpolation the one which gives

the lower variation� or coe�cient of the highest derivative of the interpolation polynomial� At regions

neighboring discontinuities� the smoothing is always from the side not containing the discontinuity� In

this section we review the ENO interpolation algorithm in detail� and demonstrate its use in interpolating

discrete data� while preserving discontinuities�

The key feature of ENO schemes is an adaptive stencil high order interpolation which tries to

avoid shocks or high gradient regions whenever possible� Informally� to illustrate the idea of ENO

interpolation� consider building up a polynomial approximation to the data which minimizes oscillations

by not crossing over discontinuities� whenever possible� To �nd the polynomial approximation between

the grid points xj and xj
�� start by interpolating a �rst�order polynomial between xj and xj
�� A

second�order polynomial is constructed by adding either xj�� or xj
�� whichever produces the smoother

polynomial� A third�order polynomial is interpolated by choosing an additional data point� and so on�

for higher degree polynomial interpolations� Formally� the ENO procedure tries to obtain uniform high

order accuracy by �xing the order of polynomial interpolation but varying the stencil according to

�It should be noted that more sophisticated spline interpolation techniques can give improved results� such as not

requiring the interpolation curve to pass exactly through each data point ����� or using splines under tension ��	� 		�

or beta
splines ���� However� the key point is that when discontinuities are present� their explicit placement must be

considered either prior to or hand in hand with the interpolation process�
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Figure �� A comparison of cubic spline interpolation with second�order ENO interpolation for various �D data

sets� Left Column� The data points are marked with ���s� Middle Column� The cubic spline interpolation

is overlaid on the data� Right Column� The second�order ENO interpolation is overlaid on the data� Observe

that whereas ENO interpolation does not blur over singularities or introduce spurious oscillations� this is not the

case for cubic spline interpolation�
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the local smoothness of the solution� This interpolation procedure has been adapted to the numerical

solution of Hamilton�Jacobi equations by Osher and Sethian ��� and Osher and Shu ���� The procedure

is known to give very good numerical results� sharp� non�oscillatory transitions at shocks and high order

accuracy in regions where the data is smooth� For a guide to using ENO schemes for evolving PDE�s that

arise in computer vision see ����� In the present paper� we wish to use the ENO interpolation algorithm

for piecewise smooth interpolation of discrete �D and �D data� without blurring across discontinuities�

We now summarize the interpolation algorithm�

ENO Interpolation Algorithm� The ENO Interpolation begins with a �rst degree polynomial

P f��
j
����x� interpolating the function f�x� between the two grid points xj and xj
�� If we stop here� we

obtain the �rst�order monotone approximation� Whenever a higher order is desired� we add just one

point to the existing stencil� chosen from the two immediate neighbors by the sizes of the two relevant

divided di�erences� which measure the local smoothness of the function f�x�� Given point values f�xj��

j � �������� � � � of a �usually piecewise smooth� function f�x� at discrete nodes xj � we associate an

r�th degree polynomial P f�r
j
����x� with each interval �xj � xj
��� with the left�most point in the stencil as

x
k
�r�
min

� constructed inductively as described in Table ��

Figure � compares ENO polynomial interpolation with cubic spline interpolation for various �D

data sets� Observe that no oscillations occur between data points� and accuracy is excellent for all

intervals except the one which actually contains the discontinuity� Therefore� ENO polynomial �ts can

lead to vastly improved geometric estimates in the vicinity of singularities� However� by construction

the ENO interpolation is smooth in the interval containing the singularity and does not capture the

singularity itself� Figure  �middle column�� Hence� the geometric estimates are still error prone in such

an interval� and there are discontinuities at the interval�s end points� This is the �rst limitation of the

ENO approach� and suggests the following modi�cation� in addition to the two choices of smoothing

from the left and smoothing from the right� we might consider a third option� that of 	breaking
 the

curve in the interval under consideration� and relieving the two end point discontinuities� This is in

essence Harten�s 	sub�cell resolution
 idea ����� the di�erence here is that geometric reasoning rather

than 	conservation
 is used to determine the sub�cell shock location� In the following section we develop

this idea and illustrate its use�
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�� Find the �rst�order polynomial interpolation P f��
j
����x� and initialize the �rst stencil point

for the point j� k
���
min�

P f��
j
����x� � f �xj� � f �xj� xj
���x� xj�

k
���
min � j

�� If k
�l���
min and P f�l��

j
����x� are both de�ned� then

P f�l
j
����x� � P f�l��

j
����x� � c�l�
k
�l���
min


l��Y

ik
�l���
min

�x� xi��

where

c�l� �

���
��

b�l� if ja�l�j � jb�l�j

a�l� otherwise

k
�l�
min �

���
��

k
�l���
min � � if ja�l�j � jb�l�j

k
�l���
min otherwise

and �nally�

a�l� � f �x
k
�l���
min

� � � � � x
k
�l���
min


l
�

b�l� � f �x
k
�l���
min

��
� � � � � x

k
�l���
min


l��
�

Table �� The ENO interpolation algorithm� In the procedure f ��� � � � � �� are the standard Newton divided di�er�

ences� see Appendix A for a review of these�
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BA

Figure �� Left� The interval AB supports two discontinuities� one at A and one at B� Right� As an alternative

to interpolation� one may �relieve� these two shock points by extrapolating the neighboring interpolations and

introducing a single singularity at C�

� Shock Placing ENO

As illustrated in Section �� while the ENO interpolation algorithm e�ectively deals with areas where the

underlying data is smooth� and with areas neighboring discontinuities� it does not explicitly represent

and interpolate singularities� Hence� the geometric estimates of an interval containing a singularity are

still prone to error� In seeking a solution to this problem� two questions are posed� what constraints can

be employed to signal the presence of a singularity� and� how should the singularity be placed� In the

numerical simulation of a conservation law ����� Harten proposed the use of 	conservation
 to guide the

placement of a shock at subcell resolution� In this section� we follow Harten�s idea to explicitly place

shocks� but rather than employ the conservation constraint� we suggest the use of geometric constraints

for the applications we have in mind�

Observe that the placement of shocks can be signaled by the ENO interpolation algorithm� in

smooth regions� ENO interpolation in one interval continuously follows to interpolations in neighboring

intervals� with little or no change in orientation or curvature� However� in intervals appearing to contain

discontinuities� neighboring interpolations lead to discontinuous estimates of orientation and curvature

at the boundaries� To illustrate� consider Figure � �left�� where the orientation and curvature limits at

point A are di�erent when approached from the left than when approached from the right� Therefore�

at its boundaries� the interval AB typically supports two discontinuities� one on the left and one on

the right� As an alternative to interpolation� one may 	relieve
 these two discontinuities �shock points�

and introduce a single shock C by smoothly extrapolating neighboring interpolations� Figure � �right��

Such a choice is guided by minimizing curvature and orientation variations� To formalize these ideas
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we make two assumptions explicit�

Assumption � The underlying curve is piecewise smooth with �nite total curvature�

In other words� the curve does not oscillate between data points� and is smooth on either side of a

singularity� This smoothness can be used to guide the placement of singularities� provided that the

following is also true�

Assumption � The curve has a �nite number of singularities� with the singularities being at least one

interval apart�

With the above two assumptions we are now in a position to develop a strategy for shock placement�

First� recall that in inductively constructing the polynomial �t of degree n� the ENO interpolation

algorithm selects between two data points the one that results in a lower highest derivative� Therefore�

it is intuitively clear that in an interval that contains a singularity but neighbors smooth intervals on

each side� the rightmost point will not contribute to the ENO interpolation in the interval to the left�

and similarly the leftmost point will not contribute to the ENO interpolation in the interval to the right�

This property can be used� as a �rst step� to 	�ag
 intervals where singularities may occur� Second� the

constraint of piecewise smoothness between singularities requires that the placement of a shock must

not cause orientation or curvature discontinuities at either endpoint of the interval in which it is placed�

This can be enforced by extrapolating the interpolations from the neighboring intervals� and placing

the singularity at the point of their intersection� In such a strategy� the interpolating curve on one side

of the shock is obtained solely from the neighboring interval on that side� This is logical since the very

idea of placing the shock is to institute a break in the curve� Examples illustrating this strategy are

shown in Figure  �right column�� The resulting shocks� which are marked by crosses� appear to be

intuitive� Observe also that for smooth data� no shocks are placed� and the interpolation agrees with

the unmodi�ed ENO interpolation� Figure  �top��

In summary� when the ENO interpolation gives rise to discontinuous measures of orientation or

curvature� the option of placing a single shock is considered� We should mention that an exception

arises when the boundary continuations do not intersect� In such cases� since placing a single shock

is not an option and interpolation signals two discontinuities� we make both discontinuities explicit�

Figure �� Note that while this rarely occurs in our applications� we have included this possibility in our

algorithm for completeness� Having modi�ed the ENO scheme to explicitly place shocks� we are now in

a position to extend our approach to one for �D data�

��
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Figure � ENO interpolation versus ENO interpolation with shock placement� Left Column� The data points

are marked with ���s� Since the discontinuities no longer coincide with nodes� as they did in Figure �� subcell

shock placement is required to capture them� Middle Column� The second�order ENO interpolation is overlaid

on the data� Observe that singularities which lie within an interval are not captured� Right Column� In

a modi�ed ENO algorithm� using evidence from neighboring intervals the option of �breaking� the curve and

placing a singularity is considered� The detected shocks are marked by crosses� Note that when the data is

smooth �top row�� no shocks are placed and the two interpolations are equivalent� However� when there are

signi�cant orientation and curvature changes at the end points of an interval� a shock is placed �middle and

bottom rows��
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BA BA

Figure �� Left� The interval AB supports two discontinuities� one at A and one at B� however the continua�

tions of the neighboring intervals do not intersect� Right� Since placing a single shock is not an option� both

discontinuities are made explicit�

� Geometric ENO �GENO� Interpolation

In the previous section� �D data was interpolated by using sampled values at a series of ordered points�

It would appear then that these results should also apply to �D data� since a shape�s boundary can be

locally represented as a function in some local coordinate system� Alternatively� the x and y coordinates

of the boundary points can each be interpreted as functions of the arc length parameter �s� each of

which can be interpolated as a �D function� Unfortunately� however� both approaches face signi�cant

di�culties� First� in both cases� the boundary points are not ordered� Such ordering is itself the result

of tracing the boundary� Second� the exact measure of arc length �s� which is necessary to serve as the

independent variable for interpolation� is not known prior to interpolation� rather it is a result of it�

Thus� we are faced with somewhat of a 	chicken�and�egg
 problem� order and arc�length can be obtained

from accurate subpixel interpolation� but subpixel interpolation requires order and arc length�� The

solution� we propose� revolves around a two�stage interpolation scheme to� �i� obtain unordered sample

points of the boundary with subpixel accuracy� and then order them� and �ii� interpolate between these

points in �D� using a geometric generalization of the �D ENO scheme� We now describe each stage in

turn�

��� First Stage� Subpixel Samples

The goal of the �rst stage is to obtain samples of the trace of the boundary with subpixel accuracy� and

later to order these points� Subpixel sample points can be obtained by �D ENO interpolation of the

�See �	�� for a similar dilemma faced in the problem of curve detection from images�
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Figure �� The �D shock placing ENO interpolation is performed along gridlines� The zeros of the interpolation

polynomials provide subpixel sample points� e�g�� the crosses in the intervals A��A�� and A��A���

surface in the direction of any line passing through �D grid points� for each interval along such a line�

we apply the shock�placing ENO algorithm� Section �� and store the coe�cients of the interpolation

polynomial� The sampled boundary points correspond to the zeros of these interpolation polynomials�

Two cases must be handled� First� if no shock is placed there is a single interpolation polynomial to

consider� Its zeros are found and those which lie within the interval under consideration are stored�

Second� when a shock is placed� there are two polynomials to consider� i�e�� one from the left and one

from the right� The zeros of each polynomial are found and those that lie within the interval under

consideration and on the appropriate side of the shock are stored�

Now� since there are many lines that pass through �D grid points� a question arises as to which lines

to use� Not surprisingly� the most convenient choices are grid lines� or lines that pass through �normal

resolution� grid points in both the horizontal and vertical directions� Of course� any other lines such as

diagonal lines through grid points will also serve for our purpose� but in practice we have found that

grid lines alone give excellent results� We note that underlying the �D interpolation is the assumption

that the surface is piecewise smooth along these lines� Hence� as we stated in Section �� it is this step

that implicitly takes advantage of geometric continuity in the direction orthogonal to level curves�

To illustrate� let us consider shock placing ENO interpolation using second�order polynomials� Fig�

ure �� The interpolation in the interval A��A�� will use the points A��� A�� and either A�� or A���

depending upon which leads to the smaller coe�cient for the second�order term� Similarly� The inter�

polation in the interval A��A�� will use the points A��� A�� and either A�� or A��� The detected� valid

�lying within the interval under consideration� zeros will be stored for further processing� as indicated

by the crosses in Figure �� It is important to note that the subpixel boundary points are found without

explicitly representing a high resolution sub�grid between any two neighboring grid points�
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The set of boundary points obtained through the above procedure must now be ordered such that

they lie consecutively along the boundary of the shape� This is done by generalizing a standard contour

tracing algorithm� as proposed in Appendix B� It is important to note that while in our presentation

we have separated the process of sampling boundary points from that of ordering them� our algorithm

combines these into a single step� thus achieving signi�cant computational savings� To elaborate� note

that the contour tracer builds the ordered list of points sequentially� each time appending a new bound�

ary point to the end of an existing list of points� The search for which boundary point to append is

local and depends only on the last two boundary points stored in the list� Therefore� it is possible to

merge the procedure for interpolating boundary points and the tracing process into one� In fact� this is

what is done in practice� the ENO interpolation is only performed in intervals where the contour tracer

searches for boundary points�

��� Second Stage� Geometric ENO interpolation

Having obtained a set of ordered subpixel sample points along the shape�s boundary� our next task is to

interpolate between them� while simultaneously placing singularities when required� Whereas it would

appear that the shock placing ENO algorithm developed in Section � would apply directly to the ordered

sample points� there are in fact a number of limitations� In the following we examine these limitations

and propose a solution where� in place of extrinsic polynomials� a set of geometric interpolants are used�

Whereas the shape�s boundary can be described locally by a function in some x�y coordinate system�

e�g�� the Frenet Frame� this is only true in an in�nitesimal sense� Since the data is discrete� in an interval

where discontinuities or high curvature points are present� the function can become multivalued� In

addition� the Frenet Frame is itself not computable prior to obtaining the curve� and in fact� if a

discontinuity happens to coincide with a sample point� the tangent itself is not well�de�ned� Even if

some coordinate system can be found in which the data is locally single�valued� the results are not

guaranteed to be invariant to rotations of the data� Thus� using a local intrinsic coordinate frame

appears to be infeasible�

Alternatively� the original �extrinsic� x and y coordinates of the boundary points may be expressed as

separate functions of the arc length parameter �s� x��s� and y��s�� respectively� Unfortunately� however� as

mentioned earlier� the measure of arc length is not available prior to interpolation� although it is needed

to obtain the �t� One might proceed by assuming� for example� that the variation of �s corresponds

with the Euclidean distance between successive sample points� However� the independent interpolation

of x��s� and y��s� gives rise to a further di�culty� the selection of data points for ENO interpolation
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Order Polynomial Geometric

Orientation Curvature

First f�x� � a�x� a� ���s� � �� ���s� � �

�linear� �line�

Second f�x� � a�x
� � a�x� a� ���s� � ���s� �� ���s� � ��

�quadratic� �circular arc�

Third f�x� � a�x
� � a�x

� � a�x� a� ���s� � ��
� �s

� � ���s� �� ���s� � ���s� ��

�cubic� �Euler spiral�

Table �� A comparison between polynomial and geometric basis functions for interpolation� Note that geometric

�ts are intrinsic� or not dependent on the choice of a coordinate system�

may not coincide for x��s� and y��s�� In other words� there is no guarantee that the choice between left

and right points that results in a lower variation for the interpolation of x��s�� will also result in a lower

variation for the interpolation of y��s�� In fact� a single joint criterion must be devised for the selection

of data points to couple the x and y interpolations� An additional di�culty has to do with the extrinsic

nature of the approach� as before� the results can vary with rotations of the data set� Therefore� an

intrinsic scheme is required� as described next�

A solution to the above problems� we propose� rests in replacing extrinsic polynomials with a set of

geometric basis 	functions
 for interpolation� The essential idea is to use �ts that are not dependent

on the choice of a coordinate system� but rather depend only on the geometry of the underlying curve�

Recall that in �rst�order ENO interpolation using polynomials� all derivatives of the interpolant� with

the exception of the �rst derivative� are set to zero� This gives �rst�order interpolation in linear form�

f�x� � a�x� a�� With second�order ENO� all derivatives except the �rst two are set to zero� and so on

for higher order interpolation resulting in f�x� � a�x
��a�x�a�� etc� What are the analogs of algebraic

derivatives in a geometric sense� Here� the variables of interest are orientation and its derivatives�

namely� curvature� curvature variation� etc� In analogy to the algebraic case� the basis functions can be

found by setting various order derivatives to zero� For example� ��s � � yields a straight line� ��s�s � �

gives a circle� and ��s�s�s � � results in an Euler spiral �� These constitute our geometric interpolation

bases� with an associated sense of order� Table ��

The Geometric Essentially Non Oscillatory �GENO� interpolation begins� therefore� with a straight

�The Euler spiral is a curve with linear curvature variation� studied by Euler in ��� which has found practical use in

applications such as laying railroad tracks �����
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line� interpolating the boundary C�s� � �x�s�� y�s�� between two consecutive sample points C�sn� and

C�sn
��� If we stopped here� we would have the �rst�order �line� interpolation� A second�order �circular

arc� interpolation is constructed by adding either of the points C�sn��� or C�sn
��� whichever provides

the circular arc �t with lower curvature� A third�order �Euler spiral� interpolation is constructed by

adding yet another sample point� choosing the one which results in a lower curvature variation� in

general� for higher order interpolations� the sample point added is the one which provides the lower

coe�cient for the highest order term� Table � �� In this paper� we have limited ourselves to the use of

second order �circular arc� interpolations� primarily because geometric �ts using lines and circular arcs

are straightforward to compute� and the accuracy of the results is generally excellent� In cases where

curvature may in fact vary greatly within an interval� higher order interpolations will lead to improved

accuracy�

The above geometric interpolation gives excellent accuracy both in smooth regions and in the vicin�

ity of singularities� However� since by construction GENO interpolation is smooth in all intervals�

including those containing singularities� it cannot capture the singularities themselves� thus leading to

poor geometric estimates in such intervals� Fortunately� however� the same shock placing algorithm

designed to overcome this limitation for the �D case� Section �� also applies here� The di�erence is that

geometric basis functions are used instead of polynomials for interpolation� To repeat this argument for

�D data� in addition to the options of smoothing from one side or the other� we introduce the option

of breaking the curve in the interval under consideration� and placing a discontinuity when required�

Under assumptions � and �� when the GENO interpolation in an interval AB leads to discontinuous

estimates of orientation and curvature at is boundaries� Figure �� the two discontinuities are relieved by

smoothly continuing the neighboring interpolations and introducing a single shock �C� at the point of

intersection� Finally� we note that underlying this second stage is the assumption that the level curves of

the surface are piecewise smooth� Hence� as mentioned in Section �� it is this step that takes advantage

of geometric continuity in the direction along level curves�

In Figures � and � we illustrate GENO interpoplation on a variety of shapes� comparing it with

the commonly used bilinear interpolation technique� Observe that� �� the GENO �ts are intuitive

both in smooth regions� and in the vicinity of singularities� �� in contrast to the bilinear interpolation�

�The set of data points used to obtain the �t of order n for an interval between two consecutive data points is a superset

of that used to obtain �ts of order less than n� However� the method does not predict the order of polynomial that is

�optimal� for a particular interval in the sense of a simplicity of model versus goodness of �t tradeo�� For this purpose� one

could readily use a minimum description length �MDL� type approach ���� as a post
processing step� For example� with a

second
order GENO �t using circular arcs� circular arc interpolants of large radius may later be replaced by straight lines�
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Figure �� A comparison of interpolation techniques� Top� The original ���x��� images are obtained by sampling

an exact signed distance function of a triangle with a 	� degree right vertex� oriented at �� ��� and 	� degrees

respectively� The box depicts a ��x�� region under examination� Second Row� The shape
s interior at the

resolution of the grid� Third Row� Bilinear interpolation� Observe that the the corner is truncated or rounded�

and gross artifacts are introduced� Fourth Row� Geometric ENO interpolation� detected corners are marked

with circles� The corners are preserved and accurately placed to subpixel resolution� the distance errors in pixels

between detected and true corner locations are� from left to right� ���E��� ������ and ������
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Figure �� Bilinear versus ENO interpolation for 	 ellipses� Top� The original images are ���x��� surfaces for

an ellipse with major�minor axes equal to ������ ������ and ���� respectively� The box depicts a ��x�� region

under examination� Second Row� The shape
s interior at the resolution of the grid� Third Row� Bilinear

interpolation� Fourth Row� Geometric ENO interpolation�
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GENO explicity captures the singularities� and places them accurately� and �� in contrast to the bilinear

interpolation� GENO is robust to rotations and does not truncate corners or introduce artifacts in the

vicinity of singularities� It would seem� therefore� that GENO interpolation should lead to improved

geometric estimates in smooth regions� in the vicinity of discontinuities� and at discontinuities� In the

following section we compare the accuracy of geometric estimates using GENO with estimates obtained

from other methods�

� Geometric Estimates

In this section we show how GENO interpolation allows for highly accurate geometric estimates�

Whereas we illustrate its use for the computation of curvature� it provides accurate estimates of other

geometric quantities as well� e�g�� orientation� Speci�cally� we compare the accuracy of three di�erent

methods for obtaining curvature estimates� namely� curvature computed from� �� the derivatives of

the embedding surface �� �� bilinear interpolation�� and �� GENO interpolation� We �rst present each

method of computation� and then provide a theoretical analysis of the expected errors in each case�

followed by numerical simulations on several shapes�

We begin by showing how curvature can be computed using each method� First� it can be shown

that the curvature of a level set of �� passing through a grid point �x� y�� may be computed as�

� �
��xx�

�
y � ��xy�x�y � �yy�

�
x�

���x � ��y�
���

� ���

This method was used extensively by Sethian and Osher in numerical simulations of front propaga�

tion ��� ���� Second� in any cell that contains the curve� bilinear interpolation takes the form�

y � �
ax� b

cx� d
���

where a� b� c� and d are constants� Thus� curvature � can be computed using the standard formula�

� �
y

��

x
�

� x
��

y
�

�x�� � y���
���

� ���

Third� the estimation of curvature from GENO is directly obtained from the explicit representation of

curvature using geometric interpolants� e�g�� circular arcs�

We now provide a brief analysis of errors in the computation of curvature for each of the above

methods� We will use the notation O��� to denote an order one quantity� which is independent of the

�It should be noted that whereas we use bilinear interpolation in our comparisons� the results are generalizable since

for any higher order polynomial interpolation� a higher order GENO interpolation may be used as well�
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grid size  �taken for simplicity to be  �  x �  y�� but is in general dependent upon the function

� one approximates� The notation O� r� will denote an quantity which decays with the grid size  

in r�th power� For example� if the error is O� �� and  is decreased by half �i�e� the number of

grid points is increased by a factor of two�� then the error should decrease by a factor of four� Our

analysis examines two factors� namely� whether the curve lies in a smooth or discontinuous region of the

embedding surface� and whether the curve has been localized exactly or approximately� First� assume

that we are in a smooth region of �� and that the curve has been located exactly� The expected errors

are then as follows�

�� Derivatives of �� If the values of the function � are known at the grid points� either exactly� or at

least to second order accuracy O� ��� and each derivative in the analytic formula for curvature ���

is approximated by a second order divided di�erence� then � is accurate up to O� �� � � �� The

proportionality constant � depends directly on the magnitude of the higher derivatives of �� e�g��

�xxx� �xxxx� �xxyy� etc� This constant may be large or small depending upon the particular function

�� however it is �xed and is independent of the grid size  � Thus� to reduce the error �say by a

factor of four�� one only has to increase �double� the number of grid points in each direction� To

see an example of how these error bounds are obtained� consider approximating �xx at the grid

point x � xi by the central di�erence formula
�i	����i
�i��

�� � Simple Taylor expansion reveals that

the error is given by

�xxjxxi
�

�i
� � ��i � �i��
 �

�
�

��
������� ��

where � is some point between xi�� and xi
�� Clearly this error is of the size O� 
��� with the

proportionality constant depending upon the fourth derivative of ��

�� Bilinear Interpolation� When bilinear interpolation is used to compute curvature directly� the

accuracy is at most �rst order� O� �� This is because the bilinear function ��� does not contain

enough second order terms to approximate curvature� only the cross term xy exists� However�

it is important to mention that it is always possible to use a wider stencil to construct a higher

order polynomial interpolation� leading to more accurate curvature estimates� but only in smooth

regions of ��

�� GENO�When GENO interpolation is used to compute curvature and other geometric quantities�

the accuracy is again the same as that of the interpolation itself� e�g�� of O� �� for the second�

order interpolation� Again� higher order GENO interpolation will lead to higher order accuracy

in the geometric estimates�
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From the above it appears that in smooth regions of the function �� and when the trace of the curve

is exactly known� curvature from GENO is comparable to curvature from derivatives of �� with O� ��

errors� On the other hand� curvature computed directly from bilinear interpolation leads to errors of

size at least O� �� Again� it is important to point out that the crucial factors are� i� whether the

value of � is accurate� i�e�� the curve has been accurately located� and ii� whether the interpolation

region is a smooth region of �� If both the above are true� then higher order estimates for curvature or

other geometric quantities can be obtained by using a wider stencil interpolation� This is true for all

the three cases above� The advantage of GENO is that it gives a much more accurate location of the

curve� and it allows one to use a locally smooth region to perform the interpolation when close to or at

a discontinuity in the curve�

Now� if we relax the assumption that the location of the curve is exactly known� e�g�� in method �

typically one uses � at grid points to estimate � on the curve� then the additional error is �rst order�

O� �� It is clear� therefore� that in order to obtain full second order accuracy� the location of the curve

must be known either exactly or at least to second order accuracy� O� ��� In other words� accurate

subpixel placement of the curve is the crucial factor in preferring GENO over the other methods in

smooth regions of ��

Finally� if we also relax the assumption that we are in a smooth region of �� the accuracy of methods �

and � is entirely lost with central di�erence approximations� This is because the above analysis of errors

is valid only when the interpolations have stencils completely inside the smooth region of �� In regions

containing discontinuities of � �and hence singularities of the curve�� one can expect errors of O����

Therefore� for accurate curvature computations in such regions� it is important that the discontinuities

be explicitly placed�

We now present numerical experiments which examine curvature computations� In these numerical

simulations� the surface in which the shape is embedded is exactly known� e�g�� as obtained by sampling

values of an analytic signed distance function at grid points� The analytic representation allows for an

exact computation of curvature at any point� which can then be used as a standard to measure numerical

estimates against� For this purpose� we use shapes with corners having di�erent angles �triangles�� as

well as smooth shapes with varying curvature �ellipses��

First� we compare curvature estimates from the above methods� on three triangle shapes� represent�

ing three di�erent vertex angles� with the orientation of each triangle being varied over three values�

�� �� and �� degrees� Note that the expected curvature at each boundary point is �� except at corners

where it is in�nite� For each of the three methods� we tabulate the maximum value of the error� namely�
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Shape Expected Level Set Bilinear GENO

j�j j�j �max� j�j �max� j�j �max�

triangle���� � degrees ��� ����E�� ���E�� ���E��

triangle���� �� degrees ��� ����E�� ����E�� ����E��

triangle���� �� degrees ��� ��E�� ����E�� ����E��

triangle���� � degrees ��� ����E�� ����E�� ��E��

triangle���� �� degrees ��� ����E�� ���E�� ����E��

triangle���� �� degrees ��� ����E�� ����E�� ����E��

triangle���� � degrees ��� ����E�� ����E�� ���E��

triangle���� �� degrees ��� ����E�� ����E�� ����E��

triangle���� �� degrees ��� ����E�� ����E�� ����E��

Table �� A numerical comparison of curvature estimates for a �� degree� 	� degree and �� degree right vertex

triangle� each at 	 di�erent orientations� For each shape� we compute j�jmax over all boundary points� using

three di�erent methods� This provides a numerical estimate of the upper bound on the error in the estimation of

curvature� since the expected curvature is ��

j�j� found over all non�corner boundary points� Table �� This provides a numerical estimate of the max�

imum error in curvature estimation� for non�corner boundary points� Observe that in almost all cases�

j�jmax using GENO with circular arcs is signi�cantly less than j�jmax using the other two methods�

While the performance of GENO is clearly better than the other methods in the smooth regions of the

triangles� note that at corners the utility of GENO is indispensable� both the level set and bilinear

methods completely miss the in�nite curvature associated with corners� The GENO interpolation� on

the other hand� explicitly places corners� and thus represents their in�nite curvature�

We now examine curvature estimates for smooth shapes with varying curvature� using ellipses having

di�erent eccentricities� Speci�cally� we consider the three ellipse shapes in Figure �� with major to

minor axis ratios ��!��� ��!��� and ��!�� respectively� For each ellipse� we sample points lying at

�	�� ��	�� �	� �	� and � radians� Figure �� and compare the numerical estimate of curvature� obtained

using each of the above methods� with the expected curvature� Table � As expected� the bilinear

interpolation method provides the poorest curvature estimates� and as mentioned earlier these could

be substantially improved� at least in low curvature regions� by using higher order polynomials for

interpolation� On the other hand� the GENO curvature estimates are typically the most accurate when

compared with the bilinear and level set methods� In intervals where the GENO estimates lead to
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Shape Expected Level Set Bilinear GENO �Circular Arcs�

j�j j�j j�j j�j

ellipse������

P�� �	� ���E�� ����E��� Error� ���" ���� Error� ���" �����E��� Error� �"

P�� ��	� ���E�� �����E��� Error� ���" ����E��� Error� ����" �����E��� Error ���"

P�� �	 ���E�� ��E��� Error� ���" �����E��� Error� ���" �����E��� Error� ���"

P� �	� ���E�� �����E��� Error� ���" �����E��� Error� ����" �����E��� Error� ���"

P�� � ���E�� ����E��� Error� ���" ���� Error� ���" ���E��� Error� �"

ellipse������

P�� �	� �����E�� �����E��� Error� ����" ���� Error� ���" �����E��� Error� ���"

P�� ��	� �����E�� �����E��� Error� ���" ��E��� Error� ����" �����E��� Error� ���"

P�� �	 �����E�� �����E��� Error� ��" ����E��� Error� ����" �����E��� Error� ����"

P� �	� �����E�� �����E��� Error� ����" �����E��� Error� ���" �����E��� Error� ���"

P�� � ����E�� �����E��� Error� ���" ���� Error� ���" �����E��� Error� �"

ellipse�����

P�� �	� �����E�� �����E��� Error� ���" ���� Error� ���" �����E��� Error� ���"

P�� ��	� �����E�� �����E��� Error� ���" ����E��� Error� ����" �����E��� Error� ��"

P�� �	 ����E�� �����E��� Error� ��" ����E��� Error� ���" ����E��� Error� ����"

P� �	� �����E�� �����E��� Error� ����" ����E��� Error� ���" ����E��� Error� ���"

P�� � �����E�� �����E��� Error� ���" ���� Error� ���" �����E��� Error� ���"

Avg Error� ���" Avg Error� ��" Avg Error� ���"

Max Error� ����" Max Error� ���" Max Error� ���"

Table � A numerical comparison of curvature estimates for the ellipses in Figure �� and the associated errors�

For each ellipse� the sample points P�� P�� P	� P� and P� lie at orientations of ���� 	���� ��� ���� and �

radians respectively� Figure ��
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Figure �� The sample points for the curvature estimates in Table  lie at orientations of ���� 	���� ��� ����

and � radians� respectively� from the center of each ellipse�

signi�cant errors� i�e�� ��" or more� we see the limitation of using circular arc interpolants�� Typically

the curvature is changing rapidly within such intervals� and higher order interpolants are required for

improved accuracy� In summary� both theoretical and numerical considerations support the use of

GENO in locating the curve and estimating its geometric properties�

	 Examples

In this section we illustrate the advantages of GENO by presenting examples of two popular applications

of curve evolution in computer vision� shape segmentation and shape representation� In both these

applications a �D curve is evolved via the following partial di�erential equation�


C


t
� ���� �N�

where C is the boundary vector of curve coordinates� �N is the outward normal� t is the time duration

�magnitude� of the deformation� and � is an arbitrary function� It was shown that for numerical

reasons ��� ���� as well as for theoretical ones ���� ���� it is preferable to embed the evolution in a

higher dimension� where C is the zero level set of an evolving surface �� i�e�� ��x� y� t� � �� Typically� �

is taken to be the distance transform of the shape ��� ��� However� other continuous functions may be

used as well ���� ���� The evolution of � is then given by�


�


t
� ����jr�j � ��


It is worth noting that in such intervals� the level set method leads to even larger errors in the numerical estimates�

�



At each iteration� the recovery of C from � is required� both for display purposes� and for obtaining

accurate geometric estimates� Section �� Since in the discrete domain the zero level set almost always

passes between grid points� a straightforward discretization leads to a 	jagged
 appearance� As a

remedy� Sethian and Strain ���� present a method to construct a piecewise linear approximation to the

curve� using linear interpolation along gridlines to determine the line�segment end points� This method

is very similar to bilinear interpolation and performs well in smooth regions� where at most one zero

level set curve segment passes through each cell� However� it su�ers from the same drawbacks� it cannot

represent corners or multiple curve segments per cell� both of which can be signi�cant aspects of the

evolution� In the following we present numerical simulations that demonstrate the superiority of GENO�

��� Shape Segmentation

The �rst application we consider is that of shape segmentation� where a number of promising curve

evolution approaches have recently been introduced ���� ��� ���� In all these techniques the essential

idea is to evolve a curve under the in�uence of image forces so that it is attracted to features of interest

in an intensity image� e�g�� edges or areas of high gradient� combining ideas from active contours ����

with ones from level set modelling ����

Figure �� �top� illustrates the bubbles�based segmentation of a range image ����� In this simulation

three bubbles are initialized in homogenous regions of the image and they evolve to capture the outline

of the screw� We focus on a �x� region of the original� depicted by the white box� and compare

the recovery of the evolving fronts via bilinear interpolation of the embedding surface �middle left and

bottom left� with GENO �middle right and bottom right�� Observe that whereas bilinear interpolation

results in topological splits when the fronts are within the same pixel� GENO is able to recover the

fronts as distinct and to place discontinuities �circles� that lie along the threads of the screw�

��� Shape Representation

The second application we consider is of that of shape representation in the context of deformations

of it ���� ��� ���� The key to this representation is a classi�cation of the shocks or discontinuities

that occur in the course of evolution� into four types� The details of a numerical algorithm for shock

detection based on GENO appear in ����� The accurate representation of multiple curves per pixel� and

the resulting discontinuities �shocks�� are both signi�cant aspect of their detection and classi�cation�

In the following we compare GENO interpolation with discrete binarization� as well as with bilinear

interpolation� for the recovery of the evolving curve in these four situations� �i� shapes evolving with

��
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Figure ��� Top� Three bubbles ���� are initialized in homogenous areas of a range image �left� and they evolve

to capture the outline of a screw �left to right�� Middle and Bottom� We focus on a �x� region� �the white

box on the original�� and compare bilinear interpolation �left� with GENO for recovery of the evolving fronts�

Observe that whereas bilinear interpolation results in topological splits when the fronts are very close� GENO is

able to recover the fronts as distinct and to place discontinuities �circles� that lie along the threads of the screw�
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Figure ��� Left to Right� The embedding surfaces are ��� x ��� signed distance transforms of a �triangle�� a

�peanut�� a �bend�� and a �circle�� In each case� the box depicts a �� x �� region under examination in Figures ��

and �	�

orientation discontinuities ��rst�order shocks�� �ii� shapes developing topological splits �second�order

shocks�� �iii� the collapse of one curve segment onto another �third�order shocks�� and �nally �iv� the

collapse of an entire shape onto a point �a fourth�order shock�� Figure �� depicts the original shapes�

along with their embedding surfaces� which are then evolved using ���� � �� although other choices are

possible as well�

First�order shocks� Figure �� �top� displays the corner of an evolving triangle� Note that while

the evolution preserves the discontinuity� this is not immediately evident in the discrete representation�

The bilinear interpolation performs well in smooth regions� However� observe the artifacts near the

corner� as well as the inaccuracies of corner placement� GENO interpolation� on the other hand� places

both the corner and the adjacent line segments� to subpixel accuracy�

Second�order shocks� Figure �� �bottom� depicts the central region of a 	peanut
 shape� which

develops a topological split� Observe that both discrete binarization as well as bilinear interpolation

truncate the evolving curve when it undergoes a topological change� The GENO interpolation� on the

other hand� accurately represents the evolving front� Observe that the two approaching curve segments

are recovered� even though both lie within the same cells� In addition� after the shape has split� the two

cusps are accurately placed and represented with the appropriate orientation and curvature�

Third�order shocks� Figure �� �top� depicts the evolution of two parallel curves which collide

and subsequently annihilate� Observe that with discrete binarization the approximation to the curve

boundaries is jagged� while bilinear interpolation leads to unwarranted topological splits� The GENO

interpolation� on the other hand� accurately places the evolving curves as they are about to collide� even

when portions of each curve lie within the same cell�

Fourth�order shocks� Figure �� �bottom� displays an evolving circle which shrinks and collapses

��



onto a point� Note that the intermediate shapes should also be circles� However� both discrete bina�

rization and bilinear interpolation lead to 	squarish
 representations as the circle becomes small� The

GENO interpolation technique� on the other hand� is more faithful to the expected circle� even when it

spans only slightly more than a cell�


 Conclusion

To conclude� in this paper we have introduced a geometric interpolation scheme for subpixel recovery

of level curves while respecting and explicitly placing discontinuities along them� The method relies

on an extension of essentially non�oscillatory interpolation schemes to a particular subcell resolution

implementation� Whereas subcell resolution for ENO was introduced by Harten ����� it applied to �D

conservation laws� and it was not clear how to extend the method to �D conservation laws� In the

current context we circumvent these limitations by� �� using geometric continuity constraints �rather

than conservation for conservation laws� and �� using geometric building blocks �lines� circular arcs�

etc�� rather than polynomial interpolants� As illustrated by several examples the method can be readily

applied to the problem of recovering an evolving level set in a variety of curve evolution applications�

In addition� the algorithm serves as a nice technique for postprocessing of image data to extract more

accurate geometric information about level curves than regular ENO can do�

A Newton Divided Di�erence

In the following� we review the standard Newton divided di�erence� denoted f ��� where f�� denotes the

function evaluated at its arguments� The standard Newton divided di�erence is inductively de�ned as

f �x�� x�� � � � � xk
�� �
f �x������xk	���f �x������xk�

xk	��x�
with f �x�� � f�x��� That is�

f �xj� � f�xj��

f �xj� xj
�� �
f �xj
��� f �xj�

xj
� � xj

�
f�xj
��� f�xj�

xj
� � xj
�

f �xj� xj
�� xj
�� �
f �xj
�� xj
��� f �xj� xj
��

xj
� � xj

��
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Figure ��� Each row depicts the interior of the shape at the resolution of the grid �left�� the bilinear interpolation

of the boundary �middle� and the GENO interpolation of the boundary� with detected corners marked with circles

�right�� Note that in contrast to bilinear interpolation� GENO interpolation is able to capture the corner of the

evolving triangle ��rst�order shock� top two rows� with subpixel resolution and without introducing artifacts�

and to represent the topological split at the neck �second�order shock� bottom two rows�� followed by the

formation of cusps on either side�
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Figure ��� Each row depicts the interior of the shape at the resolution of the grid �left�� the bilinear interpolation

of the boundary �middle� and the GENO interpolation of the boundary �right�� Note that in contrast to bilinear

interpolation� Geno interpolation is able to represent the collapse of the bend without introducing artifacts �third�

order shocks� top two rows�� and to preserve the circular shape of the circle� even as it shrinks to a point

�fourth�order shock� bottom two rows��
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Figure �� This �gure illustrates the ENO contour tracer� Since a grid point has � neighbors� in the case of a

discrete contour tracer there are � directions in which to search for the next contour point� � to �� �top left��

For the ENO contour tracer� there are � intervals to search in for neighboring zero�crossings� but these di�er

depending upon whether the current point P lies along a horizontal gridline �top right�� or a vertical gridline

�bottom left�� However� an exception arises when the current point P coincides exactly with a grid point

�bottom right�� In this case� there are �� intervals to search in�

���

f �xj� ���� xj
k� �
f �xj
�� ���� xj
k�� f �xj� ���� xj
k���

xj
k � xj
�

B ENO Contour Tracer

In the following� we propose an algorithm for obtaining a set of ordered high resolution sample points

which lie along a shape�s boundary� without blurring across discontinuities� The essential idea is to

extend a standard �discrete� contour tracer such that instead of grid points� it uses high resolution

boundary points obtained by ENO style interpolation� as discussed in Section ��� We begin by reviewing

a standard contour tracer� and then show how it can be modi�ed to accommodate ENO interpolation�

First� we summarize a standard contour tracing algorithm ����� adopting the convention that the

shape�s boundary is traced in a counter clockwise �CCW� direction around the shape� The essential

idea behind this discrete contour tracer is to add� at each step� a single contour point to the end of an

existing list of points� see ���� for how to initialize the tracer and further details� Given the last point

��



P added to the list� there are a �xed number of directions ��� in which to search for the next point to

append� Figure � �top left�� The search proceeds CCW around P � beginning in the direction of the

next to last point in the list� P�� and ending at the �rst point found that lies in the interior of the

shape� P
� This process is then repeated until the contour tracer returns to the point at which the

trace started� and the trace is therefore complete�

Second� to see how the above tracer can be extended using ENO style interpolation� recall from

Section �� that high resolution boundary points can be found by locating zero�crossings of interpolation

polynomials along grid lines� Figure �� Observe that the local neighborhood of such a zero�crossing can

be of two types� depending upon whether the crossing lies along a horizontal gridline� Figure � �top

right� or a vertical gridline� Figure � �bottom left�� However� in each case� there are still a �xed number

of neighboring intervals ��� in which to search for neighboring zero�crossings� Thus� the same algorithm

outlined above for the discrete case� also applies here� The di�erence is that instead of searching in

a �xed number of directions to �nd the next grid point to store� one searches in a �xed number of

intervals to �nd the next zero�crossing to store� However� since in general there can be more than one

zero�crossing in the interval� care has to be taken to always select the �rst zero�crossing found� ordered

in a CCW direction about the current zero�crossing� We should mention that there is one exception to

the above algorithm� which arises when a zero�crossing lies exactly at a grid point� i�e�� both along a

vertical and a horizontal gridline� In such a case� the search neighborhood is slightly more complicated�

as shown in Figure � �bottom right��

Finally� we wish to stress two important properties of the ENO contour tracer� both of which lead

to signi�cant computational savings� First� whereas the ENO contour tracer provides an ordered set of

high resolution boundary points� there is no explicit uniformly high resolution representation� Second�

since at each step the search for which boundary point to append is local and depends only on the last

two boundary points stored in the list� there is no need to �rst interpolate zero�crossings throughout the

�D grid� Section ��� Rather� the ENO interpolation can be performed hand in hand with the contour

tracing procedure� and only in intervals where the contour tracer searches for boundary points�
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