
EUROGRAPHICS 2002/ I. Navazo and Ph. Slusallek Short Presentations
(Guest Editors)

©The Eurographics Association 2002.

Geometric Simplification of Foliage

I. Remolar, M. Chover, Ó. Belmonte, J. Ribelles, C. Rebollo

Departamento de Lenguajes y Sistemas Informáticos, Universitat Jaume I, Castellón, Spain

Abstract

One of the most important challenges in real-time rendering of outdoor scenes is the representation of
vegetation. This is due to the vast amount of polygons that are used to model vegetable species. The
present automatic simplification algorithms produce acceptable results in the trunks and the branches,
but not in the foliage of a tree. After simplification with the existing methods, the trees seem to be less
leafy. In this paper, a new automatic simplification algorithm for this part of the tree is presented, the
Foliage Simplification Algorithm. It diminishes the number of polygons in the crown, while maintaining
the appearance. It uses a new method, leaf collapse: two leaves disappear to create a new one. The
leaves obtained after collapsing preserve an area similar to that of the collapsed leaves

1. Introduction

Many of the current interactive applications such as
flight simulators, virtual reality environments or
computer games take place in outdoor scenes. One of
the essential components in these scenes is the
vegetation. The lack of trees and plants can detract
from their realism. Tree modelling has been widely
investigated 1,2, and its representation is very realistic
(Figure 1). However, tree models are formed by such
a vast number of polygons that real-time visualisation
of scenes with trees is practically impossible.

Real-time visualisation of vegetable species has
not been extensively explored. Although there are
more complex techniques, most of the applications
make use of image-based rendering approximations
3,4,5. In some applications, however, geometry is
necessary. In this case, the most popular method of
representation is to use polygonal models. The
mathematical simplicity of this type of representation
makes it possible to render a great number of
polygons with the current graphics hardware.
However, due to the vast amount of polygons that
compose the tree models, it is necessary to use some
method that diminishes the number of polygons that
form the object, without loss of the appearance. One
of the existing methods to obtain this objective is the
application of automatic simplification algorithms 6,7.

Many automatic simplification methods have
appeared up to now. Applying them to trees, these

obtain acceptable results with the meshes of polygons
that represent the trunk and the branches. However,
they do not work properly with the foliage. The
existing simplification methods generally eliminate
polygons, so that the appearance of the crown after an
automatic process of simplification is that it has been
pruned. The number of leaves is less than before, so
the tree appears less leafy. The images obtained with
these methods are not very realistic and for this
reason it is necessary to introduce new solutions.

Figure 1: Aesculus hippocastanum. Tree modelled
with the commercial modelling tool Xfrog. 192.179
triangles

Remolar et al. / Geometric Simplification of Foliage

©The Eurographics Association 2002.

The method presented in this paper for the
automatic simplification of foliage diminishes the
number of polygons that form the crown, while
maintaining its leafy appearance. The key to the
algorithm is leaf collapse. Two leaves are
transformed into a single one, so that the area of the
new leaf is similar to the area formed by the two
leaves initially. An error function is the way of
determining the pair of leaves that will be simplified
to create a new one.

2. Related Work

Because previous work on geometric simplification
has recently been reviewed in several papers 6,7, in
this article we review the different existing methods
of simplification. We analyse the results that would
be produced on the mesh of isolated triangles that
constitutes the foliage of the trees.

According to 7, one of the methods traditionally
used to generate simplified versions of an object, is
the manual method. The user generates several levels
of detail by hand. Simplified versions of trees and
plants can be obtained, in the case of using L-
systems, by limiting the number of polygons at the
time of generating the object. This is one of the most
widely used methods for tree geometry
simplification. The commercial software Xfrog 2 has
an additional tool, denominated XfrogMLOD, to
generate these levels of detail. The user determines
the number of leaves or branches that conform the
tree during its modelling. Varying this parameter,
different levels of detail of a same tree are obtained.
But these tools cannot simplify any geometric
description of a tree. They only simplify trees that
have been generated with that software.

Another method is Vertex Clustering 8,9. It
partitions the vertex set spatially into clusters and
unifies all vertices within the same cluster. This
produces simplified trees that appear to have been
pruned.

Region Merging 10 and Wavelet Decomposition 11

methods do not work properly with meshes of
isolated polygons. Region Merging is generally
restricted to manifold surfaces. Wavelet
Decomposition is adequate for surfaces with
subdivision connectivity.

Vertex Decimation 12,13 does not produce good
results either. In each step of the decimation process,
a vertex is selected for removal, all the faces adjacent
to that vertex are removed from the model, and the
resulting hole is re-triangulated. In our case, each leaf
is formed by two triangles with an image textured on

it. If one of them is eliminated, it would cause the
image to be disfigured. The Iterative Contraction
14,15,16 method would produce the same effects as
those mentioned with regard to vertex decimation.

The Foliage Simplification Algorithm has been
developed in order to generate different levels of
detail of a same tree without losing similarity with the
original model.

3. Tree geometry simplification

The trees used in our study are modelled by the Xfrog
application 2 (Figure 1). They are very realistic, but
are generally formed by more than 50.000 polygons
each. This is a disadvantage when it comes to
generating images in an interactive way.

The trees can be separated into two different
parts: the solid component of the tree, i.e. the trunk
and the branches, and the sparse component, the
foliage or leaves. The trunk and the branches are
represented by triangle meshes and the foliage by a
set of isolated polygons where each of the leaves is a
textured quadrilateral.

The trunk is formed by a set of meshes of
polygons. A great number of automatic simplification
algorithms existing in the literature deal with this
type of objects. In this work, the algorithm proposed
by Garland and Heckbert 14, qslim has been used.
This algorithm is public domain and it is available at
http://graphics.cs.uiuc.edu/~garland/research/quadrics
.html (Figure 2).

a) b)
Figure 2: a) Image of the original trunk formed by
47.691 polygons and b) image of a simplified trunk
with 1.999 polygons.

Secondarily, the foliage of the tree is formed by a
set of independent polygons. The automatic
simplification algorithms that have appeared up to
now do not work properly with this type of
representation. Figure 3 shows the crown of a tree

Remolar et al. / Geometric Simplification of Foliage

©The Eurographics Association 2002.

after application of the automatic algorithm qslim. It
can be seen that, in this image, the tree is less leafy.

a) b)

c) d)

Figure 3: Example of a simplified foliage from a)
20.376 leaves to b) 6.710, c) 779 and d) 236 leaves.

Foliage Simplification Algorithm, FSA, has been
defined with the purpose of diminishing the number
of polygons that form the foliage of the tree without
losing the leafy appearance. The algorithm is
described below.

4. Foliage Simplification Algorithm

The tree leaves defined with the Xfrog application are
represented by quadrilaterals formed by two triangles.
The final aspect is obtained by texturing these
quadrilaterals with the image of a leaf. The method of
simplification presented in this paper repeatedly
selects a pair of leaves, which minimises an error
function. These leaves disappear and a new one is
obtained. The collapsed leaves are eliminated from
the list of candidates, and next, the new leaf is
evaluated with the leaves that remain in the foliage.

The main idea of this simplification algorithm is
that the leaf obtained after collapsing maintains an
area similar to that of the collapsed leaves. This is

done in order to preserve the appearance of the
foliage when the number of leaves is reduced.

The simplification method is characterised by two
elements: the measurement that specifies the cost of
collapsing two leaves, and the position of the vertices
that form the newly created leaf. These two questions
are discussed in the following sections

4.1 Leaf Collapse Cost.

Given a set of candidate leaves to be collapsed, a pair
will be chosen so that the error function is
diminished. This function combines distance and
planarity between the pair of evaluated leaves.

Assuming that l1 and l2 are two leaves pertaining to a
certain level of detail, the error function is as follows:

() () ()21221121 ,,, llcklldkll H ×+×=ε

where dH (l1, l2) is the distance between leaves, and
c(l1, l2) the planarity level. Measurement of the
distance between leaves is performed according to
Hausdorff. This measurement makes geometric
comparisons between two sets of points, using the
shortest distance between a point x and a set of points
Y:

() ()x,yminx,Yd Yy d∈=

where d(x, y) is a measurement between a pair of
points. The distance of Hausdorff is defined as:

() () ()
YX

XydYxd
X,Yd YyXx

+
+

= ∑∑ ∈∈ ,,

In addition, we also measured the planarity
between two leaves. This was done by comparing the
angles formed by the normal vectors of the leaves.
Two constants were used, k1 and k2 in the function.
In this way, the relevance of the two criteria can be
changed by varying these constants.

The planarity criterion would give back values
within an interval of 0 and 1, because it is based on
the scalar product of the normal of the leaves.
Similarly, the criterion of the distance is normalised
with respect to the diameter of the sphere surrounding
the crown. All this means that the error function
moves in the range [0,1].

4.2 Vertex placement.

The simplification algorithm does not introduce new
vertices in the model. The vertices of the new leaf

Remolar et al. / Geometric Simplification of Foliage

©The Eurographics Association 2002.

will be two vertices of each of the collapsed leaves.
For this reason, the two vertices of each leaf that are
furthest from the other leaf would be chosen. This
method will allow us to maintain an area similar to
the two original leaves. However, the two triangles
that will form the new leaf are not generally in the
same plane.

collapse

split

collapse

split

Figure 4: Simplification of two leaves to create a new
one. The vertices of the original leaves remain.

4.3 Algorithm Overview

The main data structure of the algorithm is the
Leaf class, shown in Figure 5. Each of the leaves in
the foliage is represented by an object of this class.

Class Leaf
{ int id;

int Vertex[4];
float Normal[3];
float error;
int id_couple;
int lnumber;
bool exists; }

Figure 5: Principal C++ data structure.

Firstly, all the polygons that make up the foliage
are possible candidates to be simplified. For this
reason a flag, exists, has been introduced which
initially would be true in all the polygons.

Each of the leaves will be evaluated with the rest
according to the error function ε(l1, l2). Two data will
be stored in them:

• the leaf that makes the error function as
low as possible, id_couple, and

• the value of this function, error.

The lnumber field indicates the number of leaves
that have been collapsed to create this leaf. In order to
prevent some leaves from growing in an unbalanced

form with respect to others, we imposed the condition
that two leaves will only be collapsed if the values of
their lnumber differ by one. In this way, the
coexistence of excessively large leaves and the
original, much smaller, leaves is avoided.

When all the leaves have been evaluated, the pair
of leaves that make the lowest error function is
chosen. This selected pair will be taken away from
the candidate leaves putting flag exists to false, and
the new leaf will enter on this list.

Considering Ls as the set of leaves that initially
form the crown of the tree, the core of the traversal
algorithm is summarised in Figure 6.

for each leaf l1 ∈ Ls {

l1.error = MAXERROR; // inicialization

 for each leaf l2 ∈ Ls {
 if (l2.exists == true) && (l2 != l1){
 if (abs(l2.lnumber – l1.lnumber))< 2
 {

 P = Planarity (l1,l2);
 D = Haussdorf (l1,l2);
 ε = Criterium (P,D);

 If (l1.error > ε){
l1.error = ε;
l1.id_couple = l2; }

 }
 }
}

Figure 6: Pseudocode of the algorithm that
calculates the error

When a leaf collapse is performed, the new leaf will
be evaluated with the rest of the leaves in the same
way as described above. The same process will be
done for the candidate leaves that store in the
id_couple field one of the two leaves that have just
been collapsed.

The number of leaves that make up the simplified
crown is determined a priori by the user. This will
condition the number of iterations of the algorithm.

5. Results

The method developed was implemented with
OpenGL on a PC with Windows 2000 operating
system. The computer used was a dual Pentium III
Xeon at 1.5GHz. with an NVIDIA Quadro2 Pro
graphics processor with 64MB.

Remolar et al. / Geometric Simplification of Foliage

©The Eurographics Association 2002.

The distance between leaves has been considered
a more important criterion than planarity in our
experiments. In this way, our results have been
obtained with k1 = 0,8 and k2 = 0,2.

Figure 7 shows the three tree models used for the
experiments. They have been simplified with the FSA
algorithm, and the results are presented in Figure 8. It
can be observed that the images obtained maintain
the appearance although their leaf number
diminishes. In these images, the trunk has been
simplified from 38.781 polygons to 12.771 polygons
in Figures 8a.1, 8b.1 and 8c.1, 1.482 polygons in
8a.2, 8b.2 and 8c.2, and 449 at the rest.

Figure 9 shows some VRML world scenes where
appears the tree shown in Figure 7a. Four different
levels of detail have been used to design this VRML
world, that is available at http://graficos.uji.es/trees/.

6. Future Work

In this work, we have studied the geometric
simplification of foliage, accepting the results of the
simplification algorithms on the structure of the trunk
and the branches. But these algorithms prune the
branches when simplifying this structure. The next
step is to develop a simplification algorithm that does
not cut the branches and limbs. The main idea is that
the algorithm determines its skeleton and eliminates
polygons while still maintaining it.

Another line of research we are currently working
on is the development of a continuous multiresolution
model. Some authors 6,7,17 have classified
multiresolution models into basically two groups:
discrete and continuous. Discrete models contain a
finite number of levels of detail and a control
mechanism to determine which is the most adequate
in each moment. It is possible to obtain different
levels of detail of the same tree with our algorithm.
This would constitute a discrete multiresolution
model. On the other hand, the continuous models
capture a vast range of approximations of an object,
virtually continuously. They offer the possibility of
adapting the level of detail in real time. This
accelerates the visualisation. Some of this type of
multiresolution models can represent an object with
variable resolution 18, that is, different resolutions can
coexist in different regions of the rendered object.

Hoppe presents a multiresolution model with
these characteristics in 18, based on the simplification
operation edge collapse. Thus, we are developing a
continuous multiresolution model based on the leaf
collapse operation. This is a continuous model that
allows us to represent the foliage with variable

resolution. Our multiresolution model of the trees
will permit us to adjust the level of detail to the
application requirements. In this way, fewer polygons
will be used to draw distant objects. Furthermore, the
model of the crown will allow us to represent the
foliage at variable resolution. For example, when
trees are close to the viewer, the front parts will be
represented with more detail, and the back parts with
less detail.

For more information and colour images, please
visit http://graficos.uji.es/trees/.

Acknowledgements

This work was supported by the Spanish Ministry of
Science and Technology grants TIC1999-0510-C02-
02 and TIC2001-2416-C03-02

References

1. P. Prusinkiewicz, A. Lindenmayer, “The
algorithmic beauty of plants”, New York, Ed.
Springer-Verlag, 1990.

2. B. Lintermann, O. Deussen. “Interactive
modelling of plants”, IEEE Computer Graphics
and Applications, 19(1), 1999.

3. N. Max, K. Ohsaki. “Rendering trees from
precomputed Z-buffer views”, Eurographics
Workshop on Rendering 1996, pp. 165-174,
1996.

4. D. Marshall, D. Fussell, A. T. Campbell III,
"Multiresolution Rendering of Complex
Botanical Scenes", Graphics Interface '97, pp. 97-
-104, 1997.

5. A. Jakulin. “Interactive Vegetation Rendering
with Slicing and Blending”, Eurographics’2000,
Short presentations, 2000.

6. E. Puppo, R. Scopigno, “Simplification, LOD
and Multiresolution – Principles and
Applications”, Eurographics’97, Tutorial Notes,
1997.

7. P. Heckbert, M. Garland, “Survey of Polygonal
Surface Simplification Algorithms”, Siggraph’97
Course Notes, 1997.

8. J. Rossignac, P. Borrell. “Multi-resolution 3D
approximations form rendering complex scenes”,
Modelling in Computer Graphics: Methods and
Applications, pp. 455-465, 1993.

9. K. Low, T.-S. Tan, “Model simplification using
vertex-clustering”, 1997 Symposium on
Interactive 3D Graphics, ACM Siggraph, 1997.

Remolar et al. / Geometric Simplification of Foliage

©The Eurographics Association 2002.

10. A. D. Kalvin, R. H. Taylor. “Superfaces:
Polygonal mesh simplification with bounded
error”, IEEE Computer Graphics and Appl.,
16(3), May 1996.

11. E.J. Stollnitz, T. D. DeRose, D. H. Salesin,
“Wavelets for Computer Graphics: Theory and
Applications”, Morgann Kaufmann, San
Francisco, CA, 1996.

12. W.J. Schroeder, “A topology modifying
progressive decimation algorithm”, IEEE
Visualization 97 Conference Proceedings, pp.
205-212, 545, 1997.

13. A. Ciamplaini, P. Cignoni, C. Montani, R.
Scopigno, “Multiresolution decimation based on
global error”, The Visual Computer, 13(5): pp.
228-246, 1997.

14. M. Garland, P.S. Heckbert, “Surface
simplification using quadric error metrics”;
Siggraph’97 Proc., pp. 209-216, 1998.

15. P. Lindstrom, G. Turk, “Fast and memory
efficient polygonal simplification”, IEEE
Visualization 98 Conference Proceedings, pp.
279-286, 544, 1998.

16. H. Hoppe, “Progressive meshes”, Siggraph’96
Proc., pp. 99-108, 1996.

17. J. Ribelles, A. López, Ó. Belmonte, I. Remolar,
M. Chover. "Multiresolution Modelling of
Arbitrary Polygonal Surfaces: A
Characterisation", Computers & Graphics, 26 (3):
pp. 449-462, 2002.

18. H. Hoppe, ''View-dependent refinement of
progressive meshes'', Proc. SIGGRAPH'97, pp.
189-198, 1997.

Remolar et al. / Geometric Simplification of Foliage

©The Eurographics Association 2002.

a) b) c)

Figure 7: Tree models used for the test. a) English Oak: 20.376 leaves b) Aesculus hippocastanum: 29.535 leaves, c)
Sorbus aucuparia: 24.840 leaves.

a.1) a.2) a.3)

b.1) b.2) b.3)

c.1) c.2) c.3)

Figure 8: Results of simplification of the trees shown in: Figure 7.a: a.1) 6.710 , a.2) 779 and a.3) 236 leaves.
 Figure 7.b: b.1) 15.612, b.2) 8.783 and b.3) 4.391 leaves. Figure 7.c: c.1) 6.996, c.2) 1.026 and c.3) 343 leaves.

Remolar et al. / Geometric Simplification of Foliage

©The Eurographics Association 2002.

Figure 9: Some VRML world scenes using a LOD node with four different levels of detail.

