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Abstract

Feature detection is important in various mesh processing techniques, such as mesh editing, mesh morphing,

mesh compression, and mesh signal processing. In spite of much research in computer vision, automatic feature

detection even for images still remains a difficult problem. To avoid this difficulty, semi-automatic or interactive

techniques for image feature detection have been investigated. In this paper, we propose a geometric snake as an

interactive tool for feature detection on a 3D triangular mesh. A geometric snake is an extension of an image snake,

which is an active contour model that slithers from its initial position specified by the user to a nearby feature while

minimizing an energy functional. To constrain the movement of a geometric snake onto the surface of a mesh, we

use the parameterization of the surrounding region of a geometric snake. Although the definition of a feature may

vary among applications, we use the normal changes of faces to detect features on a mesh. Experimental results

demonstrate that geometric snakes can successfully capture nearby features from user-specified initial positions.

1. Introduction

Triangular meshes are widely used to represent object shapes

and many techniques have been developed for processing tri-

angular meshes. Feature detection is important in mesh pro-

cessing because features can be used to specify the target

region of a mesh to be processed and/or the peculiar parts to

be preserved in processing. In mesh editing, the edited parts

are usually the features of a mesh. In mesh morphing, fea-

tures and their correspondence should be specified between

two meshes. In mesh simplification and mesh compression,

an important goal is to represent the features of a mesh with

a small amount of data. In remeshing an irregular mesh to

achieve subdivision connectivity, the resulting mesh should

preserve the features of the original mesh as exactly as pos-

sible.

In spite of much research in image processing and

computer vision, the problem of automatic feature detec-

tion is not yet completely solved, even for images. Semi-

automatic or interactive techniques have been investigated
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which rely on user intervention for the detection of image

features 14; 6; 7; 20; 21; 29; 22. In these techniques, the user input is

utilized for initially approximating the features and/or guid-

ing the feature detection process. With this interactive ap-

proach, we can precisely detect the features of an image such

as contours and edges with a simple user input.

In this paper, we propose a geometric snake as an interac-

tive tool for detecting the features of a 3D triangular mesh. A

geometric snake is an extension of the active contour model

for an image called snakes 14. After its initial position is

specified by a user, a snake can automatically slither to a

nearby feature by minimizing an energy functional. The en-

ergy functional consists of the internal energy to maintain

the smoothness of a snake and the external energy that has

local minimums at features. In this paper, we call the origi-

nal snake model presented by Kass et al. an image snake to

distinguish it from our technique proposed for a 3D mesh.

A geometric snake can be used to precisely specify the fea-

tures of a mesh in mesh processing, such as mesh editing and

mesh morphing.

In extending an image snake to a geometric snake, two

major problems involve constraining the snake movements

onto the surface of a mesh and defining the features on a
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mesh. To resolve the first problem, we use parameterization

that embeds the surrounding region of a geometric snake

to a 2D plane. The geometric snake is moved on the plane

while minimizing its energy functional and the new position

is mapped back to the surface of the mesh. The definition of

a feature on a mesh may vary depending on the application.

In this paper, we use the normal changes of faces to deter-

mine the feature energy functional. Since the framework of

a geometric snake is independent of the definition of a fea-

ture, other feature energy functionals can be used without

changing the framework.

The remainder of this paper is organized as follows. In

Section 2, we review related work. Section 3 summarizes

the definition and energy minimization process of an im-

age snake. In Section 4, we give an overview of a geometric

snake and its application to interactive feature detection on a

mesh. Sections 5 and 6 explain the details of a snake move-

ment and the feature energy functional, respectively. Section

7 shows experimental results. We conclude this paper in Sec-

tion 8.

2. Related Work

2.1. Interactive feature specification

Snakes are an active contour model proposed by Kass et al.,

with which we can semi-automatically detect features in an

image 14. A snake is represented by a parametric curve in

an image and the desired snake position is obtained by en-

ergy minimization. Several extensions of the original snake

model were investigated in image processing and computer

vision 6; 7; 29; 22.

In addition to parametric snake models, implicit snakes

and geometric active contour models were proposed which

use curve evolution and geometric flows to detect fea-

tures 3; 20; 4; 30. These models have an intrinsic nature and can

automatically manage topological changes using a level set

evolution technique 25. However, with the models, it is dif-

ficult to handle open active contours as well as to incorpo-

rate additional controls such as external forces interactively

specified by a user. Although the geometric contour model

proposed in reference 30 was named geometric snakes, the

model is concerned with 2D images and unrelated with the

geometric snakes proposed in this paper which deal with 3D

triangular meshes.

In computer graphics, semi-automatic feature detection

techniques for images were used to provide interactive tools

for image handling. Image snapping 10 gives the functional-

ity of snapping a mouse position to the nearest feature point

in an image. When applied to a sequence of user-specified

points, image snapping works in a similar way to a snake and

can capture a nearby feature curve. In intelligent scissors 24,

feature detection is formulated as a graph search problem

whereby a feature is captured by finding the shortest path

from the start point to the current mouse position.

Active contour models for images were extended to ex-

tract features from 3D surfaces. Milroy et al. applied the

original snake model to 3D surfaces for surface segmen-

tation 23, where the snake position is updated directly on

a 3D surface by searching positions with less energy. In

contrast, the geometric snakes proposed in this paper de-

termine updated positions by energy minimization on a 2D

embedding plane, which is computationally efficient. An-

drews 1 presented an interactive feature detection technique

for 3D triangular meshes, which is based on a minimal

path approach 5. A feature curve detected by the technique

is uniquely determined between the source and destination

points and cannot be controlled by a user even though the

curve does not capture a desired feature. In contrast, the

shapes of our geometric snakes can easily be controlled by

initial positioning and interactive editing in the energy min-

imization process.

2.2. Mesh signal processing

Recently, the application of signal and image processing

techniques to 3D meshes has attracted much attention in

computer graphics 17; 28. Guskov et al. developed basic sig-

nal processing filters, such as low and high pass filters, for

3D triangular meshes 11. Praun et al. applied signal process-

ing algorithms to 3D meshes, such as shape blending and

principal component analysis 27.

The geometric snakes proposed in this paper can be

regarded as another application of an image processing

technique to 3D meshes. In image processing, advanced

and complex techniques, such as image segmentation and

restoration, require feature detection as a preprocessing step.

Geometric snakes can be used for the feature detection pro-

cess, which enables advanced image processing techniques

to be applied to 3D meshes. Hubeli and Gross presented

a multiresolution technique that automatically extracts fea-

tures from 3D triangular meshes for the purpose of a prepro-

cessing step in mesh signal processing 13.

3. Image Snakes

An image snake is an active contour on an image which

moves by minimizing an energy functional Esnake
14. The

functional Esnake contains internal and external energy

terms. The internal energy Espline concerns with the smooth-

ness of a snake and minimizing Espline makes a snake act like

a spline curve. The external energy Eimage is related to im-

age features and has local minimums at the features. Hence,

a snake obtained by minimizing Esnake is a smooth curve that

passes through a feature in an image.

In this section, we summarize the energy minimization

process of a snake, which will be referred to in later sections.

The details of the process can be found in reference 14.

The position of a snake is represented in a parametric
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form, v(s) = (x(s);y(s)), where s 2 [0;1℄. Then, the energy

functional Esnake(v) can be written as

Esnake(v) =
Z 1

0

�
Espline(v)+Eimage(v)

�
ds: (1)

The internal spline energy Espline is defined by

Espline = (α(s)kvs(s)k
2 +β(s)kvss(s)k

2)=2; (2)

which consists of the first- and second-order derivatives of

v(s) with weights α(s) and β(s). The external feature energy

Eimage is determined by the types of features to be detected.

For example, Eimage = �jrI(x;y)j2 can be used to detect

edges in an image, where rI(x;y) is the image gradient at a

pixel (x;y).

In implementation, a snake v(s) is represented by a se-

quence of n sample points; that is, v(i) = (x(i);y(i)) for

i = 1; : : : ;n. Then, the energy Esnake can be minimized by

solving a matrix equation;

Ax+ fx(x;y) = 0

Ay+ fy(x;y) = 0
(3)

In Eq. (3), the matrix A comes from the finite difference

method that approximates the derivatives of v(s). The col-

umn vectors x and y consist of x and y positions of the snake

points, respectively. The column vectors fx(x;y) and fy(x;y)
represent partial derivatives of Eimage with respect to x and

y, respectively.

The matrix equation in Eq. (3) cannot be directly solved

for x and y because fx and fy depend on x and y. Hence, an

iterative process is used in which xt and yt converge to the

solution of Eq. (3) as time t progresses. Assuming that fx

and fy are constant within a unit time interval γ, xt and yt

can be obtained from xt�1 and yt�1 by solving two linear

equations;

xt = (A+ γI)�1(γxt�1� fx(xt�1;yt�1))

yt = (A+ γI)�1(γyt�1� fy(xt�1;yt�1))
(4)

In summary, after the initial position of a snake is spec-

ified by the user, the position is incrementally updated by

repeatedly solving the linear equations in Eq. (4). In each it-

eration, the snake approaches a nearby feature by moving in

the direction of (�fx;�fy), which reduces the external fea-

ture energy Eimage. In the movement, the shape of the snake

is kept smooth by solving linear equations that contain the

matrix A derived from the internal spline energy Espline.

4. Geometric Snakes

4.1. Representation

A geometric snake for a triangular mesh is represented by

v(s) = (x(s);y(s); z(s)), where s is the parameter such that

s 2 [0;1℄. Similar to Eq. (1) for an image snake, the energy

functional of a geometric snake consists of the internal spline

energy Espline and the external feature energy Emesh;

Esnake(v) =
Z 1

0

�
Espline(v)+Emesh(v)

�
ds (5)

In Eq. (5), the spline energy Espline is concerned with the

smoothness of a geometric snake and can be computed in the

same way as that of an image snake with Eq. (2). The feature

energy Emesh is determined by the definition of a feature on

a mesh and should have local minimums at the features. In

this paper, we use the normal variations of the neighbor faces

to determine the feature energy at a vertex of a mesh. The

feature energy at the internal points of a face is computed

by linear interpolation. We explain the details of the feature

energy Emesh in Section 6.

In implementation, similar to an image snake, we repre-

sent a geometric snake v(s) by a sequence of n sample points

v(i) on the mesh. With this representation, the line segment

connecting two sample points may not lie on the mesh sur-

face. For simplicity, in the energy minimization process, we

only consider the sample points that lie on the mesh surface.

When the final position of a geometric snake is determined,

we project the line segments between sample points to ob-

tain a piecewise linear curve on the mesh surface.

4.2. Movement

After its initial position on a mesh is specified by a user, a

geometric snake can detect a nearby feature by minimizing

Eq. (5). For the minimization process, we can use the same

numerical technique as for an image snake, summarized in

Section 3. That is, the matrix equations in Eq. (3) is obtained

for v(s) = (x(s);y(s); z(s)) and the position is incrementally

updated by repeatedly solving the linear equations in Eq. (4).

In this approach, the updated position of a geometric snake

will be in the 3D space near the old position and is not guar-

anteed to lie on the surface of the mesh. However, since the

feature energy Emesh is defined only on the mesh surface, it

is impossible to solve Eq. (4) for the next step if the current

position of a geometric snake is not on the mesh surface.

A simple solution to resolve this problem is to project a

geometric snake onto the surface of a mesh every time when

its position is updated by solving Eq. (4). We implemented

and tested this approach, but the approach was found to be

computationally expensive because the projection must be

performed at every update. This drawback may prohibit a

geometric snake from having a speed fast enough to be used

as an interactive tool.

In this paper, to constrain a geometric snake onto the sur-

face of a mesh, we use mesh parameterization that embeds

a part of the mesh onto a 2D plane. With the parameteri-

zation, a geometric snake v(s) = (x(s);y(s); z(s)) is mapped

to a curve v�(s) = (x�(s);y�(s)) in the plane. Then we can

use the same equations in Section 3 to compute the position
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updates of the curve v�(s) in the plane. Since the feature en-

ergy Emesh is a scalar field on the surface of a mesh, it can

be easily mapped onto the embedding plane. The updated

position of the geometric snake v(s) is obtained by mapping

the curve v�(s) back onto the mesh surface. Smoothness of

v(s) can be maintained by the spline energy Espline applied

to v�(s).

In the proposed approach, we can perform a number of it-

erations to update the position of a geometric snake after the

mesh parameterization has been derived. In spite of the over-

head to compute parameterization, this benefit makes the

proposed approach more efficient than the simple approach

with the projection onto the mesh surface. In our experiment,

a geometric snake implemented with the proposed approach

could detect the feature of a mesh from the initial position

much faster than the simple approach.

To reduce the computational overhead of parameteriza-

tion, we do not embed the whole mesh but only the local

region surrounding a geometric snake to a 2D plane. In ad-

dition to efficiency, local parameterization has the advantage

of a small distortion in the embedding. When the position of

the curve v�(s) is updated by solving Eq. (4), the new posi-

tion is usually contained in the embedded part of the mesh.

This is because the initial position of a geometric snake is

specified near a desired feature in most cases and the snake

moves slightly in each update. If the curve v�(s) moves out

of the embedded part in an update, we again compute the lo-

cal parameterization of the mesh with the current position of

the geometric snake v(s).

If we embed the whole mesh onto a 2D plane, a single

parameterization is sufficient regardless of the updated posi-

tions of the curve v�(s) in the energy minimization process.

However, this global parameterization requires more compu-

tation than the local one used in this paper. More importantly,

when a large mesh is parameterized, a severe distortion may

happen in the embedding 2; 19; 26. Since the smoothness of

a geometric snake v(s) comes from that of the curve v�(s),
the distortion should be minimized in the embedding. By us-

ing local parameterization, we can avoid large distortion and

preserve the smoothness of a geometric snake.

4.3. Overall process

The overall process for feature detection on a mesh with a

geometric snake proposed in this paper is as follows. Fig. 1

summarizes the process.

1. The initial position of a geometric snake v(s) is interac-

tively specified by the user (Section 5.5).

2. The local region containing v(s) is determined on the

mesh (Sections 5.1 and 5.2).

3. The local region is embedded onto a 2D plane while min-

imizing the distortion (Section 5.3).

4. Snake v(s) is converted to a curve v�(s) on the plane (Sec-

tion 5.4).

1. Specify an initial snake position

5. Derive the feature energy

    on the 2D curve v s*( )

6. Update the position of the

    2D curvev s*( )

4. Convert the snake to a 2D

    curve v s*( )

3. Parametrize the local region

8. Interactively edit the snake v s( )

Current snake position v s( )

v s( )
7. Update the position of the

    snake           by using v s*( )

2. Obtain the local region

    containing the snake v s( )

Figure 1: Feature detection process

5. The external feature energy Emesh is derived at the points

on the curve v�(s) (Sections 6.2 and 6.3).

6. The updated position of v�(s) in the plane is determined

by solving the linear equations in Eq. (4). If the position

update needs to be repeated, go to step 5.

7. The final position of the curve v�(s) is mapped onto the

mesh surface to update the current position of snake v(s)
(Section 5.4).

8. If the updated current position of snake v(s) is not sat-

isfactory, the user can interactively edit the parts of v(s)
(Section 5.5). If the user wishes, proceed to step 2.

In the process, the position update of the curve v�(s) by

steps 5 and 6 can be iterated in the fixed number of times

or until a part of v�(s) moves out of the embedded local re-

gion of the mesh. Note that the local parameterization is per-

formed only once in step 3 for the iteration. If the updated

position of the snake v(s) obtained from the result of the it-
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eration does not capture the desired feature yet, the user can

reapply the process to v(s) starting from step 2.

5. Movements of Geometric Snakes

In this section, we present the component techniques that are

used to move a geometric snake on the surface of a mesh. We

also explain the user interaction techniques that can guide a

geometric snake to capture a desired feature.

5.1. Partitioning of a snake

In general, the local surrounding region of a geometric snake

is much smaller than the entire surface of a mesh. However,

if a snake widely stretches over the surface (see Figs. 10(b)

and 10(c)), the surrounding region to be parameterized be-

comes large, which increases the computation time. More-

over, in the case of a closed snake, such as shown in Fig.

10(b), the surrounding region contains a hole, which com-

plicates the parameterization process. To reduce the size and

avoid a hole of a parameterized region, we partition a ge-

ometric snake into two or more curve segments. Then, the

steps 2 through 7 of the overall process in Fig. 1 are applied

to each curve segment as if it is a single geometric snake.

Partitioning a geometric snake into curve segments may

introduce a discontinuity into the shape of the snake. With-

out loss of generality, we assume that a snake is partitioned

into two segments vA(s) and vB(s) (see Fig. 2). The snake

may become discontinuous at the border point pj when the

positions of vA(s) and vB(s) are independently updated. To

overcome this problem, we recompute the snake position

around p j by using a curve segment vC(s) that partially

overlaps with vA(s) and vB(s). In other words, we first up-

date the positions of vA(s) and vB(s) while fixing the border

point p j. Then, the position of vC(s) is updated with its end

points pi and pk fixed at the previously computed positions

in vA(s) and vB(s). This adjustment of the snake position

around p j makes the two segments vA(s) and vB(s) be con-

nected smoothly.

vA

vB

vC
pi

p j

pk

Figure 2: Partitioning of a geometric snake

It may be possible to partition a geometric snake into

curve segments so that distortions are minimized in param-

eterizing the surrounding regions of the segments. In most

cases, however, since the shape of a snake is smooth due

to the internal energy Espline, a simple partitioning may not

incur severe distortions in the embedding of a surrounding

region. In this paper, we partition a snake into curve seg-

ments that contain the same number of snake sample points.

If the current shape of a snake contains sharp corner points

with small incident angles, the snake is partitioned to place

the corner points at the middles of curve segments. Rather

than arbitrarily placing the corner points, for example, at the

borders of curve segments, this approach enables the shape

of a snake to rapidly smoothen around the corner points in

a position update. A sharp corner point may happen in the

initial positioning and interactive editing (see Section 5.5)

of a geometric snake. Usually, a snake contains either few,

or most often, no sharp corner points, and two or at most

several curve segments are obtained from the partitioning.

5.2. Local surrounding region of a snake

After partitioning a snake, we determine the local surround-

ing region on the mesh for each segment, which will be em-

bedded onto a 2D plane. The selection of a too small re-

gion decreases the number of position updates possible with

a single parameterization. If a large region is selected, it will

increase the computation time and distortions in the embed-

ding.

To obtain the surrounding region with a reasonable size,

we first obtain the face sequence F on the mesh on which the

line segments between snake sample points are projected.

Then, the surrounding region is determined as the set of

faces which contains the face sequence F and the neighbor

faces sharing a vertex with a face in F (see Fig. 3). Finally,

we fill the holes that may exist in the resulting region.

Figure 3: Surrounding region of a geometric snake

A geometric snake is initially placed near a feature and its

position is incrementally updated in the energy minimization

process. Hence, with the proposed method to select the lo-

cal surrounding region, several position updates are possible

with a single parameterization, as demonstrated in Section

7. Also, the selected region contains a small number of tri-

angles and can be parameterized quickly.

In interactive editing of a geometric snake which will be

explained in Section 5.5, the user can move a snake sample
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point ps far from the current position. See Fig. 4(a) for an

example. Then, the parts of the snake near the point ps will

be rapidly changed to maintain the smoothness in the follow-

ing position update. In this case, the updated position of the

snake may not belong to the local region determined from

the current position, as shown in Fig. 4(b). To avoid such a

case, we first map the current snake curve to a 2D plane and

find the two vertices p0s and p00s adjacent to ps in the 2D con-

vex hull of the snake. Then, the local region is enlarged to

include the projections of two 3D line segments, from ps to

p0s and p00s , onto the mesh surface. See Figs. 4(c) and 4(d) for

an illustration.

ps

ps−1
ps−2

ps+1

ps+2

ps

ps−1

ps−2

ps+1

ps+2

(a) editing a point ps (b) updated position

ps

′ps
′′ps

ps

ps−1

ps−2

ps+1

ps+2

(c) convex hull (d) enlarged region

Figure 4: Problem in region selection for interactive editing:

The polygons enclosing the snake curves indicate the local

regions selected for the snake.

5.3. Parameterization of a local region

Since geometric snakes are an interactive tool to detect

features, the parameterization of the selected local region

should be performed quickly. In addition, the distortions in

the parameterization should be minimized so that the posi-

tions of a geometric snake v(s) and the 2D curve v�(s) are

properly mapped to each other.

In this paper, for parameterization, we use the convex

combination approach extended with virtual boundaries 18.

The convex combination approach 8 obtains the parameter-

ization of a mesh by solving a linear system. The approach

runs fast and generates an one-to-one embedding. However,

the approach requires the boundary of a mesh to be fixed

onto a convex polygon, which causes high distortion near the

boundary. The extension 18 of the approach used in this pa-

per reduces the distortions by using virtual vertices attached

to the real boundary.

Fig. 5(a) shows the surrounding region of a curve seg-

ment from a snake that is placed near an ear. Fig. 5(b) shows

the embedding result of the region generated by the convex

combination approach with a virtual boundary.

(a) surrounding region (b) embedding of the region

Figure 5: Parameterization of a surrounding region

5.4. Update of the snake position

After the surrounding region is embedded onto a 2D plane,

we convert the snake v(s) to a curve v�(s) in the plane. A

snake point inside a 3D triangle is mapped to a point in the

corresponding 2D triangle by using barycentric coordinates.

Then, the position of the curve v�(s) is incrementally up-

dated by iteratively solving the linear equations in Eq. (4).

The iteration continues until the curve v�(s) moves out of

the embedded region or the preset number of iterations are

performed. The final position of the curve v�(s) is mapped

back onto the mesh surface to determine the updated position

of the snake v(s), again by using barycentric coordinates.

5.5. User Interaction

Our geometric snake model provides three user interaction

techniques: snake initialization, point editing, and point fix-

ing. The snake initialization is used to specify the initial po-

sition of a snake. When the user selects a sequence of ver-

tices on a mesh near a desired feature, a closed or open curve

is automatically built by connecting adjacent vertices in the

sequence with the shortest paths through the edges of the

mesh.

With point editing, the user can guide a point of a snake

to a desired feature. For example, in Fig. 6, the user wants

to detect the eyelid using the snake, but some snake points

have been attracted to the eyebrow. Then, the user can edit

a snake point to change its position from the eyebrow to the

eyelid, as shown in Fig. 6(a). After the editing, the snake

points around the edited point moves together toward the

eyelid due to the spline energy Espline. Fig. 6(b) shows the

resulting position from which the snake can finally capture

the eyelid.

The point fixing allows a point of a snake to be fixed at

a specific position on the mesh in the energy minimization

process. For example, in Fig. 6, the edited snake point is

c The Eurographics Association and Blackwell Publishers 2002.
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fixed at the moved position after editing. The point fixing is

useful to protect snake points that already capture parts of

a desired feature from position changes in minimizing the

spline energy Espline.

(a) editing a point (b) updated position

Figure 6: Editing a snake

6. Feature Energy for Geometric Snakes

6.1. Feature energy definition

To define an external feature energy Emesh for a mesh, we

must have a numerical representation of features which has

a local minimum at a feature. In image snakes, for example,

image gradients at pixels are used to define the features on

an image 14. In the same manner, we can consider the fea-

tures on a mesh as the points on the mesh where the mesh

property changes drastically. For example, peaked corners,

sharp edges, and color discontinuities can be used for mesh

features.

In this paper, we use normal variations of the neighbor

faces to determine the feature energy at a vertex of a mesh.

To compute the normal variation, we adopt the opening an-

gle of the normal cones at a vertex 16. Then, the feature en-

ergy Emesh at a vertex v is defined by

Emesh(v) = min
f
(nT

v n f ): (6)

In Eq. (6), nv is the normal at a vertex v and n f is the nor-

mal of a face f adjacent to the vertex v. With this definition,

the feature energy at a vertex v has values between 0 and 1.

The feature energy at points inside a face is determined by

linearly interpolating the energy at vertices of the face.

In addition to normal variation, we experimented with the

discrete curvature norm 15 and the quadric error metric 9 to

define mesh features. With the discrete curvature norm, we

can consider a feature as a point at which the sum of princi-

pal curvatures κ1 and κ2 is large. By using the quadric error

metric, we can define the feature energy at a vertex v as the

negation of the maximum of the edge collapse errors for the

edges adjacent to v. As shown in Fig. 7, all three definitions

of feature energy give similar results and have local mini-

mums at features such as edges and corners. In this paper,

we chose the normal variation for feature definition because

of its simplicity.

6.2. Feature energy on a face

Before starting a feature detection process, we compute the

feature energy values for the vertices of a mesh by using Eq.

(a) fan disk model (b) normal variation

(c) discrete curvature (d) quadric error

Figure 7: Comparison of feature energy definitions

(6). The feature energy inside a face is determined by lin-

ear interpolation, as mentioned before. However, to update

the position of a snake, we do not need the feature energy

itself but the derivatives of feature energy, that is, fx and fy

in Eq. (4). Inside a face, the derivatives fx and fy are constant

because the feature energy linearly varies.

Therefore, in the energy minimization process to update

the position of the curve v�(s), the derivatives fx and fy at a

point p on v�(s) can be obtained as follows:

1. The feature energy values of the vertices in the surround-

ing region are mapped onto the embedding plane.

2. The derivatives fx and fy are computed and saved for each

face in the plane as a preprocessing step.

3. During the energy minimization process, the values saved

for the face containing the point p are used for the deriva-

tives fx and fy at p.

With this approach, the derivatives fx and fy need not be

dynamically computed in the energy minimization process,

which reduces the computational overhead.

6.3. Feature energy smoothing

In order to enable a distant feature to attract a snake and to

reduce the effects of noises, image snake models use low-

pass filters that blur feature energy values at image pix-

els 14; 10. Similarly, we can smooth the feature energy by

weighted averaging the energy value of a vertex with those

of neighbor vertices. With smoothing, a geometric snake can

c The Eurographics Association and Blackwell Publishers 2002.
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be less affected by noises and capture a strong feature that is

distant from the initial position.

7. Experimental Results

Fig. 8(a) shows examples of feature detection with geomet-

ric snakes, where the boundaries of eyes and the nose are

captured in the skull model. Figs. 8(b)-(d) illustrate the fea-

ture detection process for the right eye. First, the user selects

a sequence of points to specify the initial position of a snake,

which are the red dots in Fig. 8(b). Next, the initial position

is determined by finding the shortest paths between consec-

utive points in the sequence, as shown in Fig. 8(b). After five

iterations of the energy minimization step in Eq. (4), we ob-

tain the position of the snake shown in Fig. 8(c). Fig. 8(d)

shows the final result after 40 iterations. Each step in the

feature detection process including energy minimization is

performed fast enough for the user to interact with the snake

in almost real time (see Table 1).

Fig. 9 illustrates the detection of the necklace in the

‘Happy Buddha’ model using a geometric snake. From the

initial position in Fig. 9(b), the geometric snake successfully

detects the shape of the necklace, as shown in Fig. 9(c), af-

ter 55 iterations of the energy minimization step. Fig. 9(d)

shows the final result in Fig. 9(c) from a different viewpoint.

In the feature detection process, we edited and fixed one

snake point near the lowest part of the necklace to guide the

geometric snake.

Fig. 10 shows other feature detection examples with ge-

ometric snakes. In Fig. 10(a), feature curves in a bunny

model are detected. Fig. 10(b) shows a geometric snake that

captures the outline of the stomach in the ‘Happy Buddha’

model, where points near the necklace were fixed in the fea-

ture detection process. In Fig. 10(c), eye brows and the nose

in a mask model are captured, which demonstrates the use-

fulness of a geometric snake for feature specification in mesh

morphing.

Table 1 summarizes the statistics of the examples in Figs.

8 through 10. For each example, only a small number of

points were specified by the user for the initial position-

ing of a snake. The snake sample points were selected from

the edges in the shortest paths between the user-specified

points. In the current implementation, when the user clicks

the snake operation button, the local region surrounding a

snake is parameterized and at most five position updates are

performed. Parameterization and the position update by Eq.

(4) run fast enough to provide a prompt response, as shown

in Table 1, where parameterization dominates the computa-

tion time. The number of snake operations required for fea-

ture detection depends on the initial position of a geometric

snake and a user input helps a geometric snake to move to-

ward a feature faster. For the examples in Figs. 8 through 10,

the final positions of geometric snakes could be obtained by

several snake operations. Several minutes were sufficient for

the whole feature detection process including user interac-

tion.

8. Conclusion

In this paper, we proposed a geometric snake as an interac-

tive tool for feature detection on a 3D triangular mesh. Be-

sides the parametric snake model 14 used in this paper, im-

plicit active contour models based on level sets were investi-

gated in medical image processing and computer vision 3; 20.

For future work, we will verify the possible benefits of the

implicit models over the parametric model when they are ap-

plied to feature detection on a 3D triangular mesh. The final

goal in this direction will be the integration of several active

contour models to provide an effective feature detection tool

for 3D meshes.
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(a) (b) (c) (d)

Figure 8: Feature detection for eyes and the nose of a skull model: (a) final results; (b) initial position of a snake to detect the

right eye; (c) after five iterations; (d) final captured position

(a) (b) (c) (d)

Figure 9: Feature detection for the necklace of the ‘Happy Buddha’ model: (a) original model; (b) initial position of a snake;

(c)-(d) final detection result seen from different viewpoints

(a) (b) (c)

Figure 10: Other feature detection examples: (a) feature curves in a bunny model; (b) outline of the stomach in the ‘Happy

Buddha’ model; (c) eye brows and the nose in a mask model
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