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Geometric speed limit for acceleration by natural selection in evolutionary processes
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We derived a new speed limit in population dynamics, which is a fundamental limit on the evolutionary rate.
By splitting the contributions of selection and mutation to the evolutionary rate, we obtained the new bound
on the speed of arbitrary observables, named the selection bound, that can be tighter than the conventional
Cramér-Rao bound. Remarkably, the selection bound can be much tighter if the contribution of selection is more
dominant than that of mutation. This tightness can be geometrically characterized by the correlation between the
observable of interest and the growth rate. We also numerically illustrate the effectiveness of the selection bound
in the transient dynamics of evolutionary processes and discuss how to test our speed limit experimentally.
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I. INTRODUCTION

Biological populations fluctuate through natural selection
and mutation due to various environmental influences. While
mutation increases their diversity, natural selection increases
the fraction of highly adaptive traits in the population. This
competition between selection and mutation leads to evolution
[1–3]. Recent improvements in experimental methods have
enabled researchers to quantitatively observe the evolutionary
dynamics of actual biological communities [4–14]. For exam-
ple, Ref. [9] visualized how selection and mutation together
influence the adaptation dynamics of a bacterial population’s
growth.

Though these recent experiments allow us to measure
the evolutionary rate quantitatively, the classical theories for
evolution were not sufficiently quantitative. For example,
the principal ideas of evolution, such as natural selection in
Darwinian evolution [15], have not been clearly expressed
quantitatively. A famous theorem on the evolutionary rate
known as Fisher’s fundamental theorem of natural selection
[16–19], which claims a relation between the increment of
the mean fitness and the fitness variance, has also been mis-
understood by many researchers because it is given in a
quantitatively vague expression [20]. One exception is the
Price equation [20–26], which provides a clear-cut relation be-
tween the observables associated with traits and their fitness.
Because the Price equation is a purely mathematical relation
based on identity, we need to consider specific population
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dynamics [27–30] to identify its physical implication for the
evolutionary rate.

Recently, quantitative theoretical approaches have been de-
veloped by analogy with another developing field of stochastic
thermodynamics [31,32]. In population dynamics models,
such as the Lotka-Volterra model [33] and the lineage trees
[34–37], several quantitative inequalities or trade-off relations
for the evolutionary processes have been investigated [38–48]
by analogy with thermodynamic laws such as the second
law of thermodynamics [49,50] and thermodynamic uncer-
tainty relations [51]. As a notable result, the evolutionary rate
has been discussed quantitatively in Ref. [52] by applying
the information-geometric speed limits [53,54]. The speed
limits have been discussed as a classical counterpart of the
quantum speed limits [55–61] in the context of a connection
between information geometry [62] and stochastic thermo-
dynamics. As a constraint on the speed of dynamics, the
speed limits offer a basis to discuss the evolutionary rate
quantitatively. These speed limits have also been generalized
to the speed of observable [63–67] based on the Cramér-
Rao bound [62,68], well known in information geometry.
This information-geometric approach would be promising as
a quantitative theory for the evolutionary rate because of a
deep connection between the Cramér-Rao bound and the Price
equation [25,26] and because this approach may be com-
patible with the existing information-theoretic and stochastic
methods for evolutionary dynamics [69–78]. Indeed, several
applications and generalizations of the speed limits have been
recently studied to understand the speed in population dynam-
ics quantitatively [79,80].

However, those previous studies [52,79,80] did not focus
on the competing situations of natural selection and mutation,
even though selection and mutation together shape evolution.
Here we pose the following unresolved issue: How and when
does the evolutionary rate change in the competing situa-
tions of natural selection and mutation? This question would
be crucial for a quantitative understanding of evolutionary
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FIG. 1. (a) Schematic illustration of the model. Population size
changes due to selection on growth and mutation. (b) Schematic
illustration of the selection bound. Compared to the case where the
population changes only due to mutation, the change of 〈R〉 can be
accelerated when both selection and mutation affect the population
dynamics.

processes where the competition between selection and muta-
tion can enhance the evolutionary rate, as observed in Ref. [9].

To resolve such an issue, we theoretically evaluated the
evolutionary rate by decomposing it into the contributions
of natural selection and mutation in population dynamics,
thereby deriving a new speed limit. This speed limit is tighter
than the conventional Cramér-Rao bound when natural se-
lection is dominant compared to mutation (e.g., in transient
dynamics of evolution), as analytically proven and numeri-
cally illustrated. It describes how natural selection accelerates
evolution.

II. POPULATION DYNAMICS

A. Setup

To discuss speed limits for observables in population dy-
namics, we consider a model consisting of selection and
mutation between multiple traits [29] [see also Fig. 1(a)]. Sup-
pose a population consists of subpopulations with n different
traits, and Ni(t ) and λi denote the number and growth rate
of individuals in the subpopulation with the ith trait at time
t , respectively. The traits may be phenotypic, genotypic, or
epigenetic properties. We denote the vector of growth rates
simply as λ = (λi ). Mutation is assumed to be a Marko-
vian process with transition rate matrix W = (Wi j ), where
the (i, j)-element Wi j indicates the transition rate from trait
j to i if i �= j, and the elements satisfy

∑n
i=1 Wi j = 0 and

Wi j � 0 (i �= j). We assume that λ and W are time independent
because we consider a stationary environment. Then Ni(t )
follows the following differential equation:

d

dt
Ni(t ) = λiNi(t ) +

n∑
j=1

Wi jNj (t ). (1)

The first term on the right-hand side represents the change
in the population due to selection and the second term rep-
resents the change in the population due to mutation. With
Ntot (t ) := ∑n

i=1 Ni(t ), the proportion pi(t ) := Ni(t )/Ntot (t ) of
each subpopulation satisfies the definition of the probability
distribution, i.e., the non-negativity pi(t )� 0 and the nor-
malization

∑n
i=1 pi(t ) = 1. From Eq. (1), this “probability

distribution” follows a nonlinear master equation,

d

dt
pi(t ) = �λi pi(t ) +

n∑
j=1

Wi j p j (t ), (2)

where the ensemble average of an observable A = {Ai}n
i=1

with respect to pi(t ) is defined as 〈A〉 := ∑n
i=1 pi(t )Ai and

�Ai = Ai − 〈A〉 denotes the deviation of Ai.

B. Speed limit and information geometry

We here briefly explain the conventional information-
geometric speed limit for a time-independent observable
R = {Ri}n

i=1. The speed of observable R is defined as

vR := 1√
Var[R]

d〈R〉
dt

, (3)

where Var[R] := 〈(�R)2〉 is the variance of R. In population
dynamics, vR quantifies the evolutionary rate with respect to
observable R. For example, the evolutionary rate with respect
to the growth rate, vλ, is given by the time derivative of
the averaged growth rate d〈λ〉/dt normalized by its standard
deviation

√
Var[λ]. The speed limit for observable, known as

the Cramér-Rao bound, is a universal constraint on this speed
vR for any observable R [63,64]:

−vinfo � vR � vinfo, (4)

which holds for arbitrary dynamics of a probability distribu-
tion [81]. Here vinfo is defined as the square root of the Fisher
information [63,82,83]:

vinfo :=
√√√√ n∑

i=1

pi

(
d ln pi

dt

)2

. (5)

In information geometry, we can interpret it as the speed of a
probability distribution moving on a manifold of distributions.

C. Fitness and Price equation

The square root of the Fisher information vinfo not only
indicates the speed of the probability distribution but also
characterizes the population dynamics because it is identified
with the variance of fitness [19,25]. We here introduce the
fitness fi of trait i as the effective growth rate of Ni:

fi := d

dt
ln Ni(t ). (6)

The ensemble average of the fitness is equal to the effective
growth rate of the total population: 〈 f 〉= d ln Ntot/dt . To-
gether with Eq. (5) and ln pi(t ) = ln Ni(t ) − ln Ntot (t ), these
relations lead to the equality

vinfo =
√√√√ n∑

i=1

pi(� fi )2 =
√

Var[ f ]. (7)

That is, vinfo also quantifies the diversity of each trait’s fitness.
Accordingly, Eq. (4) implies that the variance of fitness limits
the speed of an arbitrary observable.

On the other hand, we can discuss the role of vR in popula-
tion dynamics based on the Price equation [20–26]. A special
case of the Price equation for a time-independent observable
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provides a connection with the time derivative of the stochas-
tic entropy in the system, σ̇i(t ) := − d ln pi(t )/dt , as

d〈R〉
dt

= Cov[R,−σ̇ ], (8)

where the covariance of two observables is defined as
Cov[A, B] := 〈�A�B〉. This equation indicates that the evolu-
tionary rate is governed by the stochastic entropy change rate
in the system. We remark that σ̇ is directly connected to the
fitness as −σ̇i = � fi, so that its ensemble average and variance
satisfy 〈σ̇ 〉= 0 and

√
Var[σ̇ ] = √

Var[ f ] = vinfo. From Eq. (8),
vR is rewritten as

vR = Cov[R,−σ̇ ]√
Var[R]

= Cov[R, f ]√
Var[R]

, (9)

which implies that the speed of an observable can be inter-
preted in terms of the covariance between the observable and
the fitness. From Eqs. (7) and (9), the Cramér-Rao bound (4)
can be derived by applying the Cauchy-Schwarz inequality
−√

Var[R]
√

Var[ f ]�Cov[R, f ]�√
Var[R]

√
Var[ f ].

III. GEOMETRIC SPEED LIMIT FOR ACCELERATION
BY SELECTION

A. Main result: Selection bound

We explain the main result which is a new speed limit
based on the contribution of selection in evolutionary dynam-
ics. The key idea for the main result is the decomposition
of the stochastic entropy change rate in the system. In the
population dynamics model (2), σ̇ can be decomposed into
two parts as

σ̇ = σ̇ λ + σ̇W, (10)

where σ̇ λ
i := − �λi and σ̇W

i := − ∑n
j=1 Wi j p j/pi are the

stochastic entropy change rate in the system due to only
selection and mutation, respectively. We remark that σ̇W is
rewritten as σ̇W

i = −�( fi − λi ). These quantities also satisfy
〈σ̇ λ〉= 〈σ̇W〉= 0, as σ̇ does. Considering this decomposition,
we introduce the following quantities:

vλ
R := Cov[R,−σ̇ λ]√

Var[R]
, vλ

info :=
√

Var[σ̇ λ],

vW
R := Cov[R,−σ̇W]√

Var[R]
, vW

info :=
√

Var[σ̇W], (11)

where the upper two can be interpreted as vR and vinfo without
the contribution of mutation, while the lower ones are inter-
preted as those without selection. In other words, the former
are speeds stemming solely from selection, while the latter
mutation only. These quantities are given by the variance and
covariance of the measurable observables R, λ, and f − λ;
vλ

R = Cov[R, λ]/
√

Var[R], vλ
info = √

Var[λ], vW
R = Cov[R, f −

λ]/
√

Var[R], and vW
info = √

Var[ f − λ]. By decomposing vR

into the contributions of selection and mutation, we obtain a
new speed limit:

vλ
R − vW

info � vR � vλ
R + vW

info. (12)

We call this new speed limit the selection bound because
the speed of observable vR is accelerated by the effect of

FIG. 2. (a) Relations between the quantities presented in this
paper in the inner product space. −σ̇ can be written by the sum of the
contributions of selection and mutation, −σ̇ λ and −σ̇ W. The norms
of −σ̇ ,−σ̇ λ, −σ̇ W are vinfo, v

λ
info, v

W
info, respectively. The speed vR can

be expressed by the projection of −σ̇ in the direction of �R, while
the projections of −σ̇ λ and −σ̇ W are vλ

R and vW
R , respectively. Thus,

vR = vλ
R + vW

R holds. (b) The range of θλ
R that determines whether

the selection bound or the Cramér-Rao bound evaluates vR tightly
or loosely. If θ∗ � θλ

R �π , then the selection bound gives a tighter
upper bound, and if 0� θλ

R �π − θ∗, then the selection bound gives
a tighter lower bound. Therefore, both upper and lower bounds are
tight when θλ

R is located in the orange area [θ∗, π − θ∗].

selection vλ
R, compared to the case where no selection oc-

curs (−vW
info � vR � vW

info for λ = 0). Therefore, this bound
quantifies the acceleration of the evolutionary rate by natural
selection compared to mutational dynamics in the absence of
the selection [see also Fig. 1(b)].

The equation (12) is derived essentially from the Cauchy-
Schwarz inequality as well as the Cramér-Rao bound. To
simplify its derivation, we define an inner product and the
associated norm for observables as 〈A, B〉 := ∑n

i=1 piAiBi and
‖A‖ := √〈A, A〉, respectively. We can rewrite vR as

vR = 〈�R,�λ + �( f − λ)〉
‖�R‖ = vλ

R + vW
R . (13)

Applying the Cauchy-Schwarz inequality −‖�R‖‖�( f −
λ)‖� 〈�R,�( f − λ)〉� ‖�R‖‖�( f − λ)‖ to Eq. (13), we
can obtain the selection bound.

This inner product also provides a useful geometric in-
terpretation to discuss the effectiveness of the selection
bound [see also Fig. 2(a)]. In the geometric interpretation,
vinfo = ‖σ̇‖, vλ

info = ‖σ̇ λ‖, and vW
info = ‖σ̇W‖ are the norms

of −σ̇ , −σ̇ λ, and −σ̇W, respectively, and thus the triangle
inequality |vλ

info − vW
info|� vinfo � vλ

info + vW
info holds. In ad-

dition, vR = 〈�R,−σ̇ 〉/‖�R‖, vλ
R = 〈�R,−σ̇ λ〉/‖�R‖, and

vW
R = 〈�R,−σ̇W〉/‖�R‖ are the norms of the projections of

−σ̇ , −σ̇ λ, and −σ̇W onto �R, respectively. Then, the angle
between �R and −σ̇ λ = �λ can be defined as

θλ
R := arccos

( 〈�R,�λ〉
‖�R‖‖�λ‖

)
= arccos

(
vλ

R

vλ
info

)
, (14)

or equivalently vλ
R = vλ

info cos θλ
R . It quantifies the strength of

the correlation between R and λ [84]. If there is a positive
correlation between an observable R and the growth rate λ
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(i.e., cos θλ
R � 0), then vλ

R is positive and both upper and lower
bounds in the selection bound shift to the positive direction
(i.e., ±vW

info + vλ
R), compared to the case without selection

(i.e., ±vW
info). Therefore, positive correlations between ob-

servables and the growth rate can lead to faster evolution.
From a biological viewpoint, it indicates that if the value
of the observable R tends to be larger in fast-growing traits,
then its evolutionary rate can be accelerated, and vice versa.
Noting the relation vλ

R = vλ
info cos θλ

R , not only stronger cor-
relations between observables and growth rate (i.e., larger
cos θλ

R ) but also greater contributions of selection (i.e., larger
vλ

info, as discussed above) together allow a faster evolutionary
rate.

Finally, let us compare our bound (12) with the conven-
tional Cramér-Rao bound (4) to see how it quantifies the
competition between selection and mutation. To this end, we
define another angle θ∗ as

θ∗ := arccos

(
vinfo − vW

info

vλ
info

)
, (15)

which is well defined because the argument of the arccosine
is always in [−1, 1] from the triangle inequality. Using θλ

R and
θ∗, the following case separation gives the condition in which
case the Cramér-Rao bound or the selection bound gives better
evaluation (see Appendix A for the derivation):

0 � θλ
R � θ∗ ⇒ vR � vinfo � vλ

R + vW
info

θ∗ � θλ
R � π ⇒ vR � vλ

R + vW
info � vinfo

0 � θλ
R � π − θ∗ ⇒ −vinfo � vλ

R − vW
info � vR

π − θ∗ � θλ
R � π ⇒ vλ

R − vW
info � −vinfo � vR. (16)

This implies that if θ∗ is smaller than π/2 and θλ
R is in the

range [θ∗, π − θ∗], then the selection bound will bound vR

more tightly than the Cramér-Rao bound, both lower and
above [see Fig. 2(b)]. Since this range [θ∗, π − θ∗] does not
depend on the choice of specific observables, we can dis-
cuss the tightness of the selection bound quantitatively only
by the angles. Because θ∗ is given as the arccosine of the
ratio between vinfo − vW

info and vλ
info and vinfo is given as the

sum of vλ
info, vW

info and a correlation term between them (cf.
cosine theorem), θ∗ becomes smaller when the contribution
of selection vλ

info gets larger, since the ratio gets closer to
one. That is, if the contribution of selection is larger than
mutation (vλ

info 	 vW
info), then the range becomes wider, so that

the selection bound can give a better bound on vR for a wider
variety of observables R. Such a tendency is indeed observed
in the numerical calculations below.

B. Complementary result: Mutation bound

The discussion so far has focused on how the evolutionary
rate is accelerated by selection on growth. On the other hand,
we can discuss acceleration by mutation by inverting the roles
of W and λ in the selection bound. Concretely, we can derive
the bound

vW
R − vλ

info � vR � vW
R + vλ

info. (17)

FIG. 3. Numerical calculation for the conventional speed limit
(4) by the Cramér-Rao bound and the new speed limit (12) by the se-
lection bound. The horizontal axis is time, and vR, vλ

R + vW
info, vλ

R −
vW

info, vinfo, and −vinfo are plotted in the upper row. The lower row
shows the angles, θλ

R , θ∗, and π − θ∗.

We call this bound the mutation bound because it extracts the
effect of mutation vW

R . The same analysis can be performed for
the mutation bound as for the selection bound. With both the
selection bound and the mutation bound, we can better capture
the characteristics of evolutionary processes, especially in
the competing situation of natural selection and mutation (see
Appendix B for details).

C. Example

We illustrate our results by numerical calculations (Fig. 3).
To consider a situation where the contribution of selection is
dominant, we have the parameters in (2), {λi} and {Wi j}i �= j ,
uniformly sampled from [−λmax, λmax] and [0, Wmax], and
set λmax/Wmax = 100. Given that the present results hold for
arbitrary time-independent observables, we also uniformly
sample {Ri} within the range [−10, 10] rather than taking a
specific observable. In Fig. 3, at an early stage of the evo-
lutionary dynamics, or far from the steady state, the selection
bound better restricts vR. From the ecological perspective, this
behavior seems reasonable: Selection dominantly contributes
to the evolutionary processes far from steady states because
beneficial mutation gets less likely as evolution progresses. As
proven above, the selection bound is tighter than the Cramér-
Rao bound when θλ

R is in the range [θ∗, π − θ∗] (in orange in
Fig. 3). This range is wider when the selection is dominant.
A more precise evaluation of the speed limits is discussed in
Appendix C.

D. Experimental accessibility

Our speed limit is quantitatively testable by actual experi-
ments using single-cell lineage tree data. Recent advances in
experimental techniques enable us to measure when and into
what each cell mutates or divides. For example, by analyzing
time-lapse images of growing bacteria [37], we can mea-
sure transitions in phenotypic traits (e.g., cell sizes, shapes,
and intracellular concentration of a particular protein) and
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proliferation dynamics at the same time. The number of in-
dividuals with ith trait at time t that have experienced K
divisions since time t ′, denoted as Ni(K, t ; t ′), can be obtained
in such an experiment. This quantity Ni(K, t ; t ′) enables us
to compute the instantaneous values of all the quantities in
our speed limit, pi(t ), σ̇ λ

i , σ̇W
i , σ̇i, vλ

R, vW
R , vλ

info, and vW
info (see

Appendix D). Therefore, we can experimentally check the
tightness of our speed limit for arbitrary observable R, which
quantifies the contribution of observable R to the evolutionary
rate in the selection process.

IV. CONCLUSION

We derived a novel speed limit, the selection bound, that
considers the contributions of the selection and mutation sep-
arately when the competition between selection and mutation
exists. The core of this result is the decomposition of the
stochastic entropy change rate into the selection and mutation
part. It allows us to understand the limitations of the speeds of
observables more precisely than the conventional speed limit
from the Cramér-Rao bound. Although the limits from the
selection bound depend on the observables we consider, the
“tendency” for the selection bound to give a better bound than
the Cramér-Rao bound only depends on the selection strength.
The selection bound should be effective in selection-dominant
situations such as environmental shift conditions.

The decomposition of the stochastic entropy change rate
in this paper may be applicable to other nonlinear dynamics.
For example, the generalized Lindblad equation for postse-
lection in quantum dynamics [85–87] has a similar nonlinear
term originated by the normalization of a probability distri-
bution. Our decomposition into a nonlinear contribution (i.e.,
selection) and a linear contribution (i.e., mutation) may be
generalized for such an equation to derive a specialized speed
limit that characterizes the property of postselection.
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APPENDIX A: EVALUATION OF THE SPEED LIMITS

Here we explain the derivation of Eq. (16). Tak-
ing the difference between vinfo and vλ

R + vW
info, we get

vinfo − (vλ
R + vW

info) = vinfo − vW
info − cos θλ

Rvλ
info. Thus, the fol-

lowing equations hold:

cos θλ
R � vinfo − vW

info

vλ
info

⇒ (vR �) vλ
R + vW

info � vinfo,

cos θλ
R � vinfo − vW

info

vλ
info

⇒ (vR �) vinfo � vλ
R + vW

info. (A1)

The same calculations can be applied to the lower lim-
its: −vinfo and vλ

R − vW
info. The difference between the

two is, (vλ
R − vW

info) − (−vinfo) = vinfo + cos θλ
Rvλ

info − vW
info.

Therefore,

cos θλ
R � −vinfo − vW

info

vλ
info

⇒ −vinfo � vλ
R − vW

info (� vR),

cos θλ
R � −vinfo − vW

info

vλ
info

⇒ vλ
R − vW

info � −vinfo (� vR).

(A2)

Taking the arccos on both sides of these equations and using
the relation arccos(−x) = π − arccos(x), we obtain Eq. (16)
in the main text.

APPENDIX B: DETAIL OF THE MUTATION BOUND

In this section, we describe the results of the numerical
calculation for the following speed limit, which we call the
mutation bound:

vW
R − vλ

info � vR � vW
R + vλ

info. (B1)

This speed limit is expected to give a good evaluation in
mutation-dominant situations, whereas the selection bound
gives a good evaluation in selection-dominant situations. We
below proceed with the discussion in parallel with that in

FIG. 4. Numerical calculation of a situation where the selection
bound can be tighter for vR than Cramér-Rao bound and the mutation
bound cannot. The horizontal axis is time t and each value is plotted
in the upper part of the graph. The lower part shows the angles. The
number of species are n = 10, the observable R, growth rate λ, and
the off-diagonal components of the transition matrix W are taken
as uniform random numbers in [−10, 10], [−10, 10], and [0, 0.1],
respectively. The initial distribution is also generated as uniform
random numbers.
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the main text. We define the angle θW
R between observable R

and the stochastic entropy change rate in the system due to
mutation −σ̇W as

θW
R = arccos

(
〈�R,−σ̇W〉

‖�R‖‖− σ̇W‖

)
= arccos

(
vW

R

vW
info

)
. (B2)

Using this angle θW
R and another angle θ† defined as

θ† := arccos

(
vinfo − vλ

info

vW
info

)
, (B3)

the relations among the upper bound vλ
info + vW

R and the lower
bound −vλ

info + vW
R by the mutation bound and vinfo are ex-

pressed as

0 � θW
R � θ† ⇒ vR � vinfo � vW

R + vλ
info

θ† � θW
R � π ⇒ vR � vW

R + vλ
info � vinfo

0 � θW
R � π − θ† ⇒ −vinfo � vW

R − vλ
info � vR

π − θ† � θW
R � π ⇒ vW

R − vλ
info � −vinfo � vR. (B4)

In contrast to θ∗, θ† becomes small when the contribution
of mutation to the evolution of the probability distribution is
large. It indicates that the range of θW

R where the mutation
bound is tighter, [θ†, π − θ†], gets wider. To sum up, the

FIG. 5. Numerical calculation of a situation where the mutation
bound can be tighter for vR than Cramér-Rao bound and the selection
bound cannot. The horizontal axis is time t and each value is plotted
in the upper part of the graph. The lower part shows the angles.
Compared to Fig. 4, the parameters are different. The observable
R, growth rate λ, transition rate W is generated as uniform random
numbers in [−10, 10], [−5, 5], and [0, 5], respectively. Note that the
ratio of the growth rate to the mutation rate is 1, not 100 as in Fig. 3
in the main text and Fig. 4.

selection bound gets tighter when the contribution of selec-
tion is large, while the mutation bound gets tighter when the
contribution of mutation is large.

With the parameters used to demonstrate the selec-
tion bound in the main text, the mutation bound gives
a loose bound. As shown in Figs. 4 and 5, the mu-
tation bound is loose in situations where the selection
bound gives a tight evaluation, and conversely, the selection
bound is loose in situations where the mutation bound is
tight.

Thus, the selection bound and the mutation bound provide
good bounds to evaluate the change speed of the observables
in different situations.

APPENDIX C: HOW THE STRENGTH OF SELECTION
AND MUTATION AFFECT THE EVALUATION

OF THE SPEED LIMITS

In order to evaluate the tightness of the selection bound
and the mutation bound quantitatively, we discuss the depen-
dence of the “tendency” to give better limits on the ratio of
λmax to Wmax. This tendency for the selection bound to be
tighter than the Cramér-Rao bound can be measured using
the value of θ∗. The selection bound gets tighter when the
angle θλ

R is in the range [θ∗, π − θ∗]. Therefore, if we de-
fine P∗ := max{(π − 2θ∗)/π, 0}, then this P∗ quantifies the
tendency of the selection bound to give a better evaluation.
The selection bound tends to be tighter when P∗ is close
to 1 and looser when P∗ is close to 0. Note that θ∗ is not
always under π/2, thus, π − 2θ∗ could be negative. In the
same way, the tendency of the mutation bound to give a
better evaluation can be measured by the value defined as
P† := max{(π − 2θ†)/π, 0}. It is noteworthy that P∗ and P†

do not depend on the observable R.
We demonstrate the dependence of P∗ and P† on the

ratio of λmax to Wmax (see Fig. 6). In the numerical calcu-
lation, λ and W is generated by uniform random values in
the range [−λmax, λmax], and [0, Wmax], respectively. Note
here that both P∗ and P† depend on time, so we use their
values in the initial state of the dynamics. Figure 6 shows
that the tendency P∗ of the selection bound to get tighter
than the Cramér-Rao bound increases when λmax is larger than
Wmax. This calculation confirms the statement in the main text
that the selection bound is effective when natural selection is
dominant.

Another finding is that the point where the two curves of
P∗ and P† intersect is governed by the number of species
n. This point represents the ratio λmax/Wmax with vλ

info =
vW

info. Moreover, the tendency for the selection/mutation
bound to give better evaluation swaps at this point. Figure 6
shows that such a ratio is not 1 but close to the number
of species n. It implies that the contribution of selection
and that of mutation compete when λmax is about n times
larger than Wmax. This fact can be understood by consid-
ering a situation where the parameters are λi = 1, Wi j =
1(i �= j). The contribution to the growth rate of trait i of
the selection is 1, whereas the contribution of the mutation
is n − 1. Therefore, if the traits grow at an identical rate,
then the contribution of selection becomes larger in small
communities.
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FIG. 6. Numerical calculation for P∗ and P†, that quantify the tendency of the selection/mutation bound to get tighter than the Cramér-Rao
bound. λ and W are generated by uniform random numbers in [−λmax, λmax] and [0, Wmax], respectively. The graphs show how P∗ and P†

depend on the ratio of λmax to Wmax. Plim is the limit of P∗ as λmax/Wmax → 0 or that of P† as λmax/Wmax → ∞. These two values converge
to an identical value, which does not necessarily go to 0. Each graph is the result for a different number of species n = 10, 100, 1000.

APPENDIX D: HOW TO VERIFY THE SELECTION
BOUND AND THE MUTATION BOUND FROM

EXPERIMENTAL DATA

In this section, we describe how one can quantitatively
test our speed limit using single-cell genealogical data in the
form of population lineage trees which include data of cell
divisions and mutations or phenotypic switching (see Fig. 7
as an example). We can compute the number Ni(K, t ; t ′) of
individuals with ith trait at time t that have experienced K
divisions since time t ′ from single-cell genealogical data.
Ni(K, t ; t ′) enables us to compute the instantaneous values of
all the quantities in our speed limit, i.e., pi(t ), σ̇ λ

i , σ̇W
i , and σ̇i

as well as vλ
R, vW

R , vλ
info, and vW

info for an arbitrary observable R.
The details are as follows.

Firstly, from Ni(K, t ; t ′), we define chronological (forward)
distribution pch as

pch
i (t ; t ′) :=

∞∑
K=0

Ni(K, t ; t ′)
Ntot (t ′)2K

. (D1)

From these values, we can obtain the instantaneous values of
Ni(t ) and pi(t ) for each subpopulation: the sum of Ni(K, t ; t ′)
with respect to K equals Ni(t ),

∞∑
K=0

Ni(K, t ; t ′) = Ni(t ), (D2)

and pch
i (t ; t ′) is equal to pi(t ) when t ′ = t ,

pch
i (t ; t ) = pi(t ), (D3)

FIG. 7. Example of single-cell lineage trees with two traits,
0 (green) and 1 (gray). The distributions p(t ) and pch(t ) are
available only from the cell lineage by counting Ni(K, t ; t ′).
The blue lines show the trajectories of individuals that experi-
enced 1 divisions between time t ′ and t in the subpopulation
with the trait 0 at time t . Thus N0(1, t ; t ′) is 2 in this cell
lineage.
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because only K = 0 is allowed as the number of division
between t and t . Note that the chronological distribution de-
fined above has been studied not only as a theoretical object
[40,88] but also utilized to analyze experimental data as in
Refs. [37,45]. t ′ is usually set to the initial time and not
explicitly written in these previous studies.

Up to here, we can compute speeds vR, vinfo, and σ̇i for
any observable R by using pi(t ). On the other hand, since the
remaining quantities, vλ

R, vW
R , vλ

info, vW
info, σ̇ λ

i , and σ̇W
i , depend

on the other parameters, λ and W, we need more calcula-
tions. Surprisingly, single-cell genealogical data enable us to
compute them without estimating the parameters, as we show
below.

As a preparation, let us consider the differential equa-
tions that Ni(K, t ; t ′) and pch satisfy. Let an individual with
ith trait divide into 2 individuals at rate ri � 0. Then, by
division, Ni(K, t ; t ′) increases by 2riNi(K − 1, t ; t ′)dt in an
infinitesimal duration dt , while decreasing by riNi(K, t ; t ′)dt .
Note that only one division can occur in an infinitesimal
duration dt . By taking into account the term due to mutation∑n

j=1 Wi jNj (K, t ; t ′), we get the equation

d

dt
Ni(K, t ; t ′) = 2riNi(K − 1, t ; t ′) − riNi(K, t ; t ′)

+
n∑

j=1

Wi jNj (K, t ; t ′), (D4)

where we define Ni(K, t ; t ′) = 0 for K < 0. By taking the sum
for K , we obtain

d

dt
Ni(t ) = riNi(t ) +

n∑
j=1

Wi jNj (t ). (D5)

If we write ri as λi, then it is identical to our model in the main
text. Note that ri is all non-negative, while λi can be negative
values in general, which reflects the experimental setup that
does not account for individual mortality. On the other hand,

combining Eq. (D4) with Eq. (D1), we find

d

dt
pch

i (t ; t ′) =
∞∑

K=0

1

Ntot (t ′)2K

⎡
⎣2riNi(K − 1, t ; t ′)

−riNi(K, t ; t ′) +
n∑

j=1

Wi jNj (K, t ; t ′)

⎤
⎦

= ri

∞∑
K=0

Ni(K − 1, t ; t ′)
Ntot (t ′)2K−1

− ri

∞∑
K=0

Ni(K, t ; t ′)
Ntot (t ′)2K

+
n∑

j=1

Wi j

∞∑
K=0

Nj (K, t ; t ′)
Ntot (t ′)2K

=
n∑

j=1

Wi j pch
j (t ; t ′). (D6)

Now we can present the way to compute σ̇W
i and σ̇ λ

i , using
only the distributions pi(t ) and pch

i (t ; t ′), which are available
from single-cell lineage tree data. Discretizing Eq. (D6) and
dividing the obtained equation by pi(t ), we find the relation

pch
i (t + dt ; t ′) − pch

i (t ; t ′)
pi(t )dt

=
n∑

j=1

Wi j

pch
j (t ; t ′)

pi(t )
. (D7)

Then, substituting t for t ′ and using Eq. (D3), we see that we
can calculate σ̇W

i as

pch
i (t + dt ; t ) − pi(t )

pi(t )dt
=

n∑
j=1

Wi j
p j (t )

pi(t )
= −σ̇W

i . (D8)

On the other hand, if we consider the discretization of
Eq. (D5), as we did for Eq. (D6), then we obtain σ̇i as

pi(t + dt ) − pi(t )

pi(t )dt
= �λi +

n∑
j=1

Wi j
p j (t )

pi(t )
= −σ̇i. (D9)

Then σ̇ λ
i is given by σ̇ λ

i = σ̇i − σ̇W
i . As a result, it is finally

shown that we can compute all the relevant quantities we
discuss in the main text from single-cell genealogical data.
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