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Abstract: In this paper we describe invariant geometrical structures in the phase space
of the Swift-Hohenberg equation in a neighborhood of its periodic stationary states. We
show that in spite of the fact that these states are only marginally stable (i.e., the linearized
problem about these states has continuous spectrum extending all the way up to zero),
there exist finite dimensional invariant manifolds in the phase space of this equation
which determine the long-time behavior of solutions near these stationary solutions. In
particular, using this point of view, we obtain a new demonstration of Schneider’s recent
proof that these states are nonlinearly stable.

1. Introduction

In this paper, we study the non-linear stability of space-periodic, time-independent so-
lutions of the Swift-Hohenberg equation

∂tu =
(

ε2 − (1 + ∂2
x)2

)

u − u3 . (1.1)

Here, u(x, t) is defined on R × R+ and takes real values and ε ≥ 0 is a small parameter.
Equation(1.1) has stationary solutions u(x, t) = uε,ω(x) which are of the form

uε,ω(x) =
∑

n∈Z

uε,ω,neiωnx . (1.2)

The non-linear stability problem addresses the question of the time evolution of initial
data which are close touε,ω, and stability in this context means that the solution converges

to uε,ω as t → ∞. The range of possible values of ω is given by ε2 > (1 − ω2)2 when
ω is close to 1. To simplify the exposition we shall concentrate on the case ω = 1, and
omit henceforth the index ω.
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In a very interesting paper, G. Schneider [Sch] has solved this problem, and the
present work relies heavily on his ideas. Our aim is to simplify somewhat the exposition
of [Sch] and to extend the result by giving a more precise asymptotic analysis, using the
description of the asymptotic behavior in terms of a continuous renormalization group
and invariant manifolds as introduced in [W], see below.

The existence of solutions of the form Eq. (1.2) is a well-established fact, (see
e.g. [CE]) and we repeat here only those points of the discussion which are needed in
the sequel. The equation for the stationary solution is F (u, ε) = 0, where

F (u, ε) ≡
(

ε2 − (1 + ∂2
x)2

)

u − u3 . (1.3)

The equation F = 0 has the trivial solution u = 0, ε = 0. Linearizing around this solution,
we see that DF equals

DF = −(1 + ∂2
x)2 ⊕ 0 ,

acting on some weighted subspace of L2(R) ⊕ R. The null space of DF is spanned by

{cos x, sin x} ⊕ 0 and 0 ⊕ 1 , (1.4)

and thus, bifurcation theory suggests the existence of solutions of the form of Eq. (1.2),
when ε 6= 0. This is indeed what happens (cf. [CR, CE]), and the higher frequency terms
in Eq. (1.2) are generated from the basis Eq. (1.4) by the non-linearity u3. The method
clearly extends to similar polynomial non-linearities. An explicit calculation shows that
F (uε, ε) = 0 for

uε(x) = ε
2√
3

cos(x) + ε2hε(x) , (1.5)

and hε(x) = hε(x + 2π). Thus, the function uε equals uε,1 of Eq. (1.2). We have broken
the translation invariance of the problem by the choice of cos in Eq. (1.5), instead of,
say, sin.

We next pass to the linear stability analysis of the solution uε. This is again a
classical subject, initiated by Eckhaus [E], which we summarize for convenience, see
also [CE]. Linearizing Eq. (1.1) around the solution uε we are led to study the operator
Lε =

(

ε2 − (1 + ∂2
x)2

)

− 3u2
ε, that is,

(

Lεv
)

(x) =
(

ε2 − 3u2
ε(x)

)

v(x) − (1 + ∂2
x)2v(x) .

Because uε is a 2π periodic function, it is most convenient to work in Floquet coordinates
(i.e., with Bloch waves). To fix the notation, we give some details: Begin by introducing
the following representation for f ∈ L2(R):

f (x) =

∫

dke−ikxf̂ (k) =
∑

m∈Z

∫ 1/2

−1/2

dℓ e−imxe−iℓxf̂ (m + ℓ)

=

∫ 1/2

−1/2

dℓ e−iℓxf̃ℓ(x) ,

where
f̃ℓ(x) =

∑

m∈Z

e−imxf̂ (m + ℓ) . (1.6)

Properties of f̃ . Note first that f̃ℓ is 2π periodic. Furthermore, the definition of f̃ℓ(x)
can be extended to all ℓ ∈ R by the definition
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f̃ℓ+1(x) = e−ixf̃ℓ(x) .

We next observe that if f has a smooth, rapidly decaying Fourier transform, then f̃ℓ(x)
will also be a smooth function of ℓ and x. If f , g are in L2(R), then it follows from the
definition of f̃ℓ that

(fg)∼ℓ (x) =

∫ 1/2

−1/2

dk f̃ℓ−k(x) g̃k(x) . (1.7)

We finally note that if s is a 2π periodic function, then

s̃ℓ(x) = δ(ℓ)s(x) . (1.8)

It is now easy to see that

(

Lεv
)∼

ℓ
(x) =

(

ε2 − (1 + (iℓ + ∂x)2)2
)

ṽℓ(x) − 3(u2
εv)∼ℓ (x) .

In the language of condensed matter physics, ℓ is the quasi-momentum in the “Brillouin
zone” [− 1

2
, 1

2
] and Lε leaves the subspace Fℓ of functions with quasi-momentum ℓ

invariant. Using the properties just described, we get

(

Lεv
)∼

ℓ
(x) =

(

ε2 − (1 + (iℓ + ∂x)2)2
)

ṽℓ(x) − 3u2
ε(x) · ṽℓ(x) ≡

(

Lε,ℓvℓ

)

(x) . (1.9)

To fix the notation, we repeat the calculation done by Eckhaus, cf. also [CE, M]. We
denote c(x) = cos(x), s(x) = sin(x). The method of Eckhaus consists in projecting the
eigenvalue problem for Lε,ℓ onto the subspace spanned by the “bifurcating directions”

c and s. Observe that, modulo higher frequency terms, we have c3 = 3
4
c, c2s = 1

4
s, and

therefore the projection of Lε,ℓ onto this subspace is described by the matrix

( −4ℓ2 − ℓ4 − 2ε2 + O(ε4) −4iℓ3

4iℓ3 −4ℓ2 − ℓ4

)

+ O(ε4)
( O(ℓ2) O(ℓ)

O(ℓ) O(ℓ2)

)

.

The eigenvalues of this matrix are

λ0
ℓ,0 = −

(

4 + O(ε2)
)

ℓ2 + O(ℓ3) ,

λ0
ℓ,1 = −2

(

ε2 + O(ε4)
)

−
(

4 + O(ε2)
)

ℓ2 + O(ℓ3) + O(ℓ4 + ε4) .

Thus, the restriction of Lε,ℓ on the subspace spanned by c and s has its spectrum in the left
half-plane. Note that the corresponding eigenvectors are s+O(|ℓ|+ ε) and c+O(|ℓ|+ ε).
Extending this calculation to the full space, one shows in the same way [E, CE, M] that

Theorem 1.1. For sufficiently small ε > 0 the operators Lε,ℓ, with ℓ ∈ [− 1
2
, 1

2
] are

selfadjoint on the Sobolev space H4, have compact resolvent and a spectrum satisfying

λℓ,0(ε2) = −
(

4 + O(ε2)
)

ℓ2 + O(ℓ3) ≡ −c0(ε2)ℓ2 + O(ℓ3) ,

λℓ,1(ε2) = −2
(

ε2 + O(ε4)
)

−
(

4 + O(ε2)
)

ℓ2 + O(ℓ3) ,

λℓ,j ≤ −(1 − j2)2 + O(ε2) , j = 2, 3, . . . .

(1.10)

Notation. Since we mostly concentrate on the branch 0, we shall abbreviate λℓ = λℓ,0(ε2).
The eigenfunction corresponding to λℓ is

ϕε,ℓ(x) = const.
(

u′
ε(x) + iℓgε(x) + hε,ℓ(x)ℓ2

)

, (1.11)
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where uε is the stationary solution, and both gε and hℓ,ε are 2π periodic. If we choose the

constant to normalize the L2 norm of ϕε,ℓ to 1, then ϕε,ℓ = π−1/2 sin(x) + O(ε + |ℓ|).We

can now formulate the main question of this paper: Having seen that the solution uε

is linearly (marginally) stable, is it true that this solution is stable under the non-linear
evolution? The answer will be affirmative. As pointed out by Schneider [Sch], the result
is not obvious, since the leading non-linear term does not have a sign. Indeed, the non-
linear evolution equation for a (small) perturbation of uε is

∂tv = −(1 + ∂2
x)2v + ε2v − 3u2

εv − 3uεv
2 − v3 ,

where we recall that uε is of order ε, and approximately equal to O(ε) cos(x). Reducing
again to quasi-momentum ℓ, and using Eq. (1.8), we get the equation

∂tṽℓ = Lε,ℓṽℓ − 3uε(v2)∼ℓ − (v3)∼ℓ , (1.12)

and it is the term 3uε(v2)∼ℓ which does not have a sign. The saving grace will be the dif-

fusive behavior suggested by the spectrum (in particular the branch λℓ). At first sight, the
non-linearities seem to be too singular for diffusion to dominate a potential divergence.
Indeed, it is well known that, e.g., the equation

∂tu = ∂2
xu + u3 ,

has solutions which blow up in finite time [L], and the quadratic term makes things
even worse. The beautiful observation of Schneider [Sch] is, however, that the problem
Eq. (1.12) is rather of a form reminiscent of

∂tv = ∂2
xv − ∂2

xv2 − ∂xv3 , (1.13)

which is good enough for convergence [CEE, BK, BKL].

In later sections we examine in detail the form of the non-linear terms in Eq. (1.12),
but here we explain briefly why these terms are similar to the non-linear terms in
Eq. (1.13). The derivatives in the non-linearity have their origin in the symmetries of
the problem, and they are easier to understand in momentum space. In fact, Eq. (1.13)
is a good approximation to Eq. (1.12) only in the low-momentum (small ℓ) regime, but
this is sufficient since for ℓ outside a neighborhood of ℓ = 0, the stationary solutions
are linearly stable, (and not only marginally stable) and the form of the non-linearity is
unimportant.

To understand the low-momentum behavior of Eq. (1.1), note first that the Swift-
Hohenberg equation Eq. (1.1) – and, incidentally, other equations with coordinate in-
dependent right-hand side – has a circle of fixed points generated by translations. If
we now study Eq. (1.12) at ℓ = 0, this corresponds to studying the Swift-Hohenberg
equation in the space of functions of period 2π. In this space, say L2([0, 2π]), the linear
operator in Eq. (1.12) has pure point spectrum with a simple eigenvalue at 0 and all
other eigenvalues real and strictly negative. In this case, as Schneider notes, the center
manifold theorem can be applied, and there exists a 1-dimensional center manifold. We
also see immediately that the eigenvector corresponding to the 0 eigenvalue is ∂xuε,
i.e., it is tangent to the circle of fixed points generated by translations. In fact, since any
fixed point sufficiently close to the origin must lie in the center manifold, we see that
the center manifold coincides with the 1-dimensional circle of fixed points. Thus the
non-linearity in the equation, when restricted to the center manifold, must vanish. This
shows that the effective non-linearity in Eq. (1.12), when evaluated at ℓ = 0, must vanish
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and this accounts for one derivative in Eq. (1.13). More precisely, we see that the effec-
tive non-linearity in Eq. (1.12) is bounded by O(ℓ), as is the non-linearity in Eq. (1.13).
The second derivative of the non-linearity in Eq. (1.13) arises because of “momentum
conservation.” Since ϕε,ℓ is a smooth function of ℓ, the linear term in Eq. (1.11) must
of the form iℓgε, with gε independent of ℓ. Since the interaction is local in x, one sees
upon working out the integrals that all terms proportional to ℓ in the non-linearity can-
cel exactly, see Eq.(A.3). Thus, the low momentum behavior of Eq. (1.12) is as if the
non-linearity was differentiated twice – i.e., exactly as in Eq. (1.13).

Our main result is that this intuitive argument correctly predicts that the leading
order asymptotics are diffusive, and that furthermore, the higher order asymptotics are
controlled by a sequence of finite dimensional invariant manifolds. Thus, our approach
provides some insight into how finite dimensional geometrical structures can arise from
a problem with continuous spectrum.

Stability Theorem 1.2. Fix n ≥ 1 and δ > 0. There exists a Hilbert space, H(n), such

that there is an n + 1 dimensional, invariant manifold for (1.12) in the extended phase

space P (n) = R+ × H(n) of this equation. Any “sufficiently small” solution of (1.12)

will either lie on this manifold, or approach it at a rate O(t−(n+1−δ)/2). In particular, if

n = 1, small solutions of (1.12) have the asymptotic form:

v(x, t) =
A√
t
e
− x2

4c0(ε2)t + O(
1

t3/4−δ
) ,

where c0(ε2) = 4 + O(ε2).

Remark. In Sects. 2 and 3, we will make clear precisely what the Hilbert spaces H(n)
are and what we mean by “sufficiently small.”

The remainder of the paper is devoted to a proof of the Stability Theorem 1.2.

2. Formulating the Stability Theorem 1.2 in Terms of Scaling Variables

In this section, we transform the problem to a rescaled dynamical system. In the next
section, we will cast the dynamical system thus obtained into an invariant manifold
problem.

The idea of the proof is to focus on the “central branch” of the spectrum,λℓ = λℓ,0(ε2),
which is only marginally stable. The relevant part of the spectrum for the long-time
asymptotics is only the part in a small neighborhood of ℓ = 0, a fact we exhibit by an
appropriate rescaling of the dependent and independent variables. This rescaling has the
disadvantage that it introduces a singular perturbation in the variables corresponding
to the “stable branches” of the spectrum, λℓ,n(ε2), n ≥ 1, because the corresponding
modes decay extremely fast, when rescaled (at least on a linear level). However, invariant
manifold theory has long been used to treat singular perturbation problems, and we are
able to use it for that purpose here as well. In addition, these invariant manifolds will
provide us with a geometric description of the long-time asymptotics of solutions near
the stationary states.

Our method generalizes to other problems of similar spectral nature, see the example
of a cylindrical domain given in [W2].

Henceforth, we fix ε > 0, and omit it from most subscripts. Since Lℓ = Lε,ℓ is self-

adjoint, we can define the (orthogonal) spectral projections Pℓ and P⊥
ℓ , which project

onto the central branch and its complement.
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Remark. We know that for |ℓ| sufficiently small, say |ℓ| < ℓ0/2, one has

spec(PℓLℓPℓ) = −c0(ε2)ℓ2 + O(ℓ3) ,

and that this is the eigenvalue closest to 0 in spec(Lℓ). We continue this projection
smoothly to larger ℓ even if it cannot be guaranteed to be a projection onto the highest
eigenvalue. But note that for those values of ℓ the spectrum of Lℓ can be shown to be
strictly bounded away from 0, see, e.g., [CE, p. 102]. To study the non-linearity, and to

show the mechanism leading to the result which is analogous to Eq. (1.13), we write
Eq. (1.12) in more detail:

∂tṽℓ(x) =
(

Lε,ℓṽℓ

)

(x) − 3uε(x)

∫ 1/2

−1/2

dk ṽℓ−k(x)ṽk(x)

−
∫ 1/2

−1/2

dk1 dk2 ṽℓ−k1−k2
(x)ṽk1

(x)ṽk2
(x)

≡
(

Lℓṽℓ

)

(x) −
(

F2(ṽ)
)

ℓ
(x) −

(

F3(ṽ)
)

ℓ
(x) .

(2.1)

We now decompose Eq. (2.1) by projecting onto Pℓ and P⊥
ℓ . If f ∈ L2, we let f̃ c

ℓ = Pℓf̃ℓ,

and f̃⊥
ℓ = P⊥

ℓ f̃ℓ. Similarly, Lc
ℓ = PℓLℓPℓ and L⊥

ℓ = P⊥
ℓ LℓP

⊥
ℓ . Then we get

∂tṽ
c
ℓ(x) = Lc

ℓṽ
c
ℓ(x) −

(

PℓF2(ṽ)ℓ
)

(x) −
(

PℓF3(ṽ)ℓ
)

(x) , (2.2)

and a similar equation for ṽ⊥
ℓ :

∂tṽ
⊥
ℓ (x) = L⊥

ℓ ṽ⊥
ℓ (x) −

(

P⊥
ℓ F2(ṽ)ℓ

)

(x) −
(

P⊥
ℓ F3(ṽ)ℓ

)

(x) . (2.3)

We next split the first equation into a piece corresponding to small |ℓ|, i.e., |ℓ| < ℓ0 and
another corresponding to large ℓ. Since we want to construct invariant manifolds, we
need some smoothness in this construction and we choose a smooth cutoff χ satisfying

χ(ℓ) =

{

1, if |ℓ| ≤ ℓ0 ,
0, if |ℓ| > 2ℓ0 ,

and of course ℓ0 < 1
2
. In fact, we shall choose ℓ0 > 0 so small thatPℓ is the projection onto

the central eigenspace for all ℓ ∈ [−ℓ0, ℓ0]. Let ϕℓ denote the normalized eigenvector
which spans the range of Pℓ (for |ℓ| < ℓ0, and smoothly continued for ℓ beyond that
value). Then ṽc

ℓ can be written as ṽc
ℓ = V (ℓ)ϕℓ, where it is understood that V is really

a function of v. We also let Πℓ denote the operation Πℓfℓ = 〈ϕℓ|fℓ〉, where 〈·〉 is the
scalar product in Fℓ. This operation extracts the coefficient V and therefore Eq. (2.2)
can be written as

∂tV (ℓ) = λℓV (ℓ) − ΠℓPℓF2(ṽ)ℓ − ΠℓPℓF3(ṽ)ℓ . (2.4)

Defining V <(ℓ) = χ(ℓ)V (ℓ), and V >(ℓ) = (1 − χ(ℓ))V (ℓ), Eq. (2.4) can be rewritten as

∂tV
<(ℓ) = λℓV

<(ℓ) −
(

f c(V <, V >, ṽ⊥)
)

(ℓ) ,

∂tV
>(ℓ) = λℓV

>(ℓ) −
(

f s(V <, V >, ṽ⊥)
)

(ℓ) ,
(2.5)

where
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(

f c(V <, V >, ṽ⊥)
)

(ℓ) = χ(ℓ)

(

ΠℓPℓF2

(

ṽ
)

ℓ
+ ΠℓPℓF3

(

ṽ
)

ℓ

)

,

(

f s(V <, V >, ṽ⊥)
)

(ℓ) =
(

1 − χ(ℓ)
)

(

ΠℓPℓF2

(

ṽ
)

ℓ
+ ΠℓPℓF3

(

ṽ
)

ℓ

)

,

and

ṽℓ(x) = (V <(ℓ) + V >(ℓ)) · ϕℓ(x) + ṽ⊥
ℓ (x) .

Note that since V > is supported outside [−ℓ0, ℓ0], both it and ṽ⊥ decay exponentially
(at least at the linear level) and hence will be irrelevant for the asymptotics of V <, as we
shall show. With this in mind, we introduce a new coordinate, V s, which combines the
“irrelevant” pieces, V s = (V >, ṽ⊥). Then the Eq. (2.5) combined with Eq. (2.3) takes
the more suggestive form

∂tV
<(ℓ) = λℓV

<(ℓ) −
(

f (V <, V s)
)

(ℓ) ,

∂tV
s = L(0)

b V s + g(V <, V s) ,
(2.6)

and we know that the spectrum of the linear operator L(0)
b is contained in (−∞,−σs),

for some σs > 0.
In order to proceed further, we analyze the non-linear terms in Eq. (2.6) in more

detail. In particular, we concentrate on the most critical terms, namely those in f of

Eq. (2.6) which depend only on V <. We decompose f (V <, V s) = f (0)
2 (V <)+f (0)

3 (V <)+

f (0)
4 (V <, V s), where f (0)

2 collects the terms which are homogeneous of degree 2 in V <

and f (0)
3 those of degree 3. One gets

(

f (0)
2 (V <)

)

(ℓ) = 3χ(ℓ)

∫

dxϕℓ(x)uε(x)

∫ 1/2

−1/2

dk ϕk(x)ϕℓ−k(x)V <(k)V <(ℓ − k)

≡ 3χ(ℓ)

∫ 1/2

−1/2

dk K2(ℓ, k)V <(k)V <(ℓ − k) ,

(

f (0)
3 (V <)

)

(ℓ) = χ(ℓ)

∫

dxϕℓ(x)

∫ 1/2

−1/2

dk1 dk2 ϕk1
(x)ϕk2

(x)ϕℓ−k1−k2
(x)

× V <(k1)V <(k2)V <(ℓ − k1 − k2)

≡ χ(ℓ)

∫ 1/2

−1/2

dk1 dk2 K3(ℓ, k1, k2)V <(k1)V <(k2)V <(ℓ − k1 − k2) .

(2.7)
At this point, we make use of the diffusive nature of the problem for V <, by introducing
scaling variables as in [W]. This will give us a more precise description of the conver-
gence process than the one obtained in [Sch]. We rescale the variables in Eq. (2.6) as
follows: We first fix, once and for all, a (large) constant t0 > 0. Then we define

V <(ℓ, t) = wc
(

sign(ℓ)
√

|3ℓ|(t + t0) , log(t + t0)
)

,

V s(ℓ, t) = ws
(

sign(ℓ)
√

|3ℓ|(t + t0) , log(t + t0)
)

/(t + t0)1/2 ,
(2.8)

where 3ℓ = λℓ for |ℓ| < ℓ0/2 and is monotonically extended beyond that region in such a
way that it is parabolic for large |ℓ|. (This artifact is needed because we have no guarantee
that λℓ itself is monotone.) Note that if λℓ were equal to −const. ℓ2, this scaling would
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amount to the usual “diffusive” rescaling. Our choice takes into account higher order

corrections produced by higher order terms in λℓ. If we let now p = sign(ℓ)
√

|3ℓ|(t + t0),
and τ = log(t + t0), then Eq. (2.6) implies that wc and ws obey the following equations:

∂τwc = (−p2 − 1
2
p∂p)wc

+ eτ
(

f2(wc, e−τ/2) + f3(wc, e−τ/2) + f4(wc, wse−τ/2, e−τ/2)
)

,

e−τ∂τws = Mexp(−τ/2)w
s + 1

2
e−τws − 1

2
e−τp∂pw

s + eτ/2g(wc, wse−τ/2, e−τ/2) ,
(2.9)

where f2, f3, f4 and M in Eq. (2.9) are defined below. If

pe−τ/2 = p(t + t0)−1/2 = sign(ℓ)
√

|3ℓ| ,

and if we denote the inverse transformation by

ℓ = 8(pe−τ/2) ,

where8 is the inverse function ofx 7→ sign(x)
√

|3x|, then, given a functionw = w(ℓ, t),
we define the nonlinearity

[

f2(w, e−τ/2)
]

(p) =
[

f (0)
2 (w(·, eτ ))

]

(8(pe−τ/2))

=
[

f (0)
2 (w(·, t + t0))

]

(8(p(t + t0)−1/2)) .

(Note that 8(x) = x
(

1 + O(x)).) Analogous definitions apply to f3 and f4. The operator
M will be described in detail in Eq.(2.13).

Remark. The non-linearities f2,. . . depend on the choice of t0. If we consider the initial
value problem for the Swift-Hohenberg equation, the “smallness” assumption on the
perturbation of the periodic state is to be understood with respect to a choice of a
(sufficiently large) t0. As we will see, however, the nonlinear terms can be bounded,
independent of t0, for all t0 ≥ T > 0. To this change of variables will correspond

the following (non-exhaustive) list of substitutions in the integrals in Eq. (2.7): Let
a, b ∈ [− 1

2
, 1

2
]. Then

χ(ℓ)

∫ b

a

dk → χ
(

8(pe−τ/2)
)

e−τ/2

∫ eτ/2
8

−1(b)

eτ/28−1(a)

dq 8
′(qe−τ/2) ,

ϕℓ → ϕ
8(pe−τ/2) ,

ϕk−ℓ → ϕŴ(p,q,τ ) ,

V (k, t) → w(p, τ ) ,

V (ℓ − k, t) → w(1(p, q, τ )) .

(2.10)

Here, we define

Ŵ(p, q, τ ) = 8(pe−τ/2) − 8(qe−τ/2) ,

1(p, q, τ ) = eτ/2
8

−1
(

8(pe−τ/2) − 8(qe−τ/2)
)

.
(2.11)

It follows at once from the definition of 8 that
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Ŵ(p, q, τ ) = e−τ/2(p − q) ·
(

1 + γ(p, q, τ )
)

,

1(p, q, τ ) = (p − q) ·
(

1 + κ(p, q, τ )
)

,
(2.12)

where κ and γ are bounded and smooth.

We next discuss in detail the spectrum of Mexp(−τ/2), which is just the rescaled

linear operator for the “stable” part of w, cf. Eq. (2.6). Recall first that V s = (V >, ṽ⊥).
This introduces a natural decomposition of ws = (ws

1, w
s
2), as well as of Mexp(−τ/2) =

Mexp(−τ/2),1 ⊕ Mexp(−τ/2),2. From the definition of the first component, we get

(

Mexp(−τ/2),1f
s
1

)

(p, τ ) =

(

ε2 −
(

1 + (i + i8(pe−τ/2))2
)2 − K

(

8(pe−τ/2)
)

)

f s
1(p, τ ) ,

(2.13)
where K(ℓ) is a kernel given by

K(ℓ) = 3

∫

dxϕℓ(x)u2
ε(x)ϕℓ(x) .

(Recall that ϕℓ really depends on ε as well and should be written ϕε,ℓ.) Since V s has
support bounded away from ℓ = 0, say |ℓ| > ℓ0/2, we see that ws

1(p, τ ) will have support

in |p|e−τ/2 >
√

|3ℓ0/3|, and the spectrum of Mexp(−τ/2),1 is seen to be contained in
{σ|Re σ ≤ σ0 < 0}, for some σ0 and for all τ > 0.

A very similar argument detailed in Appendix B shows that the spectrum of
Mexp(−τ/2),2 is also contained in such a set. Thus, the linear evolution generated by

Mexp(−τ/2) contracts exponentially. See Lemma B.6 below for details.

We next consider the operator L = (−p2 − 1
2
p∂p), which appears in the first

component of Eq. (2.9). The detailed study of the semi-group generated by L will
be given in Appendix B. Here, we discuss its properties on an informal level. The
Fourier transform of L is ∂2

x + 1
2
x∂x + 1

2
, which is conjugate to the harmonic oscillator

H0 = ∂2
x − x2/16 + 1/4 by the (unbounded!) transformation T , of multiplication by

exp(x2/8). In formulas: L = T−1H0T . Therefore, H0 has (say, on L2), discrete spectrum
µj = −j/2, j = 0, 1, . . . . It is this spectrum which leads to a nice interpretation of the
convergence properties of the Swift-Hohenberg equation. The eigenvalues of L are un-
changed by the transformation T , (and the eigenfunctions are multiplied by a Gaussian),
so to each eigenvalue µ of L there corresponds a decay rate eτµ in the linear problem.
Because of the transformation of variables from t to τ , this decay rate becomes (t+t0)µ in
the original problem Eq. (2.6). In other words: Neglecting the non-linearities in Eq. (2.9)
and setting ws = 0, (and ignoring potential problems related to the unbounded operator
T ) we have a solution

wc(p, τ ) =

∞
∑

m=0

wme−τm/2Hm(2p) , (2.14)

where Hm is the mth eigenfunction of L. In the original variables, this means that

V <(ℓ, t) =

∞
∑

m=0

wm(t + t0)−m/2Hm

(

2ℓ(t + t0)1/2(1 + O(|ℓ|1/2))
)

. (2.15)

Thus, to each m there corresponds a specific rate (µm = −m/2) of decay for a part of the
function V <. Note that a change of t0 just corresponds to a rearrangement of the series.
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(This is not contradictory, since a change of t0 also changes the initial condition, and
hence the solution whose asymptotics we are computing.) In particular, the slowest rate
of decay is associated with H0, which is Gaussian, and thus, at least at the linear level, a
“generic” perturbation of the stationary state will decay like exp(−cℓ2t), for some c > 0.
In terms of the original independent variables (x, t), it decays like t−1/2 exp(−x2/(4tc)),
as t → ∞. This means that at this level, the periodic stationary states are stable, and
that perturbations of them decay like solutions of the linear heat equation. The invariant
manifold theory guarantees that this behavior persists in the non-linear problem, and in
fact it tells us more. We will see that in suitable spaces we can construct a sequence of
manifolds Mj of dimension j = 1, 2, . . ., such that any solution of Eq. (2.9) approaches
a solution on Mj at a rate eτµj−1 , or again reverting to the original (x, t) variables, at a

rate O((t + t0)µj−1 ). In the case at hand, this is O((t + t0)−j/2). Thus, in principle, we
can analyze finer and finer details of the asymptotics of perturbations of the stationary
state by considering the behavior of the solution on these finite dimensional manifolds.

3. Casting the Stability Theorem 1.2 into an Invariant Manifold Theorem

At the end of the preceding section, we have seen that the spectrum of the linear part of
Eq. (2.9) has the following nature: The component wc satisfies a differential equation
whose linear part has eigenvalues µj = −j/2, j = 0, 1, . . . , N , provided we work on
a space of sufficiently smooth and rapidly decaying functions. The evolution of ws is
governed by an equation with an even more stable spectrum.

The invariant manifold theorem will show in which sense the built-in scalings of
Eq. (2.14) survive the addition of non-linearities. While this presents no conceptual
problems at all – and this is the beauty of the present approach – some care is of course
needed in the application of the invariant manifold theorem. Another point which might
be overlooked is the following: The invariant manifold theorem does not say that the
representation of the full non-linear problem is the same as in Eq. (2.15), but with slowly
varying wj . Rather, we will show that on the complement of a dimension j − 1 surface

in the function space, the solutions decay at least like t−j/2, (for every j ≥ 1), provided
the initial data are sufficiently small and smooth.

In order to apply the invariant manifold method to the problem, we need bounds on
the non-linearities and bounds on the semi-group generated by L. While the factor of
t = exp(τ ) in front of f2 in Eq. (2.9) might look like a disaster, we will see that by working
in appropriate function spaces, and taking advantage of the nature of the nonlinear term,
this factor will disappear. Its presence is in part due to the fact that we chose to work
in “momentum” space, rather than “position” space, because the linear problem is most
naturally studied in Floquet variables. If we rewrote these terms in position space (i.e.,
in the original (x, t) variables), they would look much less singular.

We will work in Sobolev spaces, and we define

Hq,r = {v | (1 − ∂2
p)r/2(1 + p2)q/2v ∈ L2} , (3.1)

equipped with the corresponding norm ‖ · ‖q,r. The function wc will be an element of
Hq,r.

The function ws has two components. The first component comes from the central
branch of the spectrum of the linear operator (1.9), and will also be in Hq,r. The second
component comes from the stable branches of the spectrum, and it depends on both p,
and x. It will be an element of the space:
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Hq,r,ν = {w = w(p; x) | w(p; x) = w(p; x + 2π),

(1 − ∂2
x)ν/2(1 − ∂2

p)r/2(1 + p2)q/2w ∈ L2(R × [−π, π])} .

By a slight abuse of notation, we will denote by ‖ws‖Hq,r,ν
the sum of the Hq,r norm

of the first component of ws and the Hq,r,ν norm of the second component, and by
‖ws‖q,r,ν , we will mean the Hq,r,ν norm of just the second component. We will also use
Hq,r,ν to denote the space of all functions with finite Hq,r,ν norm.

The non-linearities satisfy the following bounds:

Proposition 3.1. For every q ≥ 2 and every r ≥ 0 there is a constant C for which

‖eτf2(w, e−τ/2)‖q−1,r ≤ C‖w‖2
q,r ,

‖eτf3(w, e−τ/2)‖q,r ≤ C‖w‖3
q,r ,

(3.2)

for all τ > 0.

Proposition 3.2. For every q ≥ 2 and every r ≥ 0 there is a constant C for which

‖eτf4(wc, wse−τ/2, e−τ/2)‖q,r

≤ Ceτ/2‖ws‖Hq,r,ν

(

e−τ/2‖wc‖q,r + e−τ‖ws‖Hq,r,ν

)

×
(

1 + e−τ/2‖wc‖q,r + e−τ‖ws‖Hq,r,ν

)

, (3.3)

‖eτ/2g(wc, wse−τ/2, e−τ/2)‖Hq,r,ν

≤ Ceτ
(

e−τ/2‖wc‖q,r + e−τ‖ws‖Hq,r,ν

)2

×
(

1 + e−τ/2‖wc‖q,r + e−τ‖ws‖Hq,r,ν

)

, (3.4)

for all τ > 0.

Remark. Note that every factor of ‖wc‖q,r is multiplied by e−τ/2 and every factor of
‖ws‖Hq,r,ν

is multiplied by e−τ .

Remark. As we pointed out above, the nonlinear terms depend on the constant t0. How-
ever, the bounds in the two preceding propositions are independent of t0. More precisely,
for any T > 0, the constants C in both propositions can be chosen so that the estimates
in (3.2)–(3.4) hold for all t0 ≥ T . The proofs will be given in Appendix A. Note that

one loses a power of p in the first estimate of Eq. (3.2), but of course, one “gains” the
square of the function.

We will regain the “lost” power of p by examining in detail the semi-group generated
by L. We denote by PN the projection onto the space spanned by the N eigenvalues
{µj = −j/2}j=0,...,N−1 of L. We define QN = 1 − PN . (We verify in Appendix B that
these projections are defined.) On the space corresponding to QN , we expect the norm
of the semi-group generated by L to decay like exp(τµN ). This is indeed the case.

Theorem 3.3. For every δ > 0, there are a constant N0 and a function r(N, q) such that

for every N ≥ N0, every q ≥ 1 and every r ≥ r(N, q), there is a C = C(q, r,N ) < ∞
such that

∥

∥eτLQNv
∥

∥

q,r
≤ C(q, r,N )√

a(τ )
e−τ (|µN |−δ)‖v‖q−1,r , (3.5)

where a(τ ) = 1 − e−τ and L = −p2 − 1
2
p∂pThe proof will be given in Appendix B.
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We also need an estimate on the linear evolution generated by Mexp(−τ/2). Let Uτ

be the solution of

e−τ∂τUτ = Mexp(−τ/2)Uτ ,

with initial condition U0 = 1. (Compare with the linear part of (2.9).) Then, in Appendix
B, we prove

Theorem 3.4. If w0 ∈ Hq,r,ν , then there exists c0 > 0, such that for all τ ≥ 0,

‖Uτw0‖Hq,r,ν
≤ exp(−ec0τ/2)‖w0‖Hq,r,ν

.

With the help of the bounds Proposition 3.1–Theorem 3.4, we can now reformu-
late the problem in terms of invariant manifolds. Equation(2.9) can be written as an
autonomous system by defining η = (t + t0)−1/2 = e−τ/2:

∂τwc = Lwc + η−2
(

f2(wc, η) + f3(wc, η) + f4(wc, wsη, η)
)

,

η2∂τws = Mηws + η−1g(wc, wsη, η) ,

∂τη = − 1
2
η .

(3.6)

We will construct an invariant manifold tangent at the origin to the eigenspace corre-
sponding to the N largest eigenvalues of L, and the η direction. We subdivide the center
variable wc according to the projection QN defined earlier, where N is fixed once and
for all. Define

x1 = (1 − QN )wc, x2 = QNwc, x3 = ws . (3.7)

Note that the variable x1 is in a finite dimensional space, while x2 and x3 are in infinite
dimensional Hilbert spaces. The system of equations Eq. (3.6) now takes the form

∂τx1 = A1x1 + N1(x1, η, x2, x3) ,

∂τη = − 1
2
η ,

∂τx2 = A2x2 + N2(x1, η, x2, x3) ,

η2∂τx3 = A3,ηx3 + N3(x1, η, x2, x3) .

(3.8)

Here A1 = (1 − QN )L, A2 = QNL, and A3,η = Mη.

Remark. In view of later developments, we consider x1 and η to be the “interesting”
variables and x2 and x3 the “slaved” variables, hence the new order of the variables.

Remark. Equation(3.8) is a very singular perturbation problem, because of the factor of
η2 in front of the derivative of x3. What is more, since η(τ ) = e−τ/2, it becomes steadily
more singular in precisely the limiting regime in which we are interested. Nonetheless,
we will see that the invariant manifold theorem provides just the tool we need to under-
stand this limit. Singular perturbation problems of this type do not seem to have been
studied much, but they do arise naturally in other contexts, such as the study of parabolic
equations in cylindrical domains ([W2]).

We shall call Eq. (3.8) the full system. To simplify the notation, we shall omit the
dependence on η in A3,η . Consider the spectra of A1, A2, A3. From what we have seen
earlier, we find that



Geometric Stability Analysis for Solutions of Swift-Hohenberg Equation 185

spec(A1) = {0,−1/2,−1, . . . , −(N − 1)/2} ,

spec(A2) ⊆ [−∞,−N/2] ,

spec(η−2A3) = [−∞,−c/η2] ,

(3.9)

where c is some positive constant. Thus, we expect to apply a pseudo center manifold
theorem to “slave” the variables x2, x3 to the variables x1 and η. While there are certain
technical difficulties associated with the very singular perturbation, in Appendix C, we
demonstrate the following proposition:

Proposition 3.5. Fix N > 0. There exist r > 0, q ≥ 1, and ν > 1/2, such that

the system of equations (3.8) has an invariant, N + 1-dimensional manifold, given in a

neighborhood of the origin by the graph of a pair of functions

h∗
2 : RN × R → Hq,r ,

h∗
3 : RN × R → Hq,r,ν .

We next turn to the task of showing that the invariant manifold we found for Eq. (3.6)

actually attracts solutions at an exponential rate.

Notation. It is useful to introduce the notation ξ = (x1, η) for the two relevant variables.
Consider a solution of the form

(

wc(τ ), ws(τ )
)

of Eq. (3.6), with wc(τ ) =
(

x1(τ ), x2(τ )
)

as in Eq. (3.7), and ws(τ ) = x3(τ ). We wish to show that

(

ξ(τ ) , x2(τ ) , x3(τ )
)

−→
(

ξ(τ ) , h∗
2 (ξ(τ )) , h∗

3 (ξ(τ ))
)

,

as τ → ∞, and furthermore, that it does so at an exponential rate, given essentially by
the least negative eigenvalue, µN , of the operator A2.

Proposition 3.6. Fix N > 0. For every positive δ there is a ρ0 > 0 such that if the

solution of Eq. (3.6) remains in a neighborhood of the origin of size ρ0 one has the

following bound: There is a C∗ < ∞ for which

‖x2(τ ) − h∗
2 (ξ(τ ))‖q,r + ‖x3(τ ) − h∗

3 (ξ(τ ))‖Hq,r,ν
≤ C∗e−(|µN |−δ)τ ,

as τ → ∞.

Proof. This proof is relatively standard, see e.g., Carr [C]. Let

z(τ ) =

(

x2(τ ) − h∗
2 (ξ(τ ))

x3(τ ) − h∗
3 (ξ(τ )

)

)

≡
(

z2(τ )

z3(τ )

)

.

Then we have

ż =

(

A2z2 + N̂2(ξ, z2, z3)

η−2A3z + η−2N̂3(ξ, z2, z3)

)

, (3.10)

where, with the notation of Eq. (3.8),

N̂j(ξ, z2, z3) = Nj(ξ, z2 + h∗
2 (ξ), z3 + h∗

3 (ξ)) − Nj(ξ, h∗
2 (ξ), h∗

3 (ξ)) ,

for j = 2, 3. The only novelty in Eq. (3.10) w.r.t. [C] is the factor of η−2 in the “3”-
component which is the reason for our repeating his arguments. But we can integrate
Eq. (3.10) explicitly and get
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z2(τ ) = eτA2z2(0) +

∫ τ

0

dσ e(τ−σ)A2N̂2

(

ξ(σ), z2(σ), z3(σ)
)

,

z3(τ ) = e(η(τ )−2−η(0)−2)A3z3(0)

+

∫ τ

0

dσ
1

η(σ)2
e(η(τ )−2−η(σ)−2)A3N̂3

(

ξ(σ), z2(σ), z3(σ)
)

.

We assume η(0) > 0, since we are interested in the case η(0) = t
−1/2

0 , and we have
chosen the scaling factor t0 to be a positive, finite constant. Note also that ξ remains in
a neighborhood of the origin, as τ → ∞. From the bounds on the non-linear terms we
see that if the solution satisfies

‖x2(τ )‖q,r + ‖x3(τ )‖Hq,r,ν
≤ ρ ,

for all τ ≥ 0, then, with νN = N/2, the modulus of the N th eigenvalue µN of L, we
have

‖z2(τ )‖q,r ≤ e−τνN ‖z2(0)‖q,r

+ Cε

∫ τ

0

dσe−(τ−σ)νN
(

‖z2(σ)‖q,r + ‖z3(σ)‖Hq,r,ν

)

,

‖z3(τ )‖Hq,r,ν
≤ e(η(τ )−2−η(0)−2)νN ‖z3(0)‖Hq,r,ν

+ Cε

∫ τ

0

dσ
1

η(σ)2
e−(η(τ )−1−η(σ)−1)νN

(

‖z2(σ)‖q,r + ‖z3(σ)‖Hq,r,ν

)

.

(3.11)
In deriving these inequalities, we used the inequalities

‖eτA2N̂2(ξ, z2, z3)‖q,r ≤ e−τνN ‖N̂2(ξ, z2, z3)‖q−1,r ,

‖eρA3N̂3(ξ, z2, z3)‖Hq,r,ν ≤ e−ρνN ‖N̂3(ξ, z2, z3)‖Hq,r,ν
,

which follow from the bounds of Appendix B. If we now fix δ > 0 and define

C2(τ ) = sup
0≤τ ′≤τ

eτ ′(νN −δ)‖z2(τ ′)‖q,r ,

C3(τ ) = sup
0≤τ ′≤τ

eτ ′(νN −δ)‖z3(τ ′)‖Hq,r,ν ,

then Eq. (3.11) leads to the inequality

C2(τ ) ≤ K1 + K2ε
(

C2(τ ) + C3(τ )
)

∫ τ

0

dσ e−(τ−σ)δ ,

C3(τ ) ≤ K3 + K4ε
(

C2(τ ) + C3(τ )
)

∫ τ

0

dσ
1

η(σ)2
e(η(τ )−2−η(σ)−2)νN e(τ−σ)(νN −δ) .

If we insert into these integrals the definitions

η(σ) = exp(−σ/2)η(0) , η(τ ) = exp(−τ/2)η(0) ,

we find that both integrals are uniformly bounded in τ ≥ 0 if η(0) is in a compact
subinterval of (0, 1). The proof of Proposition 3.6 is complete. Thus, all solutions near

the invariant manifold approach it exponentially fast in τ .
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One can now show without difficulty that every solution approaches exponentially
quickly a particular solution on the (approximate) invariant manifold

(

x1(τ ), η = 0, h∗
2 (x1(τ ), 0), h∗

3 (x1(τ ), 0)
)

.

This consists simply in translating pp.21–24 of [C] into the present setting and thus there
is no need to repeat this argument here.

If we combine these results with Proposition 3.5, we arrive finally at a description
of the invariant manifolds which exist close to the origin for (3.8).

Theorem 3.7. Fix N > 0 and δ > 0. There exist r > 0, q ≥ 1, and ν > 1/2, such that

the system of equations (3.8) has an invariant, N + 1-dimensional manifold, given in a

neighborhood of the origin by the graph of a pair of functions h∗
2 : RN × R → Hq,r,

and h∗
3 : RN × R → Hq,r,ν . Any solution of (3.8) which remains in a neighborhood

of the origin for all τ ≥ 0 approaches a solution of the N + 1-dimensional system of

ordinary differential equations

∂τx1 = A1x1 + N1(x1, η, h∗
2 (x1, η), h∗

3 (x1, η)) ,

∂τη = − 1
2
η ,

(3.12)

which results from restricting (3.8) to this invariant manifold. Furthermore, the rate of

approach to this manifold is O(exp(−τ (N/2 − δ))).

Remark. This theorem almost suffices to prove Stability Theorem 1.2 . In particular, it
emphasizes that in a neighborhood of the periodic solutions of (1.1) there exists a family
of invariant manifolds, M2, M3, . . ., described in that theorem. The one remaining piece
of the puzzle is to describe the behavior of solutions restricted to the invariant manifold,
and that we do in the next section.

4. The Projection of the Non-Linearity onto Zero Momentum

We have already shown that there exists a (smooth) invariant manifold, parameterized
by (ξ, h∗

2 (ξ), h∗
3 (ξ)), where ξ = (x1, η). This manifold satisfies Eq. (3.8), which, in the

case of N = 1, i.e., in the case of a two-dimensional invariant manifold amounts to

∂τx1 = N1

(

x1, η, h∗
2 (ξ), h∗

3 (ξ)
)

,

∂τη = − 1
2
η ,

∂τ

(

h∗
2 (ξ)

)

= A2h
∗
2 (ξ) + N2

(

x1, η, h∗
2 (ξ), h∗

3 (ξ)
)

,

η2∂τ

(

h∗
3 (ξ)) = A3h

∗
3 (ξ) + N3

(

x1, η, h∗
2 (ξ), h∗

3 (ξ)
)

.

(4.1)

Note that because N = 1 the operator A1 equals zero (which is the highest eigenvalue
of L).

To understand the dynamics inside this invariant manifold, we now state and prove
the following proposition, which is based on Schneider’s beautiful observation: Let
Ñ1(x1, η) be the r.h.s. of the first equation in (4.1), i.e., ∂τx1 = Ñ1(x1, η).

Proposition 4.1. There is an x1,0 > 0 such that Ñ1(x1, 0) = 0, for all |x1| < x1,0.Thus,

the non-linearity vanishes identically at “infinite time,” which corresponds to η = 0.
Before proving Proposition 4.1, we show that it implies the following important
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Theorem 4.2. If x1(0) is sufficiently close to 0, then there are a constant C < ∞ and

an x∗
1 such that

|x1(τ ) − x∗
1 | < Ce−τ/2 . (4.2)

Proof. Using the fact that η(τ ) = e−τ/2, we can rewrite the equation for x1 as

∂τx1 = Ñ1(x1, e
−τ/2) . (4.3)

Since Ñ1 is a smooth (at least C1+α) function with Ñ1(x1, 0) = 0 in some neighborhood of
the origin, there exists a constant CN > 0, such that |Ñ1(x1, e

−τ/2)| ≤ CN exp(−τ/2),
for |x1| sufficiently small. Integrating (4.3) and applying this estimate yields:

|x1(τf ) − x1(τi)| =

∣

∣

∣

∣

∫ τf

τi

dσ Ñ1(x(σ), e−σ/2)

∣

∣

∣

∣

≤ CN

∫ τf

τi

dσ e−σ/2 = 2CNe−τi/2(1 − e(τi−τf )/2) .

This estimate immediately implies the behavior claimed in Theorem 4.2.

Proof of Proposition 4.1. The basic idea is to relate Ñ1(x1, 0) to the non-linear term of
another problem, which is known to be 0. This other problem is the center manifold
equation for the perturbations of a stationary solution of Eq. (1.1) restricted to a space

of 2π-periodic functions. In this case, the equation analogous to Eq. (1.12) is

∂tv = Lperv + F (v) ,

where F (v) collects the non-linear terms in v. The spectrum of Lper is pure point,
with a simple zero eigenvalue, and all others negative, and bounded away from 0. The
eigenvector with 0 eigenvalue is u′

ε, where uε is given by Eq. (1.5). If we call x1,per

the coordinate in the u′
ε direction, then there exists a one-dimensional center manifold,

tangent to this direction and given as the graph of a function H(x1,per). A very nice
observation by Schneider is that this center manifold must coincide with the translates of
the stationary state uε, which is formed of fixed points of the Swift-Hohenberg Eq. (1.1).
Hence, on this center manifold we must have ẋ1,per = 0. Using this information, the
equations for this center manifold take a particularly simple form. Let Pper denote the
projection onto u′

ε and let Qper = 1 − Pper. Then the preceding discussion implies that
the flow ψt,per is the identity on x1,per, and hence the equations for the invariant manifold
read:

ẋ1,per = PperF (x1,per,H(x1,per)) = 0 , (4.4)

H(x1,per) =

∫ 0

−∞

dτ e−QperLper QperF (x1,per,H(x1,per))

= −
(

QperLper

)−1
QperF (x1,per,H(x1,per)) . (4.5)

We now wish to use this information to prove Proposition 4.1. The rough idea is to show
that

Ñ1(x1, 0) = PperF (x1,per,H(x1,per)) , (4.6)

and this quantity vanishes by Eq. (4.4). More precisely, we shall show:
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Proposition 4.3. The cubic term in x1 of Ñ1(x1, η) coincides in the limit η → 0 with

the cubic term in x1 of PperF (x1,per,H(x1,per)). All other terms in Ñ1 go to 0 as η → 0.

Remark. Since PperF
(

x1,per,H(x1,per)
)

= 0, this proves Eq. (4.6) and thus Proposi-
tion 4.1.

Proof. The proof of Proposition 4.3 will be given in Appendix D.

5. Completion of the Proof of Stability Theorem 1.2

We now consider exactly how the results of the previous two sections about the behavior
of solutions in, and near, the invariant manifold translate back into statements about
solutions in terms of the original variables. We will focus specifically on the case con-
sidered in the previous section in which the invariant manifold is two-dimensional, with
coordinates (x1, η), but the results can be immediately extended to the case of a manifold
of arbitrary dimension. Suppose we have a solution wτ = wc

τ + ws
τ , of the system (3.6),

which remains in a neighborhood of the origin for all τ ≥ 0. This will be the case if its
initial condition is sufficiently small in Hq,r ⊕ Hq,r,ν . We measure the size of w in the
norm ||| · |||, which is the sum of the Hq,r norm of wc, and the Hq,r,ν norm of ws. By

the results of Theorem 3.7, we know that there exists a solution, winv
τ , on the invariant

manifold such that

|||wτ − winv
τ ||| ≤ Ce−τ (1/2−δ) , (5.1)

with δ > 0. In addition, from Theorem 4.2, we know that there exists some w∗, which
lies in the invariant manifold for which

|||winv
τ − w∗||| ≤ Ce−τ/2 . (5.2)

Here, w∗ is the function whose coordinates in the invariant manifold representation
is just the limiting point x∗

1 in Theorem 4.2, i.e., w∗ =
(

x∗
1 , 0, h∗

2 (x∗
1 , 0), h∗

3 (x∗
1 , 0)

)

.
Combining (5.1) and (5.2), we see that for solutions that remain near the origin, there
exists a function w∗, for which

|||wτ − w∗||| ≤ Ce−τ (1/2−δ) . (5.3)

Our final task is now to untangle the various changes of variables which we made in

the original equation. If we first “undo” the rescaling in (2.8), we see that the solution
v(ℓ, t), corresponding to w(·, τ ) = wτ is

v(ℓ, t) = wc(sign(ℓ)
√

|3ℓ|(t + t0), log(t + t0))

+
1

(t + t0)1/2
ws(sign(ℓ)

√

|3ℓ|(t + t0), log(t + t0))

≡ vc(ℓ, t) + vs(ℓ, t) .

(4.4)

One can make a corresponding decomposition of v∗, the solution corresponding to w∗.
First consider vc. From (5.3), one has

‖wc
τ −w∗,c

τ ‖2
q,r =

∫

dp |(1−∂2
p)r/2(1+p2)q/2(wc(p, τ )−w∗,c(p, τ ))|2 ≤ Ce−τ (1−2δ) .

(4.5)
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According to (4.4), wc(ℓ, τ ) = vc(8−1(pe−τ/2), t), so substituting this expression – and
the analog for w∗,c – into (4.5) one finds that the left hand side of that inequality is equal
to:

∫

dp |(1 − ∂2
p)r/2(1 + p2)q/2

(

vc(8−1(pe−τ/2), t) − v∗,c(8−1(pe−τ/2), t)
)

|2

≥
∫

dp |(1 + p2)q/2
(

vc(8−1(pe−τ/2), t) − v∗,c(8−1(pe−τ/2), t)
)

|2

≥
∫

dℓ (t + t0)1/2
8

′(ℓ) |(1 + (t + t0)(8(ℓ))2)q/2
(

vc(ℓ, t) − v∗,c(ℓ, t)
)

|2 ,

(4.6)

where in the last integral we changed the integration variable to ℓ = 8
−1(pe−τ/2) =

8
−1(p(t + t0)−1/2).

Remark. We dropped the derivatives with respect to p in the second line of (4.6) for
simplicity – one could retain them at the expense of complicating the following expres-
sions. Since 8(x) ≈ x, for x small, and is equal to a constant times x for |x| large (due

to the definition of 3ℓ), we see that combining (4.5) and (4.6) and recalling that t0 > 0,
one finds:

∫

dℓ |(1 + ℓ2)q/2(vc(ℓ, t) − v∗,c(ℓ, t))|2 ≤ Ct−3/2(1−2δ) . (4.7)

Analogous estimates hold for the “stable” part of the solution. Proceeding as above,
one can show that

∑

n

(1 + n2)ν
∫

dℓ |(1 + ℓ2)q/2(vs(ℓ, t) − v∗,s(ℓ, t))|2 ≤ Ct−5/2(1−2δ) . (4.8)

Thus, the “stable” part of a solution near the origin approaches the solution v∗ on the
invariant manifold faster than the “center” part of the solution. (An effect that is entirely
in accord with one’s intuition.)

We next take a closer look at the solution w∗ (or v∗) on the invariant manifold. From
the computation in the previous section, we know that since the eigenfunction in the x1

direction is exp(−p2), cf. Eq(2.14), we have w∗(p) = c∗ exp(−p2) + h∗
3 (c∗ exp(−p2)). If

we now rewrite this in terms of the v(ℓ, t) variables, we find

v∗(ℓ, t) = c∗e−3ℓt + t−1/2h∗
3 (c∗e−3ℓt) . (4.9)

Thus, if v(ℓ, t) is a solution of (1.12) (in the unscaled variables), we see from (4.7)–(4.9)
that in the L2((1 + ℓ2)q/2dℓ) norm,

v(ℓ, t) = c∗e−3ℓt + O(t−1/2(1−2δ)) . (4.10)

But we know from Sect. 2 that 3ℓ = c0(ε2)ℓ2 + O(ℓ3) for ℓ small, and 3ℓ = cℓ2, for |ℓ|
large, so one finds by an easy and explicit estimate that

∫

dℓ |(1 + ℓ2)q/2(e−3ℓt − e−c0(ε2)ℓ2t)|2 ≤ Ct−1/2 . (4.11)

Combining (4.10) and (4.11) one has

Proposition 4.4. If v is a solution of (1.12) with sufficiently small initial condition (in

Hq,r ⊕ Hq,r,ν), then
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(

∫

|(1 + ℓ2)q/2(v(ℓ, t) − c∗e−c0(ε2)ℓ2t)|2dℓ)1/2 ≤ Ct−1/4(1−2δ) .

Note that if we transform back to the (x, t) variables, this implies the asymptotic estimate

in Stability Theorem 1.2 , and hence the proof of that theorem is complete.

A. Bounds on the Non-Linearities

In this section, we prove Proposition 3.1 and Proposition 3.2. We begin by studying the
kernels K2(ℓ, k), and K3(ℓ, k) introduced in (2.7).

Lemma A.1. There is a constant C such that

|K2(ℓ, k)| ≤ Cε min
(

(|k|2 + |ℓ|2), 1
)

.

Proof. By the definition of Eq. (2.7), we have

K2(ℓ, k) =

∫

dx ϕℓ(x)uε(x)ϕk(x)ϕℓ−k(x) . (A.1)

Since uε and ϕk are both uniformly bounded, we have immediately that |K2(k, ℓ)| ≤ Cε.
The crucial observation of Schneider[Sch] is that because of Eq. (1.11), repeated here
for convenience

ϕε,ℓ(x) = u′
ε(x) + iℓgε(x) + hε,ℓ(x)ℓ2 , (A.2)

(with real gε), K2 has an expansion

∫

dxuε(x)(u′
ε(x))3 + uε(x)

(

u′
ε(x)

)2
gε(x)

(

−iℓ+ ik + i(ℓ−k)
)

+ εO(ℓ2 + k2) . (A.3)

Note that the first term vanishes because u is a symmetric function and hence u(u′)3 is
odd, and the term which is linear in k and ℓ vanishes as well, because of momentum
conservation, so the proof of Lemma A.1 is complete.

Remark. Note that a similar calculation immediately shows that the kernel K3 satisfies:

|K3(ℓ, k1, k2)| ≤ C .

We now need the following auxiliary result:

Lemma A.2. If ρ2 and ρ3 are in Hq,r, and if ρ1 = ρ1(p, p′) is a Cr function, then

Ξ(p) =

∫

dp′ ρ1(p, p′)ρ2(1(p, p′, τ ))ρ3(p′)

is in Hq,r and

‖Ξ‖q,r ≤ C‖ρ1‖Cr‖ρ2‖q,r‖ρ3‖q,r .

Proof. Recall from Eq. (2.12) that 1(p, p′, τ ) ≈ p − p′, so we are really estimating
a slightly distorted convolution. If 1(p, p′, τ ) = (p − p′), the proof is easy using the
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definition of the norms. In the present case, where 1(p, p′, τ ) is not trivial, the result
follows in a similar way by “undoing” part of the variable transformation which led
from the variables ℓ, k to the variables p, p′. To simplify matters, we consider only the
somewhat easier problem of bounding

∫

dp′
8

′(pe−τ/2)ρ2(1(p, p′, τ ))ρ3(p′) . (A.4)

Using the definition of 1(p, p′, τ ) this is equal to

∫

dp′
8

′(pe−τ/2)ρ2

(

eτ/2
8

−1
(

8(pe−τ/2)−8(p′e−τ/2)
))

ρ3

(

eτ/2
8

−1
(

8(p′e−τ/2)
))

.

(A.5)
Changing variables to k = 8(e−τ/2p) and ℓ = 8(e−τ/2p′), we get

∫

dℓ eτ/2ρ2

(

eτ/2
8

−1(k − ℓ)
)

ρ3

(

eτ/2
8

−1(ℓ)
)

. (A.6)

We now define a function 9τ by

9τ (eτ/2x) = eτ/2
8

−1(x) ,

and note that from 8(x) = x ·
(

1 + O(x)
)

it follows that 9τ (y) = y ·
(

1 + O(e−τ/2y)
)

.
We can rewrite Eq. (A.6) as

∫

dℓ eτ/2ρ2

(

9τ (eτ/2(k − ℓ))
)

ρ3

(

9τ (eτ/2ℓ)
)

. (A.7)

We define next ρ̂j(k) = ρj ◦ 9τ , and we see that Eq. (A.7) is equal to

∫

dℓ ρ̂2

(

k − ℓ
)

ρ̂3

(

ℓ
)

. (A.8)

Thus, we can bound the Hq,r norm of Eq. (A.4) by ‖ρ̂2‖q,r‖ρ̂3‖q,r, and, since 9τ is
uniformly close to the identity for all τ , this is in turn bounded by const. ‖ρ2‖q,r‖ρ3‖q,r.
This proves Lemma A.2 in this special case. The extension to the general case is easy
and is left to the reader. We now have the necessary tools to attack the proofs of

Proposition 3.1 and Proposition 3.2.

Proof of Proposition 3.1. If we write out the transformation leading to f2, i.e., from
Eq. (2.7) to Eq. (2.9), we get, using Eq. (2.10),

eτ ·
(

f2(w, e−τ/2)
)

(p) = eτ 3χ
(

8(pe−τ/2)
)

∫ P (τ )

−P (τ )

dp′ e−τ/2
8

′(p′e−τ/2)

×K2

(

8(pe−τ/2),8(p′e−τ/2)
)

w(1(p, p′, τ ))w(p′) ,

(A.9)

where
P (τ ) = 8

−1( 1
2
)eτ/2 ≈ 1

2
eτ/2 .

We bound |K2

(

8(pe−τ/2),8(p′e−τ/2)
)

| by Cε|8(pe−τ/2)2 + 8(p′e−τ/2)2| using

Lemma A.1. Since the expressions8(pe−τ/2), and8(p′e−τ/2), in Eq. (A.9) are bounded,
and 8(x) = x(1 +O(x)), we can extract another factor of e−τ/2 and get a bound on eτf2

of the form
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const. eτ/2χ
(

8(pe−τ/2)
)

∫ P (τ )

−P (τ )

dp′
(

|8(pe−τ/2)| + |8(p′e−τ/2)|
)

· |w(1(p, p′, τ ))w(p′)|

≤ const. χ
(

8(pe−τ/2)
)

∫ ∞

−∞

dp′ |p + p′||w(1(p, p′, τ ))w(p′)| .

(A.10)
If w is in Hq,r, then with the aid of Lemma A.2, we can estimate the Hq−1,r norm of

Eq. (A.9) by C‖w‖2
q,r. Note further, that from the above discussion it is also clear that

eτf2(wc, e−τ/2)(p) is also a smooth function of e−τ/2.

Remark. The factors |p|, |p′| are responsible for the loss of one power in the norm estimate
of Proposition 3.1. It is only in the study of the flow within the invariant manifold that
we will need the second order bound of Lemma A.1.

Remark. Note that the nonlinear terms depend (implicitly) on the constant t0 which
entered the definition of the new temporal variable τ . However, all the estimates above
(as well as those which follow in the proof of Proposition 3.2) are independent of this
constant. The bound on f3 is similar, but no additional regularization is needed, since

there are two integrations, each of which contributes a factor e−τ/2. We leave this to the
reader. The proof of the asserted bounds of Eq. (3.2) is complete.

We now turn to the estimates of the nonlinear terms f4 and g. Because these terms
involve the ws, we begin with a discussion of the appropriate function space for these
components. These were defined in Sect. 3, but we repeat them here for convenience.
Recall that wc ∈ Hq,r, while ws ∈ Hq,r ⊕ Hq,r,ν , where

Hq,r,ν = {w = w(p; x) | w(p; x) = w(p; x + 2π),

(1 − ∂2
x)ν/2(1 − ∂2

p)r/2(1 + p2)q/2w ∈ L2(R × [−π, π])} .

The fact that ws is an element of the direct sum of two spaces reflects the fact (see
the paragraph preceding (2.6), and then (2.8) ) that it has two components, the first of
which comes from the central branch of the spectrum of Lℓ, but with ℓ localized away
from zero, and the second component coming from the stable branches of the spectrum
of Lℓ. In a slight abuse of notation we will denote by ‖ws‖Hq,r,ν the sum of the Hq,r

norm of the first component of ws and the Hq,r,ν norm of the second component, and
by ‖ws‖q,r,ν , we will mean the Hq,r,ν norm of just the second component.

Remark. An easy fact which will be useful later is that if we expand w(p; x) ∈ Hq,r,ν in
a Fourier series with respect to x,

w(p; x) =

∞
∑

n=−∞

einxŵn(p) ,

then the Hq,r,ν norm of w is equivalent to the norm

‖w‖2
Hq,r,ν

=

∞
∑

n=−∞

(1 + n2)ν‖ŵn‖2
q,r . (A.11)

Thus we will use the two norms interchangeably. Now consider

eτf4(wc, wse−τ/2, e−τ/2) . (A.12)



194 J.-P. Eckmann, C.E. Wayne, P. Wittwer

We shall concentrate on the most “dangerous” piece which is the quadratic term with
one factor of wc and one of ws. Other terms are “less dangerous” in the sense that they
contain either more factors of ws each of which contributes a small factor of e−τ/2,
or more convolutions which again contribute a factor of e−τ/2. The quadratic piece of
(A.12) has the form

eτ 3χ
(

8(pe−τ/2)
)

∫

dx ϕ̄
8(pe−τ/2)(x) uε(x)

×
∫ P (τ )

−P (τ )

dp′ e−τ/2
8

′(p′e−τ/2)wc
(

1(p, p′, τ )
)

× ϕŴ(p,p′,τ )(x) e−τ/2ws(p′; x) .

(A.13)

As we mentioned above, ws has two components – one in Hq,r, and one in Hq,r,ν .
The contribution from the component in Hq,r is bounded by the same techniques used

to control f3 – note that it is not necessary to extract any additional factors of e−τ/2,
since we get one from the integration, and one from the fact that each factor of ws is
multiplied by e−τ/2. Thus, we restrict our attention to the component of ws in Hq,r,ν ,
which is where the new ingredients are necessary.

Interchanging the order of the x and p′ integrals, we use Lemma A.2, with

ρ1(p, p′) = sup
x

|3χ
(

8(pe−τ/2)
)

8
′(p′e−τ/2) ϕ

8(pe−τ/2)(x) ϕŴ(p,p′,τ )(x)uε(x)| ,

ρ2(r) = |wc(r)| ,

ρ3(p′) = |
∫

dxws(p′; x)| .

Since ϕℓ(x) and uε(x) are smooth, 2π-periodic functions of x, and ‖ρ1‖Cr is bounded,
Lemma A.2 implies that the Hq,r norm of (A.13) is bounded by

C‖wc‖q,r ‖
∫

dxws(·; x)‖q,r . (A.14)

The Hq,r norm of the integral can be bounded by

sup
x

‖ws(·; x)‖q,r ≤ C‖ws‖Hq,r,ν , (A.15)

provided ν > 1/2, where we used Sobolev’s inequality to estimate the supremum over
x. Inserting (A.15) into (A.14) yields the bound claimed in (3.3).

The remaining terms in f4 can be bounded in a similar fashion, but as noted above,
they will tend to 0 as τ → ∞. In fact, they will be bounded by Cεe−τ/2.

Proof of Eq. (3.4) of Proposition 3.2. We finally bound the non-linear term

eτ/2g(wc, wse−τ/2, e−τ/2) . (A.16)

In bounding eτ/2g(wc, wse−τ/2; e−τ/2), recall that just as ws did, this expression will

have two components – one in Hq,r, and one in Hq,r,ν . The component in Hq,r is
bounded using exactly the same techniques used to control the term f4 above, so we
concentrate here on explaining the new ingredients necessary to bound the component
in Hq,r,ν .



Geometric Stability Analysis for Solutions of Swift-Hohenberg Equation 195

As in the bound on f4, the potentially largest terms are those of minimal order,
because each additional order provides a factor of e−τ/2. So we look at the terms which
are quadratic and which are of order wcwc, wcws, and wsws, respectively. The first term
leads us to study

eτ/2P⊥
p

(

uε(x)

∫ 1/2

−1/2

dp′ V c(p − p′)V c(p′)ϕp′ (x) ϕp−p′ (x)

)

. (A.17)

Rescaling as in (2.8), we see we must bound

P⊥
8(pe−τ/2)

(

uε(x)

∫ P (τ )

−P (τ )

dp′
8

′(p′e−τ/2)

× ϕ
8(p′e−τ/2)(x) ϕŴ(p,p′,τ )(x) wc(p′) wc(1(p, p′, τ ))

)

.

(A.18)

Note that the prefactor of eτ/2 has disappeared due to the factor of e−τ/2 which we gain
as usual from the change of variables.

Since the projection P⊥
ℓ has bounded norm and is a smooth function of ℓ, we can

discard this factor at the price of introducing an overall constant in the estimate. Note
next that the square of the Hq,r,ν norm of the remaining expression is equal to:

∥

∥

∥

∫ P (τ )

−P (τ )

dp′
8

′(p′e−τ/2)wc(p′)wc(1(p, p′, τ ))

× ‖uε(x) ϕ
8(p′e−τ/2)(x) ϕŴ(p,p′,τ )(x) ‖2

Hν (dx)

∥

∥

∥

2

Hq,r(dp)
,

(A.19)

where the Hν norm is the Hν-Sobolev norm of the quantity

uε(x) ϕ
8(p′e−τ/2)(x) ϕŴ(p,p′,τ )(x) ,

considered as a function of x, and the Hq,r norm is the norm of the resulting function
of p. Since uε(x) ϕ

8(p′e−τ/2)(x) ϕŴ(p,p′,τ )(x) is a smooth function of x, p′, and p, there
exists a smooth, bounded function ψ(p, p′), such that

ψ(p, p′) = ‖uε(x) ϕ
8(p′e−τ/2)(x) ϕŴ(p,p′,τ )(x) ‖Hν (dx) . (A.20)

But now, by Lemma A.2, we can conclude that (A.19) is bounded by

‖
∫ P (τ )

−P (τ )

dp′
8

′(p′e−τ/2)wc(p′)wc(1(p, p′, τ ))ψ(p, p′)‖2
Hq,r(dp) ≤ C‖8

′ψ‖2
Cr‖wc‖4

q,r .

(A.21)
We next consider the quadratic term in g which contains one factor of wc and one

factor of ws. In this case, the analog of (A.18) is

e−τ/2P⊥
8(pe−τ/2)

(

uε(x)

∫ P (τ )

−P (τ )

dp′
8

′(p′e−τ/2)

× ϕŴ(p,p′,τ )(x) wc(1(p, p′, τ ))ws(p′; x)

)

.

(A.22)

Note that in this case, we pick up an extra factor of e−τ/2, in comparison with (A.18),
since each factor of ws is multiplied by this exponential.
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Once again, we must contend with the fact that ws has two components. However, the
component in Hq,r behaves exactly as in the estimates leading to (3.2), so we concentrate
on the component in Hq,r,ν .

As above, the projection operator can be dropped at the cost of an overall constant,
and we are left with the task of bounding the Hq,r,ν norm of the remainder. The square
of this norm is equal to

∥

∥

∥

∫ P (τ )

−P (τ )

dp′
8

′(p′e−τ/2)wc(1(p, p′, τ ))

× ‖uε(x) ϕ
8(p′e−τ/2)(x) ϕŴ(p,p′,τ )(x) ws(p′; x)‖2

Hν (dx)

∥

∥

∥

2

Hq,r(dp)

≤ C‖8
′‖Cr ‖wc‖2

Hq,r

×
∥

∥

∥
‖uε(x) ϕ

8(p′e−τ/2)(x) ϕŴ(p,p′,τ )(x) ws(p′; x)‖2
Hν (dx)

∥

∥

∥

2

Hq,r(dp′)
,

(A.23)
by Lemma A.2. Note that the pair of norms on the last factor is equivalent to computing
the square of the Hq,r,ν norm of

uε(x) ϕ
8(p′e−τ/2)(x) ϕŴ(p,p′,τ )(x) ws(p′; x) . (A.24)

Since uε, 8, ϕŴ, and 1 are all smooth, bounded functions, we see just by writing out
the definition of the norm that this is bounded by

C‖ws‖2
Hq,r,ν

. (A.25)

If we estimate the term quadratic in ws in a similar fashion, and combine this estimate
with that in (A.21) we see that the quadratic terms in e−τ/2g(wc, wse−τ/2; e−τ/2) are
bounded in Hq,r,ν , by

C(‖wc‖Hq,r + e−τ/2‖ws‖Hq,r,ν )2 . (A.26)

Analogous estimates of the cubic terms lead to a bound

Ce−τ/2(‖wc‖Hq,r + e−τ/2‖ws‖Hq,r,ν )3 , (A.27)

where the additional factor of e−τ/2 comes from the additional convolution. Combining
(A.26) and (A.27) leads to the estimate in (3.4) and completes the proof of Proposi-
tion 3.2.

B. Bounds on the Linear Operators

In this Appendix, we give bounds on the semi-group generated by L and on the linear
evolution defined by Mexp(−τ/2).

B.1. Bound on the semi-group generated by L. We consider the semi-group whose
generator is L = ∂2

x + 1
2
x∂x + 1

2
. Note that in this section, for ease of use, we define L

in the Fourier transformed variables, compared to Sect. 2. Fourier transformation is an
isomorphism from Hq,r (in the p-variables) to Hr,q (in the x-variables), so establishing

estimates on the semigroup associated to ∂2
x + 1

2
x∂x + 1

2
in the space Hr,q(dx) will
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immediately imply estimates on the representation of L in the p-variables in the space
Hq,r(dp). In order to avoid confusion, in what follows we will denote by | · |q,r the norm
on Hr,q(dx). With this notation, the norms ‖ · ‖q,r and | · |q,r resp. the spaces Hq,r(dp)
and Hr,q(dx) are equivalent.

The integral kernel of the semigroup generated by L is given by [GJ]

(

eτLv)(x) =
1√

4πa(τ )
eτ/2

∫

dz e−z2/(4a(τ ))v(eτ/2(x + z)) ,

where a(τ ) = 1 − e−τ . If we denote by T the operator of multiplication by exp(x2/8)
and by H0 the harmonic oscillator Hamiltonian H0 = ∂2

x − x2/16 + 1/4, (note the
unconventional sign!), then

L = T−1H0T .

Thus, the two operators L and H0 are “the same,” but they act on two quite different
spaces. If the {ϕj}j≥0 are the eigenfunctions of H0, then the ψj = T−1ϕj are the eigen-
functions of L, with the same eigenvalues µj = −j/2. We let Pnf =

∑

j≤n ψj(ψj , f )q,

where (·, ·)q is the scalar product

(f, g)q = (Tf, T (1 − L0)qg) = (Tf, (1 − H0)qTg) .

We next show that for n < q − 2, the operator Pn is bounded in Hr,q(dx). First of

all, the eigenfunctions ϕj are bounded by O(1)|x|je−x2/8 at large x. Therefore, we also

have ψj = T−1ϕj ∈ Hr,q(dx), since it decays exponentially. Finally,

(ψj , f )q = (Tψj , (1 − H0)qTf ) = |1 − µj |q(ϕj , T f ) ,

and the last scalar product is bounded if f ∈ Hr,q(dx) when r > j + 2, since, with a

weight function W (x) = (1 + x2)1/2,

|(ϕj , T f )| ≤ C|(W j , f )| ≤ C|(W−1,W j+1f )|
≤ C‖W j+1f‖2 ≤ C|f |0,r .

Thus Pn is defined. We let Qn = 1 − Pn (in Hr,q(dx)).

Theorem B.1. For every δ > 0, there exists an m0 and a function r(m, q) such that for

every m ≥ m0, every q ≥ 1 and every r ≥ r(m, q), there is a C = C(q, r,m) < ∞
such that

|eτLQmv|q,r ≤ C(q, r,m)√
a(τ )

e−τ (|µm|−δ)|v|q−1,r . (B.1)

Remark. The function r(m, q) is of order O(m + q).

Proof. To explain the strategy of the proof, we need some notation. Let P (0)
n denote the

projection in H0,q(dx) onto the subspace spanned by {ϕj}j≤n and let Q(0)
n = 1 − P (0)

n .

Then, formally, TQn = Q(0)
n T , and LQn = T−1H0Q

(0)
n T . This suggests that L restricted

to Qn has no spectrum in the half-plane {z | Re z > −|µn+1|}, and thus one can
understand the decay in Eq. (B.1). The square-root singularity at τ = 0 is related to our
gain in smoothness. The problem is that TQn = Q(0)

n T is ill-defined. However, it will
be well defined if we localize near x = 0. In that region, the heuristic argument will be
seen to be valid, whereas in the complement of such a region, when |x| > R, decay will
be shown by direct methods, using the explicit form of the integral kernel.
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We study first the quantity χReτL, where χR is a smooth characteristic function
which vanishes for |x| < R and is equal to 1 for |x| > 4R/3. Thus we study a region
far from the origin. Our bound is

Proposition B.2. For every q ≥ 1 and every r ≥ 0 there exists a C(q, r) < ∞ such that

for all v ∈ Hr,q(dx) one has

|χReτLv|q,r ≤ C(q, r)√
a(τ )

eτq/2
(

e−τr/2 + e−3R2/16
)

|v|q−1,r , (B.2)

|χReτLv|q,r ≤ C(q, r)eτq/2
(

e−τr/2 + e−3R2/16
)

|v|q,r . (B.3)

Corollary B.3. For every q ≥ 1 and every r ≥ 0 there exists a C(q, r) < ∞ such that

for all v ∈ Hr,q(dx) one has

|eτLv|q,r ≤ C(q, r)√
a(τ )

eτq/2|v|q−1,r , (B.4)

|eτLv|q,r ≤ C(q, r)eτq/2|v|q,r . (B.5)

Remarks. The improvement over [W] is that we “gain” a derivative in x. The corollary
follows easily by repeating the proof of Proposition B.2 with R = 0.

Proof. We let D = ∂x and denote, as before, by W the operator of multiplication by
(1 + x2)1/2. Then

|χReτLw|2q,r and
∑

q′≤q

‖W rDq′

χReτLw‖2
2

are equivalent. We shall only consider the term with the highest derivative, because only
there is the issue of regularization important. Thus we are led to bound

X2 = ‖W rDqχReτLw‖2
2 .

Since L = ∂2
x + 1

2
x∂x + 1

2
, a quick calculation shows that

DqeτL = eτq/2eτLDq .

The diverging factor exp(τq/2) will appear in the final bound. Note now that

(

eτLDqv
)

(x) =
1√

4πa(τ )
eτ/2

∫

dz e−z2/(4a(τ ))
(

Dqv
)

(eτ/2(x + z)) , (B.6)

which upon integrating by parts becomes

1√
4πa(τ )

∫

dz
z

2a(τ )
e−z2/(4a(τ ))

(

Dq−1v
)

(eτ/2(x + z)) .

Use now the Schwarz inequality in the form (for positive f and g),
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‖f ∗ g‖2
2 =

∫

dx

∫

dz1 dz2 f (z1)f (z2)g(x − z1)g(x − z2)

≤
∫

dz1 dz2 f (z1)f (z2)‖g(· − z1)‖2‖g(· − z2)‖2

=

(
∫

dz f (z)‖g(· − z)‖2

)2

.

This leads to a bound

X ≤ eτq/2

√
4πa(τ )

∫

R1∪R2

dz
|z|

2a(τ )
e−z2/(4a(τ ))‖W rχR

(

Dq−1w
)

(eτ/2(· + z))‖2

≡ X1 + X2 ,

(B.7)

where we let R1 = {x : |x| < 7R/8} and R2 = R\R1. To be more precise, we define χR

by the scaling of a fixed function: χR(x) = χ(x/R). If R → ∞, then ∂xχR(x) = O(R−1)
and therefore it is uniformly bounded.

Lemma A.2 of [W] B.4. One has the bounds

‖W rχR(·)v(eτ/2(· + z))‖2
2 ≤

{

Ce−rτ |v|20,r , if |z| ≤ 7R/8,

C(1 + z2)r|v|20,r , if |z| > 7R/8.
(B.8)

Proof of Lemma B.4. Consider first the case |z| ≤ 7R/8. Since |x| > R on the support
of χR, we have |x + z| ≥ |x|/8 and hence

(1 + x2)/
(

1 + (eτ/2|x + z|)2
)

≤ const. e−τ .

Using this, we bound

∫

R1

dx (1 + x2)r|χR(x)v(eτ/2(x + z))|2

=

∫

R1

dx
(1 + x2)r

(

1 + (eτ/2|x + z|)2
)r ·

(

1 + (eτ/2|x + z|)2
)r|v(eτ/2(x + z))|2

≤ const. e−τre−τ/2|v|20,r ≤ const. e−τr|v|20,r .

In the second case, we get

∫

R2

dx (1 + x2)r|χR(x)v(eτ/2(x + z))|2

= e−τ/2

∫

dy

(

1 + (e−τ/2y − z)2
)r

(1 + y2)r
(1 + y2)r|v(y)|2

≤ const. e−τ/2(1 + z2)r|v|20,r ≤ const. (1 + z2)r|v|20,r .

The proof of Lemma B.4 is complete. Continuing the proof of Proposition B.2, we first

bound the integral over R1 in Eq. (B.7). We get from the first alternative of Lemma B.4,
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X1 =
1√

4πa(τ )
eτq/2

∫

R1

dz
|z|√
2a(τ )

e−z2/(4a(τ ))‖W rχR

(

Dq−1w
)

(e−τ/2(· + z))‖2

≤ const.
1√

4πa(τ )
eτq/2

∫

R1

dz
|z|√
2a(τ )

e−z2/(4a(τ ))e−τr/2|w|q−1,r

≤ const.
1√

4πa(τ )
eτ (q/2−r/2)|w|q−1,r .

Similarly, using the second alternative in Eq. (B.8), we get

X2 =
1√

4πa(τ )
eτq/2

∫

R2

dz
|z|√
2a(τ )

e−z2/(4a(τ ))‖W rχR

(

Dq−1w
)

(eτ/2(· + z))‖2

≤ const.
1√

4πa(τ )
eτq/2

∫

R2

dz (1 + z2)r/2 |z|√
2a(τ )

e−z2/(4a(τ ))|w|q−1,r .

≤ const.
1√

4πa(τ )
eτq/2e−3R2/16|w|q−1,r ,

since 3/16 < (7/8)2/4. Note that the constants above depend on r and q, but can be
chosen uniformly for all R ≥ 1. The proof of Eq. (B.2) is complete. Omitting the
integration by parts in Eq. (B.6), the assertion Eq. (B.3) follows in the same way. The
proof of Proposition B.2 is complete.

We next study eτLQn(1 − χR)w. We have the following bound

Proposition B.5. For every δ > 0, q ≥ 1, and every r ≥ 0 there is a C(δ, q, r) < ∞
such that

|eτLQn(1 − χR)w|q,r ≤ C(δ, q, r)√
a(τ )

e−(|µn+1|−δ)τeR2/6|w|q−1,r . (B.9)

Proof. Recall that T = ex2/8 and that L = T−1H0T . The operator T (1−χR) is bounded

and ‖T (1 − χR)‖ ≤ const. eR2/6. Therefore we have

QnT (1 − χR) = (1 − Pn)T (1 − χR) = T (1 − χR) − TP (0)
n (1 − χR)

= T (1 − P (0)
n )(1 − χR) = TQ(0)

n (1 − χR) ,

where Q(0)
n is the orthogonal projection onto the complement of the subspace spanned

by the first n eigenvalues of H0 in Hq,0. It is easy to see that on Hr,q(dx), the operator

(1 + x2)1/2(1 − H0)−1/2 is bounded. Thus, we get, using the spectral properties of H0

(on Q(0)
n ),

|eτH0TQn(1 − χR)w|q,r = τ−1/2

× |(1 − H0)−1/2eτH0 (τ (1 − H0))1/2Q(0)
n T (1 − χR)w|q,r

≤ const. τ−1/2|eτH0 (τ (1 − H0))1/2Q(0)
n T (1 − χR)w|q−1,r

≤ const. τ−1/2e−τ (|µn+1|−δ)|T (1 − χR)w|q−1,r

≤ const. τ−1/2e−τ (|µn+1|−δ)eR2/6|w|q−1,r .
(B.10)

The proof of Proposition B.5 is complete.
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End of proof of Theorem B.1. We first rewrite eτLQn as

eτLQn = eτL/2QneτL/2 = eτL/2QnχReτL/2 + eτL/2Qn(1 − χR)eτL/2 .

The second term can be bounded by Proposition B.5 and Eq. (B.5) as

|eτL/2Qn(1 − χR)eτL/2w|q,r ≤ C√
a(τ )

eR2/6−τ |µn+1|/4|eτL/2w|q−1,r

≤ C√
a(τ )

eR2/6−τ |µn+1|/4eτq/4|w|q−1,r .

This quantity is bounded by

C√
a(τ )

e−τn/8|w|q−1,r , (B.11)

provided n is much larger than q and R2/6 < τn/16. The first term can be bounded by
Eq. (B.5) and Eq. (B.2) as

|eτL/2QnχReτL/2w|q,r ≤ C√
a(τ )

eτq/4|χReτL/2w|q−1,r

≤ C√
a(τ )

eτq/2
(

e−τr/2 + e−3R2/16
)

|w|q−1,r

≤ C√
a(τ )

e−τn/8|w|q−1,r ,

(B.12)

provided r ≥ n/4 + q and 3R2/16 ≥ τ (n/8 + q/2). Note that the conditions on R from
the first and second term are compatible Combining Eqs.(B.11)–(B.12), we get

|eτLQnw|q,r ≤ C√
a(τ )

e−τn/8|w|q−1,r . (B.13)

It remains to improve the decay rate from n/8 to |µm+1|. The idea is to just take n =
8(m + 1). Then we find

eτLQm = eτLQnQm + eτLPmQm + eτL(Pn − Pm)Qm . (B.14)

The first term is bounded by Eq. (B.13), and m/8 > −|µn+1|. The second term vanishes
and the third is diagonalized explicitly:

eτL(Pn − Pm)Qm = T−1e−τH0T (Pn − Pm)Qm = T−1e−τH0 (P (0)
n − P (0)

m )TQm .

We are operating here on the finite dimensional subspace spanned by the eigenvectors
ϕm+1, . . . , ϕn, and there the technique of Eq. (B.10) yields a bound

C√
a(τ )

√

τ |µm+1|e−|µm+1|τ .

Combining this with the bound on the first term in Eq. (B.14), we complete the proof of
Theorem B.1.
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B.2. The linear evolution generated by Mη,2. In this section, we deal with the problem of
giving bounds on the linear evolution generated by the operator Mη,2, which is defined
by

Mη,2 = Mη,2,0 ⊕
∞
⊕
n=2

Mη,2,n ,

where

Mη,2,n =

(

(

ε2 − (1 + (in + i8(pη))2
)2 − K

(

8(pη)
)

)

− η2 1
2
p∂p .

We want to bound the solution Un,τ of the equation

e−τ∂τUn,τ = Mexp(−τ/2),2,nUn,τ , (B.15)

with Un,0 = 1. Recall the definition of L = −p2 − 1
2
p∂p, and rewrite Mexp(−τ/2),2,n as

Mexp(−τ/2),2,n

=

(

ε2 −
(

1 + (in + i8(pe−τ/2))2
)2 − K(8(pe−τ/2))

)

− e−τ 1
2
p∂p

=

(

ε2 −
(

1 + (in + i8(pe−τ/2))2
)2 − K(8(pe−τ/2))

)

+ e−τp2 + e−τL

= Xn(pe−τ/2) + e−τL ,

where Xn(ξ) = ε2 −
(

1 + (in + i8(ξ))2
)2 − K(8(ξ)) + ξ2. We want to solve Eq. (B.15):

e−τ∂τUn,τ = (e−τL + Xn(pe−τ/2))Un,τ ,

with initial condition Un,0 = 1. Observe now that Xn is an operator of multiplication

by a function of pη. Since the commutator [pm,−p2 − 1
2
p∂p] is equal to m

2
pm, we find

[h(p), L] = 1
2
ph′(p), and, furthermore,

eh(p)L = (L + 1
2
ph′(p))eh(p) .

It follows that the solution of Eq. (B.15) is

Un,τ = e(eτ −1)Xn(pe−τ/2)eτL ,

as one can check by explicit computation.
From the explicit form of Xn, (in particular, the factor of −n4), and the estimates

derived in Theorem B.1, we see that for any xn ∈ Hq,r, we have

‖Un,τxn‖q,r ≤ C exp(−c0(eτ − 1)n4)eτq/2‖xn‖q,r .

Combining this with the Remark of (A.11), we immediately obtain

Lemma B.6. If Uτ satisfies

e−τ∂τUτ = Mexp(−τ/2),2Uτ ,

with U0 = 1, then there exist a C(r, q, ν) > 0, and a c0 > 0 such that for any w ∈ Hq,r,ν ,

‖Uτw‖q,r,ν ≤ C exp(−ec0τ/2)‖w‖q,r,ν . (B.16)
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To complete the proof of Theorem 3.4, we also need an estimate of the semigroup
generated by Mη,1. This is simply obtained, however, because from (2.13) we see that
Mη,1 = Mexp(−τ/2),2,1, restricted to functions whose Fourier transform is supported away
from the origin. Using this fact, and the explicit formula given above for Mexp(−τ/2),2,n,
we see immediately that for any w1 ∈ Hq,r, there exists a constant c1 > 0, such that if
Uτ,1 is the semigroup generated by Mη,1 one has

‖Uτ,1w1‖q,r ≤ Ce−c1τ‖w1‖q,r .

C. The Pseudo Center Manifold Theorem for the Singular System Eq. (3.8)

In this section, we prove Theorem 3.7. Before we start with the proof, we wish to point
out in which sense we are here confronted with a new problem, which does not allow
for a straightforward application of results from the literature. If we write the system
Eq. (3.8) in the form

∂τx1 = A1x1 + N1(x1, η, x2, x3) ,

∂τη = − 1
2
η ,

∂τx2 = A2x2 + N2(x1, η, x2, x3) ,

∂τx3 = η−2A3,ηx3 + η−2N3(x1, η, x2, x3) ,

(C.1)

then, in view of the spectral properties of Eq. (3.9), there is a “gap” between the “central”
part (corresponding to x1 and η) and the “stable” part (corresponding to x2, x3). The
problem is that we are really dealing with a singular perturbation because the non-
linearity in the equation for x3 also diverges as η ↓ 0. This problem would be more
easily overcome if A2 were bounded. In that case, for sufficiently small η, the spectra
of A2 and η−2A3 would not overlap, and we could define first an invariant manifold
by “eliminating” x3, and then the true invariant manifold by eliminating x2 from the
equations obtained after elimination of x3. However, since the spectra overlap for all
values of η, we resort to a strategy which consists of a converging sequence of alternate
eliminations of x2 and x3.

To define these successive eliminations, we consider two equivalent representations
of Eq. (3.8), one being Eq. (C.1) above and the other being

∂tx1 = η2
(

A1x1 + N1(x1, η, x2, x3)
)

,

∂tη = − 1
2
η3 ,

∂tx2 = η2
(

A2x2 + N2(x1, η, x2, x3)
)

,

∂tx3 = A3,ηx3 + N3(x1, η, x2, x3) .

(C.2)

We shall again omit the index η from A3. We obtain Eq. (C.2) from Eq. (C.1) by rescaling
the evolution parameter of the autonomous system as t + t0 = exp(τ ). (Note that time
is really given by 1/η2 − t0, while we view t and τ as the evolution parameters of the

vector fields.) We will call 8
center
τ the flow corresponding to Eq. (C.1) and 8

stable
t the

flow corresponding to Eq. (C.2). A simple inspection of the definition of these flows
yields the useful identity:
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8
center
τ=log (y+t0)(ξ, x) = 8

stable
t=y (ξ, x) , (C.3)

where

ξ = (x1, η), x = (x2, x3) . (C.4)

We shall use the relations (C.4) throughout. The identity (C.3) holds for all x1, x2, x3

and for η ≥ 0. Note that the initial conditions are given for the parameter t = 0 and the

parameter τ = log(t0), and that η(0) = t
−1/2

0 . Thus, η(0) is small if the parameter t0 has
been chosen sufficiently large. (The bounds on the nonlinearities are uniform in t0 ≥ t∗0
as follows from the calculations.)

Let h0 be a function of ξ. This function will always be an approximate invariant
manifold for one of two problems. To define these problems, we first introduce two
effective non-linearities

Fj(h0; ξ, x2) = Nj

(

x1, η, x2, h0(ξ)
)

, for j = 1, 2 ,

Gj(h0; ξ, x3) = Nj

(

x1, η, h0(ξ), x3

)

, for j = 1, 3 .

We then define two equations (corresponding to the two different time scales Eq. (C.1)
and Eq. (C.2) of the same problem Eq. (3.8)): The first equation will be called the center

system:

∂τx1 = A1x1 + F1(h0; ξ, x2) ,

∂τη = − 1
2
η ,

∂τx2 = A2x2 + F2(h0; ξ, x2) .

(C.5)

Similarly, we define the stable system

∂tx1 = η2A1x1 + η2G1(h0; ξ, x3) ,

∂tη = − 1
2
η3 ,

∂tx3 = A3x3 + G3(h0; ξ, x3) .

(C.6)

Assume now that h2 and h3 are two given functions of x1 and η. We define a map

F :

(

h2

h3

)

7→
(

h′
2

h′
3

)

,

through the following construction: We let h′
2(ξ) be the function whose graph is the

invariant manifold for the center system Eq. (C.5) with non-linearity Fj(h3; ξ, x2), and
similarly we let h′

3(ξ) be the function whose graph is the invariant manifold for the stable
system Eq. (C.6) with non-linearity Gj(h2; ξ, x3). Our main result here is

Proposition C.1. The map F has a fixed point (h∗
2 , h

∗
3 ). This fixed point provides an

invariant manifold for the system Eq. (3.8).

Remark. We shall in fact show that F is a contraction in a suitable function space. In
particular, we show that Fn(0, 0), the n-fold iterate of F , converges to the limit (h∗

2 , h
∗
3 ).

The intuitive approach behind this construction is that the Fn(0, 0) provide a sequence
of successive approximations to invariant manifolds for Eqs.(C.6) and (C.5), in which
the non-linearities at the nth step are given by the approximate solutions for the invariant

manifold problem of the other equation: The non-linearities are then Fj(h(n−1)
3 ; ξ, x2)

(in Eq. (C.5)) and Gj(h(n−1)
2 ; ξ, x3) (in Eq. (C.6)).
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Proof. That the systems of equations (C.5) and (C.6) have invariant manifolds follows
from our estimates (given in Appendix B) on the semi-group generated by the linear
operators A2 and A3, and our estimates on the non-linear terms. (For expositions of
this theory that are particularly relevant in the present context, see e.g., [H, M, G].) The
functions h∗

2 and h∗
3 whose graphs define the invariant manifolds satisfy well known

integral equations, see below. Fix h = (h2, h3) and consider Eq. (C.5). We want to find

the function h′
2(h; ξ) which eliminates x2. To construct h′

2, we first consider the equation

∂τx1 = A1x1 + F1

(

h3; ξ, h2(ξ)
)

,

∂τη = − 1
2
η .

(C.7)

This is a differential equation on a finite dimensional space and we let 9
2
τ (ξ; h) denote

the corresponding flow. (Of course, the η-component of this problem can be explicitly
integrated.) We can then formulate the problem of finding the invariant manifold which
eliminates x2 from Eq. (C.6) by looking at the map defined by h 7→ F2(h) where

F2(h) =

∫ 0

−∞

dτ e−A2τF2

(

h3; 92
τ (ξ; h), h2(92

τ (ξ; h))
)

. (C.8)

(A particularly clear derivation of these equations can be found in [G].) In a similar way,
we define the flow 9

3
τ (ξ; h) for the equation

∂tx1 = η2A1x1 + η2G1

(

h2; x1, h3(ξ)
)

,

∂tη = − 1
2
η3 ,

(C.9)

and the map

F3(h) =

∫ 0

−∞

dt e−A3tG3

(

h2; 93
t(ξ; h), h3(93

t(ξ; h))
)

. (C.10)

We now specify the function spaces in which we work. Recall that x1 ∈ RN , η ∈ R and
that ξ ∈ RN+1. We let Ec = RN ⊕ R with the usual Euclidean norm. We also assume
that E2 and E3 are the Banach spaces in which the x2 and x3 live. In our problem, these
Banach spaces are the Hilbert spaces Hq,r and Hq,r,ν , but since we believe the present
theory of singular vector fields may have further applications, we consider the more
general case for the moment (see, for example, [W2]). These Banach spaces should
have the Ck extension property [BF]. The functions h2 and h3 will be Lipshitz functions
from a ball of radius r in E2 and E3, respectively. They satisfy hj(0) = 0 and are tangent
at the origin to Ej , for j = 2, 3. Thus, we define the metric spaces, for j = 2, 3:

Hj,σ = {hj : Ec → Ej | hj(0) = 0, ‖hj(ξ) − hj(ξ̃)‖Ej ≤ σ‖ξ − ξ̃‖} .

We also define a distance

ρHj,σ (hj , h̃j) = sup
ξ 6=0

‖hj(ξ) − h̃j(ξ)‖Ej

‖ξ‖ , (C.11)

and introduce the notation

ρHσ (h, h̃) = ρH2,σ (h2, h̃2) + ρH3,σ (h3, h̃3) .
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Standard results about the existence and uniqueness of solutions of systems of differential
equations now imply that

‖9
2
τ (ξ; h) − 9

2
τ (ξ̃; h)‖ ≤ Ceβ2|τ |‖ξ − ξ̃‖ , (C.12)

while
‖9

2
τ (ξ; h) − 9

2
τ (ξ; h̃)‖ ≤ Ceβ2|τ |ρHσ

(h, h̃) , (C.13)

for any β2 > (N − 1)/2. Analogous estimates hold for the flow 9
3, though in that case

one can choose any exponential growth rate β3 > 0, provided |η| is sufficiently small.
This is due to the presence of the factor of η2A1 in the first equation of Eq. (C.6). With

this in mind we define two more metric spaces (for j = 2, 3):

Kj,βj ,Dj
= {9τ : R+ × Ec × H2,σ × H3,σ → Ec |

90(ξ; h) = ξ,9τ (0; h) = 0,9τ is C1 in τ,

‖9τ (ξ, h) − 9τ (ξ̃, h̃)‖
≤ Dje

βj |τ |
(

‖ξ − ξ̃‖ + ρHσ (h, h̃)‖ξ‖
)

} ,

with a corresponding Lipshitz metric

dj(9, 9̃) = ‖9 − 9̃‖Kj
, (C.14)

where

‖9‖Kj
= sup

t≥0

sup
ξ∈Ec

ξ 6=0

eβjt‖9t(ξ)‖
‖ξ‖ .

These spaces are modeled on those used in [EW].

Remark. Since we are interested in local invariant manifolds, we will assume that the
non-linear terms have been cut off outside a ball of radius r in each of their arguments.
Since in the applications of this paper all our functions are elements of Hilbert spaces,
we can assume that there exist smooth cut-off functions which are equal to 1 inside a ball
of radius r/2 and are equal to zero outside a ball of radius r, and we multiply each of the
non-linear terms in Eq. (3.8) by such a cutoff. For example, in Eq. (C.6), we certainly
need to cutoff the function η2 by η2χ(η) (where χ is the cutoff function) to avoid blowup
problems. Given this setup, we show that the map F is a contraction of H2,σ × H3,σ .

In terms of the notation given above F is now defined as F(h) =
(

F2(h),F3(h)
)

. One
must first show that F maps this space to itself. This step is however an easy variant of
the argument which shows that F is a contraction, and we leave it as an exercise to the
reader. To show that F is a contraction, we use the maps (C.8) and (C.10). Then we see
that the “j” component, j = 2, 3, of F(h2, h3)(ξ) − F(h̃2, h̃3)(ξ) is given by

1j =

∫ 0

−∞

dτ e−Ajτ

(

Uj(h; ξ, τ ) − Uj(h̃; ξ, τ )

)

, (C.15)

where
U2(h; ξ, τ ) = F2

(

h3; 92
τ (ξ; h), h2

(

9
2
τ (ξ; h)

))

= N2

(

9
2
τ (ξ; h), h2

(

9
2
τ (ξ; h)

)

, h3

(

9
2
τ (ξ; h)

))

,

U3(h; ξ, τ ) = G3

(

h2; 93
τ (ξ; h), h3

(

9
3
τ (ξ; h)

))

= N3

(

9
3
τ (ξ; h), h2

(

9
3
τ (ξ; h)

)

, h3

(

9
3
τ (ξ; h)

))

,
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cf. Eqs.(C.5), (C.6). Consider now 12. From the estimates on the non-linear term N2 in
Eq. (3.8), we see that F2 is a multi-linear function of its arguments. Thus, we can estimate
the difference in the integrand of 12 by the sum of the differences in the arguments of
F2, multiplied by the Lipshitz constant of F2. Because we have cutoff F2 outside a ball
of radius r, this Lipshitz constant can be made arbitrarily small by making r sufficiently
small. Thus, calling this Lipshitz constant ℓ2(r), we see from the estimates on eA2t which
follow from the results of Appendix B and from Eqs.(C.11)–(C.14) that

‖12‖E2 ≤
∫ ∞

0

dτ
C√
τ

e−Nτ/2ℓ2(r)

(

ρHσ
(h, h̃)

+ ‖9
2
τ (ξ, h) − 9

2
τ (ξ, h̃)‖ + ‖h2

(

9
2
τ (ξ, h)

)

− h̃2

(

9
2
τ (ξ, h̃)

)

‖E2

)

≤
∫ ∞

0

dτ
C√
τ

e−Nτ/2ℓ2(r)

(

ρHσ (h, h̃)

+ ρHσ
(h, h̃)Ceβ2τ + ρHσ (h, h̃)Ceβ2τ

)

≤ const. ℓ2(r)ρHσ (h, h̃) .

Thus, we have shown that F is a contraction.

We next consider the manifold M given by (ξ, h∗
2 (ξ), h∗

3 (ξ)) – where x1 is in a small
neighborhood of 0 and η is in a small positive interval 0 ≤ η ≤ η0. We want to show
that M is indeed an invariant manifold for the full system Eq. (3.8). From this it follows,
since the flows 8

stable and 8
center are equivalent, up to rescaling of time, that M is also

an invariant manifold for Eqs.(C.1) and (C.2). If we set x2 = h∗
2 (ξ) and x3 = h∗

3 (ξ), then
the third equation of Eq. (C.2) is satisfied because the third equation, when restricted to
the manifold x2 = h∗

2 is just the second equation of the stable system Eq. (C.6). with
non-linearity G3(h∗

2 ; . . .). To see that the remaining equations are satisfied just note that
the first, second and fourth equations in the full system Eq. (3.8) become, after rescaling
of time,

ẋ1 = A1x1 + N1(x1, η, x2, x3) ,

η̇ = − 1
2
η3 ,

ẋ2 = A2x2 + N2(x1, η, x2, x3) ,

and if we set x2 = h∗
2 and x3 = h∗

3 , we see that we are just on the invariant manifold for
the center system Eq. (C.5). Hence, we have found the invariant manifold for the full
system Eq. (3.8).

D. The Vanishing of the Non-Linearity at Zero Momentum

In this Appendix, we prove Proposition 4.3. This proof is essentially a scaling argument.
We shall study the nonlinearity N1(x1, η, x2, x3) and we restrict it to the invariant man-
ifold, i.e., we replace it by Ñ1(x1, η) and let η go to 0. In particular, we shall show that
only one term survives, namely the one which is cubic in x3

1, and all others go to 0 as
η → 0.

To prove this, we will analyze the nonlinearities Nj term by term, using their defini-
tions as given in Eqs.(3.6) and (3.8). Recall again that A1 = 0 since we are considering
here the projection onto the first eigenvalue of L. In Eq. (3.6), the nonlinearities are
given by the terms f2, f3, f4, and g, and these have been bounded in Proposition 3.1 and
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Proposition 3.2. Recall finally that every factor of wc contributes a factor of e−τ/2 = η
and every factor of ws contributes a factor of e−τ = η2 to these bounds.

Begin by considering the contribution from f2. According to Eq. (A.9), we can extract
another factor of η from Eq. (A.10), by using the quadratic nature of K2, cf. Lemma A.1.

Using Proposition 3.1 and Proposition 3.2, we see that the only contributions from
f3, f4, and g which do not vanish as η → 0 are those of the type (wc)3 in f3, of the type
ws(wc)2 in f4, and of the type (wc)2 in g.

We start by analyzing f3. If we write it out, we find

η−2
(

f3(wc)
)

(p) = η−2χ
(

8(pη)
)

∫

dx ϕ̄8(pη)(x)

× η2

∫ η−1
8(1/2)

η−18(−1/2)

dp1 dp2 8
′(p1η)8′(p2η)

× ϕ8(p1η)(x) ϕ8(p2η)(x) ϕ8(pη)−8(p1η)−8(p2η)(x)

× wc(p1) wc(p2) wc
(

η−1
8

−1(8(pη) − 8(p1η) − 8(p2η))
)

,

cf. Eq. (2.11). Upon taking η → 0, this converges to

χ(0)

∫

dx ϕ̄0(x)ϕ3
0(x)

∫

dp1 dp2 wc(p1)wc(p2)wc(p − p1 − p2) . (D.1)

Analogous arguments can be used to discuss the “surviving” terms of f4 and g. We
just summarize the steps analogous to the calculation of f3. One gets, as η → 0,

η−2
(

f4(wc, wsη, η)
)

(p) → 6χ(0)

∫

dx ϕ̄0(x)uε(x)ϕ0(x)

∫

dp′wc(p′)ws(p − p′; x) ,

(D.2)
and

η−1
(

g(wc, wsη, η)
)

(p) → −3uε(x)ϕ2
0(x)

∫

dp′ wc(p − p′)wc(p′) . (D.3)

We next study these limiting expressions in the basis {ψn(p)}∞
n=0 of eigenfunctions

of L = −p2 − 1
2
p∂p. Then we can write wc(p) as

x1ψ0(p) +

∞
∑

n=1

x(n)
2 ψn(p) . (D.4)

The crucial remark is now that on the invariant manifold, x(n)
2 will be replaced by h∗,(n)

2 ,
and similarly ws will be equal to h∗

3 . We now compute the limiting forms of h∗
2 and h∗

3 ,
and then we substitute these values in Eqs.(D.1)–(D.3). Consider the equation for h∗

3 .
Then from Eq. (C.9), we have

∂tx1 = η2G1(h∗
2 ; x1, h

∗
3 (ξ)) ,

∂tη = − 1
2
η3 ,

because we are considering the case N = 1 where the linear part vanishes. We also have
from Eq. (C.10),

h∗
3 (x1, η) =

∫ 0

−∞

dt e−A3,ηtG3

(

h∗
2 ; 93

t(x1, η; h∗), h∗
3 (93

t(x1, η; h∗))
)

. (D.5)
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Now, when η = 0, we have 9
3
t(ξ; h) = 9

3
t(x1, 0; h) = x1, and this reduces to

h∗
3 (x1, 0) =

∫ 0

−∞

dt e−A3,0tG3

(

h∗
2 ; x1, 0, h∗

3 (x1, 0)
)

= −A−1
3,0G3

(

h∗
2 ; x1, 0, h∗

3 (x1, 0)
)

.

(D.6)

Note next that for η = 0 we have A3,0 = M0, cf. Eq. (3.8), and this means A3,0 = QperLper.
We denote by ξn(x) the eigenfunctions and by σn the eigenvalues of QperLper. Using
Eq. (1.9) and Theorem 1.1, we see that σn = λℓ=0,n−1 and therefore they are given by

σ1 = −O(ε2) and σn ≈ −(1 − (n − 1)2)2, when n 6= 1. Then the nth component (in this
basis) of h∗

3 (at η = 0) is given by

h∗,(n)
3 (p) = −σ−1

n ·
(

−3

∫

dx ξ̄n(x)uε(x)ϕ2
0(x)

)

∫

dp′wc(p − p′)wc(p′) , (D.7)

since all other terms vanish in the limit η → 0. We next substitute the value Eq. (D.4)
for wc and set x2 = h∗

2 in Eq. (D.7), and get

h∗,(n)
3 (p) = −x2

1σ
−1
n ·

(

−3

∫

dx ξ̄n(x)uε(x)ϕ2
0(x)

)

×
(

∫

dp′ ψ0(p′) ψ0(p − p′) + O(x1h
∗
2 + (h∗

2 )2)

)

.

Next, we replace ws in Eq. (D.2) with h∗
3 , and in that same equation make the substitution

for wc that we used above, and we find:

18x3
1

∞
∑

n=0

σ−1
n

(

∫

dx ξ̄n(x)uε(x)ϕ2
0(x)

)(

∫

dx′ ϕ̄0(x′)uε(x′)ξn(x′)
)

×
(

∫

dp1 dp2 ψ0(p1)ψ0(p2)ψ0(p − p1 − p2) + O(x1h
∗
2 + (h∗

2 )2)

)

.

(D.8)

Thus we see that the only terms which survive in N1 and N2 in the limit η → 0 result
from adding together Eqs.(D.8) and (D.1). We obtain

X = x3
1

{
∫

dx ϕ̄0(x)ϕ3
0(x) + 18

∞
∑

n=0

σ−1
n (

∫

dx′ ξ̄n(x′)uε(x′)ϕ2
0(x′)

)

×
(

∫

dx′′ ϕ̄0(x′′) uε(x′′) ξn(x′′)
)

}

×
(

∫

dp1 dp2 ψ0(p1) ψ0(p2) ψ0(p − p1 − p2)

)

.

(D.9)

This coefficient will turn out to be exactly the same as that which appears below as the
coefficient of the cubic terms in the center manifold in the periodic case, and since we
know that in the periodic case this coefficient (and indeed, the entire nonlinear term) is
zero, it must vanish in the present case as well. The only remaining point in the proof of
Proposition 4.3 is the computation of the coefficient of the cubic term in the equation in
the center manifold in the periodic case, and we do that in the following subsection.



210 J.-P. Eckmann, C.E. Wayne, P. Wittwer

Remark. The above argument might seem incomplete since it ignores the O(x1h
∗
2 +(h∗

2 )2)
error terms in (D.8). In fact, those terms vanish for x1 small. To see why, note that our
computations of the η → 0 limit of f2, f3, f4 and g apply also to the nonlinear term
N2(x1, η, h∗

2 (ξ), h∗
3 (ξ)) in the equation for h∗

2 in (4.1). Thus, in the η → 0 limit h∗
2

satisfies:

∂x1
h∗

2 (x1, 0)Ñ1(x1, 0) = A2h
∗
2 (x1, 0) + N2(x1, 0, h∗

2 (x1, 0), h∗
3 (x1, 0)) .

Using the estimates on h∗
2 and h∗

3 derived above, we see that this equation implies
h∗

2 (x1, 0) = 0 for all x1 sufficiently small, and hence the error terms in (D.8) vanish.

D.1. The non-linearity in the periodic case. In this subsection we compute the explicit
form of the non-linearity (which we know to be 0 because the invariant manifold is made
up of fixed points in this case). But this explicit form will allow us to compare it with the
expression obtained in Eq. (D.9) so that the proof of Proposition 4.3 will be complete.

We start from the equation

∂τv = Lperv − 3uεv
2 − v3 . (D.10)

Let y0 be the component of v in the direction of the highest eigenvalue, σ0 = 0, of Lper,
and yn, the projection onto the directions ξn, defined after Eq. (D.6), associated to the
eigenvalues σn. Then the invariant manifold can be written in the form

yn = Yn(y0) , n = 1, 2, . . . . (D.11)

Using the fact that the eigenfunction with eigenvalue 0 is u′
ε, we can decompose v as:

v(x) = y0u
′
ε(x) +

∞
∑

n=1

ξn(x)Yn(y0) , (D.12)

the projection of Eq. (D.10) onto the invariant manifold leads to

∂τy0 = −
∫

dxu′
ε(x)

(

3uε(x)v(x)2 + v(x)3
)

. (D.13)

Note that there is no linear term because σ0 = 0.
We are interested in the exact form of the cubic term in y0 on the r.h.s. of Eq. (D.13).

There are two contributions, one from v3, leading to

−y3
0

∫

dxu′
ε(x)4 , (D.14)

and one from the quadratic non-linearity:

Y = −6y0

∞
∑

n=1

Y (2)
n (y0)

∫

dxu′
ε(x) uε(x) u′

ε(x) ξn(x) . (D.15)

Here, Y (2)
n (y0) is the quadratic term in y0 of Yn. Substituting Eq. (D.13) into the equation

for Yn, we find the perturbative result:

Y (2)
n (y0) = y2

0 · 3σ−1
n

∫

dx ξ̄n(x) uε(x) u′
ε(x)2 .
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Inserting into Eq. (D.15), it is seen to become

Y = −y3
018

∞
∑

n=1

σ−1
n

∫

dxu′
ε(x)2 uε(x) ξn(x)

∫

dx′ ξ̄n(x′) uε(x′) u′
ε(x′) . (D.16)

Combining Eqs.(D.14) and (D.16), we get the desired result, namely that the cubic non-
linearity in the periodic case coincides with the quantity X of Eq. (D.9), provided we
recall that ϕ0 = u′

ε. This completes the proof of Proposition 4.3.
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