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Abstract. A moment-angle complex % is a cell complex with a torus
action constructed from a finite simplicial complex J#. When this con-
struction is applied to a triangulated sphere .# or, in particular, to the
boundary of a simplicial polytope, the result is a manifold. Moment-angle
manifolds and complexes are central objects in toric topology, and currently
are gaining much interest in homotopy theory and complex and symplec-
tic geometry. The geometric aspects of the theory of moment-angle com-
plexes are the main theme of this survey. Constructions of non-Kéhler
complex-analytic structures on moment-angle manifolds corresponding to
polytopes and complete simplicial fans are reviewed, and invariants of these
structures such as the Hodge numbers and Dolbeault cohomology rings
are described. Symplectic and Lagrangian aspects of the theory are also
of considerable interest. Moment-angle manifolds appear as level sets for
quadratic Hamiltonians of torus actions, and can be used to construct new
families of Hamiltonian-minimal Lagrangian submanifolds in a complex
space, complex projective space, or toric varieties.
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1. Introduction

A moment-angle complex 2 is a cell complex having a torus action and made
up of products of disks D? and circles S' which are parametrized by faces of a sim-
plicial complex .#. By replacing the pair (D? S') by an arbitrary cellular pair
(X, A) we obtain the polyhedral product (X, A)” . Moment-angle complexes and
polyhedral products are key players in the emerging field of toric topology, which
lies on the borders between topology, algebraic and symplectic geometry, and com-
binatorics [15].

Both homotopical and geometric aspects of the theory of moment-angle com-
plexes and polyhedral products have been actively studied recently. On the homoto-
py-theoretic side of the story, the stable and unstable decomposition techniques
developed in [14], Chap. 6, [31], [4], [35], have led to an improved understanding of
the topology of moment-angle complexes and related toric spaces.

In this survey we concentrate on the geometric aspects of the theory. The con-
struction of moment-angle complexes has many interesting geometric interpreta-
tions. For example, the moment-angle complex % is homotopy equivalent to
the complement U(.%") of the arrangement of coordinate subspaces in C™ defined
by 2. The space U(#") plays an important role in the geometry of toric varieties
and the theory of configuration spaces.
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The moment-angle complex % corresponding to a triangulated sphere 2 is
a topological manifold. Moment-angle manifolds corresponding to simplicial poly-
topes or, more generally, complete simplicial fans, are smooth. In the polytopal case
a smooth structure arises from the realization of 2% by a non-degenerate inter-
section of Hermitian quadrics in C™, similar to a level set of the moment map in
the construction of symplectic quotients. The relationship between polytopes and
systems of quadrics is described by the convex-geometric notion of Gale duality.

Another way to give 2% a smooth structure is to realize it as the quotient of
the complement U(.2") of a coordinate subspace arrangement by an action of the
multiplicative group RT™". This is similar to the well-known quotient construction
of toric varieties in algebraic geometry. The quotient of the non-compact manifold
U() by the action of the non-compact group RT ™" is Hausdorff precisely when
J is the underlying complex of a simplicial fan.

If m—n = 2¢, then the action of the real group RT™" on U(#) can be turned into
a holomorphic action of a complex (but not algebraic) group isomorphic to C’. In
this way the moment-angle manifold 2 = U(.#)/C’ acquires a complex-analytic
structure. The resulting family of non-Kéahler complex manifolds generalizes the
well-known series of Hopf and Calabi-Eckmann manifolds (see [10] and [54]).

Finally, the intersections of Hermitian quadrics defining polytopal moment-angle
manifolds were also used in [46] to construct Lagrangian submanifolds in C™ with
special minimality properties.

Different spaces with torus actions, or toric spaces, will feature throughout the
paper. The most basic example of a toric space is the complex m-dimensional
space C™ on which the standard torus

T" ={t=(t1,...,tm) €C™: Jt;|=1fori=1,...,m}
acts coordinatewise. That is, the action is given by
™ x C™ — C™,
(t1yeostm) - (215 oy 2m) = (t121, -« tm2m)-
The quotient C™ /T™ of this action is the positive orthant
RY ={(y1,.--,ym) ER™:y; =2 0fori=1,...,m},
with the quotient projection given by
p: C™ — RY,
(21, zm) = (|23 .. lzm]?).

We use the blackboard bold capitals in the notation I, T™, D™ for the stan-
dard unit cube in R™, the standard (unit) torus, and the unit polydisk in C™,
respectively. We use italic 7™ to denote an abstract m-torus, that is, a compact
Abelian Lie group isomorphic to a product of m circles. The underlying space of the
unit disk I is a topological 2-disk, which we denote by D?. We shall also denote
the standard unit circle by S or T occasionally, to distinguish it from an abstract
circle S*.
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2. Preliminaries: polytopes and Gale duality

Let R™ be a Euclidean space with scalar product (-,-). A convex polyhe-
dron P is an intersection of finitely many half-spaces in R™. Bounded polyhedra
are called polytopes. Alternatively, a polytope can be defined as the convex hull
conv(vy,...,vy) of a finite set of points vi,...,v, € R

A supporting hyperplane of P is a hyperplane H which has common points with
P and for which the polyhedron is contained in one of the two closed half-spaces
determined by H. The intersection P N H with a supporting hyperplane is called
a face of the polyhedron. Denote by 0P and int P = P \ 9P the topological
boundary and interior of P, respectively. In the case dim P = n the boundary
OP is the union of all the faces of P. Zero-dimensional faces are called wvertices,
one-dimensional faces are edges, and faces of codimension one are facets.

Two polytopes are combinatorially equivalent if there is a bijection between their
faces preserving the inclusion relation. A combinatorial polytope is a class of com-
binatorially equivalent polytopes. Two polytopes are combinatorially equivalent if
there is a homeomorphism between them preserving the face structure.

The faces of a given polytope P form a partially ordered set (a poset) with respect
to inclusion. (It is called the face poset of P.) Two polytopes are combinatorially
equivalent if and only if their face posets are isomorphic.

Consider a system of m linear inequalities defining a convex polyhedron in R™:

P={xeR": (a;,x)+b;>0fori=1,...,m}, (2.1)

where a; € R™ and b; € R. We refer to (2.1) as a presentation of the polyhe-
dron P by inequalities. These inequalities contain more information than the poly-
hedron P itself, for the following reason. It may happen that some of the inequalities
(a;,x) +b; > 0 can be removed from the presentation without changing P; we refer
to such inequalities as redundant. A presentation without redundant inequalities
is called irredundant. An irredundant presentation of a given polyhedron is unique
up to multiplication of the pairs (a;, b;) by positive numbers.

We shall assume (unless otherwise stated) that the polyhedron P defined by (2.1)
has a vertex, which is equivalent to the vectors a1, ..., a,, spanning the whole of R™.
This condition is automatically satisfied for polytopes.

A presentation (2.1) is said to be generic if P is non-empty and the hyperplanes
defined by the equations (a;,x) 4+ b; = 0 are in general position at any point of P
(that is, for any x € P the normal vectors a; of the hyperplanes containing x are
linearly independent). If the presentation (2.1) is generic, then P is n-dimensional.
If P is a polytope, then the existence of a generic presentation implies that P is
simple, that is, exactly n facets meet at each vertex of P. A generic presentation
may contain redundant inequalities, but, for any such inequality, the intersection
of the corresponding hyperplane with P is empty (that is, the inequality is strict
at any x € P). We set

Fi:{XEPZ <a“X>+bZ:0}

If the presentation (2.1) is generic, then each F; either is a facet of P or is empty.
The polar set of a polyhedron P C R" is defined as

P*={ueR": (ux)+1=>0forall x € P}. (2.2)
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The set P* is a convex polyhedron. (In fact, it is naturally a subset of the dual
space (R™)*, but we shall not make this distinction, assuming R™ to be Euclidean.)
The following properties are well known in convex geometry:

Theorem 2.1 (see [11], §2.9 or [59], Theorem 2.11). (a) P* is bounded if and only
if 0 € int P.

(b) P C (P*)*, and (P*)* = P if and only if 0 € P.

(c) If a polytope Q is given as a conver hull, Q = conv(ay,...,a,;), then Q* is
given by inequalities (2.1) with b; = 1 for 1 < i < m; in particular, Q* is a convex
polyhedron, but not necessarily bounded.

(d) If P is given by inequalities (2.1) with b; = 1, then P* = conv(ay,...,a,),
and (a;,x) +1 > 0 is a redundant inequality if and only if a; € conv(a;: j #1).

Remark. A polyhedron P admits a presentation (2.1) with b; = 1 if and only if
0 € int P. In general, (P*)* = conv(P,0).

Any combinatorial polytope P has a presentation (2.1) with b; = 1 (take the ori-
gin to the interior of P by a parallel transform, and then divide each of the inequal-
ities in (2.1) by the corresponding b;). Then P* is also a polytope with 0 € P*, and
(P*)* = P. We call the combinatorial polytope P* the dual of the combinatorial
polytope P. (We shall not introduce a new notation for the dual polytope, keeping
in mind that polarity is a convex-geometric notion, while duality of polytopes is
combinatorial.)

Theorem 2.2 (see [11], §2.10). If P and P* are dual polytopes, then the face poset
of P* is obtained from the face poset of P by reversing the inclusion relation.

If P is a simple polytope, then it follows from the theorem above that each face
of P* is a simplex. Such a polytope is said to be simplicial.

The following construction realizes any polytope (2.1) of dimension n as the
intersection of the orthant RY with an affine n-plane. It will be used in the next
section to define intersections of quadrics and moment-angle manifolds.

Construction 2.3. We form the n x m matrix A whose columns are the vectors a;
written in the standard basis of R™. Note that A is of rank n if and only if the
polyhedron P has a vertex. Also let b = (by,...,by,)" € R™ be the column vector
of numbers b;. Then we can write (2.1) as

P=P(Ab)={xeR": (A'x+b); >0fori=1,...,m},
where x = (x1,...,x,)! is the column of coordinates. Consider the affine map
iap: R" = R™, iap(x)=A'x+b=((a;,x) +b1,..., (@n,X) + bn)".

If P has a vertex, then the image of R” under i4 1, is an n-dimensional affine plane
in R™, which we can write by m — n linear equations:

iap(R") ={y e R™":y = A'x + b for some x € R"}
={y e R™: I'y = I'b}, (2.3)
where I = (;) is an (m—mn) x m matrix whose rows form a basis of linear relations

between the vectors a;. That is, I" is of full rank and satisfies the identity I"A?* = 0.
We have i b(P) = RZ Nigp(R").
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Construction 2.4 (Gale duality). Let a;,...,a,, be a configuration of vectors
that span the whole of R”. We form an (m —n) X m matrix I" = (vy;5) whose rows
constitute a basis in the space of linear relations between the vectors a;. The set

of columns ~1,...,7v,, of I' is called a Gale dual configuration of ay,...,a,,. The
transition from the configuration of vectors ai,...,a, in R™ to the configuration
of vectors ¥1,...,%m in R™™ is called the (linear) Gale transform. Each of the

two configurations determines the other uniquely up to isomorphism of its ambient
space. In other words, each of the matrices A and I" determines the other uniquely
up to multiplication on the left by an invertible matrix.

Using the coordinate-free notation, we may think of ay, ..., a,, as a set of linear
functions on an n-dimensional space W. Then we have an exact sequence

0—w- LR Lo,
where A? is given by x — ((a1,x),...,{am,x)), and the map I" takes e; to v; €
L =2 R™™ ™, Similarly, in the dual exact sequence

0— L LR A w0

the map A takes e; to a; € W* = R"™. Therefore, two configurations ay,...,a,,
and v1,...,7vm are Gale dual if they are obtained as the images of the standard
basis of R™ under the maps A and I" in a pair of dual short exact sequences.

Here is an important property of Gale dual configurations.

Theorem 2.5. Letay,...,a, and~yi,...,Vm be Gale dual configurations of vectors
in R™ and R™~™, respectively, and let I = {iy,...,ix}. Then the subset {a;: i € I}
is linearly independent if and only if the subset {~;: j ¢ I} spans the whole of
R/’YL—H )

The proof uses an algebraic lemma.
Lemma 2.6. Let k be a field or Z, and assume as given a diagram

0

in which both the vertical and the horizontal lines are short exact sequences of vector
spaces over k or free Abelian groups. Then pyis is surjective (respectively, injective
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or split injective) if and only if peiy is surjective (respectively, injective or split
injective).

Proof. This is a simple diagram chase. Assume first that piio is surjective. Take
an o € T; we need to cover it by an element in U. There is a § € S such that
p2(B) = a. If 8 € i1(U), then we are done. Otherwise let v = py(5) # 0. Since
p1iz is surjective, we can choose a 6 € R such that p1ia(d) = . Let n = i2(0) # 0.
Hence, p1(n) = p1(B8) (=+) and there is a £ € U such that i1(§) = f —n. Then
p2i1(§) = p2(B — 1) = a — pa2ia(d) = a. Thus, poiy is surjective.

Now assume that pjip is injective. Suppose that paii(a) = 0 for a non-zero
a € U. Let § =i1(a) # 0. Since p2(8) = 0, there is a non-zero v € R such that
i2(y) = B. Then p1ia(y) = p1(B) = p1i1(a) = 0. This contradicts the assumption
that pii9 is injective. Thus, poip is injective.

Finally, if piis is split injective, then its dual map i5p7: V* — R* is surjective,

and then ifp5: T* — U™ is also surjective. Thus, psi; is split injective. [
Proof of Theorem 2.5. Let A be the n X m matrix with column vectors ay, ..., a,,
and let I' be the (m — n) X m matrix with columns ~,...,7%,. Denote by A
the n x k submatrix formed by the columns {a;: i € I} and denote by I} the
(m—n) x (m — k) submatrix formed by the columns {;: j ¢ I}. We also consider
the corresponding maps A;: R¥ — R™ and I%: R™—k - Rm—n,

Let i: R¥ — R™ be the inclusion of the coordinate subspace spanned by the
vectors e;, i € I, and let p: R™ — R™~* be the projection sending every such e;
to zero. Then Ay = A-i and I': = p- I'*. The vectors {a;: i € I} are linearly
independent if and only if Ay = A -4 is injective, and the vectors {v;: j ¢ I}
span R™~" if and only if FIi = p-I'! is injective. These two conditions are equivalent
by Lemma 2.6. OJ
Construction 2.7 (Gale diagram). Let P be a polytope (2.1) with b; = 1 and let
P* =conv(ai,...,a,) be the polar polytope. Let At = (At 1), be the m x (n+1)
matrix obtained by appending a column of 1s to A?. The matrix A* has full rank
n + 1 (indeed, otherwise there is an x € R™ such that (a;,x) = 1 for all ¢, and
then Ax is in P for any A > 1, so that P is unbounded). A configuration of vectors
G = (g1,...,8m) in R™ "1 which is Gale dual to Ais called a Gale diagram of P*.
A Gale diagram G = (g1, ...,8m) of P* is therefore determined by the conditions

GA'=0, rankG=m-—-n—1, and Zgi:O.
i=1

The rows of the matrix G from a basis of affine dependencies between the vectors
aj,...,an,, that is, a basis in the space of y = (y1,...,ym)" satisfying

y1a1+"'+ymam:0, y1++ym:0

Proposition 2.8. The polyhedron P = P(A,b) is bounded if and only if the matriz
I' = (k) can be chosen so that the affine plane i4 L (R™) is given by

(S R"LZ + . + =c,
iA,b(Rn) _ { y Y11Y1 TimYm . }’ (24)
’ley1+"'+7jmym:(); 2<js<m—n

where ¢ > 0 and 1, > 0 for all k.
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Furthermore, if b; = 1 in (2.1), then the wvectors g = (V2i,---sYm—n.i)’,
i=1,...,m, form a Gale diagram of the polar polytope P* = conv(ay,...,a,;).

Proof. The image i4,,(P) is the intersection of the n-plane L = i4 p(R") with RY.
It is bounded if and only if LoNRY = {0}, where Ly is the n-plane through 0 parallel
to L. Choose a hyperplane Hy through 0 such that Ly C Ho and Ho NRY = {0}.
Let H be the affine hyperplane parallel to Hy and containing L. Since L C H, we
may take the equation defining H as the first equation in the system I'y = I'b
defining L. The conditions on Hy imply that H NRZY is non-empty and bounded,
that is, ¢ > 0 and =1 > 0 for all k. By subtracting the first equation from the
other equations of the system I'y = I'b with appropriate coefficients, we now get
that the right-hand sides of the last m — n — 1 equations become zero.
To prove the last statement, we observe that in our case

I = (711 cee 'YIm) .
g1 e m
The conditions I"'A* = 0 and rank I" = m — n imply that GA! = 0 and rank G =

m —n— 1. Finally, comparing (2.3) with (2.4), we see that I'b = (). Since b; = 1,
> g =0. Thus, G = (g1,...,8n) is a Gale diagram of P*. OJ

Corollary 2.9. A polyhedron P = P(A,b) is bounded if and only if the vectors
aj,...,a, satisfy ara; + - - + apmay, = 0 for some positive numbers oy, .

Proof. If ay,...,a,, satisfy Z;nzl arar = 0 with positive oy, then we can take
Y opeq QY = Y _peq @by as the first equation defining the n-plane i4 1, (R™) in R™.
Thus, i4,p(P) is in the intersection of the hyperplane Y " | axyr = Yo, crby
with RY', which is bounded since all the ay; are positive. Therefore, P is bounded.

Conversely, if P is bounded, then it follows from Proposition 2.8 and Gale duality
that ay,...,a,, satisfy y11a; + - -+ + y1ma, = 0 with vy > 0. O

A Gale diagram of P* encodes its combinatorics (and the combinatorics of P)
completely. We give the corresponding statement in the generic case only.

Proposition 2.10. Assume that (2.1) is a generic presentation with b; = 1. Let
P* =conv(ay,...,a,) be the polar simplicial polytope and let G = (g1,...,8m) be
its Gale diagram. Then the following conditions are equivalent:

(a) F;,N---NF;, #@ in P=P(A,1);
(b) conv(ay,,...,a;,) is a face of P*;
(c) 0 econv(g;:j & {i1,...,ik}).

Proof. The equivalence (a) <> (b) follows from Theorems 2.1 and 2.2.

(b)=(c). Let conv(a;,,...,a;, ) be a face of P*. We first observe that each
of a;,,...,a;, is a vertex of this face, since otherwise the presentation (2.1) is not
generic. By the definition of a face, there exists a linear function £ such that
&(a;) =0 for j € {i1,...,ix} and &(a;) > 0 otherwise. The condition 0 € int P*
implies that £(0) > 0, and we may assume that £ has the form £(u) = (u,x) + 1
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for some x € R". Let y; = £(a;) = (a;,x) + 1, that is, y = A'x + 1. We have

Y. giyi=) gy =Gy =GCGA'x+1)=Gl=>) g;=0,
j=1

]¢{Zl,,’bk} j=1

where y; > 0 for j ¢ {i1,...,ix}. It follows that 0 € conv(g;: j & {i1,...,9k}).

(c)=(b). Let > 0e; ;18 =0, with y; > 0 and at least one y; non-zero.
This is a linear relation between the vectors g;. The space of such linear relations
has a basis formed by the columns of the matrix A® = (A 1). Hence there exist
x € R” and b € R, such that y; = (a;,x) +b. The linear function {(u) = (u,x) +b
takes zero values on the vectors a; with j € {i1,...,7;} and non-negative values on
the other vectors a;. Hence, a;,,...,a;, is a subset of the vertex set of some face.
Since P* is simplicial, a;,,...,a;, is a vertex set of a face. [J

Remark. We allow redundant inequalities in Proposition (2.10). In this case we
obtain the equivalences

Fi=2 & a;cconv(a;:j#i) < 0¢conv(gj:j#i).
A configuration of vectors G' = (g1, ...,&m) in R™™ "~ with the property
0 cconv(gj:j ¢ {ir,...,ix}) <& conv(a,...,a;,) is a face of P~

is called a combinatorial Gale diagram of P* = conv(ai,...,a,,). For example,
a configuration obtained by multiplying each vector in a Gale diagram by a positive
number is a combinatorial Gale diagram. Furthermore, the vectors of a combinato-
rial Gale diagram can be moved as long as the origin does not cross the ‘walls’, that
is, the affine hyperplanes spanned by subsets of g1, ...,8,. A combinatorial Gale
diagram of P* is a Gale diagram of a polytope which is combinatorially equivalent
to P*.

Gale diagrams provide an efficient tool for studying the combinatorics of higher-
dimensional polytopes with few vertices, because in this case a Gale diagram trans-
lates the higher-dimensional structure to a low-dimensional one. For example, Gale
diagrams are used to classify n-polytopes with up to n + 3 vertices and to find
unusual examples when the number of vertices is n + 4 (see [59], §6.5).

3. Intersections of quadrics

Here we describe the correspondence between polyhedra (2.1) and intersections
of quadrics.
3.1. From polyhedra to quadrics.

Construction 3.1 ([14]; also [16], §3). Let P = P(A, b) be a presentation (2.1) of
a polyhedron with a vertex. Recall the map i4p: R" — R™ with x — A’x+b (see
Construction 2.3). It embeds P into RY (since the vectors ai,...,a,, span R").
We define the space 24 from the commutative diagram

Zap 'z ., cm

l lu (3.1)
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where p(21,...,2m) = (J21]%, ..., |2m|?). The torus T™ acts on Z4 1, with quotient
P, and iz is a T™-equivariant embedding.

Replacing yx by |2x|? in the equations defining the affine plane i4 ,(R") (see
(2.3)), we get that 24, embeds into C™ as the set of common zeros of m —n
quadratic equations (Hermitian quadrics):

iz(Zap) = {z eC™: Z’ij|zk\2 = Z’ijbk forl1<j<m— n} (3.2)
k=1 k=1

The following property of 24 1, is an easy consequence of its construction.

Proposition 3.2. Given a point z € Zap, the jth coordinate of iz(z) € C™
vanishes if and only if z projects onto a point x € P such that x € Fj.

Theorem 3.3. The following conditions are equivalent:

(a) the presentation (2.1) determined by the data (A,b) is generic;

(b) the intersection of quadrics in (3.2) is non-empty and non-degenerate, so
that Zap is a smooth manifold of dimension m + n.

Under these conditions the embedding iz: Zap — C™ has o T™-equivariantly
trivial normal bundle, and a T™-framing is determined by a choice of the matriz I’

in (2.3).

Proof. For simplicity we identify 24 p, with its embedding iz(Z4») C C™. We cal-
culate the gradients of the m—n quadrics in (3.2) at a point z = (21, Y1, - -, Tm, Ym)
€ Zap, where z;, = zp + iyg:

20121, Y115 - - - VimTms VimYm), L <Jj<m—n. (3.3)
These gradients form the rows of the (m —n) x 2m matrix 2I"A, where
1 Y N 0 0
A= o
0 0 ... ZTm Ynm
Let I = {i1,...,ix} = {i: z; = 0} be the set of zero coordinates of z. Then the
rank of the gradient matrix 2I"A at z is equal to the rank of the (m —n) x (m — k)

matrix I'; obtained by deleting the columns with indices iy, ..., from I".

Now let (2.1) be a generic presentation. By Proposition 3.2, a point z with
2y, = -+ = z;, = 0 projects to a point in F;, N---NF;, # &. Hence the vectors
a;,,...,a;, are linearly independent. By Theorem 2.5 the rank of I'; is m — n.

Therefore, the intersection of quadrics (3.2) is non-degenerate.

On the other hand, if (2.1) is not generic, then there is a point z € %4 1, such
that the vectors {a;,,...,a;,: z;, = -+ = %, = 0} are linearly dependent. By
Theorem 2.5, the columns of the corresponding matrix I'; do not span R™™", so
its rank is less than m — n and the intersection of quadrics (3.2) is degenerate at z.

The last statement follows from the fact that 24 1 is a non-degenerate intersec-
tion of quadratic surfaces, each of which is T™-invariant. [J
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3.2. From quadrics to polyhedra. This time we start with an intersection of
m — n Hermitian quadrics in C™:

Zrs = {z =(z1,...,2m) € C™: Z’ij|2’k|2 =g, for 1 <j< m—n}. (3.4)
k=1

The coefficients of the quadrics form an (m — n) x m matrix I' = (v;%), and
we denote its column vectors by v1,...,7m. We also consider the column vector
8= (01,...,0m—n)" € R™™ of right-hand sides.

These intersections of quadrics are considered up to linear equivalence, which
corresponds to applying a non-singular linear transformation of R™~" to I" and §.
Obviously, such a linear equivalence does not change the set 27 5.

We denote by Rx (71, ...,7m) the cone spanned by the vectors 41, ...,y (that
is, the set of linear combinations of these vectors with non-negative real coefficients).

A version of the following proposition appeared in [40], and the proof below is
a modification of the argument in [10], Lemma 0.3. It allows us to determine the
non-degeneracy of an intersection of quadrics directly from the data (I, 4).

Proposition 3.4. The intersection of quadrics in (3.4) is non-empty and also non-
degenerate if and only if the following two conditions are satisfied:

(a) 0 € R (715, Ym);

(b) if 6 € Rx(Wiy,---7ip), then k = m —n.

Under these conditions 215 is a smooth submanifold of C™ of dimension m+n,
and the vectors vy1,...,Ym span R™™™.

Proof. First, assume that (a) and (b) are satisfied. Then (a) implies that 275 # @.
Let z € Z7s5. Then the rank of the matrix of gradients of the quadrics in (3.4)
at z is tk{yx: 2z # 0}. Since z € Z7 s, the vector ¢ is in the cone generated
by those v; for which 2z, # 0. By the Carathéodory Theorem, ¢ belongs to the
cone generated by some m — n of these vectors, that is, 6 € R (Viyy -y V0 )s
where 2z, # 0 for ¢ = 1,...,m — n. Moreover, the vectors vx,,...,Vk,,_, are
linearly independent (otherwise, again by the Carathéodory Theorem, we obtain
a contradiction to (b)). This implies that the m—n gradients of the quadrics in (3.4)
are linearly independent at z, and therefore 27 s is smooth and (m+n)-dimensional.

To prove the other implication we observe that if (b) fails, that is, ¢ is in the
cone generated by some m —n — 1 vectors among i, ..., Vm, then there is a point
z € 27 with at least n+1 zero coordinates. The gradients of the quadrics in (3.4)
cannot be linearly independent at such a point z. [J

The torus T™ acts on Z7 5, and the quotient 27 5/T™ is identified with the set
of non-negative solutions of the system of m — n linear equations

Z%yk = 0. (3.5)
k=1

This set may be described as a convex polyhedron P(A,b) given by (2.1), where
(b1,...,by) is any solution of (3.5) and the vectors aj,...,a,, € R" form the
transpose matrix of the matrix of a basis of solutions of the homogeneous system
S veyk = 0. We call P(A,b) the associated polyhedron of the intersection of
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quadrics 27 5. If the vectors v1,..., ¥, span R™™", then ay,...,a,, span R". In
this case the two vector configurations are Gale dual.
We summarize the results and constructions of this section as follows.

Theorem 3.5. A presentation of a polyhedron
P=PADb)={xecR": (a;,x)+b; >0 fori=1,...,m}

(with ay, ..., a,, spanning R™) defines an intersection of Hermitian quadrics

m
Zrs = {Z: (21, .y 2m) €C™: Z’ij|zk|2 =0, forj= 1,...,m—n}
k=1

(with y1, ..., vm spanning R™~™) uniquely up to a linear isomorphism of R™™",
and an intersection of quadrics 27,5 defines a presentation P(A,b) uniquely up to
an isomorphism of R™.

The systems of vectors ay,...,a, € R™ and v1,...,vm € R™™" are Gale dual,
and the vectors b € R™ and 6 € R™™™ are related by the equality § = I'b.

The intersection of quadrics 27 s is non-empty and non-degenerate if and only
if the presentation P(A,b) is generic.

Example 3.6 (m = n+ 1: one quadric). If the presentation (2.1) is generic and P
is bounded, then m > n 4+ 1. The case m = n + 1 corresponds to a simplex. The
standard simplex is given by the following n + 1 inequalities:

A" ={xeR": z; 20fori=1,...,nand —2; —---— 2, +1 > 0}.
We therefore have a; = e; (the ith standard basis vector) for ¢ = 1,...,n and
any1 = —e; — - —e,. Taking I' = (1...1), we get that

Zap = St = {7z € C" 1 |22+ -+ |2nga 2 = 1}

More generally, a presentation (2.1) with m =n+1 and a4, ...,a, spanning R"
can be taken by an isomorphism of R™ to the form

P={xeR":z;+b;20fori=1,...,nand —cizy — - — cp®y + bpst1 = 0}.
We therefore have I' = (¢1...¢, 1), and Z4 1, is given by the single equation
C1|le2 + -+ Cn|zn|2 + ‘Zn+1|2 = clbl +-+ Cnbn + bn+1-

If the presentation is generic and bounded, then by Theorem 3.3 2, p, is non-empty,
non-degenerate, and bounded. This implies that all the ¢; and the right-hand side
above are positive, and 24 1, is an ellipsoid.

4. Moment-angle manifolds from polytopes

Here we consider the case when the polyhedron P defined by (2.1) (or equiva-
lently, the intersection of quadrics (3.4)) is bounded. We also assume that (2.1) is
a generic presentation, so that P is an n-dimensional simple polytope and 24 =
%75 is an (m + n)-dimensional closed smooth manifold.
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We start with the construction of an identification space which goes back to
Vinberg’s paper [58] on Coxeter groups and was presented in the form described
below in the paper [21] of Davis and Januszkiewicz. It was the first construction of
what later became known as a moment-angle manifold.

Construction 4.1. Let [m] = {1,..., m} be the standard m-element set. For each
I C [m] we consider the coordinate subtorus

T = {(t1,...,tm) € T™: t; =1for j ¢ I} C T™

In particular, T9 is the trivial subgroup {1} C T™.

We define the map Ry x T — C by (y,t) — yt. Taking the product, we obtain
a map RY x T™ — C™. The pre-image of a point z € C™ under this map is
y x T¥®) where y; = |z;] for 1 <4 < m and

w(z) = {i: z =0} C [m]
is the set of zero coordinates of z. Therefore, C" can be identified with the quotient
RY x T™/~, where (y,t1) ~ (y, t2) if t7 Mty € O, (4.1)
Given x € P, we let
Iy ={iem]: x € F}
(the set of facets containing x).

Proposition 4.2. 24 1, is T™-equivariantly homeomorphic to the quotient
P xT™/~, where (x,t1) ~ (X,t2) for t7 'ty € T'=.

Proof. Using (3.1), we identify 24 p with i4 p(P) x T™/~, where ~ is the equiv-
alence relation in (4.1). A point x € P is mapped by isp to the point y € RY
with Iy = w(y). O

An important consequence of this construction is that the topological type
of 4 depends only on the combinatorics of P.

Proposition 4.3. Assume as given two generic presentations
P={xeR": (A'x+b); >0} and P ={xeR": (A'x+Db); >0}

such that P and P’ are combinatorially equivalent simple polytopes.

(a) If both presentations are irredundant, then the corresponding manifolds %4 p
and Zp v are T -equivariantly homeomorphic.

(b) If the second presentation is obtained from the first by adding k redundant
inequalities, then sy is homeomorphic to the product of Zap and a k-torus T*.

Proof. (a) By Proposition 4.2, Z4, = P xT"™/~ and Z4 1y = P’ xT™/~. If both
presentations are irredundant, then any F; is a facet of P, and the equivalence rela-
tion ~ depends only on the face structure of P. Therefore, any homeomorphism
P — P’ preserving the face structure extends to a T™-equivariant homeomor-
phism P x T™/~ — P/ x T™ /~.
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(b) Suppose that the first presentation has m inequalities, and the second has m/’
inequalities, so that m’ —m = k. Let J C [m/] be the subset corresponding to the
k added redundant inequalities; we may assume that J = {m + 1,...,m'}. Since
F; = @ for any j € J, we have IxNJ = @ for any x € P’. Therefore, the equivalence
relation ~ does not affect the factor T C ’]I‘m', and we have

Ty EP XT™ o2 (P xT"/~) x T? 2 Zpp x T O

Remark. A T™-homeomorphism in Proposition 4.3 (a) can be replaced by a T™-
diffeomorphism (with respect to the smooth structures in Theorem 3.3), but the
proof is more technical. It follows from the fact that two simple polytopes are com-
binatorially equivalent if and only if they are diffeomorphic as ‘smooth manifolds
with corners’. For an alternative argument, see [10], Corollary 4.7.

The statement (a) remains valid without assuming that the presentation is
generic, although 24 1, is not a manifold in this case.

Definition 4.4. The (m + n)-dimensional manifold %4 1, defined by any irredun-
dant presentation (2.1) of an n-dimensional simple polytope P with m facets
is called the moment-angle manifold corresponding to P, and denoted by Zp.
Moment-angle manifolds appearing in this way are said to be polytopal; more gen-
eral moment-angle manifolds will be considered later.

Proposition 4.5. The moment-angle manifold Zp is T™-equivariantly diffeomor-
phic to a non-degenerate intersection of quadrics of the following form:

m
zcC™: Z|zk|2:1,
k=1

m
> ekla* =0
k=1

where (g1,...,8m) C R™™ "L is a combinatorial Gale diagram of P*.

Proof. Tt follows from Proposition 2.8 that Zp is given by

{ z€C™: |zl + -+ ymlznl? = ¢, }
g1‘21|2++gm‘zm|220 7

where the numbers 715 and ¢ are positive. Divide the first equation by ¢ and then
replace each zp by +/c/v1r zx. As a result, each g is multiplied by a positive
number, so that (g1,...,8m) is still a combinatorial Gale diagram for P*. OJ

By adapting Proposition 3.4 to the special case of quadrics (4.2) we obtain the
following result.

Proposition 4.6. An intersection of quadrics (4.2) is non-empty and also non-
degenerate if and only if the following two conditions are satisfied:

(a) 0 € conv(gy,...,8m);
(b) if 0 € conv(gi,,..-,8i.), then k = m —n.
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Following [10], we call a non-degenerate intersection (4.2) of m — n — 1
homogeneous quadrics with a unit sphere in C™ a link. We therefore get that
any moment-angle manifold is diffeomorphic to a link, and any link is a product of
a moment-angle manifold and a torus.

As we have seen in Example 3.6, the moment-angle manifold corresponding to
an n-simplex is a sphere S?"*1. This is also the link of an empty system of homo-
geneous quadrics, corresponding to the case m =n + 1.

Example 4.7 (m = n + 2: two quadrics). A polytope P defined by m = n 4 2
inequalities either is combinatorially equivalent to a product of two simplices (when
there are no redundant inequalities), or is a simplex (when one inequality is redun-
dant). In the case m = n + 2 the link (4.2) has the form

z€C™: |2+ + |zl =1,
gl|21‘2++gm|zm|220 ’

where g € R. The condition (b) in Proposition 4.6 implies that all the g; are
non-zero; assume that there are p positive and ¢ = m — p negative numbers among
them. Then the condition (a) implies that p > 0 and ¢ > 0. Therefore, the link is
the intersection of the cone over a product of two ellipsoids of dimensions 2p — 1
and 2¢ — 1 (given by the second quadric) with a unit sphere of dimension 2m — 1
(given by the first quadric). Such a link is diffeomorphic to $??~1 x $24~!. The case
p =1 or g =1 corresponds to one redundant inequality. In the irredundant case
(P is a product AP~ x A1 p g > 1) we get that Zp = S?~1 x §2a-1,

5. Hamiltonian toric manifolds and moment maps

Particular examples of polytopal moment-angle manifolds 2p appear as level
sets for the moment maps used in the construction of Hamiltonian toric manifolds
via symplectic reduction. In this case the left-hand sides of the equations in (3.2)
are quadratic Hamiltonians of a torus action on C™.

5.1. Symplectic reduction. We briefly review the background material in sym-
plectic geometry, referring the reader to the monographs by Audin [3] and Guillemin
[33] for further details.

A symplectic manifold is a pair (W,w) consisting of a smooth manifold W and
a closed differential 2-form w which is non-degenerate at each point. The dimension
of a symplectic manifold W is necessarily even.

Assume now that a torus 71" acts on W while preserving the symplectic form w.
We denote the Lie algebra of the torus 7" by t (since 7" is commutative, its Lie algebra
is trivial, but the construction can be generalized to non-commutative Lie groups).
Given an element v € t, we denote by X, the corresponding T-invariant vector
field on W. The torus action is said to be Hamiltonian if the 1-form w(Xy, ) is
exact for any v € t. In other words, an action is Hamiltonian if for any v € t there
exists a function Hy, on W (called a Hamiltonian) satisfying the condition

w(Xy,Y) = dH,(Y)

for any vector field Y on W. The function H, is defined up to addition of a constant.
Choose a basis {e;} in t and the corresponding Hamiltonians {He;}. Then the
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moment map
e W*)t*7 (l’vei)'—)Hei(z)

(where € W), is defined. Observe that adding constants to the Hamiltonians
He, results in shifting the image of u by a vector in t*. According to a theorem of
Atiyah and Guillemin—Sternberg, the image p(W) of the moment map is convex,
and if W is compact, then (1) is a convex polytope in t*.

Example 5.1. The most basic example is W = C™ with the symplectic form

m m
w=1iY dzyp AdZg =2 dry Adys, 2=k + iy
k=1 k=1

The coordinatewise action of T™ on C™ is Hamiltonian, and the moment map
pw: C™ — R™ is given by u(21,...,2m) = (|21%, -, |2m|?). The image of p is the
positive orthant RY.

Construction 5.2 (symplectic reduction). Assume as given a Hamiltonian action
of a torus T on a symplectic manifold W. Assume further that the moment map
w: W — t* is proper, that is, u=1(V) is compact for any compact subset V C t*
(this is always the case if W itself is compact). Let u € t* be a regular value of the
moment map, that is, the differential Z,W — t* is surjective for all x € g~ (u).
Then the level set g~ !(u) is a smooth compact T-invariant submanifold of W.
Furthermore, the T-action on p~1(u) is almost free, that is, all the stabilizers are
finite subgroups.

Assume now that the T-action on ! (u) is free. The restriction of the symplectic
form w to p~!(u) may be degenerate. However, the quotient manifold p=*(u)/T is
endowed with a unique symplectic form w’ such that

p*w =1i*w,

where i: p~!(u) — W is the inclusion and p: p=!(u) — p~1(u)/T the projection.
We therefore obtain a new symplectic manifold (p~!(u)/T,w’) which is called
the symplectic reduction, or the symplectic quotient of (W,w) by T.
The construction of a symplectic reduction works also under milder assumptions
on the action (see [25] and additional references there), but the generality described
here will be enough for our purposes.

5.2. The toric case. We want to study symplectic quotients of C™ by torus
subgroups 7" C T™. Such a subgroup of dimension m — n has the form

Tr = {(627ri(71,g0)7 s eZ‘ﬂ(’YquO)) c ’]1‘7”}’ (51)

where ¢ € R™™" is an (m—n)-dimensional parameter, and I = (y1,...,7vm) is a set
of m vectors in R™~"™. In order for T to be an (m — n)-torus, the configuration of
vectors 71, . . ., Vm must be rational, that is, the set L = Z{v1,...,7vm) of all their
integral linear combinations must be an (m — m)-dimensional discrete subgroup
(lattice) in R™~™. Let

L*={ " eR™"™: (A\",\) € Zfor all A\ € L}
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be the dual lattice. We shall occasionally represent the elements of T by vectors
© € R™™" g0 that T is identified with the quotient R™~™/L*.

The restricted action of Tp C T™ on C™ is obviously Hamiltonian, and the
corresponding moment map is the composition

pr: Cm AL R™ (5.2)

where R™ — t}. is the map of the dual Lie algebras corresponding to the embedding
Tr — T™. The map R™ — t} takes the ith basis vector e; € R™ to v; € tf.
By choosing a basis in L C t} we can write the map R™ — t}. as an integer
matrix I' = (v,%). The moment map (5.2) is then given by

m m
Gz = (el 3 el

k=1 k=1

Its level set u;l(é) corresponding to a value 6 = (d1,...,0m—n)" € t} is exactly the
intersection of quadrics Z7 5 given by the system (3.4).

To apply the symplectic reduction we need to see when the moment map ur
is proper, find its regular values 9, and finally identify when the action of Tr on
upt(8) = 275 is free. In Theorem 5.3 below, all these conditions are expressed
in terms of the polyhedron P associated with 275 as described in §3. We need
a couple more definitions before we state this theorem.

It follows from Gale duality that 71, ..., 7, span a lattice L in R™~"™ if and only
if the dual configuration ay,...,a,, spans a lattice N = Z(aj,...,a,,) in R". We
say that a presentation (2.1) is rational if Z{ay,...,a,,) is a lattice.

Recall that for each x € P we defined

Iy={ie[m]: (a;,x)+b; =0} ={i € [m]: x € F}}

(the set of facets containing x). A polyhedron P is said to be Delzant if it has
a rational presentation (2.1) such that for any x € P the vectors {a;: i € Ix}
constitute part of a basis of N = Z(ay,...,a,,). Equivalently, P is Delzant if it is
simple and for any vertex x € P the vectors a; normal to the n facets meeting at x
form a basis of the lattice N. The term comes from the classification of Hamiltonian
toric manifolds due to Delzant [22], which we shall briefly review later.

Now let & € tr be a value of the moment map pur: C™ — t5, and let ' () =
%15 be the corresponding level set, which is an intersection of quadrics (3.4). We
associate with 275 a presentation (2.1) as described in § 3 (see Theorem 3.5).

Theorem 5.3. Let Tr C T™ be a torus subgroup (5.1) determined by a rational
configuration of vectors i, ..., Vm-

(a) The moment map pur: C™ — t& is proper if and only if its level set " (0)
is bounded for some (and then for any) value ¢ € t}.. Equivalently, the map ur is
proper if and only if the Gale dual configuration ay,...,a,, satisfies aza; + -+ +
amay, = 0 for some positive numbers oy, .

(b) 6 € t is a regular value of ur if and only if the intersection of quadrics
u;l(é) = 275 is non-empty and non-degenerate. Equivalently, 0 is a regular value
if and only if the associated presentation of P = P(A,b) is generic.
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(¢) The action of Tr on ,u;l(é) = 21 is free if and only if the associated
polyhedron P is Delzant.

Proof. (a) If pr is proper, then ,u;l(é) C t}- is compact, so it is bounded.

Assume now that u ' (§) = 275 is bounded for some §. Then the corresponding
polyhedron P is also bounded. By Corollary 2.9, this is equivalent to the vanishing
of some positive linear combination of ay,...,a,,. This condition is independent
of &, and we conclude that p'(6) is bounded for any §. Let X C t} be a com-
pact subset. Since ,u}l(X ) is closed, it is compact whenever it is bounded. By
Proposition 2.8 we may assume that, for any § € X, the first quadric defining
u;l(é) = 275 is given by y11]2112 + - + Yim|2m|? = 81 with y1, > 0 for all k. Let
¢ = maxsex 01. Then u;l(X) is contained in the bounded set

{zeC™: 711\Z1|2 +---+ ’Y1m\zm|2 < ¢}

and is therefore bounded. Hence, ,u;l(X ) is compact, and pr is proper.

(b) The first statement is the definition of a regular value. The equivalent state-
ment was already proved in Theorem 3.3.

(c) We first need to identify the stabilizers of the Tr-action on u'(d). Although
the fact that these stabilizers are finite for a regular value § follows from the general
construction of a symplectic reduction, we can prove this directly.

Given a point z = (21,..., 2m) € Z1s, we define the sublattice
L, =7Z{vi:2;£0) CL=7Z{Yy1,..,Ym)-

Lemma 5.4. The stabilizer subgroup of a point z € 2 5 under the action of Tr is
given by Ly /L*. Furthermore, if %75 is non-degenerate, then all these stabilizers
are finite, that is, the action of Tr on 275 is almost free.

Proof. An element (e2™* (@) 27 vm:@)) € T fixes a point z € 27 if and only
if e27:%) = 1 whenever 2z, # 0. In other words, ¢ € T fixes z if and only if
(Vk, ) € Z whenever z;, # 0. The latter means that ¢ € L. Since ¢ € L* maps to
1 € T, the stabilizer of z is L} /L*.

Assume now that 275 is non-degenerate. In order to see that L}/L* is finite
we need to check that the sublattice L, = Z{v;: z; # 0) C L has full rank m — n.
Indeed, rk{v;: z; # 0} is the rank of the matrix of gradients of the quadrics in (3.4)
at z. Since ZT 5 is non-degenerate, this rank is m — n, as needed. O

Now we can finish the proof of Theorem 5.3 (c). Assume that P is a Delzant
polyhedron. By Lemma 5.4, the Tr-action on 275 is free if and only if L, = L
for any z € Z75. Let i: Z* — Z™ be the inclusion of the coordinate sublattice
spanned by those e; for which z; = 0, and let p: Z™ — Z™ % be the projection
sending every such e; to zero. We also have lattice maps

r':L* —=2z"m 1w ((y,1),...,(ym,1)) and A:Z™ — N, ey ay.
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Consider the diagram

0 zk —* s gm P gm—k (5.3)

in which the vertical and horizontal sequences are exact. Then the Delzant condition
is equivalent to the composition A -4 being split injective. The condition L, = L is
equivalent to the composition I" - p* being surjective, or p - I'* being split injective.
These two conditions are equivalent by Lemma 2.6. [J

Corollary 5.5. Let P = P(A,b) be a Delzant polytope, I' = (y1,...,vm) the Gale
dual configuration, and Zp the corresponding moment-angle manifold. Then

(a) d = I'b is a regular value of the moment map pr: C™ — t§. for the Hamil-
tonian action of Tp C T™ on C™;

(b) Zp is the regular level set uy' (I'b);

(c) the action of Tr on Zp is free.

We therefore may consider the symplectic quotient of C™ by Tp. It is a compact
2n-dimensional symplectic manifold, which we denote Vp = 25 /Tr. This manifold
has a ‘residual’ Hamiltonian action of the quotient n-torus T™/Tr. It follows from
the vertical exact sequence in (5.3) that T /T can be identified canonically with
N ®zS = R"/N, and we shall denote this torus by T. We therefore obtain an
exact sequence of tori

1—Tp —Tm 224 7y 1, (5.4)

where exp A: T™ — Ty is the map of tori corresponding to the map of lattices
A:7Z™ — N.

The symplectic 2n-manifold Vp = %p/Tr with the Hamiltonian action of the
n-torus Ty = T™ /T is called the Hamiltonian toric manifold corresponding to
a Delzant polytope P.

We denote by py: Vp — t, the moment map for the T-action on Vp, where
ty = N is the Lie algebra of T. The dual Lie algebra t}; is naturally embedded
as a subspace in R™ (the dual Lie algebra of T™), with the inclusion given by
Al 2 R™ — R™.

Proposition 5.6. The image of the moment map py : Vp — t is the polytope P,
up to a shift by a vector in ty .
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Proof. Let w be the standard symplectic form on C™ and let p: C™ — R™ be the
moment map for the standard action of T™ (see Example 5.1). Let p: Zp — Vp be
the quotient projection by the action of Ty, and let i: Zp — C™ be the inclusion,
so that the symplectic form w’ on Vp satisfies p*w’ = i*w. Let He,: C™ — R
be the Hamiltonian of the T™-action on C™ corresponding to the ith basis vector
e; (explicitly, He,(z) = |2]?), and let Ha,,: Vp — R be the Hamiltonian of the
T'nv-action on Vp corresponding to a; € ty. Denote by Xe, the vector field on Zp
generated by e;, and denote by Ya, the vector field on Vp generated by a;. Observe
that p.Xe, = Ya,. For any vector field Z on Zp we have

dHe,(Z) =i*w(Xe,, Z) = p*w' (Xe,, Z)
= W' (Ya,,peZ) = dHa, (pZ) = d(p* Ha,)(Z),

hence He, = p*Ha, or He,(z) = Ha, (p (2z)) up to a constant. By the definition of the
moment map this implies that py (Vp) C ty C R™ is identified with u(Zp) C R™
up to a shift by a vector in R™. The inclusion tj, C R™ is the map A’, and
w(Z2p) = iap(P) = A'(P) + b by the definition of 2p (see (3.1)). We therefore
get that there exists a vector ¢ € R such that

A'(uy (Vp)) + e = AY(P) + b,

that is, A*(uy (Vp)) and A*(P) differ by b —c € A*(ty). Since A’ is monomorphic,
the result follows. OJ

We have described how to construct a Hamiltonian toric manifold from a Delzant
polytope. A theorem of Delzant [22] says that any 2n-dimensional compact con-
nected symplectic manifold W with an effective Hamiltonian action of an n-torus 7’
is equivariantly symplectomorphic to a Hamiltonian toric manifold Vp, where P is
the image of the moment map p: W — t* (whence the name ‘Delzant polytope’).

Example 5.7. Consider the case m —n = 1, that is, T is 1-dimensional and
v € R. By Theorem 5.3 (a) the moment map pur is proper whenever each of its
level sets
prt(0) ={z € C™: il + -+ ymlom|* = 8}

is bounded. By Theorem 5.3 (b), § is a regular value whenever the quadratic hyper-
surface 1|21 |2+ - *+Ym|2m|* = § is non-empty and non-degenerate. These two con-
ditions together imply that the hypersurface is an ellipsoid, and the associated poly-
hedron is an n-simplex (see Example 3.6). By Lemma 5.4 the Tr-action on ' (8)
is free if and only if L, = L for any z € ,u;l(é). This means that each ~; generates
the same lattice as the whole set 71, ..., vm, which implies that yv; = --- = 7,,,. The
Gale dual configuration satisfies a; 4+ - -+ + a,, = 0. Then T is the diagonal circle
in T™, the hypersurface ,u;l(é) = %p is a sphere, and the associated polytope P
is a standard simplex up to a shift and a multiplication by a positive factor §. The
Hamiltonian toric manifold Vp = %p /Ty is the complex projective space CP™.

6. Fans and toric varieties

A toric variety is a normal algebraic variety on which an algebraic torus (C*)™
acts with a dense (Zariski open) orbit. Toric varieties are described by combinatorial-
geometric objects, rational fans.
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A toric variety can be defined from a rational fan by using an algebraic version
of symplectic reduction, also known as the ‘Cox construction’. Different versions of
this construction have appeared in the work of several authors since the early 1990s.
In our exposition we mainly follow the paper [18] of Cox (and the modernized
version [19], Chap. 5); the relationships between toric varieties and moment-angle
manifolds will be explored further in the next sections.

6.1. Cones and fans. A set of vectors ay,...,a; € R™ defines a convez polyhedral
cone or simply cone

o=Rx(ai,...,an) ={mar + -+ prag: p; € R}

Here ay,...ay are called generating vectors (or generators) of o. A minimal set of
generators of a cone is defined up to multiplication of vectors by positive constants.
A cone is rational if its generators can be chosen from the integer lattice Z™ C R™. If
o is a rational cone, then its generators ay, ... ay are usually chosen to be primitive,
that is, each a; is the smallest lattice vector in the ray defined by it.

A cone is strongly convex if it does not contain a line. A cone is simplicial if it
is generated by part of a basis of R™, and is reqular if it is generated by part of
a basis of Z™.

Any cone o is an (unbounded) polyhedron, and faces of o are defined as its
intersections with supporting hyperplanes. Each face of a cone is itself a cone. If
a cone is strongly convex, then it has a unique vertex 0; otherwise there are no
vertices. A minimal generator set of a cone consists of non-zero vectors along its
edges.

A fan is a finite collection ¥ = {o1,...,05} of strongly convex cones in some
space R™ such that every face of a cone in ¥ belongs to X and the intersection of
any two cones in X is a face of each. A fan X is rational (respectively, simplicial
or reqular) if every cone in ¥ is rational (respectively, simplicial or regular). A fan
¥ ={o1,...,05} is said to be complete if o4 U---Uo, =R™.

Cones in a fan can be separated by hyperplanes.

Lemma 6.1 (separation lemma). Let o and o’ be two cones whose intersection T
is a face of each. Then there exists a common supporting hyperplane H for o and
o’ such that

T=0cNH=0¢NH.

For the proof, see, for instance, [29], § 1.2. Remarkably, this convex-geometrical
separation property translates into topological separation (Hausdorffness) of alge-
braic varieties and topological spaces constructed from fans as described below.

Given a simplicial fan ¥ with m edges generated by vectors ay, ..., a,,, we define
its underlying simplicial complex s on [m] = {1,...,m} as the collection of
subsets I C [m] such that {a;: ¢ € I'} spans a cone in X.

A simplicial fan ¥ in R”™ is therefore determined by two pieces of data:

e a simplicial complex % on [m];
e a configuration of vectors ay,...,a,, in R™ such that the subset {a;: i € I'}
is linearly independent for any simplex I € JZ .

Then for each I € % we can define the simplicial cone o; spanned by the vectors

a; with ¢ € I. The ‘bunch of cones’ {o;: I € J¢} patches into a fan ¥ whenever
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any two cones oy and oy intersect in a common face (which has to be ojny).
Equivalently, the relative interiors of the cones o are pairwise disjoint. Under this
condition, we say that the data {J¢;ay,...,a,,} define the fan 3.

The next construction assigns a complete fan to every convex polytope.

Construction 6.2 (normal fan). Let P be a polytope (2.1) with m facets F, ..., Fi,,
and normal vectors aj,...,a,,. Given a face QQ C P, we say that a vector a; is
normal to @ if Q C F;. Define the normal cone og as the cone generated by those
a; which are normal to Q. It can be given by

oo ={u€eR": (u,x') < (u,x) for all X' € Q and x € P}.

Then
Yp ={og: Q isafacein P} U {0}

is a complete fan which is called the normal fan of the polytope P. If 0 is contained
in the interior of P, then ¥p may also be described as the set of cones over the
faces of the polar polytope P*.

The normal fan ¥p is simplicial if and only if P is simple. In this case the
cones in X p are generated by those sets {a;,,...,a;, } for which the intersection
F; N---NF;, is non-empty. The underlying simplicial complex .#5;,, is the boundary
of the polar simplicial polytope P*.

The normal fan ¥ p of a polytope P contains information about the normals to
the facets (the generators a; of the edges of X p) and the combinatorial structure
of P (which sets of vectors a; span a cone in Xp is determined by which facets
intersect at a face), however, the scalars b; in (2.1) are lost. Not every complete
fan can be obtained by ‘forgetting the numbers b;” in a presentation of a polytope
by inequalities, that is, not every complete fan is a normal fan. This fails even for
regular fans in R? (see [29], § 1.5 for an example). Moreover, complete simplicial fans
and simplicial polytopes differ even as combinatorial objects: there are complete
simplicial fans ¥ whose underlying simplicial complex 5 cannot be obtained as
the boundary of some simplicial polytope (although no regular examples of this
sort are known).

6.2. Toric varieties. An algebraic torus is a commutative complex algebraic
group isomorphic to a product (C*)™ of copies of the multiplicative group C* =
C\ {0}. It contains a compact torus 7™ as a Lie (but not algebraic) subgroup.

We shall often identify an algebraic torus with the standard model (C*)™.

A toric variety is a normal complex algebraic variety V containing an algebraic
torus (C*)™ as a Zariski open subset in such a way that the natural action of (C*)"
on itself extends to an action on V.

It follows that (C*)™ acts on V' with a dense orbit.

The algebraic geometry of toric varieties translates completely into the language
of combinatorial and convex geometry. Namely, there is a bijective correspondence
between rational fans in an n-dimensional space and complex n-dimensional toric
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varieties. Under this correspondence,

cones «— affine varieties,
complete fans «— compact (complete) varieties,
normal fans of polytopes «— projective varieties,
regular fans «— non-singular varieties,

simplicial fans «— orbifolds.

The details of this classical correspondence can be found in any standard source on
toric geometry, for instance, [20], [29], or [19]. Along with the classical construction,
there is an alternative way to define a toric variety: as the quotient of an open
subset in C™ (the complement of a coordinate subspace arrangement) by an action
of a commutative algebraic group (a product of an algebraic torus and a finite

group).

6.3. Quotients in algebraic geometry. Taking quotients of algebraic varieties
by algebraic group actions is tricky for both topological and algebraic reasons. First,
since algebraic groups are non-compact (as algebraic tori), their orbits may be not
closed, and the quotients may be non-Hausdorff. Second, even if the quotient is
Hausdorff as a topological space, it may fail to be an algebraic variety. This may
be remedied to some extent by the notion of the categorical quotient.

Let X be an algebraic variety with an action of an affine algebraic group G. An
algebraic variety Y is said to be a categorical quotient of X by the action of G if
there exists a morphism 7: X — Y which is constant on G-orbits of X and has
the following universal property: for any morphism ¢: X — Z which is constant
on G-orbits, there is a unique morphism @: Y — Z such that g o m = . This is
described by the diagram

The categorical quotient Y is unique up to isomorphism, and we shall denote it by
X//G (although sometimes this notation is reserved for categorical quotients with
additional nice properties).

Assume that X = Spec A is an affine variety, where A = C[X] is the algebra
of regular functions on X and G is an algebraic torus (in fact, this construction
works for any reductive affine algebraic group). Then the subalgebra C[X]“ of
G-invariant functions (that is, functions f satisfying f(gx) = f(x) for any g € G
and x € X) is finitely generated, and the corresponding affine variety Spec C[X]%
is the categorical quotient X/G. The quotient morphism 7: X — X /G is dual
to the inclusion of algebras C[X]% — C[X]. The morphism 7 is surjective and
induces a one-to-one correspondence between points in X /G and closed G-orbits
in X (that is, 7~1(x) contains a unique closed G-orbit for any x € X//G; see [19],
Proposition 5.0.7).

Therefore, if all G-orbits of an affine variety X are closed, then the categorical
quotient X /G is identified as a topological space with the ordinary ‘topological’
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quotient X/G. In algebraic geometry quotients of this type are said to be geometric
and also denoted by X/G.

Example 6.3. Let C* act on C = Spec(C|z]) by scalar multiplication. There are
two orbits: the closed orbit 0 and the open orbit C*. The topological quotient C/C*
consists of two points, one of which is not closed, so the space is not Hausdorff.

On the other hand, the categorical quotient C/C* = Spec((C[z]CX) is a single
point, since any C*-invariant polynomial is constant (and there is only one closed
orbit).

Similarly, if C* acts on C™ = Spec(Clz1,...,2,]) diagonally, then an invariant
polynomial satisfies the condition f(Az1,...,Az,) = f(z1,...,2,) for all A € C*.
Such a polynomial must be constant, so C*/C* is again a point.

In good cases categorical quotients of more general (non-affine) varieties X may
be constructed by ‘gluing from pieces’ as follows. Assume that G acts on X and
m: X — Y is a morphism of varieties that is constant on G-orbits. If Y has an
open affine cover Y = |J,, V, such that 77*(V,,) is affine and V,, is the categorical
quotient (that is, 7|,-1(y,): 7 (Va) — Vg is the morphism dual to the inclusion of
algebras C[r~1(V,)]¢ — C[r~1(V,,)]) for all a, then Y is the categorical quotient
X/G.

Example 6.4. Let C* act on C?\ {0} diagonally, where C? = Spec(C|[zo, 21]). We
have an open affine cover C? \ {0} = Uy U Uy, where

Up = C%\ {20 = 0} = C* x C = Spec(C[zE", z1]),
U =C\{z1=0}=CxC* = Spec(((:[zo,zfl}),
UpNUy = C?\ {2021 = 0} = C* x C* = Spec(C[zZ1, zF1]).
The algebras of C*-invariant functions are
Clzg, 21" =Clar/z],  Clzo, 5% = Clzo /2],
Cleg, 2% = Cl(z1/20)*"].

It follows that the varieties V; = U;/C* = C glue together along Vo, N Vi =
(Uy NUp)JJC* = C* in the standard way to produce the projective line CP?!.
We have that all C*-orbits are closed in C? \ {0}, hence CP* = (C?\ {0})/C* is
the geometric quotient.

Similarly, CP™ = (C"*!\ {0})/C* is the geometric quotient for the diagonal
action of C*.

Example 6.5. Now we let C* act on C?\ {0} by A (20,21) = (A20, A"121). Using
the same affine cover of C2\ {0} as in the previous example, we obtain the following
algebras of C*-invariant functions:

Cleft, 21]% =Clzoz1], Clzo, 2 ]S =Clzozm], Cled, 2" = Cl(2021)F).

This time gluing together the varieties V; = U;JC* = C along VpNV; =
(UpNUp)JJC* = C* gives the space obtained from two copies of C by identifying
all non-zero points. This space is not Hausdorff (the two zeros do not have disjoint
neighbourhoods in the usual topology), and therefore it cannot be a categorical
quotient, because algebraic varieties are Hausdorff spaces in the usual topology.
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A toric variety Vs will be described as the categorical (or in good cases,
geometric) quotient of the ‘total space’ U(X) by an action of a commutative alge-
braic group G. We now proceed to describe G and U ().

6.4. Quotient construction of toric varieties. Following the algebraic tradi-
tion, we use the coordinate-free notation here. We fix a lattice N of rank n, and
denote by Ng its ambient n-dimensional real vector space N ®z R = R™. We also
define the algebraic torus Cyy = N ®z C* = (C*)™.

Let ¥ be a rational fan in Ng with m edges generated by primitive vectors
ai,...,a,, in N. We shall assume that the linear span of ay,...,a,, is the whole
of N]R.

We consider the map of lattices A: Z™ — N sending the ith basis vector of Z™
to a; € N. The corresponding map of algebraic tori

A®z C*: (C*)™ = C%

is surjective. We shall denote this map by exp A.
Define the group G = Gy as the kernel of the map exp A. We therefore have an
exact sequence of Abelian algebraic groups

15 G— ()™ 224, ¢x 1. (6.1)

Explicitly, G is given by
m
G = {(zl, ey Zm) € (C)™: I_Izéa”’ll> =1forallue N*}. (6.2)
i=1

The group G is isomorphic to the product of (C*)™™™ and a finite Abelian group.
If ¥ is a regular fan with at least one n-dimensional cone, then G = (C*)™~™.

Given a cone ¢ € X, we set g(o) = {i1,...,ig} C [m] if o is spanned by
a;, ...,a;,. We define the simplicial complex .#5; generated by all the subsets
g(o) C [m]:

Hs ={I:1C g(o) for some o € ¥}.

If ¥ is a simplicial fan, then each I C g(o) is g(7) for some 7 € ¥, and we obtain
the ‘underlying simplicial complex’ of ¥ defined in the beginning of this section.
If ¥ is the normal fan of a non-simple polytope P (that is, the fan over the faces
of the polar polytope P*), then %5 is obtained by replacing each face of OP* by
a simplex with the same set of vertices.

We now define the space U(X) as the complement of the arrangement of coordi-
nate subspaces in C™ determined by J#5:

uEy=c™\ |J A{zeCmiz, ==z, =0} (6.3)
{i1,. ik} EHS

We observe that the subset U(X) C C™ depends only on the combinatorial
structure of the fan ¥, while the subgroup G C (C*)™ depends on the geometric
data, namely, the primitive generators of one-dimensional cones.

Since U(X) C C™ is invariant under the coordinatewise action of (C*)™, we
obtain a G-action on U(X) by restriction.



528 T. E. Panov

Theorem 6.6 (Cox [18], Theorem 2.1). If the linear span of the one-dimensional
cones in Y is the whole space Ng, then
(a) the toric variety Vx is naturally isomorphic to the categorical quotient U(X) /G,
(b) Vs is the geometric quotient U(X)/G if and only if the fan ¥ is simplicial.

The torus acting on Vy = U(X)//G is the quotient torus Cx = (C*)™/G.

Proposition 6.7. (a) If X is a simplicial fan, then the G-action on U(X) is almost
free;
(b) If ¥ is regular, then the G-action on U(X) is free.

Proof. The stabilizer of a point z € C™ under the action of (C*)™ is
(C)®) = (... ) € (€)™ £ = 1if 2 £ 0},

where w(z) is the set of zero coordinates of z. The stabilizer of z under the G-action
is G, = (C*)*@NG. Since G is the kernel of the map exp A: (C*)™ — C5 induced
by the map of lattices Z™ — N, the subgroup G, is the kernel of the composite
map

w(z m expA
(C¥)@ ()™ 224, CX. (6.4)

This homomorphism of tori is induced by the map of lattices Z*(# — Z™ — N,
where Z“(#) — Z™ is the inclusion of a coordinate sublattice.

Now let ¥ be a simplicial fan and z € U(X). Then w(z) = g(o) for some
cone o € X. Therefore, the set of primitive generators {a;: ¢ € w(z)} is linearly
independent. Hence, the map Z+“(® — Z™ — N taking e; to a; is a monomorphism,
which implies that the kernel of (6.4) is a finite group.

If the fan ¥ is regular, then {a;: i € w(z)} is part of a basis of N. In this
case (6.4) is a monomorphism and G, = {1}. O

The relationship between the algebraic quotient construction of Vs and the sym-
plectic reduction construction of Vp (described in the previous section) is as follows.
Let P be a Delzant polytope given by (2.1). Then the Delzant condition means
exactly that the normal fan ¥p is regular. The tori in the exact sequence (5.4)
are maximal compact subgroups of the algebraic tori in (6.1). Also, it follows from
Proposition 3.2 that the level set ' (I'b) (the moment-angle manifold 2%) is
contained in U(Xp).

Theorem 6.8. Let P be a Delzant polytope with the normal fan Xp. Let Vp be
the corresponding Hamiltonian toric manifold, and let Vs, be the corresponding
non-singular projective toric variety. The inclusion Zp C U(Xp) induces a diffeo-
morphism

Ve = Zp/Tr — U(Sp)/G = Vi,.

Therefore, any non-singular projective toric variety can be obtained as the symplec-
tic quotient of C™ by an action of an (m — n)-torus.

A proof can be found in [3], Proposition V1.3.1.1 or in [33], Appendix 2; we shall
also give a proof of a more general statement in § 10.
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Remark. Projective embeddings of Vx,, correspond to lattice Delzant polytopes P,
that is, Delzant polytopes with vertices in the lattice N. Any such embedding
defines a symplectic structure on Vy, by inducing the symplectic form from the
projective space. It can be shown ([33], Appendix 2) that the diffeomorphism
in Theorem 6.8 above preserves the cohomology class of the symplectic form, or
equivalently, the two symplectic structures are Tn-equivariantly symplectomorphic.

Example 6.9. Let V, be the affine toric variety corresponding to an n-dimensional
simplicial cone 0. We may write V, = Vy, where ¥ is the simplicial fan consisting
of all faces of 0. Then m =n, U(X) = C", and A: Z™ — N is the monomorphism
onto the full-rank sublattice generated by ay, ..., a,. Therefore, G is a finite group
and V, = C"/G = SpecClz1, . .., 2,]¢

In particular, if we consider the cone o generated by 2e; — e and ey in R?,
then G is Zsy, embedded as {(1,1),(—1,—1)} in (C*)2. The quotient construction
realizes the quadratic cone

V, = Spec Clz1, 2] = Spec C[23, 2129, 23] = {(u,v,w) € C3: v? = uw}
as a quotient of C? by Z.

Example 6.10. Let £ be the complete fan in R? with the three maximal cones
oo =Rx(e1,e2), 01 = Rx(ez, —e; —e3), and 03 = R>(—e; — e3,€1). Then 5 is
the boundary of a triangle, so the only non-simplex is {1, 2,3}. Hence,

U(E) = C3\ {21 = 2 = 23 = 0} = C3\ {0}.

The subgroup G defined by (6.2), is the diagonal C* in (C*)3. We therefore have
Vs = U(X)/G = CP2. Since ¥ is the normal fan of the standard 2-simplex, this
agrees with the symplectic quotient Vp = Zp/Tr in Example 5.7.

Example 6.11. Consider the fan ¥ in R? with three one-dimensional cones gen-
erated by the vectors e;, ey, and —e; — e3. This fan is not complete, but its
one-dimensional cones span R?, so we may apply Theorem 6.6. The simplicial com-
plex J#5 cousists of three separate points. The space U(X) is the complement of
the three coordinate lines in C3:

UE)=C*\ ({z1 =22 =0} U {21 = 23 =0} U {22 = 23 = 0}).

The group G is the diagonal C* in (C*)3. Hence Vx = U(X)/G is a quasi-projective
variety obtained by removing three points from CP2.

7. Moment-angle complexes and polyhedral products

For any simple polytope P = P(A,b) given by (2.1), we defined the moment-
angle manifold Zp = Z4 p in the diagram (3.1), or equivalently, as the intersection
of quadrics given by (3.2). Here, using a combinatorial decomposition of P into
cubes, we represent Zp as a union of products (D?)! x (S1)™I\ of disks and circles
parametrized by simplices I in the associated simplicial complex #p = dP*. This
construction may be generalized to arbitrary simplicial complexes J#p, leading to
the notion of a moment-angle complex % . We follow [13] (and the more detailed
treatment given in [14]) in our description of moment-angle complexes.
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The basic building block in the ‘moment-angle’ decomposition of % is the
pair (D?,S') consisting of a unit disk and circle, and the whole construction can
be extended naturally to arbitrary pairs of spaces (X, A). The resulting complex
(X, A)* is now known as the ‘polyhedral product space’ over a simplicial com-
plex J'; this terminology was suggested by William Browder (cf. [4]). Many spaces
important for toric topology admit polyhedral product decompositions.

The construction of 2% and its generalization (X, A)”* is of a truly universal
nature, and has remarkable functorial properties. The most basic of these is that the
construction of 2 establishes a functor from simplicial complexes and simplicial
maps to spaces with torus actions and equivariant maps. If JZ is a triangulated
sphere, then % is a manifold, and most important geometric examples of %
arise in this way.

Another important aspect of the theory of moment-angle complexes is their
connection to coordinate subspace arrangements and their complements. These
have appeared as the ‘total spaces’ U(X) in the algebraic quotient construction of
toric varieties reviewed in the previous section. Subspace arrangements and their
complements have also played an important role in singularity theory, and, more
recently, in the theory of linkages and robotic motion planning. Arrangements of
coordinate subspaces in C™ correspond bijectively to simplicial complexes # on
the set [m], and the complement of such an arrangement is homotopy equivalent
to the corresponding moment-angle complex %, (see [13], Theorem 5.2.5 and
Theorem 7.12 below).

7.1. Cubical decompositions.

Construction 7.1 (cubical subdivision of a simple polytope). Let P be a sim-
ple n-polytope with m facets Fi,...,F,,. We shall construct a piecewise linear
embedding of P into the standard unit cube I"* C RY', thereby inducing a cubical
subdivision € (P) of P by the pre-images of faces of I"™.

Denote by . the set of barycentres of all faces of P, including the vertices and
the barycentre of the whole polytope. This will be the vertex set of € (P). Every
(n — k)-face G of P is an intersection of k facets: G = F;, N---N F;,. We map the
barycentre of G to (e1,...,&,) € I™, where ¢; = 0 if i € {i1,...,4x} and g; = 1
otherwise. The resulting map . — I"™ can be extended linearly on the simplices
of the barycentric subdivision of P to an embedding cp: P — I"™. The case n = 2,
m = 3 is shown in Fig. 7.1.

Any face of I has the form

Cicr={1,...,ym) €I™:y; =0for j e J, y; =1 for j ¢ I},

where J C I is a pair of embedded (possibly empty) subsets of [m]. We also set

CI:CGCI:{(ylau-aym) el™: y; =1 forj%]}

to simplify the notation.

The image cp(P)C I™ is the union of all faces Cjc such that (,.; F; # @. For
each such face C;jc 1, the pre-image cp' (Cyc 1) is a face of the cubical complex €'(P).
The vertex set of c}_pl(C' 7c1) is the subset of . consisting of barycentres of all faces
between the faces G and H of P, where G = ;. ; Fj and H = [, Fi. Therefore,
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Figure 7.1. The embedding cp: P — 1™ forn =2, m =3

faces in € (P) correspond to pairs of embedded faces G D H of P, and we denote
them by Cg~g. In particular, maximal (n-dimensional) faces in €’ (P) correspond
to pairs G = P, H = v, where v is a vertex of P. For these maximal faces we use
the abbreviated notation C,, = Cp~,.

For every vertex v = F;, N---NF; € P with I, = {iy,...,i,} we have

cp(Cy) =Cr, ={(y1,...,ym) €I™:y; =1 for v ¢ F;}. (7.1)
We therefore obtain the following result.

Proposition 7.2. A simple polytope P with m facets admits a cubical decomposi-
tion whose mazimal faces C,, correspond to the vertices v € P. The resulting cubical
complex € (P) embeds canonically into I"™ as described by (7.1).

7.2. Moment-angle complexes. The map pu: C™ — RZ (see Example 5.1)
identifies the unit cube I"* C RY' with the quotient of the unit polydisk

D™ = {(2;17...,27”) eC™: |Z7,‘ < 1}

by the coordinatewise action of T™.
We now define the space Zp from a diagram similar to (3.1) (which was used to
define Zp = Z4 ), in which the bottom map is replaced by cp: P — I"™:

F, 'z, pm
l l” (7.2)
p £ . m
Proposition 7.3. The space QA”; is T™ -equivariantly homeomorphic to the moment-
angle manifold Zp.

Proof. As we have seen in Proposition 4.2, Zp is T"-equivariantly homeomorphic
to the identification space

P xT™/~, where (x,t1) ~ (x,t3) if t] 'ty € T'>.
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By restricting (4.1) to D™ C C™ we get that

D™ 2™ x T™/~,  where (y,t1) ~ (y,t2) for t7 'ty € T®),
As in the proof of Proposition 4.2, ,3’?1/: is identified with cp(P) x T™/~. A point
x € P ismapped by cp to the point y € I"™ with Ix = w(y) = {i € [m]: x € F;}. We

thus find that both 2% and Zp are T™-equivariantly homeomorphic to P x T™ /~.
O

We shall therefore not distinguish between the spaces 2p and 5";, and we think
of the maps iz and iz in the diagrams (3.1) and (7.2) as different embeddings of
the same manifold 25 in C™ (the first one is smooth but the second is not).

Given a vertex v = F;, N---NF; € P, we consider the restriction of the map
iz: Zp — D™ to the subset C, X T™/~ C P x T™/~ = Zp:

i7(Cy X T™/~) = ep(Cy) X T/~ = Cp, x T™ /~ = = (C1,)
={(21,...,2m) ED™: |2;]> =1 for v ¢ F}}.

Since P =, Cy, we get that

i7(2p) UM (Cr,)

Note that =1 (Cy,) is a product of |I,| = n disks and m—n circles. Since p~*(Cr)N
uw=H(Cy) = p~1(Crny) for any I,J C [m], we can rewrite the union above as

ZZ ffp U ,u 1 (73)
Iexp
where
Hp = {I:{Zl,,lk} C [m] Fi1 ﬁﬁFlk #@}

is the boundary of the polar simplicial polytope P*.

The decomposition (7.3) of Zp into a union of products of disks and circles can
now be generalized to an arbitrary simplicial complex.
Definition 7.4. Let J# be a simplicial complex on the set [m]. We always assume
that @ € . The moment-angle complex corresponding to J# is defined as

Zy = | B, (7.4)
Iex

where
Br = M_I(C’I) ={(z1,...,2m) €D™: |zj|2 =1for j ¢ I},

and the union in (7.4) is understood as a union of subsets inside the polydisk D™.
Topologically, each B; is a product of |I| disks D? and m — |I| circles S'. We
therefore may rewrite (7.4) as the following decomposition of 2 into a union of
products of disks and circles:

%y :nggw « gs) (75)

From now on we shall denote the space By by (D?,S").
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We can rephrase (7.3) by saying that the map iz ¥p — D™ identifies the
moment-angle manifold Zp with the moment-angle complex 2, corresponding
to e%/p = 6P*

A ghost vertex of # is a one-element subset {i} € [m] which is not in J# (that
is, is not a vertex). Since facets of a simple polytope P correspond to vertices of
Jp, it is natural to add a ghost vertex to J#p for each redundant inequality in
a generic presentation (2.1).

Example 7.5. 1. Let # = A™ ! be the full simplex (the simplicial complex
consisting of all subsets of [m]). Then 2, =D™.

2. Let # be a simplicial complex on [m], and let J#° be the complex on
[m + 1] obtained by adding one ghost vertex o = {m + 1} to J#. Then in the
decomposition (7.4) for 2% each By has the factor St in the last coordinate, and

fépxo :gxxsl.

In the case £ = J#p this agrees with Proposition 4.3 (b).

In particular, if 2 is the ‘empty’ simplicial complex on [m], consisting solely of
the empty simplex @, then 27 = pu~1(1,...,1) = T™ is the standard m-torus.

For an arbitrary complex % on [m], the moment-angle complex 27 contains
the m-torus T™ (corresponding to ¢ = &) and is contained in the polydisk D™
(corresponding to # = A™~1).

3. Let J# be the complex consisting of two separate points. Then

%y = (D? x SY) U (S! x D?) = 9(D? x D?) = §*

is the standard decomposition of a 3-sphere into the union of two solid tori.
4. More generally, if # = A™~1 (the boundary of a simplex), then

Fy=(D?*x---xD*x SHU(D?*x---x S'x D*)U---U(S* x --- x D* x D?)

=o((D*)™) = 5% 1

5. Let 4I:I ’ be the boundary of a 4-gon. Then we have four maximal simplices
{1,3}, {2,13}, {i)),ll}, {2,4}, and
Zw = (D* x S' x D* x SY)U (8" x D? x D* x S')
U(D?* x S* x S* x D*) U (S' x D? x S' x D?)
= ((D* x SYHU(S' x D?)) x D* x ST U ((D* x S*) U (S* x D?)) x ' x D?
= ((D* x SHU(S* x D?)) x ((D* x S U (S' x D?)) = 5% x S5,

The last example can be generalized as follows. Recall that the join of simplicial
complexes J#] and J#5 on respective sets ¥7 and %5 is the simplicial complex

Hx oy ={ICINUV: I=1Ul, I, € 4, I € X}

on the set ¥1 U %5.

Proposition 7.6. Z .0, = Zony X Zon, -
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Proof. Indeed,

L= |J (DASHPR= (] (D% 8HN x (D% 5"
Iet, Ioexs Let, I, €45
— ( U (D2,Sl)h> « < U (D2,51)I2) _ ff% % D@p%
hest I,es

Corollary 7.7. Let P and Q) be two simple polytopes. Then Zpxg = Zp x Zg.
Proof. Indeed, #pxg = Hp * Xg.

Since Zy, = Zp, the moment-angle complex corresponding to the boundary
of a simplicial polytope is a manifold. This is also true for the moment-angle
complex corresponding to any triangulated sphere (although not every triangulation
of a sphere is the boundary of a simplicial polytope; see for instance, [14], §2.3).

Theorem 7.8 ([14], Lemma 7.13). Let ¢ be a triangulation of S™~' with m
indices. Then % is a (closed) topological manifold of dimension m + n.

As we shall see in the next section, moment-angle complexes corresponding to
complete simplicial fans are smooth manifolds. In general, it is not known whether
a smooth structure exists on moment-angle manifolds corresponding to arbitrary
triangulated spheres.

The topological structure of moment-angle complexes 2 is quite complicated
in general. The cohomology ring of % was described in [13|, §4.2 (with field
coefficients) and in [6] and [28] (with integer coefficients). It is known [31] that
if 2 is the k-dimensional skeleton of the simplex A™~1 (for any k,m), then the
corresponding moment-angle complex 25 is homotopy equivalent to a wedge of
spheres. Also, it is known that if P is obtained from a simplex by successive
truncation of vertices by hyperplanes (so that the polar polytope P* is stacked),
then Zp is diffeomorphic to a connected sum of sphere products