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Abstract. A moment-angle complex ZK is a cell complex with a torus
action constructed from a finite simplicial complex K . When this con-
struction is applied to a triangulated sphere K or, in particular, to the
boundary of a simplicial polytope, the result is a manifold. Moment-angle
manifolds and complexes are central objects in toric topology, and currently
are gaining much interest in homotopy theory and complex and symplec-
tic geometry. The geometric aspects of the theory of moment-angle com-
plexes are the main theme of this survey. Constructions of non-Kähler
complex-analytic structures on moment-angle manifolds corresponding to
polytopes and complete simplicial fans are reviewed, and invariants of these
structures such as the Hodge numbers and Dolbeault cohomology rings
are described. Symplectic and Lagrangian aspects of the theory are also
of considerable interest. Moment-angle manifolds appear as level sets for
quadratic Hamiltonians of torus actions, and can be used to construct new
families of Hamiltonian-minimal Lagrangian submanifolds in a complex
space, complex projective space, or toric varieties.
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1. Introduction

A moment-angle complex ZK is a cell complex having a torus action and made
up of products of disks D2 and circles S1 which are parametrized by faces of a sim-
plicial complex K . By replacing the pair (D2, S1) by an arbitrary cellular pair
(X,A) we obtain the polyhedral product (X,A)K . Moment-angle complexes and
polyhedral products are key players in the emerging field of toric topology, which
lies on the borders between topology, algebraic and symplectic geometry, and com-
binatorics [15].

Both homotopical and geometric aspects of the theory of moment-angle com-
plexes and polyhedral products have been actively studied recently. On the homoto-
py-theoretic side of the story, the stable and unstable decomposition techniques
developed in [14], Chap. 6, [31], [4], [35], have led to an improved understanding of
the topology of moment-angle complexes and related toric spaces.

In this survey we concentrate on the geometric aspects of the theory. The con-
struction of moment-angle complexes has many interesting geometric interpreta-
tions. For example, the moment-angle complex ZK is homotopy equivalent to
the complement U(K ) of the arrangement of coordinate subspaces in C

m defined
by K . The space U(K ) plays an important role in the geometry of toric varieties
and the theory of configuration spaces.
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The moment-angle complex ZK corresponding to a triangulated sphere K is
a topological manifold. Moment-angle manifolds corresponding to simplicial poly-
topes or, more generally, complete simplicial fans, are smooth. In the polytopal case
a smooth structure arises from the realization of ZK by a non-degenerate inter-
section of Hermitian quadrics in C

m, similar to a level set of the moment map in
the construction of symplectic quotients. The relationship between polytopes and
systems of quadrics is described by the convex-geometric notion of Gale duality.

Another way to give ZK a smooth structure is to realize it as the quotient of
the complement U(K ) of a coordinate subspace arrangement by an action of the
multiplicative group R

m−n
> . This is similar to the well-known quotient construction

of toric varieties in algebraic geometry. The quotient of the non-compact manifold
U(K ) by the action of the non-compact group R

m−n
> is Hausdorff precisely when

K is the underlying complex of a simplicial fan.
Ifm−n = 2ℓ, then the action of the real group R

m−n
> on U(K ) can be turned into

a holomorphic action of a complex (but not algebraic) group isomorphic to C
ℓ. In

this way the moment-angle manifold ZK
∼= U(K )/Cℓ acquires a complex-analytic

structure. The resulting family of non-Kähler complex manifolds generalizes the
well-known series of Hopf and Calabi–Eckmann manifolds (see [10] and [54]).

Finally, the intersections of Hermitian quadrics defining polytopal moment-angle
manifolds were also used in [46] to construct Lagrangian submanifolds in C

m with
special minimality properties.

Different spaces with torus actions, or toric spaces, will feature throughout the
paper. The most basic example of a toric space is the complex m-dimensional
space C

m on which the standard torus

T
m = {t = (t1, . . . , tm) ∈ C

m : |ti| = 1 for i = 1, . . . ,m}

acts coordinatewise. That is, the action is given by

T
m × C

m → C
m,

(t1, . . . , tm) · (z1, . . . , zm) = (t1z1, . . . , tmzm).

The quotient C
m/Tm of this action is the positive orthant

R
m
> = {(y1, . . . , ym) ∈ R

m : yi > 0 for i = 1, . . . ,m},

with the quotient projection given by

µ : C
m → R

m
> ,

(z1, . . . , zm) 7→ (|z1|2, . . . , |zm|2).

We use the blackboard bold capitals in the notation I
m, T

m, D
m for the stan-

dard unit cube in R
m, the standard (unit) torus, and the unit polydisk in C

m,
respectively. We use italic Tm to denote an abstract m-torus, that is, a compact
Abelian Lie group isomorphic to a product of m circles. The underlying space of the
unit disk D is a topological 2-disk, which we denote by D2. We shall also denote
the standard unit circle by S or T occasionally, to distinguish it from an abstract
circle S1.
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2. Preliminaries: polytopes and Gale duality

Let R
n be a Euclidean space with scalar product ⟨ · , · ⟩. A convex polyhe-

dron P is an intersection of finitely many half-spaces in R
n. Bounded polyhedra

are called polytopes. Alternatively, a polytope can be defined as the convex hull
conv(v1, . . . ,vq) of a finite set of points v1, . . . ,vq ∈ R

n.
A supporting hyperplane of P is a hyperplane H which has common points with

P and for which the polyhedron is contained in one of the two closed half-spaces
determined by H. The intersection P ∩H with a supporting hyperplane is called
a face of the polyhedron. Denote by ∂P and intP = P \ ∂P the topological
boundary and interior of P , respectively. In the case dimP = n the boundary
∂P is the union of all the faces of P . Zero-dimensional faces are called vertices,
one-dimensional faces are edges, and faces of codimension one are facets.

Two polytopes are combinatorially equivalent if there is a bijection between their
faces preserving the inclusion relation. A combinatorial polytope is a class of com-
binatorially equivalent polytopes. Two polytopes are combinatorially equivalent if
there is a homeomorphism between them preserving the face structure.

The faces of a given polytope P form a partially ordered set (a poset) with respect
to inclusion. (It is called the face poset of P .) Two polytopes are combinatorially
equivalent if and only if their face posets are isomorphic.

Consider a system of m linear inequalities defining a convex polyhedron in R
n:

P = {x ∈ R
n : ⟨ai,x⟩+ bi > 0 for i = 1, . . . ,m}, (2.1)

where ai ∈ R
n and bi ∈ R. We refer to (2.1) as a presentation of the polyhe-

dron P by inequalities. These inequalities contain more information than the poly-
hedron P itself, for the following reason. It may happen that some of the inequalities
⟨ai,x⟩+ bi > 0 can be removed from the presentation without changing P ; we refer
to such inequalities as redundant. A presentation without redundant inequalities
is called irredundant. An irredundant presentation of a given polyhedron is unique
up to multiplication of the pairs (ai, bi) by positive numbers.

We shall assume (unless otherwise stated) that the polyhedron P defined by (2.1)
has a vertex, which is equivalent to the vectors a1, . . . ,am spanning the whole of R

n.
This condition is automatically satisfied for polytopes.

A presentation (2.1) is said to be generic if P is non-empty and the hyperplanes
defined by the equations ⟨ai,x⟩ + bi = 0 are in general position at any point of P
(that is, for any x ∈ P the normal vectors ai of the hyperplanes containing x are
linearly independent). If the presentation (2.1) is generic, then P is n-dimensional.
If P is a polytope, then the existence of a generic presentation implies that P is
simple, that is, exactly n facets meet at each vertex of P . A generic presentation
may contain redundant inequalities, but, for any such inequality, the intersection
of the corresponding hyperplane with P is empty (that is, the inequality is strict
at any x ∈ P ). We set

Fi = {x ∈ P : ⟨ai,x⟩+ bi = 0}.

If the presentation (2.1) is generic, then each Fi either is a facet of P or is empty.
The polar set of a polyhedron P ⊂ R

n is defined as

P ∗ = {u ∈ R
n : ⟨u,x⟩+ 1 > 0 for all x ∈ P}. (2.2)
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The set P ∗ is a convex polyhedron. (In fact, it is naturally a subset of the dual
space (Rn)∗, but we shall not make this distinction, assuming R

n to be Euclidean.)
The following properties are well known in convex geometry:

Theorem 2.1 (see [11], § 2.9 or [59], Theorem 2.11). (a) P ∗ is bounded if and only

if 0 ∈ intP .
(b) P ⊂ (P ∗)∗ , and (P ∗)∗ = P if and only if 0 ∈ P .
(c) If a polytope Q is given as a convex hull, Q = conv(a1, . . . ,am), then Q∗ is

given by inequalities (2.1) with bi = 1 for 1 6 i 6 m; in particular, Q∗ is a convex

polyhedron, but not necessarily bounded.
(d) If P is given by inequalities (2.1) with bi = 1, then P ∗ = conv(a1, . . . ,am),

and ⟨ai,x ⟩+ 1 > 0 is a redundant inequality if and only if ai ∈ conv(aj : j ̸= i).

Remark. A polyhedron P admits a presentation (2.1) with bi = 1 if and only if
0 ∈ intP . In general, (P ∗)∗ = conv(P,0).

Any combinatorial polytope P has a presentation (2.1) with bi = 1 (take the ori-
gin to the interior of P by a parallel transform, and then divide each of the inequal-
ities in (2.1) by the corresponding bi). Then P ∗ is also a polytope with 0 ∈ P ∗, and
(P ∗)∗ = P . We call the combinatorial polytope P ∗ the dual of the combinatorial
polytope P . (We shall not introduce a new notation for the dual polytope, keeping
in mind that polarity is a convex-geometric notion, while duality of polytopes is
combinatorial.)

Theorem 2.2 (see [11], § 2.10). If P and P ∗ are dual polytopes, then the face poset

of P ∗ is obtained from the face poset of P by reversing the inclusion relation.

If P is a simple polytope, then it follows from the theorem above that each face
of P ∗ is a simplex. Such a polytope is said to be simplicial.

The following construction realizes any polytope (2.1) of dimension n as the
intersection of the orthant R

m
> with an affine n-plane. It will be used in the next

section to define intersections of quadrics and moment-angle manifolds.

Construction 2.3. We form the n×m matrix A whose columns are the vectors ai
written in the standard basis of R

n. Note that A is of rank n if and only if the
polyhedron P has a vertex. Also let b = (b1, . . . , bm)t ∈ R

m be the column vector
of numbers bi. Then we can write (2.1) as

P = P (A,b) = {x ∈ R
n : (Atx + b)i > 0 for i = 1, . . . ,m},

where x = (x1, . . . , xn)
t is the column of coordinates. Consider the affine map

iA,b : R
n → R

m, iA,b(x) = Atx + b = (⟨a1,x⟩+ b1, . . . , ⟨am,x⟩+ bm)t.

If P has a vertex, then the image of R
n under iA,b is an n-dimensional affine plane

in R
m, which we can write by m− n linear equations:

iA,b(Rn) = {y ∈ R
m : y = Atx + b for some x ∈ R

n}
= {y ∈ R

m : Γy = Γb}, (2.3)

where Γ = (γjk) is an (m−n)×m matrix whose rows form a basis of linear relations
between the vectors ai. That is, Γ is of full rank and satisfies the identity ΓAt = 0.

We have iA,b(P ) = R
m
> ∩ iA,b(Rn).
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Construction 2.4 (Gale duality). Let a1, . . . ,am be a configuration of vectors
that span the whole of R

n. We form an (m− n)×m matrix Γ = (γjk) whose rows
constitute a basis in the space of linear relations between the vectors ai. The set
of columns γ1, . . . , γm of Γ is called a Gale dual configuration of a1, . . . ,am. The
transition from the configuration of vectors a1, . . . ,am in R

n to the configuration
of vectors γ1, . . . , γm in R

m−n is called the (linear) Gale transform. Each of the
two configurations determines the other uniquely up to isomorphism of its ambient
space. In other words, each of the matrices A and Γ determines the other uniquely
up to multiplication on the left by an invertible matrix.

Using the coordinate-free notation, we may think of a1, . . . ,am as a set of linear
functions on an n-dimensional space W . Then we have an exact sequence

0 −→W
At

−→ R
m Γ−→ L −→ 0,

where At is given by x 7→ (⟨a1,x⟩, . . . , ⟨am,x⟩), and the map Γ takes ei to γi ∈
L ∼= R

m−n. Similarly, in the dual exact sequence

0 −→ L∗ Γ t

−→ R
m A−→W ∗ −→ 0

the map A takes ei to ai ∈ W ∗ ∼= R
n. Therefore, two configurations a1, . . . ,am

and γ1, . . . , γm are Gale dual if they are obtained as the images of the standard
basis of R

m under the maps A and Γ in a pair of dual short exact sequences.

Here is an important property of Gale dual configurations.

Theorem 2.5. Let a1, . . . ,am and γ1, . . . , γm be Gale dual configurations of vectors

in R
n and R

m−n , respectively, and let I = {i1, . . . , ik}. Then the subset {ai : i ∈ I}
is linearly independent if and only if the subset {γj : j /∈ I} spans the whole of

R
m−n .

The proof uses an algebraic lemma.

Lemma 2.6. Let k be a field or Z, and assume as given a diagram

0
y

U
yi1

0 −−−−→ R
i2−−−−→ S

p2−−−−→ T −−−−→ 0
yp1

V
y

0

in which both the vertical and the horizontal lines are short exact sequences of vector

spaces over k or free Abelian groups. Then p1i2 is surjective (respectively, injective
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or split injective) if and only if p2i1 is surjective (respectively, injective or split

injective).

Proof. This is a simple diagram chase. Assume first that p1i2 is surjective. Take
an α ∈ T ; we need to cover it by an element in U . There is a β ∈ S such that
p2(β) = α. If β ∈ i1(U), then we are done. Otherwise let γ = p1(β) ̸= 0. Since
p1i2 is surjective, we can choose a δ ∈ R such that p1i2(δ) = γ. Let η = i2(δ) ̸= 0.
Hence, p1(η) = p1(β) (= γ) and there is a ξ ∈ U such that i1(ξ) = β − η. Then
p2i1(ξ) = p2(β − η) = α− p2i2(δ) = α. Thus, p2i1 is surjective.

Now assume that p1i2 is injective. Suppose that p2i1(α) = 0 for a non-zero
α ∈ U . Let β = i1(α) ̸= 0. Since p2(β) = 0, there is a non-zero γ ∈ R such that
i2(γ) = β. Then p1i2(γ) = p1(β) = p1i1(α) = 0. This contradicts the assumption
that p1i2 is injective. Thus, p2i1 is injective.

Finally, if p1i2 is split injective, then its dual map i∗2p
∗
1 : V ∗ → R∗ is surjective,

and then i∗1p
∗
2 : T ∗ → U∗ is also surjective. Thus, p2i1 is split injective. �

Proof of Theorem 2.5. Let A be the n×m matrix with column vectors a1, . . . ,am,
and let Γ be the (m − n) × m matrix with columns γ1, . . . , γm. Denote by AI
the n × k submatrix formed by the columns {ai : i ∈ I} and denote by ΓÎ the
(m−n)× (m− k) submatrix formed by the columns {γj : j /∈ I}. We also consider
the corresponding maps AI : R

k → R
n and ΓÎ : R

m−k → R
m−n.

Let i : R
k → R

m be the inclusion of the coordinate subspace spanned by the
vectors ei, i ∈ I, and let p : R

m → R
m−k be the projection sending every such ei

to zero. Then AI = A · i and Γ t
Î

= p · Γ t. The vectors {ai : i ∈ I} are linearly

independent if and only if AI = A · i is injective, and the vectors {γj : j /∈ I}
span R

m−n if and only if Γ t
Î

= p·Γ t is injective. These two conditions are equivalent
by Lemma 2.6. �

Construction 2.7 (Gale diagram). Let P be a polytope (2.1) with bi = 1 and let

P ∗ = conv(a1, . . . ,am) be the polar polytope. Let Ãt = (At 1), be the m× (n+ 1)

matrix obtained by appending a column of 1s to At. The matrix Ãt has full rank
n + 1 (indeed, otherwise there is an x ∈ R

n such that ⟨ai,x⟩ = 1 for all i, and
then λx is in P for any λ > 1, so that P is unbounded). A configuration of vectors

G = (g1, . . . ,gm) in R
m−n−1 which is Gale dual to Ã is called a Gale diagram of P ∗.

A Gale diagram G = (g1, . . . ,gm) of P ∗ is therefore determined by the conditions

GAt = 0, rankG = m− n− 1, and

m∑

i=1

gi = 0.

The rows of the matrix G from a basis of affine dependencies between the vectors
a1, . . . ,am, that is, a basis in the space of y = (y1, . . . , ym)t satisfying

y1a1 + · · ·+ ymam = 0, y1 + · · ·+ ym = 0.

Proposition 2.8. The polyhedron P = P (A,b) is bounded if and only if the matrix

Γ = (γjk) can be chosen so that the affine plane iA,b(Rn) is given by

iA,b(Rn) =

{
y ∈ R

m : γ11y1 + · · ·+ γ1mym = c,

γj1y1 + · · ·+ γjmym = 0, 2 6 j 6 m− n

}
, (2.4)

where c > 0 and γ1k > 0 for all k .
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Furthermore, if bi = 1 in (2.1), then the vectors gi = (γ2i, . . . , γm−n,i)
t ,

i = 1, . . . ,m, form a Gale diagram of the polar polytope P ∗ = conv(a1, . . . ,am).

Proof. The image iA,b(P ) is the intersection of the n-plane L = iA,b(Rn) with R
m
> .

It is bounded if and only if L0∩R
m
> = {0}, where L0 is the n-plane through 0 parallel

to L. Choose a hyperplane H0 through 0 such that L0 ⊂ H0 and H0 ∩ R
m
> = {0}.

Let H be the affine hyperplane parallel to H0 and containing L. Since L ⊂ H, we
may take the equation defining H as the first equation in the system Γy = Γb

defining L. The conditions on H0 imply that H ∩ R
m
> is non-empty and bounded,

that is, c > 0 and γ1k > 0 for all k. By subtracting the first equation from the
other equations of the system Γy = Γb with appropriate coefficients, we now get
that the right-hand sides of the last m− n− 1 equations become zero.

To prove the last statement, we observe that in our case

Γ =

(
γ11 . . . γ1m

g1 . . . gm

)
.

The conditions ΓAt = 0 and rankΓ = m − n imply that GAt = 0 and rankG =
m−n− 1. Finally, comparing (2.3) with (2.4), we see that Γb =

(
c
0

)
. Since bi = 1,∑m

i=1 gi = 0. Thus, G = (g1, . . . ,gm) is a Gale diagram of P ∗. �

Corollary 2.9. A polyhedron P = P (A,b) is bounded if and only if the vectors

a1, . . . ,am satisfy α1a1 + · · ·+ αmam = 0 for some positive numbers αk .

Proof. If a1, . . . ,am satisfy
∑m
k=1 αkak = 0 with positive αk, then we can take∑m

k=1 αkyk =
∑m
k=1 αkbk as the first equation defining the n-plane iA,b(Rn) in R

m.
Thus, iA,b(P ) is in the intersection of the hyperplane

∑m
k=1 αkyk =

∑m
k=1 αkbk

with R
m
> , which is bounded since all the αk are positive. Therefore, P is bounded.

Conversely, if P is bounded, then it follows from Proposition 2.8 and Gale duality
that a1, . . . ,am satisfy γ11a1 + · · ·+ γ1mam = 0 with γ1k > 0. �

A Gale diagram of P ∗ encodes its combinatorics (and the combinatorics of P )
completely. We give the corresponding statement in the generic case only.

Proposition 2.10. Assume that (2.1) is a generic presentation with bi = 1. Let

P ∗ = conv(a1, . . . ,am) be the polar simplicial polytope and let G = (g1, . . . ,gm) be

its Gale diagram. Then the following conditions are equivalent:

(a) Fi1 ∩ · · · ∩ Fik ̸= ∅ in P = P (A,1);

(b) conv(ai1 , . . . ,aik) is a face of P ∗ ;

(c) 0 ∈ conv(gj : j /∈ {i1, . . . , ik}).

Proof. The equivalence (a)⇔ (b) follows from Theorems 2.1 and 2.2.

(b)⇒ (c). Let conv(ai1 , . . . ,aik) be a face of P ∗. We first observe that each
of ai1 , . . . ,aik is a vertex of this face, since otherwise the presentation (2.1) is not
generic. By the definition of a face, there exists a linear function ξ such that
ξ(aj) = 0 for j ∈ {i1, . . . , ik} and ξ(aj) > 0 otherwise. The condition 0 ∈ intP ∗

implies that ξ(0) > 0, and we may assume that ξ has the form ξ(u) = ⟨u,x⟩ + 1
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for some x ∈ R
n. Let yj = ξ(aj) = ⟨aj ,x⟩+ 1, that is, y = Atx + 1. We have

∑

j /∈{i1,...,ik}

gjyj =

m∑

j=1

gjyj = Gy = G(Atx + 1) = G1 =

m∑

j=1

gj = 0,

where yj > 0 for j /∈ {i1, . . . , ik}. It follows that 0 ∈ conv(gj : j /∈ {i1, . . . , ik}).
(c)⇒ (b). Let

∑
j /∈{i1,...,ik}

gjyj = 0, with yj > 0 and at least one yj non-zero.
This is a linear relation between the vectors gj . The space of such linear relations

has a basis formed by the columns of the matrix Ãt = (At 1). Hence there exist
x ∈ R

n and b ∈ R, such that yj = ⟨aj ,x⟩+ b. The linear function ξ(u) = ⟨u,x⟩+ b
takes zero values on the vectors aj with j ∈ {i1, . . . , ik} and non-negative values on
the other vectors aj . Hence, ai1 , . . . ,aik is a subset of the vertex set of some face.
Since P ∗ is simplicial, ai1 , . . . ,aik is a vertex set of a face. �

Remark. We allow redundant inequalities in Proposition (2.10). In this case we
obtain the equivalences

Fi = ∅ ⇔ ai ∈ conv(aj : j ̸= i) ⇔ 0 /∈ conv(gj : j ̸= i).

A configuration of vectors G = (g1, . . . ,gm) in R
m−n−1 with the property

0 ∈ conv(gj : j /∈ {i1, . . . , ik}) ⇔ conv(ai1 , . . . ,aik) is a face of P ∗

is called a combinatorial Gale diagram of P ∗ = conv(a1, . . . ,am). For example,
a configuration obtained by multiplying each vector in a Gale diagram by a positive
number is a combinatorial Gale diagram. Furthermore, the vectors of a combinato-
rial Gale diagram can be moved as long as the origin does not cross the ‘walls’, that
is, the affine hyperplanes spanned by subsets of g1, . . . ,gm. A combinatorial Gale
diagram of P ∗ is a Gale diagram of a polytope which is combinatorially equivalent
to P ∗.

Gale diagrams provide an efficient tool for studying the combinatorics of higher-
dimensional polytopes with few vertices, because in this case a Gale diagram trans-
lates the higher-dimensional structure to a low-dimensional one. For example, Gale
diagrams are used to classify n-polytopes with up to n + 3 vertices and to find
unusual examples when the number of vertices is n+ 4 (see [59], § 6.5).

3. Intersections of quadrics

Here we describe the correspondence between polyhedra (2.1) and intersections
of quadrics.

3.1. From polyhedra to quadrics.

Construction 3.1 ([14]; also [16], § 3). Let P = P (A,b) be a presentation (2.1) of
a polyhedron with a vertex. Recall the map iA,b : R

n → R
m with x 7→ Atx+b (see

Construction 2.3). It embeds P into R
m
> (since the vectors a1, . . . ,am span R

n).
We define the space ZA,b from the commutative diagram

ZA,b
iZ−−−−→ C

m

y
yµ

P
iA,b−−−−→ R

m
>

(3.1)
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where µ(z1, . . . , zm) = (|z1|2, . . . , |zm|2). The torus T
m acts on ZA,b with quotient

P , and iZ is a T
m-equivariant embedding.

Replacing yk by |zk|2 in the equations defining the affine plane iA,b(Rn) (see
(2.3)), we get that ZA,b embeds into C

m as the set of common zeros of m − n
quadratic equations (Hermitian quadrics):

iZ(ZA,b) =

{
z ∈ C

m :

m∑

k=1

γjk|zk|2 =

m∑

k=1

γjkbk for 1 6 j 6 m− n
}
. (3.2)

The following property of ZA,b is an easy consequence of its construction.

Proposition 3.2. Given a point z ∈ ZA,b , the jth coordinate of iZ(z) ∈ C
m

vanishes if and only if z projects onto a point x ∈ P such that x ∈ Fj .

Theorem 3.3. The following conditions are equivalent:

(a) the presentation (2.1) determined by the data (A,b) is generic;

(b) the intersection of quadrics in (3.2) is non-empty and non-degenerate, so

that ZA,b is a smooth manifold of dimension m+ n.

Under these conditions the embedding iZ : ZA,b → C
m has a T

m-equivariantly

trivial normal bundle, and a T
m-framing is determined by a choice of the matrix Γ

in (2.3).

Proof. For simplicity we identify ZA,b with its embedding iZ(ZA,b) ⊂ C
m. We cal-

culate the gradients of the m−n quadrics in (3.2) at a point z = (x1, y1, . . . , xm, ym)
∈ ZA,b, where zk = xk + iyk:

2(γj1x1, γj1y1, . . . , γjmxm, γjmym), 1 6 j 6 m− n. (3.3)

These gradients form the rows of the (m− n)× 2m matrix 2Γ∆, where

∆ =



x1 y1 . . . 0 0
...

...
. . .

...
...

0 0 . . . xm ym


 .

Let I = {i1, . . . , ik} = {i : zi = 0} be the set of zero coordinates of z. Then the
rank of the gradient matrix 2Γ∆ at z is equal to the rank of the (m−n)× (m− k)
matrix ΓÎ obtained by deleting the columns with indices i1, . . . , ik from Γ .

Now let (2.1) be a generic presentation. By Proposition 3.2, a point z with
zi1 = · · · = zik = 0 projects to a point in Fi1 ∩ · · · ∩ Fik ̸= ∅. Hence the vectors
ai1 , . . . ,aik are linearly independent. By Theorem 2.5 the rank of ΓÎ is m − n.
Therefore, the intersection of quadrics (3.2) is non-degenerate.

On the other hand, if (2.1) is not generic, then there is a point z ∈ ZA,b such
that the vectors {ai1 , . . . ,aik : zi1 = · · · = zik = 0} are linearly dependent. By
Theorem 2.5, the columns of the corresponding matrix ΓÎ do not span R

m−n, so
its rank is less than m−n and the intersection of quadrics (3.2) is degenerate at z.

The last statement follows from the fact that ZA,b is a non-degenerate intersec-
tion of quadratic surfaces, each of which is T

m-invariant. �
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3.2. From quadrics to polyhedra. This time we start with an intersection of
m− n Hermitian quadrics in C

m:

ZΓ,δ =

{
z = (z1, . . . , zm) ∈ C

m :

m∑

k=1

γjk|zk|2 = δj for 1 6 j 6 m− n
}
. (3.4)

The coefficients of the quadrics form an (m − n) × m matrix Γ = (γjk), and
we denote its column vectors by γ1, . . . , γm. We also consider the column vector
δ = (δ1, . . . , δm−n)

t ∈ R
m−n of right-hand sides.

These intersections of quadrics are considered up to linear equivalence, which
corresponds to applying a non-singular linear transformation of R

m−n to Γ and δ.
Obviously, such a linear equivalence does not change the set ZΓ,δ.

We denote by R>⟨γ1, . . . , γm⟩ the cone spanned by the vectors γ1, . . . , γm (that
is, the set of linear combinations of these vectors with non-negative real coefficients).

A version of the following proposition appeared in [40], and the proof below is
a modification of the argument in [10], Lemma 0.3. It allows us to determine the
non-degeneracy of an intersection of quadrics directly from the data (Γ, δ).

Proposition 3.4. The intersection of quadrics in (3.4) is non-empty and also non-

degenerate if and only if the following two conditions are satisfied:

(a) δ ∈ R>⟨γ1, . . . , γm⟩;
(b) if δ ∈ R>⟨γi1 , . . . γik⟩, then k > m− n.

Under these conditions ZΓ,δ is a smooth submanifold of C
m of dimension m+n,

and the vectors γ1, . . . , γm span R
m−n .

Proof. First, assume that (a) and (b) are satisfied. Then (a) implies that ZΓ,δ ̸= ∅.
Let z ∈ ZΓ,δ. Then the rank of the matrix of gradients of the quadrics in (3.4)
at z is rk{γk : zk ̸= 0}. Since z ∈ ZΓ,δ, the vector δ is in the cone generated
by those γk for which zk ̸= 0. By the Carathéodory Theorem, δ belongs to the
cone generated by some m − n of these vectors, that is, δ ∈ R>⟨γk1 , . . . , γkm−n

⟩,
where zki

̸= 0 for i = 1, . . . ,m − n. Moreover, the vectors γk1 , . . . , γkm−n
are

linearly independent (otherwise, again by the Carathéodory Theorem, we obtain
a contradiction to (b)). This implies that them−n gradients of the quadrics in (3.4)
are linearly independent at z, and therefore ZΓ,δ is smooth and (m+n)-dimensional.

To prove the other implication we observe that if (b) fails, that is, δ is in the
cone generated by some m− n− 1 vectors among γ1, . . . , γm, then there is a point
z ∈ ZΓ,δ with at least n+1 zero coordinates. The gradients of the quadrics in (3.4)
cannot be linearly independent at such a point z. �

The torus T
m acts on ZΓ,δ, and the quotient ZΓ,δ/T

m is identified with the set
of non-negative solutions of the system of m− n linear equations

m∑

k=1

γkyk = δ. (3.5)

This set may be described as a convex polyhedron P (A,b) given by (2.1), where
(b1, . . . , bm) is any solution of (3.5) and the vectors a1, . . . ,am ∈ R

n form the
transpose matrix of the matrix of a basis of solutions of the homogeneous system∑m
k=1 γkyk = 0. We call P (A,b) the associated polyhedron of the intersection of
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quadrics ZΓ,δ. If the vectors γ1, . . . , γm span R
m−n, then a1, . . . ,am span R

n. In
this case the two vector configurations are Gale dual.

We summarize the results and constructions of this section as follows.

Theorem 3.5. A presentation of a polyhedron

P = P (A,b) = {x ∈ R
n : ⟨ai,x⟩+ bi > 0 for i = 1, . . . ,m}

(with a1, . . . ,am spanning R
n) defines an intersection of Hermitian quadrics

ZΓ,δ =

{
z = (z1, . . . , zm) ∈ C

m :

m∑

k=1

γjk|zk|2 = δj for j = 1, . . . ,m− n
}

(with γ1, . . . , γm spanning R
m−n) uniquely up to a linear isomorphism of R

m−n ,
and an intersection of quadrics ZΓ,δ defines a presentation P (A,b) uniquely up to

an isomorphism of R
n .

The systems of vectors a1, . . . ,am ∈ R
n and γ1, . . . , γm ∈ R

m−n are Gale dual,
and the vectors b ∈ R

m and δ ∈ R
m−n are related by the equality δ = Γb.

The intersection of quadrics ZΓ,δ is non-empty and non-degenerate if and only

if the presentation P (A,b) is generic.

Example 3.6 (m = n+1: one quadric). If the presentation (2.1) is generic and P
is bounded, then m > n + 1. The case m = n + 1 corresponds to a simplex. The
standard simplex is given by the following n+ 1 inequalities:

∆n = {x ∈ R
n : xi > 0 for i = 1, . . . , n and − x1 − · · · − xn + 1 > 0}.

We therefore have ai = ei (the ith standard basis vector) for i = 1, . . . , n and
an+1 = −e1 − · · · − en. Taking Γ = (1 . . . 1), we get that

ZA,b = S
2n+1 = {z ∈ C

n+1 : |z1|2 + · · ·+ |zn+1|2 = 1}.

More generally, a presentation (2.1) with m = n+1 and a1, . . . ,an spanning R
n

can be taken by an isomorphism of R
n to the form

P = {x ∈ R
n : xi + bi > 0 for i = 1, . . . , n and − c1x1 − · · · − cnxn + bn+1 > 0}.

We therefore have Γ = (c1 . . . cn 1), and ZA,b is given by the single equation

c1|z1|2 + · · ·+ cn|zn|2 + |zn+1|2 = c1b1 + · · ·+ cnbn + bn+1.

If the presentation is generic and bounded, then by Theorem 3.3 ZA,b is non-empty,
non-degenerate, and bounded. This implies that all the ci and the right-hand side
above are positive, and ZA,b is an ellipsoid.

4. Moment-angle manifolds from polytopes

Here we consider the case when the polyhedron P defined by (2.1) (or equiva-
lently, the intersection of quadrics (3.4)) is bounded. We also assume that (2.1) is
a generic presentation, so that P is an n-dimensional simple polytope and ZA,b =
ZΓ,δ is an (m+ n)-dimensional closed smooth manifold.
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We start with the construction of an identification space which goes back to
Vinberg’s paper [58] on Coxeter groups and was presented in the form described
below in the paper [21] of Davis and Januszkiewicz. It was the first construction of
what later became known as a moment-angle manifold.

Construction 4.1. Let [m] = {1, . . . ,m} be the standard m-element set. For each
I ⊂ [m] we consider the coordinate subtorus

T
I = {(t1, . . . , tm) ∈ T

m : tj = 1 for j /∈ I} ⊂ T
m.

In particular, T
∅ is the trivial subgroup {1} ⊂ T

m.
We define the map R> × T → C by (y, t) 7→ yt. Taking the product, we obtain

a map R
m
> × T

m → C
m. The pre-image of a point z ∈ C

m under this map is

y × T
ω(z), where yi = |zi| for 1 6 i 6 m and

ω(z) = {i : zi = 0} ⊂ [m]

is the set of zero coordinates of z. Therefore, C
m can be identified with the quotient

R
m
> × T

m/∼, where (y, t1) ∼ (y, t2) if t−1
1 t2 ∈ T

ω(y). (4.1)

Given x ∈ P , we let
Ix = {i ∈ [m] : x ∈ Fi}

(the set of facets containing x).

Proposition 4.2. ZA,b is T
m-equivariantly homeomorphic to the quotient

P × T
m/∼, where (x, t1) ∼ (x, t2) for t−1

1 t2 ∈ T
Ix .

Proof. Using (3.1), we identify ZA,b with iA,b(P ) × T
m/∼, where ∼ is the equiv-

alence relation in (4.1). A point x ∈ P is mapped by iA,b to the point y ∈ R
m
>

with Ix = ω(y). �

An important consequence of this construction is that the topological type
of ZA,b depends only on the combinatorics of P .

Proposition 4.3. Assume as given two generic presentations

P = {x ∈ R
n : (Atx + b)i > 0} and P ′ = {x ∈ R

n : (A′tx + b′)i > 0}

such that P and P ′ are combinatorially equivalent simple polytopes.

(a) If both presentations are irredundant, then the corresponding manifolds ZA,b

and ZA′,b′ are T
m-equivariantly homeomorphic.

(b) If the second presentation is obtained from the first by adding k redundant

inequalities, then ZA′,b′ is homeomorphic to the product of ZA,b and a k-torus T k .

Proof. (a) By Proposition 4.2, ZA,b
∼= P ×T

m/∼ and ZA′,b′
∼= P ′×T

m/∼. If both
presentations are irredundant, then any Fi is a facet of P , and the equivalence rela-
tion ∼ depends only on the face structure of P . Therefore, any homeomorphism
P → P ′ preserving the face structure extends to a T

m-equivariant homeomor-
phism P × T

m/∼ → P ′ × T
m/∼.
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(b) Suppose that the first presentation has m inequalities, and the second has m′

inequalities, so that m′ −m = k. Let J ⊂ [m′] be the subset corresponding to the
k added redundant inequalities; we may assume that J = {m + 1, . . . ,m′}. Since
Fj = ∅ for any j ∈ J , we have Ix∩J = ∅ for any x ∈ P ′. Therefore, the equivalence

relation ∼ does not affect the factor T
J ⊂ T

m′

, and we have

ZA′,b′
∼= P ′ × T

m′

/∼ ∼= (P × T
m/∼)× T

J ∼= ZA,b × T k. �

Remark. A T
m-homeomorphism in Proposition 4.3 (a) can be replaced by a T

m-
diffeomorphism (with respect to the smooth structures in Theorem 3.3), but the
proof is more technical. It follows from the fact that two simple polytopes are com-
binatorially equivalent if and only if they are diffeomorphic as ‘smooth manifolds
with corners’. For an alternative argument, see [10], Corollary 4.7.

The statement (a) remains valid without assuming that the presentation is
generic, although ZA,b is not a manifold in this case.

Definition 4.4. The (m+ n)-dimensional manifold ZA,b defined by any irredun-
dant presentation (2.1) of an n-dimensional simple polytope P with m facets
is called the moment-angle manifold corresponding to P , and denoted by ZP .
Moment-angle manifolds appearing in this way are said to be polytopal ; more gen-
eral moment-angle manifolds will be considered later.

Proposition 4.5. The moment-angle manifold ZP is T
m-equivariantly diffeomor-

phic to a non-degenerate intersection of quadrics of the following form:





z ∈ C
m :

m∑

k=1

|zk|2 = 1,

m∑

k=1

gk|zk|2 = 0





, (4.2)

where (g1, . . . ,gm) ⊂ R
m−n−1 is a combinatorial Gale diagram of P ∗ .

Proof. It follows from Proposition 2.8 that ZP is given by

{
z ∈ C

m : γ11|z1|2 + · · ·+ γ1m|zm|2 = c,

g1|z1|2 + · · ·+ gm|zm|2 = 0

}
,

where the numbers γ1k and c are positive. Divide the first equation by c and then
replace each zk by

√
c/γ1k zk. As a result, each gk is multiplied by a positive

number, so that (g1, . . . ,gm) is still a combinatorial Gale diagram for P ∗. �

By adapting Proposition 3.4 to the special case of quadrics (4.2) we obtain the
following result.

Proposition 4.6. An intersection of quadrics (4.2) is non-empty and also non-

degenerate if and only if the following two conditions are satisfied:

(a) 0 ∈ conv(g1, . . . ,gm);
(b) if 0 ∈ conv(gi1 , . . . ,gik), then k > m− n.
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Following [10], we call a non-degenerate intersection (4.2) of m − n − 1
homogeneous quadrics with a unit sphere in C

m a link. We therefore get that
any moment-angle manifold is diffeomorphic to a link, and any link is a product of
a moment-angle manifold and a torus.

As we have seen in Example 3.6, the moment-angle manifold corresponding to
an n-simplex is a sphere S2n+1. This is also the link of an empty system of homo-
geneous quadrics, corresponding to the case m = n+ 1.

Example 4.7 (m = n + 2: two quadrics). A polytope P defined by m = n + 2
inequalities either is combinatorially equivalent to a product of two simplices (when
there are no redundant inequalities), or is a simplex (when one inequality is redun-
dant). In the case m = n+ 2 the link (4.2) has the form

{
z ∈ C

m : |z1|2 + · · ·+ |zm|2 = 1,
g1|z1|2 + · · ·+ gm|zm|2 = 0

}
,

where gk ∈ R. The condition (b) in Proposition 4.6 implies that all the gi are
non-zero; assume that there are p positive and q = m− p negative numbers among
them. Then the condition (a) implies that p > 0 and q > 0. Therefore, the link is
the intersection of the cone over a product of two ellipsoids of dimensions 2p − 1
and 2q − 1 (given by the second quadric) with a unit sphere of dimension 2m − 1
(given by the first quadric). Such a link is diffeomorphic to S2p−1×S2q−1. The case
p = 1 or q = 1 corresponds to one redundant inequality. In the irredundant case
(P is a product ∆p−1 ×∆q−1, p, q > 1) we get that ZP

∼= S2p−1 × S2q−1.

5. Hamiltonian toric manifolds and moment maps

Particular examples of polytopal moment-angle manifolds ZP appear as level
sets for the moment maps used in the construction of Hamiltonian toric manifolds
via symplectic reduction. In this case the left-hand sides of the equations in (3.2)
are quadratic Hamiltonians of a torus action on C

m.

5.1. Symplectic reduction. We briefly review the background material in sym-
plectic geometry, referring the reader to the monographs by Audin [3] and Guillemin
[33] for further details.

A symplectic manifold is a pair (W,ω) consisting of a smooth manifold W and
a closed differential 2-form ω which is non-degenerate at each point. The dimension
of a symplectic manifold W is necessarily even.

Assume now that a torus T acts on W while preserving the symplectic form ω.
We denote the Lie algebra of the torus T by t (since T is commutative, its Lie algebra
is trivial, but the construction can be generalized to non-commutative Lie groups).
Given an element v ∈ t, we denote by Xv the corresponding T -invariant vector
field on W . The torus action is said to be Hamiltonian if the 1-form ω(Xv, · ) is
exact for any v ∈ t. In other words, an action is Hamiltonian if for any v ∈ t there
exists a function Hv on W (called a Hamiltonian) satisfying the condition

ω(Xv, Y ) = dHv(Y )

for any vector field Y onW . The functionHv is defined up to addition of a constant.
Choose a basis {ei} in t and the corresponding Hamiltonians {Hei

}. Then the
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moment map

µ : W → t∗, (x, ei) 7→ Hei
(x)

(where x ∈ W ), is defined. Observe that adding constants to the Hamiltonians
Hei

results in shifting the image of µ by a vector in t∗. According to a theorem of
Atiyah and Guillemin–Sternberg, the image µ(W ) of the moment map is convex,
and if W is compact, then µ(W ) is a convex polytope in t∗.

Example 5.1. The most basic example is W = C
m with the symplectic form

ω = i

m∑

k=1

dzk ∧ dzk = 2

m∑

k=1

dxk ∧ dyk, zk = xk + iyk.

The coordinatewise action of T
m on C

m is Hamiltonian, and the moment map
µ : C

m → R
m is given by µ(z1, . . . , zm) = (|z1|2, . . . , |zm|2). The image of µ is the

positive orthant R
m
> .

Construction 5.2 (symplectic reduction). Assume as given a Hamiltonian action
of a torus T on a symplectic manifold W . Assume further that the moment map
µ : W → t∗ is proper, that is, µ−1(V ) is compact for any compact subset V ⊂ t∗

(this is always the case if W itself is compact). Let u ∈ t∗ be a regular value of the
moment map, that is, the differential TxW → t∗ is surjective for all x ∈ µ−1(u).
Then the level set µ−1(u) is a smooth compact T -invariant submanifold of W .
Furthermore, the T -action on µ−1(u) is almost free, that is, all the stabilizers are
finite subgroups.

Assume now that the T -action on µ−1(u) is free. The restriction of the symplectic
form ω to µ−1(u) may be degenerate. However, the quotient manifold µ−1(u)/T is
endowed with a unique symplectic form ω′ such that

p∗ω′ = i∗ω,

where i : µ−1(u)→W is the inclusion and p : µ−1(u)→ µ−1(u)/T the projection.
We therefore obtain a new symplectic manifold (µ−1(u)/T, ω′) which is called

the symplectic reduction, or the symplectic quotient of (W,ω) by T .
The construction of a symplectic reduction works also under milder assumptions

on the action (see [25] and additional references there), but the generality described
here will be enough for our purposes.

5.2. The toric case. We want to study symplectic quotients of C
m by torus

subgroups T ⊂ T
m. Such a subgroup of dimension m− n has the form

TΓ = {(e2πi⟨γ1,ϕ⟩, . . . , e2πi⟨γm,ϕ⟩) ∈ T
m}, (5.1)

where ϕ ∈ R
m−n is an (m−n)-dimensional parameter, and Γ = (γ1, . . . , γm) is a set

of m vectors in R
m−n. In order for TΓ to be an (m−n)-torus, the configuration of

vectors γ1, . . . , γm must be rational, that is, the set L = Z⟨γ1, . . . , γm⟩ of all their
integral linear combinations must be an (m − n)-dimensional discrete subgroup
(lattice) in R

m−n. Let

L∗ = {λ∗ ∈ R
m−n : ⟨λ∗, λ⟩ ∈ Z for all λ ∈ L}
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be the dual lattice. We shall occasionally represent the elements of TΓ by vectors
ϕ ∈ R

m−n, so that TΓ is identified with the quotient R
m−n/L∗.

The restricted action of TΓ ⊂ T
m on C

m is obviously Hamiltonian, and the
corresponding moment map is the composition

µΓ : C
m µ−→ R

m → t∗Γ , (5.2)

where R
m → t∗Γ is the map of the dual Lie algebras corresponding to the embedding

TΓ → T
m. The map R

m → t∗Γ takes the ith basis vector ei ∈ R
m to γi ∈ t∗Γ .

By choosing a basis in L ⊂ t∗Γ we can write the map R
m → t∗Γ as an integer

matrix Γ = (γjk). The moment map (5.2) is then given by

(z1, . . . , zm) 7→
( m∑

k=1

γ1k|zk|2, . . . ,
m∑

k=1

γm−n,k|zk|2
)
.

Its level set µ−1
Γ (δ) corresponding to a value δ = (δ1, . . . , δm−n)

t ∈ t∗Γ is exactly the
intersection of quadrics ZΓ,δ given by the system (3.4).

To apply the symplectic reduction we need to see when the moment map µΓ
is proper, find its regular values δ, and finally identify when the action of TΓ on
µ−1
Γ (δ) = ZΓ,δ is free. In Theorem 5.3 below, all these conditions are expressed

in terms of the polyhedron P associated with ZΓ,δ as described in § 3. We need
a couple more definitions before we state this theorem.

It follows from Gale duality that γ1, . . . , γm span a lattice L in R
m−n if and only

if the dual configuration a1, . . . ,am spans a lattice N = Z⟨a1, . . . ,am⟩ in R
n. We

say that a presentation (2.1) is rational if Z⟨a1, . . . ,am⟩ is a lattice.
Recall that for each x ∈ P we defined

Ix = {i ∈ [m] : ⟨ai,x⟩+ bi = 0} = {i ∈ [m] : x ∈ Fi}

(the set of facets containing x). A polyhedron P is said to be Delzant if it has
a rational presentation (2.1) such that for any x ∈ P the vectors {ai : i ∈ Ix}
constitute part of a basis of N = Z⟨a1, . . . ,am⟩. Equivalently, P is Delzant if it is
simple and for any vertex x ∈ P the vectors ai normal to the n facets meeting at x

form a basis of the lattice N . The term comes from the classification of Hamiltonian
toric manifolds due to Delzant [22], which we shall briefly review later.

Now let δ ∈ tΓ be a value of the moment map µΓ : C
m → t∗Γ , and let µ−1

Γ (δ) =
ZΓ,δ be the corresponding level set, which is an intersection of quadrics (3.4). We
associate with ZΓ,δ a presentation (2.1) as described in § 3 (see Theorem 3.5).

Theorem 5.3. Let TΓ ⊂ T
m be a torus subgroup (5.1) determined by a rational

configuration of vectors γ1, . . . , γm .

(a) The moment map µΓ : C
m → t∗Γ is proper if and only if its level set µ−1

Γ (δ)
is bounded for some (and then for any) value δ ∈ t∗Γ . Equivalently, the map µΓ is

proper if and only if the Gale dual configuration a1, . . . ,am satisfies α1a1 + · · · +
αmam = 0 for some positive numbers αk .

(b) δ ∈ t∗Γ is a regular value of µΓ if and only if the intersection of quadrics

µ−1
Γ (δ) = ZΓ,δ is non-empty and non-degenerate. Equivalently, δ is a regular value

if and only if the associated presentation of P = P (A,b) is generic.
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(c) The action of TΓ on µ−1
Γ (δ) = ZΓ,δ is free if and only if the associated

polyhedron P is Delzant.

Proof. (a) If µΓ is proper, then µ−1
Γ (δ) ⊂ t∗Γ is compact, so it is bounded.

Assume now that µ−1
Γ (δ) = ZΓ,δ is bounded for some δ. Then the corresponding

polyhedron P is also bounded. By Corollary 2.9, this is equivalent to the vanishing
of some positive linear combination of a1, . . . ,am. This condition is independent
of δ, and we conclude that µ−1

Γ (δ) is bounded for any δ. Let X ⊂ t∗Γ be a com-
pact subset. Since µ−1

Γ (X) is closed, it is compact whenever it is bounded. By
Proposition 2.8 we may assume that, for any δ ∈ X, the first quadric defining
µ−1
Γ (δ) = ZΓ,δ is given by γ11|z1|2 + · · ·+ γ1m|zm|2 = δ1 with γ1k > 0 for all k. Let
c = maxδ∈X δ1. Then µ−1

Γ (X) is contained in the bounded set

{z ∈ C
m : γ11|z1|2 + · · ·+ γ1m|zm|2 6 c}

and is therefore bounded. Hence, µ−1
Γ (X) is compact, and µΓ is proper.

(b) The first statement is the definition of a regular value. The equivalent state-
ment was already proved in Theorem 3.3.

(c) We first need to identify the stabilizers of the TΓ -action on µ−1
Γ (δ). Although

the fact that these stabilizers are finite for a regular value δ follows from the general
construction of a symplectic reduction, we can prove this directly.

Given a point z = (z1, . . . , zm) ∈ ZΓ,δ, we define the sublattice

Lz = Z⟨γi : zi ̸= 0⟩ ⊂ L = Z⟨γ1, . . . , γm⟩.

Lemma 5.4. The stabilizer subgroup of a point z ∈ ZΓ,δ under the action of TΓ is

given by L∗
z/L

∗ . Furthermore, if ZΓ,δ is non-degenerate, then all these stabilizers

are finite, that is, the action of TΓ on ZΓ,δ is almost free.

Proof. An element (e2πi⟨γ1,ϕ⟩, . . . , e2πi⟨γm,ϕ⟩) ∈ TΓ fixes a point z ∈ ZΓ if and only
if e2πi⟨γk,ϕ⟩ = 1 whenever zk ̸= 0. In other words, ϕ ∈ TΓ fixes z if and only if
⟨γk, ϕ⟩ ∈ Z whenever zk ̸= 0. The latter means that ϕ ∈ L∗

z. Since ϕ ∈ L∗ maps to
1 ∈ TΓ , the stabilizer of z is L∗

z/L
∗.

Assume now that ZΓ,δ is non-degenerate. In order to see that L∗
z/L

∗ is finite
we need to check that the sublattice Lz = Z⟨γi : zi ̸= 0⟩ ⊂ L has full rank m − n.
Indeed, rk{γi : zi ̸= 0} is the rank of the matrix of gradients of the quadrics in (3.4)
at z. Since ZΓ,δ is non-degenerate, this rank is m− n, as needed. �

Now we can finish the proof of Theorem 5.3 (c). Assume that P is a Delzant
polyhedron. By Lemma 5.4, the TΓ -action on ZΓ,δ is free if and only if Lz = L
for any z ∈ ZΓ,δ. Let i : Z

k → Z
m be the inclusion of the coordinate sublattice

spanned by those ei for which zi = 0, and let p : Z
m → Z

m−k be the projection
sending every such ei to zero. We also have lattice maps

Γ t : L∗ → Z
m, l 7→ (⟨γ1, l⟩, . . . , ⟨γm, l⟩) and A : Z

m → N, ek 7→ ak.
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Consider the diagram

0
y

L∗

yΓ t

0 −−−−→ Z
k i−−−−→ Z

m p−−−−→ Z
m−k −−−−→ 0

yA

N
y

0

(5.3)

in which the vertical and horizontal sequences are exact. Then the Delzant condition
is equivalent to the composition A · i being split injective. The condition Lz = L is
equivalent to the composition Γ · p∗ being surjective, or p · Γ t being split injective.
These two conditions are equivalent by Lemma 2.6. �

Corollary 5.5. Let P = P (A,b) be a Delzant polytope, Γ = (γ1, . . . , γm) the Gale

dual configuration, and ZP the corresponding moment-angle manifold. Then

(a) δ = Γb is a regular value of the moment map µΓ : C
m → t∗Γ for the Hamil-

tonian action of TΓ ⊂ T
m on C

m ;
(b) ZP is the regular level set µ−1

Γ (Γb);
(c) the action of TΓ on ZP is free.

We therefore may consider the symplectic quotient of C
m by TΓ . It is a compact

2n-dimensional symplectic manifold, which we denote VP = ZP /TΓ . This manifold
has a ‘residual’ Hamiltonian action of the quotient n-torus T

m/TΓ . It follows from
the vertical exact sequence in (5.3) that T

m/TΓ can be identified canonically with
N ⊗Z S = R

n/N , and we shall denote this torus by TN . We therefore obtain an
exact sequence of tori

1→ TΓ → T
m expA−−−→ TN → 1, (5.4)

where expA : T
m → TN is the map of tori corresponding to the map of lattices

A : Z
m → N .

The symplectic 2n-manifold VP = ZP /TΓ with the Hamiltonian action of the
n-torus TN = T

m/TΓ is called the Hamiltonian toric manifold corresponding to
a Delzant polytope P .

We denote by µV : VP → t∗N the moment map for the TN -action on VP , where
tN = NR is the Lie algebra of TN . The dual Lie algebra t∗N is naturally embedded
as a subspace in R

m (the dual Lie algebra of T
m), with the inclusion given by

At : t∗N
∼= R

n → R
m.

Proposition 5.6. The image of the moment map µV : VP → t∗N is the polytope P ,
up to a shift by a vector in t∗N .
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Proof. Let ω be the standard symplectic form on C
m and let µ : C

m → R
m be the

moment map for the standard action of T
m (see Example 5.1). Let p : ZP → VP be

the quotient projection by the action of TΓ , and let i : ZP → C
m be the inclusion,

so that the symplectic form ω′ on VP satisfies p∗ω′ = i∗ω. Let Hei
: C

m → R

be the Hamiltonian of the T
m-action on C

m corresponding to the ith basis vector
ei (explicitly, Hei

(z) = |zi|2), and let Hai
: VP → R be the Hamiltonian of the

TN -action on VP corresponding to ai ∈ tN . Denote by Xei
the vector field on ZP

generated by ei, and denote by Yai
the vector field on VP generated by ai. Observe

that p∗Xei
= Yai

. For any vector field Z on ZP we have

dHei
(Z) = i∗ω(Xei

, Z) = p∗ω′(Xei
, Z)

= ω′(Yai
, p∗Z) = dHai

(p∗Z) = d(p∗Hai
)(Z),

hence Hei
= p∗Hai

orHei
(z) = Hai

(p (z)) up to a constant. By the definition of the
moment map this implies that µV (VP ) ⊂ t∗N ⊂ R

m is identified with µ(ZP ) ⊂ R
m

up to a shift by a vector in R
m. The inclusion t∗N ⊂ R

m is the map At, and
µ(ZP ) = iA,b(P ) = At(P ) + b by the definition of ZP (see (3.1)). We therefore
get that there exists a vector c ∈ R

m such that

At(µV (VP )) + c = At(P ) + b,

that is, At(µV (VP )) and At(P ) differ by b− c ∈ At(t∗N ). Since At is monomorphic,
the result follows. �

We have described how to construct a Hamiltonian toric manifold from a Delzant
polytope. A theorem of Delzant [22] says that any 2n-dimensional compact con-
nected symplectic manifold W with an effective Hamiltonian action of an n-torus T
is equivariantly symplectomorphic to a Hamiltonian toric manifold VP , where P is
the image of the moment map µ : W → t∗ (whence the name ‘Delzant polytope’).

Example 5.7. Consider the case m − n = 1, that is, TΓ is 1-dimensional and
γk ∈ R. By Theorem 5.3 (a) the moment map µΓ is proper whenever each of its
level sets

µ−1
Γ (δ) = {z ∈ C

m : γ1|z1|2 + · · ·+ γm|zm|2 = δ}
is bounded. By Theorem 5.3 (b), δ is a regular value whenever the quadratic hyper-
surface γ1|z1|2+· · ·+γm|zm|2 = δ is non-empty and non-degenerate. These two con-
ditions together imply that the hypersurface is an ellipsoid, and the associated poly-
hedron is an n-simplex (see Example 3.6). By Lemma 5.4 the TΓ -action on µ−1

Γ (δ)
is free if and only if Lz = L for any z ∈ µ−1

Γ (δ). This means that each γk generates
the same lattice as the whole set γ1, . . . , γm, which implies that γ1 = · · · = γm. The
Gale dual configuration satisfies a1 + · · ·+ am = 0. Then TΓ is the diagonal circle
in T

m, the hypersurface µ−1
Γ (δ) = ZP is a sphere, and the associated polytope P

is a standard simplex up to a shift and a multiplication by a positive factor δ. The
Hamiltonian toric manifold VP = ZP /TΓ is the complex projective space CPn.

6. Fans and toric varieties

A toric variety is a normal algebraic variety on which an algebraic torus (C×)n

acts with a dense (Zariski open) orbit. Toric varieties are described by combinatorial-
geometric objects, rational fans.
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A toric variety can be defined from a rational fan by using an algebraic version
of symplectic reduction, also known as the ‘Cox construction’. Different versions of
this construction have appeared in the work of several authors since the early 1990s.
In our exposition we mainly follow the paper [18] of Cox (and the modernized
version [19], Chap. 5); the relationships between toric varieties and moment-angle
manifolds will be explored further in the next sections.

6.1. Cones and fans. A set of vectors a1, . . . ,ak ∈ R
n defines a convex polyhedral

cone or simply cone

σ = R>⟨a1, . . . ,am⟩ = {µ1a1 + · · ·+ µkak : µi ∈ R>}.

Here a1, . . .ak are called generating vectors (or generators) of σ. A minimal set of
generators of a cone is defined up to multiplication of vectors by positive constants.
A cone is rational if its generators can be chosen from the integer lattice Z

n ⊂ R
n. If

σ is a rational cone, then its generators a1, . . .ak are usually chosen to be primitive,
that is, each ai is the smallest lattice vector in the ray defined by it.

A cone is strongly convex if it does not contain a line. A cone is simplicial if it
is generated by part of a basis of R

n, and is regular if it is generated by part of
a basis of Z

n.
Any cone σ is an (unbounded) polyhedron, and faces of σ are defined as its

intersections with supporting hyperplanes. Each face of a cone is itself a cone. If
a cone is strongly convex, then it has a unique vertex 0; otherwise there are no
vertices. A minimal generator set of a cone consists of non-zero vectors along its
edges.

A fan is a finite collection Σ = {σ1, . . . , σs} of strongly convex cones in some
space R

n such that every face of a cone in Σ belongs to Σ and the intersection of
any two cones in Σ is a face of each. A fan Σ is rational (respectively, simplicial

or regular) if every cone in Σ is rational (respectively, simplicial or regular). A fan
Σ = {σ1, . . . , σs} is said to be complete if σ1 ∪ · · · ∪ σs = R

n.
Cones in a fan can be separated by hyperplanes.

Lemma 6.1 (separation lemma). Let σ and σ′ be two cones whose intersection τ
is a face of each. Then there exists a common supporting hyperplane H for σ and

σ′ such that

τ = σ ∩H = σ′ ∩H.
For the proof, see, for instance, [29], § 1.2. Remarkably, this convex-geometrical

separation property translates into topological separation (Hausdorffness) of alge-
braic varieties and topological spaces constructed from fans as described below.

Given a simplicial fan Σ with m edges generated by vectors a1, . . . ,am, we define
its underlying simplicial complex KΣ on [m] = {1, . . . ,m} as the collection of
subsets I ⊂ [m] such that {ai : i ∈ I} spans a cone in Σ.

A simplicial fan Σ in R
n is therefore determined by two pieces of data:

• a simplicial complex K on [m];
• a configuration of vectors a1, . . . ,am in R

n such that the subset {ai : i ∈ I}
is linearly independent for any simplex I ∈ K .

Then for each I ∈ K we can define the simplicial cone σI spanned by the vectors
ai with i ∈ I. The ‘bunch of cones’ {σI : I ∈ K } patches into a fan Σ whenever
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any two cones σI and σJ intersect in a common face (which has to be σI∩J).
Equivalently, the relative interiors of the cones σI are pairwise disjoint. Under this
condition, we say that the data {K ;a1, . . . ,am} define the fan Σ.

The next construction assigns a complete fan to every convex polytope.

Construction 6.2 (normal fan). LetP be a polytope (2.1) withm facetsF1, . . . , Fm
and normal vectors a1, . . . ,am. Given a face Q ⊂ P , we say that a vector ai is
normal to Q if Q ⊂ Fi. Define the normal cone σQ as the cone generated by those
ai which are normal to Q. It can be given by

σQ = {u ∈ R
n : ⟨u,x′⟩ 6 ⟨u,x⟩ for all x′ ∈ Q and x ∈ P}.

Then

ΣP = {σQ : Q is a face in P} ∪ {0}

is a complete fan which is called the normal fan of the polytope P . If 0 is contained
in the interior of P , then ΣP may also be described as the set of cones over the
faces of the polar polytope P ∗.

The normal fan ΣP is simplicial if and only if P is simple. In this case the
cones in ΣP are generated by those sets {ai1 , . . . ,aik} for which the intersection
Fi1∩· · ·∩Fik is non-empty. The underlying simplicial complex KΣP

is the boundary
of the polar simplicial polytope P ∗.

The normal fan ΣP of a polytope P contains information about the normals to
the facets (the generators ai of the edges of ΣP ) and the combinatorial structure
of P (which sets of vectors ai span a cone in ΣP is determined by which facets
intersect at a face), however, the scalars bi in (2.1) are lost. Not every complete
fan can be obtained by ‘forgetting the numbers bi’ in a presentation of a polytope
by inequalities, that is, not every complete fan is a normal fan. This fails even for
regular fans in R

3 (see [29], § 1.5 for an example). Moreover, complete simplicial fans
and simplicial polytopes differ even as combinatorial objects: there are complete
simplicial fans Σ whose underlying simplicial complex KΣ cannot be obtained as
the boundary of some simplicial polytope (although no regular examples of this
sort are known).

6.2. Toric varieties. An algebraic torus is a commutative complex algebraic
group isomorphic to a product (C×)n of copies of the multiplicative group C

× =
C \ {0}. It contains a compact torus Tn as a Lie (but not algebraic) subgroup.

We shall often identify an algebraic torus with the standard model (C×)n.

A toric variety is a normal complex algebraic variety V containing an algebraic
torus (C×)n as a Zariski open subset in such a way that the natural action of (C×)n

on itself extends to an action on V .

It follows that (C×)n acts on V with a dense orbit.

The algebraic geometry of toric varieties translates completely into the language
of combinatorial and convex geometry. Namely, there is a bijective correspondence
between rational fans in an n-dimensional space and complex n-dimensional toric
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varieties. Under this correspondence,

cones ←→ affine varieties,

complete fans ←→ compact (complete) varieties,

normal fans of polytopes ←→ projective varieties,

regular fans ←→ non-singular varieties,

simplicial fans ←→ orbifolds.

The details of this classical correspondence can be found in any standard source on
toric geometry, for instance, [20], [29], or [19]. Along with the classical construction,
there is an alternative way to define a toric variety: as the quotient of an open
subset in C

m (the complement of a coordinate subspace arrangement) by an action
of a commutative algebraic group (a product of an algebraic torus and a finite
group).

6.3. Quotients in algebraic geometry. Taking quotients of algebraic varieties
by algebraic group actions is tricky for both topological and algebraic reasons. First,
since algebraic groups are non-compact (as algebraic tori), their orbits may be not
closed, and the quotients may be non-Hausdorff. Second, even if the quotient is
Hausdorff as a topological space, it may fail to be an algebraic variety. This may
be remedied to some extent by the notion of the categorical quotient.

Let X be an algebraic variety with an action of an affine algebraic group G. An
algebraic variety Y is said to be a categorical quotient of X by the action of G if
there exists a morphism π : X → Y which is constant on G-orbits of X and has
the following universal property: for any morphism ϕ : X → Z which is constant
on G-orbits, there is a unique morphism ϕ̂ : Y → Z such that ϕ̂ ◦ π = ϕ. This is
described by the diagram

X
ϕ

//

π

  @
@@

@@
@@

Z

Y

ϕ̂
??~

~
~

~

The categorical quotient Y is unique up to isomorphism, and we shall denote it by
X//G (although sometimes this notation is reserved for categorical quotients with
additional nice properties).

Assume that X = SpecA is an affine variety, where A = C[X] is the algebra
of regular functions on X and G is an algebraic torus (in fact, this construction
works for any reductive affine algebraic group). Then the subalgebra C[X]G of
G-invariant functions (that is, functions f satisfying f(gx) = f(x) for any g ∈ G
and x ∈ X) is finitely generated, and the corresponding affine variety Spec C[X]G

is the categorical quotient X//G. The quotient morphism π : X → X//G is dual
to the inclusion of algebras C[X]G → C[X]. The morphism π is surjective and
induces a one-to-one correspondence between points in X//G and closed G-orbits
in X (that is, π−1(x) contains a unique closed G-orbit for any x ∈ X//G; see [19],
Proposition 5.0.7).

Therefore, if all G-orbits of an affine variety X are closed, then the categorical
quotient X//G is identified as a topological space with the ordinary ‘topological’
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quotient X/G. In algebraic geometry quotients of this type are said to be geometric

and also denoted by X/G.

Example 6.3. Let C
× act on C = Spec(C[z]) by scalar multiplication. There are

two orbits: the closed orbit 0 and the open orbit C
×. The topological quotient C/C×

consists of two points, one of which is not closed, so the space is not Hausdorff.
On the other hand, the categorical quotient C//C× = Spec(C[z]C

×

) is a single
point, since any C

×-invariant polynomial is constant (and there is only one closed
orbit).

Similarly, if C
× acts on C

n = Spec(C[z1, . . . , zn]) diagonally, then an invariant
polynomial satisfies the condition f(λz1, . . . , λzn) = f(z1, . . . , zn) for all λ ∈ C

×.
Such a polynomial must be constant, so C

n//C× is again a point.

In good cases categorical quotients of more general (non-affine) varieties X may
be constructed by ‘gluing from pieces’ as follows. Assume that G acts on X and
π : X → Y is a morphism of varieties that is constant on G-orbits. If Y has an
open affine cover Y =

⋃
α Vα such that π−1(Vα) is affine and Vα is the categorical

quotient (that is, π|π−1(Vα) : π
−1(Vα)→ Vα is the morphism dual to the inclusion of

algebras C[π−1(Vα)]G → C[π−1(Vα)]) for all α, then Y is the categorical quotient
X//G.

Example 6.4. Let C
× act on C

2 \{0} diagonally, where C
2 = Spec(C[z0, z1]). We

have an open affine cover C
2 \ {0} = U0 ∪ U1, where

U0 = C
2 \ {z0 = 0} = C

× × C = Spec(C[z±1
0 , z1]),

U1 = C
2 \ {z1 = 0} = C× C

× = Spec(C[z0, z
±1
1 ]),

U0 ∩ U1 = C
2 \ {z0z1 = 0} = C

× × C
× = Spec(C[z±1

0 , z±1
1 ]).

The algebras of C
×-invariant functions are

C[z±1
0 , z1]

C
×

= C[z1/z0], C[z0, z
±1
1 ]C

×

= C[z0/z1],

C[z±1
0 , z±1

1 ]C
×

= C[(z1/z0)
±1].

It follows that the varieties Vi = Ui//C
× = C glue together along V0 ∩ V1 =

(U0 ∩ U1)//C
× = C

× in the standard way to produce the projective line CP 1.
We have that all C

×-orbits are closed in C
2 \ {0}, hence CP 1 = (C2 \ {0})/C× is

the geometric quotient.
Similarly, CPn = (Cn+1 \ {0})/C× is the geometric quotient for the diagonal

action of C
×.

Example 6.5. Now we let C
× act on C

2 \ {0} by λ · (z0, z1) = (λz0, λ
−1z1). Using

the same affine cover of C
2 \{0} as in the previous example, we obtain the following

algebras of C
×-invariant functions:

C[z±1
0 , z1]

C
×

= C[z0z1], C[z0, z
±1
1 ]C

×

= C[z0z1], C[z±1
0 , z±1

1 ]C
×

= C[(z0z1)
±1].

This time gluing together the varieties Vi = Ui//C
× = C along V0 ∩ V1 =

(U0 ∩ U1)//C
× = C

× gives the space obtained from two copies of C by identifying
all non-zero points. This space is not Hausdorff (the two zeros do not have disjoint
neighbourhoods in the usual topology), and therefore it cannot be a categorical
quotient, because algebraic varieties are Hausdorff spaces in the usual topology.



Geometric structures on moment-angle manifolds 527

A toric variety VΣ will be described as the categorical (or in good cases,
geometric) quotient of the ‘total space’ U(Σ) by an action of a commutative alge-
braic group G. We now proceed to describe G and U(Σ).

6.4. Quotient construction of toric varieties. Following the algebraic tradi-
tion, we use the coordinate-free notation here. We fix a lattice N of rank n, and
denote by NR its ambient n-dimensional real vector space N ⊗Z R ∼= R

n. We also
define the algebraic torus C

×
N = N ⊗Z C

× ∼= (C×)n.
Let Σ be a rational fan in NR with m edges generated by primitive vectors

a1, . . . ,am in N . We shall assume that the linear span of a1, . . . ,am is the whole
of NR.

We consider the map of lattices A : Z
m → N sending the ith basis vector of Z

m

to ai ∈ N . The corresponding map of algebraic tori

A⊗Z C
× : (C×)m → C

×
N

is surjective. We shall denote this map by expA.
Define the group G = GΣ as the kernel of the map expA. We therefore have an

exact sequence of Abelian algebraic groups

1 −→ G −→ (C×)m
expA−−−→ C

×
N −→ 1. (6.1)

Explicitly, G is given by

G =

{
(z1, . . . , zm) ∈ (C×)m :

m∏

i=1

z
⟨ai,u⟩
i = 1 for all u ∈ N∗

}
. (6.2)

The group G is isomorphic to the product of (C×)m−n and a finite Abelian group.
If Σ is a regular fan with at least one n-dimensional cone, then G ∼= (C×)m−n.

Given a cone σ ∈ Σ, we set g(σ) = {i1, . . . , ik} ⊂ [m] if σ is spanned by
ai1 . . . ,aik . We define the simplicial complex KΣ generated by all the subsets
g(σ) ⊂ [m]:

KΣ = {I : I ⊂ g(σ) for some σ ∈ Σ}.
If Σ is a simplicial fan, then each I ⊂ g(σ) is g(τ) for some τ ∈ Σ, and we obtain
the ‘underlying simplicial complex’ of Σ defined in the beginning of this section.
If Σ is the normal fan of a non-simple polytope P (that is, the fan over the faces
of the polar polytope P ∗), then KΣ is obtained by replacing each face of ∂P ∗ by
a simplex with the same set of vertices.

We now define the space U(Σ) as the complement of the arrangement of coordi-
nate subspaces in C

m determined by KΣ:

U(Σ) = C
m \

⋃

{i1,...,ik}/∈KΣ

{z ∈ C
m : zi1 = · · · = zik = 0}. (6.3)

We observe that the subset U(Σ) ⊂ C
m depends only on the combinatorial

structure of the fan Σ, while the subgroup G ⊂ (C×)m depends on the geometric
data, namely, the primitive generators of one-dimensional cones.

Since U(Σ) ⊂ C
m is invariant under the coordinatewise action of (C×)m, we

obtain a G-action on U(Σ) by restriction.
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Theorem 6.6 (Cox [18], Theorem 2.1). If the linear span of the one-dimensional

cones in Σ is the whole space NR , then

(a) the toric variety VΣ is naturally isomorphic to the categorical quotient U(Σ)//G,

(b)VΣ is the geometric quotient U(Σ)/G if and only if the fan Σ is simplicial.

The torus acting on VΣ = U(Σ)//G is the quotient torus C
×
N = (C×)m/G.

Proposition 6.7. (a) If Σ is a simplicial fan, then the G-action on U(Σ) is almost

free;

(b) If Σ is regular, then the G-action on U(Σ) is free.

Proof. The stabilizer of a point z ∈ C
m under the action of (C×)m is

(C×)ω(z) = {(t1, . . . , tm) ∈ (C×)m : ti = 1 if zi ̸= 0},

where ω(z) is the set of zero coordinates of z. The stabilizer of z under the G-action
is Gz = (C×)ω(z)∩G. Since G is the kernel of the map expA : (C×)m → C

×
N induced

by the map of lattices Z
m → N , the subgroup Gz is the kernel of the composite

map

(C×)ω(z) →֒ (C×)m
expA−−−→ C

×
N . (6.4)

This homomorphism of tori is induced by the map of lattices Z
ω(z) → Z

m → N ,
where Z

ω(z) → Z
m is the inclusion of a coordinate sublattice.

Now let Σ be a simplicial fan and z ∈ U(Σ). Then ω(z) = g(σ) for some
cone σ ∈ Σ. Therefore, the set of primitive generators {ai : i ∈ ω(z)} is linearly
independent. Hence, the map Z

ω(z) → Z
m → N taking ei to ai is a monomorphism,

which implies that the kernel of (6.4) is a finite group.

If the fan Σ is regular, then {ai : i ∈ ω(z)} is part of a basis of N . In this
case (6.4) is a monomorphism and Gz = {1}. �

The relationship between the algebraic quotient construction of VΣ and the sym-
plectic reduction construction of VP (described in the previous section) is as follows.
Let P be a Delzant polytope given by (2.1). Then the Delzant condition means
exactly that the normal fan ΣP is regular. The tori in the exact sequence (5.4)
are maximal compact subgroups of the algebraic tori in (6.1). Also, it follows from
Proposition 3.2 that the level set µ−1

Γ (Γb) (the moment-angle manifold ZP ) is
contained in U(ΣP ).

Theorem 6.8. Let P be a Delzant polytope with the normal fan ΣP . Let VP be

the corresponding Hamiltonian toric manifold, and let VΣP
be the corresponding

non-singular projective toric variety. The inclusion ZP ⊂ U(ΣP ) induces a diffeo-

morphism

VP = ZP /TΓ
∼=−→ U(ΣP )/G = VΣP

.

Therefore, any non-singular projective toric variety can be obtained as the symplec-

tic quotient of C
m by an action of an (m− n)-torus.

A proof can be found in [3], Proposition VI.3.1.1 or in [33], Appendix 2; we shall
also give a proof of a more general statement in § 10.
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Remark. Projective embeddings of VΣP
correspond to lattice Delzant polytopes P ,

that is, Delzant polytopes with vertices in the lattice N . Any such embedding
defines a symplectic structure on VΣP

by inducing the symplectic form from the
projective space. It can be shown ([33], Appendix 2) that the diffeomorphism
in Theorem 6.8 above preserves the cohomology class of the symplectic form, or
equivalently, the two symplectic structures are TN -equivariantly symplectomorphic.

Example 6.9. Let Vσ be the affine toric variety corresponding to an n-dimensional
simplicial cone σ. We may write Vσ = VΣ, where Σ is the simplicial fan consisting
of all faces of σ. Then m = n, U(Σ) = C

n, and A : Z
n → N is the monomorphism

onto the full-rank sublattice generated by a1, . . . ,an. Therefore, G is a finite group
and Vσ = C

n/G = Spec C[z1, . . . , zn]
G.

In particular, if we consider the cone σ generated by 2e1 − e2 and e2 in R
2,

then G is Z2, embedded as {(1, 1), (−1,−1)} in (C×)2. The quotient construction
realizes the quadratic cone

Vσ = Spec C[z1, z2]
G = Spec C[z2

1 , z1z2, z
2
2 ] = {(u, v, w) ∈ C

3 : v2 = uw}

as a quotient of C
2 by Z2.

Example 6.10. Let Σ be the complete fan in R
2 with the three maximal cones

σ0 = R>(e1, e2), σ1 = R>(e2,−e1 − e2), and σ2 = R>(−e1 − e2, e1). Then KΣ is
the boundary of a triangle, so the only non-simplex is {1, 2, 3}. Hence,

U(Σ) = C
3 \ {z1 = z2 = z3 = 0} = C

3 \ {0}.

The subgroup G defined by (6.2), is the diagonal C
× in (C×)3. We therefore have

VΣ = U(Σ)/G = CP 2. Since Σ is the normal fan of the standard 2-simplex, this
agrees with the symplectic quotient VP = ZP /TΓ in Example 5.7.

Example 6.11. Consider the fan Σ in R
2 with three one-dimensional cones gen-

erated by the vectors e1, e2, and −e1 − e2. This fan is not complete, but its
one-dimensional cones span R

2, so we may apply Theorem 6.6. The simplicial com-
plex KΣ consists of three separate points. The space U(Σ) is the complement of
the three coordinate lines in C

3:

U(Σ) = C
3 \

(
{z1 = z2 = 0} ∪ {z1 = z3 = 0} ∪ {z2 = z3 = 0}

)
.

The group G is the diagonal C
× in (C×)3. Hence VΣ = U(Σ)/G is a quasi-projective

variety obtained by removing three points from CP 2.

7. Moment-angle complexes and polyhedral products

For any simple polytope P = P (A,b) given by (2.1), we defined the moment-
angle manifold ZP = ZA,b in the diagram (3.1), or equivalently, as the intersection
of quadrics given by (3.2). Here, using a combinatorial decomposition of P into
cubes, we represent ZP as a union of products (D2)I×(S1)[m]\I of disks and circles
parametrized by simplices I in the associated simplicial complex KP = ∂P ∗. This
construction may be generalized to arbitrary simplicial complexes KP , leading to
the notion of a moment-angle complex ZK . We follow [13] (and the more detailed
treatment given in [14]) in our description of moment-angle complexes.
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The basic building block in the ‘moment-angle’ decomposition of ZK is the
pair (D2, S1) consisting of a unit disk and circle, and the whole construction can
be extended naturally to arbitrary pairs of spaces (X,A). The resulting complex
(X,A)K is now known as the ‘polyhedral product space’ over a simplicial com-
plex K ; this terminology was suggested by William Browder (cf. [4]). Many spaces
important for toric topology admit polyhedral product decompositions.

The construction of ZK and its generalization (X,A)K is of a truly universal
nature, and has remarkable functorial properties. The most basic of these is that the
construction of ZK establishes a functor from simplicial complexes and simplicial
maps to spaces with torus actions and equivariant maps. If K is a triangulated
sphere, then ZK is a manifold, and most important geometric examples of ZK

arise in this way.
Another important aspect of the theory of moment-angle complexes is their

connection to coordinate subspace arrangements and their complements. These
have appeared as the ‘total spaces’ U(Σ) in the algebraic quotient construction of
toric varieties reviewed in the previous section. Subspace arrangements and their
complements have also played an important role in singularity theory, and, more
recently, in the theory of linkages and robotic motion planning. Arrangements of
coordinate subspaces in C

m correspond bijectively to simplicial complexes K on
the set [m], and the complement of such an arrangement is homotopy equivalent
to the corresponding moment-angle complex ZK (see [13], Theorem 5.2.5 and
Theorem 7.12 below).

7.1. Cubical decompositions.

Construction 7.1 (cubical subdivision of a simple polytope). Let P be a sim-
ple n-polytope with m facets F1, . . . , Fm. We shall construct a piecewise linear
embedding of P into the standard unit cube I

m ⊂ R
m
> , thereby inducing a cubical

subdivision C (P ) of P by the pre-images of faces of I
m.

Denote by S the set of barycentres of all faces of P , including the vertices and
the barycentre of the whole polytope. This will be the vertex set of C (P ). Every
(n− k)-face G of P is an intersection of k facets: G = Fi1 ∩ · · · ∩ Fik . We map the
barycentre of G to (ε1, . . . , εm) ∈ I

m, where εi = 0 if i ∈ {i1, . . . , ik} and εi = 1
otherwise. The resulting map S → I

m can be extended linearly on the simplices
of the barycentric subdivision of P to an embedding cP : P → I

m. The case n = 2,
m = 3 is shown in Fig. 7.1.

Any face of I
m has the form

CJ⊂I = {(y1, . . . , ym) ∈ I
m : yj = 0 for j ∈ J, yj = 1 for j /∈ I},

where J ⊂ I is a pair of embedded (possibly empty) subsets of [m]. We also set

CI = C∅⊂I = {(y1, . . . , ym) ∈ I
m : yj = 1 for j /∈ I}

to simplify the notation.
The image cP (P )⊂ I

m is the union of all faces CJ⊂I such that
⋂
i∈I Fi ̸= ∅. For

each such face CJ⊂I , the pre-image c−1
P (CJ⊂I) is a face of the cubical complex C (P ).

The vertex set of c−1
P (CJ⊂I) is the subset of S consisting of barycentres of all faces

between the faces G and H of P , where G =
⋂
j∈J Fj and H =

⋂
i∈I Fi. Therefore,
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Figure 7.1. The embedding cP : P → I
m for n = 2, m = 3

faces in C (P ) correspond to pairs of embedded faces G ⊃ H of P , and we denote
them by CG⊃H . In particular, maximal (n-dimensional) faces in C (P ) correspond
to pairs G = P , H = v, where v is a vertex of P . For these maximal faces we use
the abbreviated notation Cv = CP⊃v.

For every vertex v = Fi1 ∩ · · · ∩ Fin ∈ P with Iv = {i1, . . . , in} we have

cP (Cv) = CIv
= {(y1, . . . , ym) ∈ I

m : yj = 1 for v /∈ Fj}. (7.1)

We therefore obtain the following result.

Proposition 7.2. A simple polytope P with m facets admits a cubical decomposi-

tion whose maximal faces Cv correspond to the vertices v ∈ P . The resulting cubical

complex C (P ) embeds canonically into I
m as described by (7.1).

7.2. Moment-angle complexes. The map µ : C
m → R

m
> (see Example 5.1)

identifies the unit cube I
m ⊂ R

m
> with the quotient of the unit polydisk

D
m =

{
(z1, . . . , zm) ∈ C

m : |zi| 6 1
}

by the coordinatewise action of T
m.

We now define the space Z̃P from a diagram similar to (3.1) (which was used to
define ZP = ZA,b), in which the bottom map is replaced by cP : P → I

m:

Z̃P
ĩZ−−−−→ D

m

y
yµ

P
cP−−−−→ I

m

(7.2)

Proposition 7.3. The space Z̃P is T
m-equivariantly homeomorphic to the moment-

angle manifold ZP .

Proof. As we have seen in Proposition 4.2, ZP is T
m-equivariantly homeomorphic

to the identification space

P × T
m/∼, where (x, t1) ∼ (x, t2) if t−1

1 t2 ∈ T
Ix .
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By restricting (4.1) to D
m ⊂ C

m we get that

D
m ∼= I

m × T
m/∼, where (y, t1) ∼ (y, t2) for t−1

1 t2 ∈ T
ω(y).

As in the proof of Proposition 4.2, Z̃P is identified with cP (P ) × T
m/∼. A point

x ∈ P is mapped by cP to the point y ∈ I
m with Ix = ω(y) = {i ∈ [m] : x ∈ Fi}. We

thus find that both ZP and Z̃P are T
m-equivariantly homeomorphic to P ×T

m/∼.
�

We shall therefore not distinguish between the spaces ZP and Z̃P , and we think
of the maps iZ and ĩZ in the diagrams (3.1) and (7.2) as different embeddings of
the same manifold ZP in C

m (the first one is smooth but the second is not).
Given a vertex v = Fi1 ∩ · · · ∩ Fin ∈ P , we consider the restriction of the map

ĩZ : ZP → D
m to the subset Cv × T

m/∼ ⊂ P × T
m/∼ = ZP :

ĩZ(Cv × T
m/∼) = cP (Cv)× T

m/∼ = CIv
× T

m/∼ = µ−1(CIv
)

= {(z1, . . . , zm) ∈ D
m : |zj |2 = 1 for v /∈ Fj}.

Since P =
⋃
v Cv, we get that

ĩZ(ZP ) =
⋃

v

µ−1(CIv
).

Note that µ−1(CIv
) is a product of |Iv| = n disks and m−n circles. Since µ−1(CI)∩

µ−1(CJ) = µ−1(CI∩J) for any I, J ⊂ [m], we can rewrite the union above as

ĩZ(ZP ) =
⋃

I∈KP

µ−1(CI), (7.3)

where
KP = {I = {i1, . . . , ik} ⊂ [m] : Fi1 ∩ · · · ∩ Fik ̸= ∅}

is the boundary of the polar simplicial polytope P ∗.
The decomposition (7.3) of ZP into a union of products of disks and circles can

now be generalized to an arbitrary simplicial complex.

Definition 7.4. Let K be a simplicial complex on the set [m]. We always assume
that ∅ ∈ K . The moment-angle complex corresponding to K is defined as

ZK =
⋃

I∈K

BI , (7.4)

where
BI = µ−1(CI) = {(z1, . . . , zm) ∈ D

m : |zj |2 = 1 for j /∈ I},
and the union in (7.4) is understood as a union of subsets inside the polydisk D

m.
Topologically, each BI is a product of |I| disks D2 and m − |I| circles S1. We
therefore may rewrite (7.4) as the following decomposition of ZK into a union of
products of disks and circles:

ZK =
⋃

I∈K

( ∏

i∈I

D2 ×
∏

i/∈I

S1

)
. (7.5)

From now on we shall denote the space BI by (D2, S1)I .
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We can rephrase (7.3) by saying that the map ĩZ : ZP → D
m identifies the

moment-angle manifold ZP with the moment-angle complex ZKP
corresponding

to KP = ∂P ∗.
A ghost vertex of K is a one-element subset {i} ∈ [m] which is not in K (that

is, is not a vertex). Since facets of a simple polytope P correspond to vertices of
KP , it is natural to add a ghost vertex to KP for each redundant inequality in
a generic presentation (2.1).

Example 7.5. 1. Let K = ∆m−1 be the full simplex (the simplicial complex
consisting of all subsets of [m]). Then ZK = D

m.
2. Let K be a simplicial complex on [m], and let K ◦ be the complex on

[m + 1] obtained by adding one ghost vertex ◦ = {m + 1} to K . Then in the
decomposition (7.4) for ZK ◦ each BI has the factor S1 in the last coordinate, and

ZK ◦ = ZK × S1.

In the case K = KP this agrees with Proposition 4.3 (b).
In particular, if K is the ‘empty’ simplicial complex on [m], consisting solely of

the empty simplex ∅, then ZK = µ−1(1, . . . , 1) = T
m is the standard m-torus.

For an arbitrary complex K on [m], the moment-angle complex ZK contains
the m-torus T

m (corresponding to K = ∅) and is contained in the polydisk D
m

(corresponding to K = ∆m−1).
3. Let K be the complex consisting of two separate points. Then

ZK = (D2 × S1) ∪ (S1 ×D2) = ∂(D2 ×D2) ∼= S3

is the standard decomposition of a 3-sphere into the union of two solid tori.
4. More generally, if K = ∂∆m−1 (the boundary of a simplex), then

ZK = (D2 × · · · ×D2 × S1) ∪ (D2 × · · · × S1 ×D2) ∪ · · · ∪ (S1 × · · · ×D2 ×D2)

= ∂
(
(D2)m

) ∼= S2m−1.

5. Let be the boundary of a 4-gon. Then we have four maximal simplices

{1, 3}, {2, 3}, {1, 4}, {2, 4}, and

ZK = (D2 × S1 ×D2 × S1) ∪ (S1 ×D2 ×D2 × S1)

∪ (D2 × S1 × S1 ×D2) ∪ (S1 ×D2 × S1 ×D2)

=
(
(D2 × S1) ∪ (S1 ×D2)

)
×D2 × S1 ∪

(
(D2 × S1) ∪ (S1 ×D2)

)
× S1 ×D2

=
(
(D2 × S1) ∪ (S1 ×D2)

)
×

(
(D2 × S1) ∪ (S1 ×D2)

) ∼= S3 × S3.

The last example can be generalized as follows. Recall that the join of simplicial
complexes K1 and K2 on respective sets V1 and V2 is the simplicial complex

K1 ∗K2 = {I ⊂ V1 ⊔ V2 : I = I1 ∪ I2, I1 ∈ K1, I2 ∈ K2}

on the set V1 ⊔ V2.

Proposition 7.6. ZK1∗K2 = ZK1 ×ZK2 .
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Proof. Indeed,

ZK1∗K2
=

⋃

I1∈K1, I2∈K2

(D2, S1)I1⊔I2 =
⋃

I1∈K1, I2∈K2

(D2, S1)I1 × (D2, S1)I2

=

( ⋃

I1∈K1

(D2, S1)I1
)
×

( ⋃

I2∈K2

(D2, S1)I2
)

= ZK1
×ZK2

.

Corollary 7.7. Let P and Q be two simple polytopes. Then ZP×Q
∼= ZP ×ZQ .

Proof. Indeed, KP×Q = KP ∗KQ.

Since ZKP
∼= ZP , the moment-angle complex corresponding to the boundary

of a simplicial polytope is a manifold. This is also true for the moment-angle
complex corresponding to any triangulated sphere (although not every triangulation
of a sphere is the boundary of a simplicial polytope; see for instance, [14], § 2.3).

Theorem 7.8 ([14], Lemma 7.13). Let K be a triangulation of Sn−1 with m
indices. Then ZK is a (closed) topological manifold of dimension m+ n.

As we shall see in the next section, moment-angle complexes corresponding to
complete simplicial fans are smooth manifolds. In general, it is not known whether
a smooth structure exists on moment-angle manifolds corresponding to arbitrary
triangulated spheres.

The topological structure of moment-angle complexes ZK is quite complicated
in general. The cohomology ring of ZK was described in [13], § 4.2 (with field
coefficients) and in [6] and [28] (with integer coefficients). It is known [31] that
if K is the k-dimensional skeleton of the simplex ∆m−1 (for any k,m), then the
corresponding moment-angle complex ZK is homotopy equivalent to a wedge of
spheres. Also, it is known that if P is obtained from a simplex by successive
truncation of vertices by hyperplanes (so that the polar polytope P ∗ is stacked),
then ZP is diffeomorphic to a connected sum of sphere products, with two spheres
in each product (this result is due to McGavran, cf. [10], Theorem 6.3; see also [30]).
Finding more series of polytopes or simplicial complexes for which the topology of
ZK can be described explicitly is a challenging task. Many non-trivial topological
phenomena occur already in the cohomology of ZK . For instance, moment-angle
manifolds are generally not formal (in the sense of rational homotopy theory);
the first examples of ZP with non-trivial Massey products in cohomology appear
already for 3-dimensional polytopes P (see [5]).

7.3. Polyhedral products. The decomposition (7.5) of ZK using the disk and
circle (D2, S1) is readily generalized to arbitrary pairs of spaces.

Construction 7.9 (polyhedral product). Let K be a simplicial product on [m]
and let

(X,A) = {(X1, A1), . . . , (Xm, Am)}
be a set of m pairs of spaces with Ai ⊂ Xi. For each simplex I ∈ K we set

(X,A)I =

{
(x1, . . . , xm) ∈

m∏

i=1

Xi : xi ∈ Ai for i /∈ I
}

(7.6)
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and define the polyhedral product of (X,A) corresponding to K by

(X,A)K =
⋃

I∈K

(X,A)I =
⋃

I∈K

( ∏

i∈I

Xi ×
∏

i/∈I

Ai

)
.

In the case when all the pairs (Xi, Ai) are the same, that is, Xi = X and Ai = A
for i = 1, . . . ,m, we use the notation (X,A)K for (X,A)K .

Example 7.10. 1. The moment-angle complex ZK is the polyhedral product
(D2, S1)K (when considered abstractly) or (D,S)K (when viewed as a subcomplex
of D

m).
2. The cubical subcomplex cP (P ) ⊂ I

m in Construction 7.1 is given by

cP (P ) = (I, 1)KP ,

where I = [0, 1] is the unit interval and 1 its endpoint. For general K the polyhedral
product (I, 1)K is a cubical subcomplex of I

m that can be identified with the
quotient of ZK by the action of T

m. The space (I, 1)K is homeomorphic to the cone
over K (see [14], Proposition 5.12). We use the notation cc(K ) = (I, 1)K .

3. If K consists of m separate points and Ai = pt (a point), then

(X,pt)K = X1 ∨X2 ∨ · · · ∨Xm

is the wedge (or bouquet) of the spaces Xi.

Remark. The decomposition of ZK into a union of products of disks and circles first
appeared in [13], where the term ‘moment-angle complex’ for ZK = (D2, S1)K was
also introduced. Several other examples of polyhedral products (X,A)K (including
those in Example 7.10) were also considered in [13]. The definition of (X,A)K for
an arbitrary pair of spaces (X,A) was suggested to the authors by N. Strickland (in
a private communication, and also in an unpublished note) as a general framework
for the constructions in [13]; this definition was also included in the final version
of [13] and in [14]. Further generalizations of (X,A)K to a set of pairs of spaces
(X,A) were studied in the paper [31] of Grbić and Theriault, as well as the paper [4]
of Bahri, Bendersky, Cohen, and Gitler, where the term ‘polyhedral product’ was
introduced (following a suggestion of W. Browder). Since 2000, the terms ‘gener-
alized moment-angle complex’, ‘K -product’, and ‘partial product space’ have also
been used to refer to the spaces (X,A)K .

7.4. Complements of coordinate subspace arrangements, revisited. These
spaces provide another important class of examples of polyhedral products. We can
define the complement of a set of coordinate subspaces as in (6.3) for an arbitrary
simplicial complex K :

U(K ) = C
m \

⋃

{i1,...,ik}/∈K

{z ∈ C
m : zi1 = · · · = zik = 0}. (7.7)

It is easy to see that the complement of any set of coordinate subspaces of C
m

has the form U(K ) for some simplicial complex K on [m]. If the arrangement of
coordinate planes contains a hyperplane zi = 0, then {i} is a ghost vertex of the
corresponding simplicial complex K .
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Proposition 7.11. U(K ) = (C,C×)K .

Proof. For z = (z1, . . . , zm) ∈ C
m we wrote ω(z) = {i ∈ [m] : zi = 0} ⊂ [m], so

U(K ) = C
m \

⋃

I /∈K

LI = C
m \

⋃

I /∈K

{z : ω(z) ⊃ I} = C
m \

⋃

I /∈K

{z : ω(z) = I}

=
⋃

I∈K

{z : ω(z) = I} =
⋃

I∈K

{z : ω(z) ⊂ I} =
⋃

I∈K

(C,C×)I = (C,C×)K ,

where LI = {z ∈ C
m : zi1 = · · · = zik = 0} for I = {i1, . . . , ik}. �

Since each coordinate subspace is invariant under the standard action of T
m on

C
m, the complement U(K ) is also a T

m-invariant subset of C
m.

Recall that a deformation retraction of a space X onto a subspace A is a con-
tinuous family of maps (a homotopy) Ft : X → X, t ∈ I, such that F0 = id (the
identity map), F1(X) = A, and Ft|A = id for all t. Often the term ‘deformation
retraction’ refers only to the last map f = F1 : X → A in the family. This map is
a homotopy equivalence.

Theorem 7.12 [14]. The moment-angle complex ZK is a T
m-invariant subspace

of U(K ), and there is a T
m-equivariant deformation retraction

ZK →֒ U(K )→ ZK .

Proof. Since D ⊂ C and S ⊂ C
×, we have ZK = (D,S)K ⊂ (C,C×)K = U(K ),

and the subset ZK ⊂ U(K ) is obviously T
m-invariant.

Any simplicial complex K can be obtained from ∆m−1 by successive removal of
maximal simplices (so that we get a simplicial complex at each intermediate step),
and we shall construct the deformation retraction U(K )→ ZK by induction.

The base of induction is clear: if K = ∆m−1, then U(K ) = C
m, ZK = D

m,
and the retraction C

m → D
m is evident.

The orbit space ZK /Tm is the cubical complex cc(K ) = (I, 1)K (see Exam-
ple 7.10.2). The orbit space U(K )/Tm can be identified with

U(K )> = U(K ) ∩ R
m
> = (R>,R>)K ,

where R
m
> is viewed as a subset of C

m.

We shall first construct a deformation retraction r : U(K )> → cc(K ) of orbit
spaces, and then cover it by a deformation retraction r̃ : U(K )→ ZK .

Assume now that K is obtained from a simplicial complex K ′ by removing one
maximal simplex J = {j1, . . . , jk}, that is, K ∪J = K ′. Then the cubical complex
cc(K ′) is obtained from cc(K ) by adding a single k-dimensional face CJ = (I, 1)J .
We also have U(K ) = U(K ′) \ LJ , so that

U(K )> = U(K ′)> \ {y : yj1 = · · · = yjk = 0}.

We may assume by induction that there is a deformation retraction r′ : U(K ′)> →
cc(K ′) such that ω(r′(y)) = ω(y), where ω(y) is the set of zero coordinates of y.
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In particular, r′ restricts to a deformation retraction

r′ : U(K ′)> \ {y : yj1 = · · · = yjk = 0} → cc(K ′) \ yJ ,

where yJ is the point with coordinates yj1 = · · · = yjk = 0 and yj = 1 for j /∈ J .
Since J /∈ K , we have yJ /∈ cc(K ). On the other hand, yJ belongs to the extra

face CJ = (I, 1)J of cc(K ′). We therefore may apply the deformation retraction rJ
shown in Fig. 7.2 on the face CJ with centre at yJ . In coordinates, a homotopy Ft
between the identity map cc(K ′)\ yJ → cc(K ′)\yJ (for t = 0) and the retraction
rJ : cc(K ′) \ yJ → cc(K ) (for t = 1) is given by

Ft : cc(K ′) \ yJ → cc(K ′) \ yJ ,
(y1, . . . , ym, t) 7→ (y1 + tα1y1, . . . , ym + tαmym),

where

αi =





1−maxj∈J yj
maxj∈J yj

if i ∈ J,

0 if i /∈ J,
1 6 i 6 m.

We observe that ω(Ft(y)) = ω(y) for any t and y ∈ cc(K ′). The composition

r : U(K )> = U(K ′)> \{y : yj1 = · · · = yjk = 0} r′−→ cc(K ′)\yJ rJ−→ cc(K ) (7.8)

is a deformation retraction, and it satisfies ω(r(y)) = ω(y), since this is true for rJ
and r′. The inductive step is now complete. The required retraction r̃ : U(K ) →
ZK covers r as shown in the following commutative diagram:

ZK

�

�

//

µ

��

U(K )
r̃ //

µ

��

ZK

µ

��
cc(K )

�

�

// U>(K )
r // cc(K )

Explicitly, r̃ is decomposed inductively in a way similar to (7.8),

r̃ : U(K ) = U(K ′) \ LJ r̃′−→ ZK ′ \ µ−1(yJ)
r̃J−→ ZK ,

Figure 7.2. The retraction rJ : cc(K ′) \ yJ → cc(K )
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where µ−1(yJ) =
∏
j∈J{0} ×

∏
j /∈J S, and r̃J is given by

(√
y1 e

iϕ1 , . . . ,
√
ym e

iϕm
)
7→

(√
y1 + α1y1 e

iϕ1 , . . . ,
√
ym + αmym e

iϕm
)

in the coordinates (z1, . . . , zm) =
(√
y1 e

iϕ1 , . . . ,
√
ym e

iϕm
)
, with αi as above. �

As we shall see in § 9, in the case when K = KΣ is the underlying complex
of a complete simplicial fan Σ, the deformation retraction U(K ) → ZK can be
realized as the quotient map for an action of R

m−n on U(K ).

In the remaining sections we shall concentrate on the geometric aspects of the
theory of moment-angle complexes, and moment-angle manifolds corresponding
to polytopes and complete simplicial fans will be our main objects of interest.
Nevertheless, the homotopy theory of general moment-angle complexes has by now
gained its own momentum, and we refer to [14], Chap. 6, [23], [31], [53], and [4] for
the main stages of its development.

8. LVM-manifolds

Bosio and Meersseman [10] identified polytopal moment-angle manifolds ZP with
a class of non-Kähler complex-analytic manifolds introduced in the works of López
de Medrano, Verjovsky, and Meersseman (LVM-manifolds). This was the starting
point in the subsequent study of the complex geometry of moment-angle manifolds.
Here we review the construction of LVM-manifolds and its connection to polytopal
moment-angle manifolds.

The initial data of the construction of an LVM-manifold is a link of a homoge-
neous system of quadrics similar to (4.2), but with complex coefficients:

L =





z ∈ C
m :

m∑

k=1

|zk|2 = 1,

m∑

k=1

ζk|zk|2 = 0





, (8.1)

where ζk ∈ C
s. We can obviously turn this link into the form (4.2) by identify-

ing C
s with R

2s in the standard way, so that each ζk becomes a gk ∈ R
m−n−1,

where n = m − 2s − 1. We assume that the link is non-degenerate, that is, the
system of complex vectors (ζ1, . . . , ζm) (or the corresponding system of real vectors
(g1, . . . ,gm)) satisfies the conditions (a) and (b) of Proposition 4.6.

Now define the manifold N as the projectivization of the intersection of homo-
geneous quadrics in (8.1):

N = {z ∈ CPm−1 : ζ1|z1|2 + · · ·+ ζm|zm|2 = 0}, ζk ∈ C
s. (8.2)

We therefore have a principal S1-bundle L → N .

Theorem 8.1 (Meersseman [43]). The manifold N has a holomorphic atlas descri-

bing it as a compact complex manifold of complex dimension m− 1− s.
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Sketch of proof. Consider the holomorphic action of C
s on C

m given by

C
s × C

m → C
m,

(w, z) 7→
(
z1e

⟨ζ1,w⟩, . . . , zme
⟨ζm,w⟩

)
,

(8.3)

where w = (w1, . . . , ws) ∈ C
s and ⟨ζk,w⟩ = ζ1kw1 + · · ·+ ζskws.

Let K be the simplicial complex consisting of zero-sets of points of the link L :

K = {ω(z) : z ∈ L }.

Observe that K = KP , where P is the simple polytope associated with the link L .
Let U = U(K ) be the corresponding complement of the subspace arrangement
given by (7.7), and note that Proposition 2.10 implies that U can also be defined
as

U =
{
(z1, . . . , zm) ∈ C

m : 0 ∈ conv(ζj : zj ̸= 0)
}
.

An argument similar to that in the proof of Lemma 5.4 shows that the restriction
of the action (8.3) to U ⊂ C

m is free. Also, this restricted action is proper (we
shall prove this in more general context in Theorem 10.3), so the quotient U/Cs is
Hausdorff. Using a holomorphic atlas transverse to the orbits of the free action of
C
s on the complex manifold U , we get that the quotient U/Cs has the structure

of a complex manifold.
On the other hand, it can be shown that the function |z1|2 + · · ·+ |zm|2 on C

m

has a unique minimum when restricted to an orbit of the free action of C
s on U .

The set of these minima can be described as

T =
{
z ∈ C

m \ {0} : ζ1|z1|2 + · · ·+ ζm|zm|2 = 0
}
.

It follows that the quotient U/Cs can be identified with T , and therefore T acquires
the structure of a complex manifold of dimension m− s.

By projectivizing the construction we identify N with the quotient of the com-
plement of a coordinate subspace arrangement in CPm−1 (the projectivization of U)
by a holomorphic action of C

s. In this way N becomes a compact complex mani-
fold.

The manifold N with the complex structure in Theorem 8.1 is referred to as an
LVM-manifold. These manifolds were described by Meersseman [43] as a general-
ization of the construction of López de Medrano and Verjovsky in [41].

Remark. The embedding of T in C
m and of N in CPm−1 given by (8.2) is not

holomorphic.

A polytopal moment-angle manifold ZP is diffeomorphic to a link (4.2), which
can be turned into a complex link (8.1) whenever m+ n is odd. It follows that the
quotient ZP /S

1 of an odd-dimensional moment-angle manifold has the complex-
analytic structure of an LVM-manifold. By adding redundant inequalities and using
the S1-bundle L → N , Bosio and Meersseman observed that ZP or ZP ×S1 also
admits the structure of an LVM-manifold, depending on whether m+ n is even or
odd.

We first summarize the effects that a redundant inequality in (2.1) has on the
different spaces appearing above.
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Proposition 8.2. Assume that (2.1) is a generic presentation. Then the following

conditions are equivalent:
(a) ⟨ai,x⟩+ bi > 0 is a redundant inequality in (2.1) (that is, Fi = ∅);
(b) ZP ⊂ {z ∈ C

m : zi ̸= 0};
(c) {i} is a ghost vertex in KP ;
(d) U(KP ) has the factor C

× in the ith coordinate;
(e) 0 /∈ conv(gk : k ̸= i).

Proof. The equivalence of the first four conditions follows directly from the defini-
tions. The equivalence (a)⇔ (e) follows from Proposition 2.10. �

Theorem 8.3 [10]. Let ZP be the moment angle manifold corresponding to an

n-dimensional simple polytope (2.1) defined by m inequalities.
(a) If m+ n is even, then ZP has a complex structure as an LVM-manifold.
(b) If m+n is odd, then ZP ×S1 has a complex structure as an LVM-manifold.

Proof. (a) We add one redundant inequality of the form 1 > 0 to (2.1) and denote
the resulting manifold in (3.1) by Z ′

P . Then Z ′
P
∼= ZP × S1. By Proposition 4.5,

ZP is diffeomorphic to a link given by (4.2). Then Z ′
P is given by the intersection

of quadrics




z ∈ C
m+1 : |z1|2 + · · · + |zm|2 = 1,

g1|z1|2 + · · · + gm|zm|2 = 0,
|zm+1|2 = 1



 ,

which is diffeomorphic to the link given by




z ∈ C
m+1 : |z1|2 + · · · + |zm|2 + |zm+1|2 = 1,

g1|z1|2 + · · · + gm|zm|2 = 0,
|z1|2 + · · · + |zm|2 − |zm+1|2 = 0



 .

If we denote by Γ ⋆ = (g1 . . .gm) the (m− n− 1)×m matrix of coefficients of the
homogeneous quadrics for ZP , then the corresponding matrix for Z ′

P is

Γ ⋆′ =

(
g1 · · · gm 0
1 · · · 1 −1

)
.

Its height m − n is even, so that we may think of its ith column as a complex
vector ζi (by identifying R

m−n with C
(m−n)/2) for i = 1, . . . ,m+ 1. Now define

N ′ = {z ∈ CPm : ζ1|z1|2 + · · ·+ ζm+1|zm+1|2 = 0}. (8.4)

Then N ′ has a complex structure as an LVM-manifold by Theorem 8.1. On the
other hand,

N ′ ∼= Z ′
P /S

1 = (ZP × S1)/S1 ∼= ZP ,

so that ZP also acquires a complex structure.
(b) The proof here is similar, but we have to add two redundant inequalities

1 > 0 to (2.1). Then Z ′
P
∼= ZP × S1 × S1 is given by the link





z ∈ C
m+2 : |z1|2 + · · ·+ |zm|2 + |zm+1|2 + |zm+2|2 = 1,

g1|z1|2 + · · ·+ gm|zm|2 = 0,
|z1|2 + · · ·+ |zm|2 − |zm+1|2 = 0,
|z1|2 + · · ·+ |zm|2 − |zm+2|2 = 0




.
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The matrix of coefficients of the homogeneous quadrics is therefore

Γ ⋆′ =




g1 · · · gm 0 0
1 · · · 1 −1 0
1 · · · 1 0 −1


 .

We think of its columns as a set of m+ 2 complex vectors ζ1, . . . , ζm+2, and define

N ′ =
{
z ∈ CPm+1 : ζ1|z1|2 + · · ·+ ζm+2|zm+2|2 = 0

}
. (8.5)

Then N ′ has a complex structure as an LVM-manifold. On the other hand,

N ′ ∼= Z ′
P /S

1 = (ZP × S1 × S1)/S1 ∼= ZP × S1,

and therefore ZP × S1 has a complex structure. �

In the next two sections we describe a more direct method of giving ZP a complex
structure, without referring to projectivized quadrics and LVM-manifolds. This
approach, developed in [54], works not only in the polytopal case, but also for
the moment-angle manifolds ZK corresponding to underlying complexes K of
complete simplicial fans.

9. Moment-angle manifolds from simplicial fans

Let K = KΣ be the underlying complex of a complete simplicial fan Σ, and
let U(K ) be the complement of the coordinate subspace arrangement (7.7) defined
by K . Here we shall identify the moment-angle manifold ZK with the quotient of
U(K ) by a smooth action of a non-compact group isomorphic to R

m−n, thereby
defining a smooth structure on ZK . A modification of this construction will be
used in the next section to endow ZK with a complex structure. These results
were obtained in the paper [54] of Ustinovsky and the author.

Recall from § 6.1 that a simplicial fan Σ can be defined by data {K ;a1, . . . ,am},
where
• K is a simplicial complex on [m],
• a1, . . . ,am is a configuration of vectors in NR

∼= R
n such that the subset

{ai : i ∈ I} is linearly independent for any simplex I ∈ K .
Here is an important point in which our approach to fans differs from the stan-

dard one adopted in toric geometry: since we allow ghost vertices in K , we do
not require that each vector ai spans a one-dimensional cone in Σ. The vector ai
corresponding to a ghost vertex {i} ∈ [m] may be zero. This formalism was also
used in [7] under the name triangulated vector configurations.

Construction 9.1. For a set of vectors a1, . . . ,am consider the linear map

A : R
m → NR, ei 7→ ai, (9.1)

where e1, . . . , em is the standard basis of R
m. Let

R
m
> = {(y1, . . . , ym) ∈ R

m : yi > 0}
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be the multiplicative group of m-tuples of positive real numbers, and define the
subgroup

R = exp(KerA) = {(ey1 , . . . , eym) : (y1, . . . , ym) ∈ KerA}

=

{
(t1, . . . , tm) ∈ R

m
> :

m∏

i=1

t
⟨ai,u⟩
i = 1 for all u ∈ N∗

R

}
. (9.2)

We let R
m
> act on the complement U(K ) ⊂ C

m by coordinatewise multiplications
and consider the restricted action of the subgroup R ⊂ R

m
> . Recall that an action of

a topological group G on a space X is proper if the group action map h : G×X →
X ×X, (g, x) 7→ (gx, x) is proper (the pre-image of a compact subset is compact).

Theorem 9.2 [54]. Assume as given data {K ;a1, . . . ,am} satisfying the condi-

tions above. Then:
(a) the group R given by (9.2) acts on U(K ) freely;
(b) if {K ;a1, . . . ,am} defines a simplicial fan Σ, then R acts on U(K ) properly,

so the quotient U(K )/R is a smooth Hausdorff (m+ n)-dimensional manifold;
(c) if the fan Σ is complete, then U(K )/R is homeomorphic to the moment-angle

manifold ZK .
Therefore, ZK can be smoothed whenever K = KΣ for a complete simplicial

fan Σ.

Proof. The statement (a) is proved in the same way as Proposition 6.7. Indeed,
a point z ∈ U(K ) has a non-trivial stabilizer with respect to the action of R

m
> only

if some of its coordinates vanish. These R
m
> -stabilizers are of the form (R>, 1)I

(see (7.6)) for some I ∈ K . The restriction of expA to any such (R>, 1)I is an
injection. Therefore, R = exp(KerA) intersects any R

m
> -stabilizer only at the unit,

which implies that the R-action on U(K ) is free.
Let us prove (b). Consider the map

h : R× U(K )→ U(K )× U(K ), (g, z) 7→ (gz, z)

for g ∈ R, z ∈ U(K ). Let V ⊂ U(K ) × U(K ) be a compact subset; we need to
show that h−1(V ) is compact. Since R × U(K ) is metrizable, it suffices to check
that any infinite sequence {(g(k), z(k)) : k = 1, 2, . . . } of points in h−1(V ) contains
a converging subsequence. Because V ⊂ U(K )×U(K ) is compact, we may assume
by passing to a subsequence that the sequence

{h(g(k), z(k))} = {(g(k)z(k), z(k))}

has a limit in U(K )× U(K ). We set w(k) = g(k)z(k) and assume that

{w(k)} → w = (w1, . . . , wm), {z(k)} → z = (z1, . . . , zm)

for some w, z ∈ U(K ). We need to show that a subsequence of {g(k)} has a limit
in R. We write

g(k) =
(
g
(k)
1 , . . . , g(k)

m

)
=

(
eα

(k)
1 , . . . , eα

(k)
m

)
∈ R ⊂ R

m
> ,
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α
(k)
j ∈ R. By passing to a subsequence we may assume that each sequence {α(k)

j },
j = 1, . . . ,m, has a finite or infinite limit (including ±∞). Let

I+ = {j : α
(k)
j → +∞} ⊂ [m], I− = {j : α

(k)
j → −∞} ⊂ [m].

Since the sequences {z(k)}, {w(k) = g(k)z(k)} are converging to z,w ∈ U(K ),
respectively, we have zj = 0 for j ∈ I+ and wj = 0 for j ∈ I−. Then it follows from
the decomposition U(K ) =

⋃
I∈K

(C,C×)I that I+ and I− are simplices in K .
Let σ+, σ− be the corresponding cones of the simplicial fan Σ. Then σ+∩σ− = {0}
by the definition of a fan. By Lemma 6.1 there exists a linear function u ∈ N∗

R
such

that ⟨u,a⟩ > 0 for any non-zero a ∈ σ+, and ⟨u,a⟩ < 0 for any non-zero a ∈ σ−.
Since g(k) ∈ R, it follows from (9.2) that

m∑

j=1

α
(k)
j ⟨u,aj⟩ = 0. (9.3)

This implies that both I+ and I− are empty, since otherwise the latter sum tends

to infinity. Thus, each sequence {α(k)
j } has a finite limit αj , and a subsequence

of {g(k)} converges to (eα1 , . . . , eαm). Passing to the limit in (9.3), we find that
(eα1 , . . . , eαm) ∈ R. This proves the properness of the action. Since the Lie group
R(Σ) acts smoothly, freely, and properly on the smooth manifold U(K ), the orbit
space U(K )/R is Hausdorff and smooth by a standard result ([39], Theorem 9.16).

In the case of a complete fan it is possible to construct a smooth atlas on U(K )/R
explicitly. To do this, it is convenient to pre-factorize everything by the action
of T

m, as in the proof of Theorem 7.12. We have

U(K )/Tm = (R>,R>)K =
⋃

I∈K

(R>,R>)I .

Since the fan Σ is complete, we may take the union above only over n-element
simplices I = {i1, . . . , in} ∈ K . Consider one such simplex I; the generators of the
corresponding n-dimensional cone σ ∈ Σ are ai1 , . . . ,ain . Let u1, . . . ,un denote
the dual basis of N∗

R
, that is, ⟨aik ,uj⟩ = δkj . Now consider the map

pI : (R>,R>)I → R
n
>,

(y1, . . . , ym) 7→
( m∏

i=1

y
⟨ai,u1⟩
i , . . . ,

m∏

i=1

y
⟨ai,un⟩
i

)
,

where we set 00 = 1. Note that zero cannot occur with a negative exponent in
the right-hand side, hence pI is well defined as a continuous map. Each subset
(R>,R>)I is R-invariant, and it follows from (9.2) that pI induces an injective map

qI : (R>,R>)I/R→ R
n
>.

This map is also surjective since every (x1, . . . , xn) ∈ R
n
> is covered by (y1, . . . , ym),

where yij = xj for 1 6 j 6 n and yk = 1 for k /∈ {i1, . . . , in}. Hence qI is
a homeomorphism. It is covered by a T

m-equivariant homeomorphism

qI : (C,C×)I/R→ C
n × T

m−n,



544 T. E. Panov

where C
n is identified with the quotient R

n
>×T

n/ ∼ (see (4.1)). Since U(K )/R is

covered by open subsets (C,C×)I/R and C
n × T

m−n embeds as an open subset of
R
m+n, the set of homeomorphisms {qI : I ∈ K } provides an atlas for (K )/R. The

changes of coordinates qJq
−1
I : C

n×T
m−n → C

n×T
m−n are smooth by inspection;

thus U(K )/R is a smooth manifold.

Remark. The set of homeomorphisms {qI : (R>,R>)I/R → R
n
>} defines an atlas

for the smooth manifold with corners ZK /Tm. If K = KP for some simple poly-
tope P , then this smooth structure with corners coincides with that of P .

It remains to prove the statement (c), that is, to identify U(K )/R with ZK .
If X is a Hausdorff locally compact space with a proper G-action, and Y ⊂ X
a compact subspace which intersects every G-orbit at a single point, then Y is
homeomorphic to the orbit space X/G. Therefore, we need to verify that each
R-orbit intersects ZK ⊂ U(K ) at a single point. We first prove that the R-orbit
of any point y ∈ U(K )/Tm = (R>,R>)K intersects ZK /Tm at a single point.
For this we use the cubical decomposition cc(K ) = (I, 1)K of ZK /Tm (see Exam-
ple 7.10.2).

Assume first that y ∈ R
m
> . The R-action on R

m
> is obtained by exponentiating

the linear action of KerA on R
m. Consider the subset (R6, 0)K ⊂ R

m, where R6

denotes the set of non-positive real numbers. It is taken by the exponential map
exp: R

m → R
m
> homeomorphically onto cc◦(K ) = ((0, 1], 1)K ⊂ R

m
> , where (0, 1]

denotes the half-open interval {y ∈ R : 0 < y 6 1}. The map

A : (R6, 0)K → NR (9.4)

takes every set (R6, 0)I to −σ, where σ ∈ Σ is the cone corresponding to I ∈ K .
Since Σ is complete, the map (9.4) is one-to-one.

The orbit of y under the action of R consists of points w ∈ R
m
> such that

expAw = expAy. Since Ay ∈ NR and the map (9.4) is one-to-one, there is
a unique point y′ ∈ (R6, 0)K such that Ay′ = Ay. And since expAy′ ⊂ cc◦(K ),
the R-orbit of y intersects cc◦(K ) and therefore cc(K ) at a unique point.

Now let y ∈ (R>,R>)K be an arbitrary point. Let ω(y) ∈ K be the set of
zero coordinates of y, and let σ ∈ Σ be the cone corresponding to ω(y). The
cones containing σ constitute a fan Stσ (called the star of σ) in the quotient space
NR/R⟨ai : i ∈ ω(y)⟩. The underlying simplicial complex of Stσ is the link lkω(y)
of ω(y) in K . Observe now that the action of R on the set

{(y1, . . . , ym) ∈ (R>,R>)K : yi = 0 for i ∈ ω(y)} ∼= (R>,R>)lkω(y)

coincides with the action of the group RStσ (defined by the fan Stσ). Here we can
repeat the above arguments for the complete fan Stσ and the action of RStσ on
(R>,R>)lkω(y). As a result, we get that each R-orbit intersects cc(K ) at a unique
point.

To finish the proof of (c) we consider the commutative diagram

ZK −−−−→ U(K )
y

yπ

cc(K ) −−−−→ (R>,R>)K
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where the horizontal arrows are embeddings and the vertical ones are projec-
tions onto the quotients of T

m-actions. Note that the projection π commutes
with the R-actions on U(K ) and (R>,R>)K , and the subgroups R and T

m

of (C×)m intersect trivially. It follows that each R-orbit intersects the full pre-image
π−1(cc(K )) = ZK at a unique point. Indeed, assume that z and rz are in ZK

for some z ∈ U(K ) and r ∈ R. Then π(z) and π(rz) = rπ(z) are in cc(K ), which
implies that π(z) = π(rz). Hence z = trz for some t ∈ T

m. We may assume that
z ∈ (C×)m, so that the action of both R and T

m is free (otherwise consider the
action on U(lkω(z))). It follows that tr = 1, which implies that r = 1, since R
and T

m intersect trivially. �

We do not know if Theorem 9.2 generalizes to other sphere triangulations.

Question 9.3.Describe the class of sphere triangulations K for which the moment-
angle manifold ZK admits a smooth structure.

Remark. Even if ZK admits a smooth structure for some simplicial complex K
not arising from a fan, such a structure does not come from a quotient U(K )/R
determined by data {K ;a1, . . . ,am}. In fact, the R-action on U(K ) is proper
and the quotient U(K )/R is Hausdorff precisely when {K ;a1, . . . ,am} defines
a fan, that is, the simplicial cones generated by any two subsets {ai : i ∈ I} and
{aj : j ∈ J} with I, J ∈ K can be separated by a hyperplane. This observation is
originally due to Bosio [9] (see also [2], § II.3 and [7]).

10. Complex geometry of moment-angle manifolds

Here we show that the even-dimensional moment-angle manifold ZK corre-
sponding to a complete simplicial fan Σ admits the structure of a complex manifold.
The idea is to replace the action of R ∼= R

m−n
> on U(K ) (whose quotient is ZK )

by a holomorphic action of C
m−n

2 on the same space.
In this section we assume that m − n is even. We can always achieve this by

adding a ghost vertex with any corresponding vector to our data {K ;a1, . . . ,am};
topologically, this amounts to multiplying ZK by a circle. Let ℓ = (m− n)/2.

We identify C
m (as a real vector space) with R

2m using the map

(z1, . . . , zm) 7→ (x1, y1, . . . , xm, ym),

where zk = xk + iyk, and we consider the R-linear map

Re: C
m → R

m, (z1, . . . , zm) 7→ (x1, . . . , xm).

In order to obtain a complex structure on the quotient ZK
∼= U(K )/R, we

replace the action of R by the action of a holomorphic subgroup C ⊂ (C×)m by
means of the following construction.

Construction 10.1. Let a1, . . . ,am be a configuration of vectors that span
NR
∼= R

n. Assume further that m − n = 2ℓ is even. Some of the vectors ai
may be zero. Recall the map A : R

m → NR with ei 7→ ai.
We choose a complex ℓ-dimensional subspace of C

m which projects isomorphi-
cally onto the real (m− n)-dimensional subspace KerA ⊂ R

m. More precisely, let
c ∼= C

ℓ, and choose a linear map Ψ : c→ C
m satisfying the two conditions:
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(a) the composite map c
Ψ−→ C

m Re−−→ R
m is a monomorphism;

(b) the composite map c
Ψ−→ C

m Re−−→ R
m A−→ NR is zero.

These two conditions are equivalent to the following:
(a′) Ψ(c) ∩ Ψ(c)= {0};
(b′) Ψ(c) ⊂ Ker(AC : C

m → NC),

where Ψ(c) is the complex conjugate space and AC : C
m → NC is the complexifica-

tion of the real map A : R
m → NR. Consider the following commutative diagram:

c
Ψ−−−−→ C

m Re−−−−→ R
m A−−−−→ NRyexp

yexp

(C×)m
| · |−−−−→ R

m
>

(10.1)

where the vertical arrows are the coordinatewise exponential maps, and | · | denotes
the map (z1, . . . , zm) 7→ (|z1|, . . . , |zm|). Now let

CΨ = expΨ(c) =
{(
e⟨ψ1,w⟩, . . . , e⟨ψm,w⟩

)
∈ (C×)m

}
, (10.2)

where w ∈ c and ψi ∈ c∗ is given by the ith coordinate projection c
Ψ−→ C

m → C.
Then CΨ ∼= C

ℓ is a complex analytic (but not algebraic) subgroup of (C×)m, and
therefore there is a holomorphic action of CΨ on C

m and on U(K ) obtained by
restriction.

Example 10.2. Let a1, . . . ,am be the configuration of m = 2ℓ zero vectors. We
supplement it by the empty simplicial complex K on [m] (with m ghost vertices),
so that the data {K ;a1, . . . ,am} define a complete fan in 0-dimensional space.
Then A : R

m → R
0 is a zero map and the condition (b) of Construction 10.1 is

void. The condition (a) means that c
Ψ−→ C

2ℓ Re−−→ R
2ℓ is an isomorphism of real

spaces.
Consider the quotient (C×)m/CΨ (note that U(K ) = (C×)m in our case). The

exponential map C
m → (C×)m identifies (C×)m with the quotient of C

m by the
imaginary lattice Γ = Z⟨2πie1, . . . , 2πiem⟩. The condition (a) implies that the pro-
jection p : C

m → C
m/Ψ(c) is non-singular on the imaginary subspace of C

m. In
particular, p(Γ) is a lattice of rank m = 2ℓ in C

m/Ψ(c) ∼= C
ℓ. Therefore,

(C×)m/CΨ ∼= (Cm/Γ)/Ψ(c) =
(
C
m/Ψ(c)

)/
p (Γ) ∼= C

ℓ/Z2ℓ

is a complex compact ℓ-dimensional torus.
Any complex torus can be obtained in this way. Indeed, let Ψ : c→ C

m be given

by a (2ℓ) × ℓ matrix

(
−B
E

)
, where E is the identity matrix and B is a square

matrix of size ℓ. Then p : C
m → C

m/Ψ(c) is given by the matrix (E B) in appro-
priate bases, and (C×)m/CΨ is isomorphic to the quotient of C

ℓ by the lattice
Z⟨e1, . . . , eℓ,b1, . . . ,bℓ⟩, where bk is the kth column of B. (The condition (b)
implies that the imaginary part of B is non-singular.)

For example, if ℓ = 1, then Ψ : C→ C
2 is given by w 7→ (βw,w) for some β ∈ C,

so that the subgroup (10.2) is

CΨ = {(eβw, ew)} ⊂ (C×)2.
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The condition (a) implies that β /∈ R. Then expΨ : C → (C×)2 is an embedding,
and

(C×)2/CΨ ∼= C/(Z⊕ βZ) = T 1
C(β)

is a complex 1-dimensional torus with lattice parameter β ∈ C.

Theorem 10.3 [54]. Assume that the data {K ;a1, . . . ,am} define a complete fan

Σ in NR
∼= R

n and m− n = 2ℓ. Let CΨ ∼= C
ℓ be given by (10.2). Then:

(a) the holomorphic action of CΨ on U(K ) is free and proper, and the quotient

U(K )/CΨ is a compact complex manifold;
(b) U(K )/CΨ is diffeomorphic to the moment-angle manifold ZK .

Therefore, ZK has a complex structure, in which each element of T
m acts by a holo-

morphic transformation.

Remark. A result similar to Theorem 10.3 was obtained by Tambour [57], but
his approach was somewhat different: he constructed complex structures on man-
ifolds ZK arising from rationally starshaped spheres K (underlying complexes
of complete rational simplicial fans) by relating them to a class of generalized
LVM-manifolds described by Bosio in [9].

Proof of Theorem 10.3. We first prove the statement (a). The stabilizer subgroups
of the (C×)m-action on U(K ) are of the form (C×, 1)I for I ∈ K . In order to
show that CΨ ⊂ (C×)m acts freely we need to check that CΨ has trivial intersection
with any stabilizer subgroup of (C×)m. Since CΨ embeds into R

m
> by (10.1), it is

enough to check that the image of CΨ in R
m
> intersects the image of (C×, 1)I in R

m
>

trivially. The former image is R and the latter image is (R>, 1)I ; the triviality of
their intersection follows from Theorem 9.2 (a).

We now prove the properness of this action. Consider the projection π : U(K )→
(R>,R>)K onto the quotient of the T

m-action and the commutative square

CΨ × U(K )
hC−−−−→ U(K )× U(K )

yf×π
yπ×π

R× (R>,R>)K hR−−−−→ (R>,R>)K × (R>,R>)K

where hC and hR denote the group action maps and f : CΨ → R is the isomorphism
given by the restriction of | · | : (C×)m → R

m
> . The pre-image h−1

C
(V ) of a compact

subset V ∈ U(K )×U(K ) is a closed subset of W = (f × π)−1 ◦ h−1
R
◦ (π× π)(V ).

The image (π × π)(V ) is compact, the action of R on (R>,R>)K is proper by
Theorem 9.2 (a), and the map f ×π is proper as the quotient projection for a com-
pact group action. Hence W is a compact subset of CΨ × U(K ), and h−1

C
(V ) is

compact as a closed subset of W .
The group CΨ ∼= C

l acts holomorphically, freely, and properly on the complex
manifold U(K ), and therefore the quotient manifold U(K )/CΨ has a complex stru-
cture.

As in the proof of Theorem 9.2, it is possible to describe a holomorphic atlas
of U(K )/CΨ . Since the action of CΨ on the quotient U(K )/Tm = (R>,R>)K

coincides with the action of R on the same space, the quotient of U(K )/CΨ by
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the action of T
m has exactly the same structure of a smooth manifold with corners

as the quotient of U(K )/R by T
m (see the proof of Theorem 9.2). This struc-

ture is determined by the atlas {qI : (R>,R>)I/R → R
n
>}, which lifts to a cover-

ing of U(K )/CΨ by the open subsets (C,C×)I/CΨ . For any I ∈ K the subset
(C,T)I ⊂ (C,C×)I intersects each orbit of the CΨ -action on (C,C×)I transversely
at a single point. Therefore, every (C,C×)I/CΨ ∼= (C,T)I acquires the structure
of a complex manifold. Since (C,C×)I ∼= C

n × (C×)m−n and the action of CΨ on
the (C×)m−n factor is free, the complex manifold (C,C×)I/CΨ is the total space of
a holomorphic C

n-bundle over the complex torus (C×)m−n/CΨ (see Example 10.2).
Writing trivializations of these C

n-bundles for every I, we obtain a holomorphic
atlas for U(K )/CΨ .

The proof of the statement (b) follows the lines of the proof of Theorem 9.2 (b).
We need to show that each CΨ -orbit intersects ZK ⊂ U(K ) at a single point. First
we show that the CΨ -orbit of any point in U(K )/Tm intersects ZK /Tm = cc(K )
at a single point; this follows from the fact that the actions of CΨ and R coincide on
U(K )/Tm. Then we show that each CΨ -orbit intersects the pre-image π−1(cc(K ))
at a single point by using the fact that CΨ and T

m have trivial intersection in (C×)m.
�

Example 10.4 (Hopf manifold). Let a1, . . . ,an+1 be a set of vectors which span
NR
∼= R

n and satisfy a linear relation λ1a1 + · · ·+ λn+1an+1 = 0 with all λk > 0.
Let Σ be the complete simplicial fan in NR whose cones are generated by all the
proper subsets of a1, . . . ,an+1. To make m−n even we add one more ghost vector
an+2. Hence m = n+ 2, ℓ = 1, and we have one more linear relation µ1a1 + · · ·+
µn+1an+1 + an+2 = 0 with µk ∈ R. The subspace KerA ⊂ R

n+2 is spanned by
(λ1, . . . , λn+1, 0) and (µ1, . . . , µn+1, 1).

Then K = KΣ is the boundary of an n-dimensional simplex with n+ 1 vertices
and one ghost vertex, ZK

∼= S2n+1 × S1, and U(K ) = (Cn+1 \ {0})× C
×.

The conditions (a) and (b) of Construction 10.1 imply that CΨ is a 1-dimensional
subgroup of (C×)m given in appropriate coordinates by

CΨ =
{
(eζ1w, . . . , eζn+1w, ew) : w ∈ C

}
⊂ (C×)m,

where ζk = µk+αλk for some α ∈ C\R. By changing the basis of KerA if necessary
we may assume that α = i. The moment-angle manifold ZK

∼= S2n+1×S1 acquires
a complex structure as the quotient U(K )/CΨ :

(
C
n+1 \ {0}

)
× C

×
/{

(z1, . . . , zn+1, t) ∼ (eζ1wz1, . . . , e
ζn+1wzn+1, e

wt)
}

∼=
(
C
n+1 \ {0}

)/{
(z1, . . . , zn+1) ∼ (e2πiζ1z1, . . . , e

2πiζn+1zn+1)
}
,

where z ∈ C
n+1 \{0} and t ∈ C

×. The right-hand side is the quotient of C
n+1 \{0}

by a diagonalizable action of Z. It is known as a Hopf manifold. For n = 0 we
obtain the complex torus (elliptic curve) in Example 10.2.

Theorem 10.3 can be generalized to the quotients of ZK by freely acting sub-
groups H ⊂ T

m (see [14], § 8.5). These include both toric quotients and LVM-
manifolds.
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Construction 10.5. Let Σ be a complete simplicial fan in NR defined by the data
{K ;a1, . . . ,am}, and let H ⊂ T

m be a subgroup which acts freely on the corre-
sponding moment-angle manifold ZK . Then H is a product of a torus and a finite
group, and h = dimH 6 m − n by Proposition 6.7 (H must intersect trivially
with an n-dimensional coordinate subtorus in T

m). Under an additional assump-
tion on H, we shall define a holomorphic subgroup D of (C×)m and introduce
a complex structure on ZK /H by identifying it with the quotient U(K )/D.

The additional assumption is compatibility with the fan data. We recall the
map AR : R

m → NR, ei 7→ ai, and let h ⊂ R
m be the Lie algebra of the subgroup

H ⊂ T
m. Assume that h ⊂ KerAR. We also assume that m − n − h = 2ℓ is

even (this can be satisfied by adding a zero vector to a1, . . . ,am). Let T = T
m/H

be the quotient torus, t its Lie algebra, and ρ : R
m → t the map of Lie algebras

corresponding to the quotient projection T
m → T .

Let c ∼= C
ℓ and choose a linear map Ω : c→ C

m satisfying the two conditions:

(a) the composite map c
Ω−→ C

m Re−−→ R
m ρ−→ t is a monomorphism;

(b) the composite map c
Ω−→ C

m Re−−→ R
m A−→ NR is zero.

Equivalently, choose a complex subspace c ⊂ tC such that the composite map

c→ tC
Re−−→ t is a monomorphism.

As in Construction 10.1, expΩ(c) ⊂ (C×)m is a holomorphic subgroup isomor-
phic to C

ℓ. Let HC ⊂ (C×)m be the complexification of H (it is a product of an
algebraic torus of dimension h and a finite group). It follows from (a) that the sub-
groups HC and expΩ(c) intersect trivially in (C×)m. We therefore define a complex
(h+ ℓ)-dimensional subgroup

DH,Ω = HC × expΩ(c) ⊂ (C×)m. (10.3)

Theorem 10.6 ([54], Theorem 3.7). Let Σ, K , and DH,Ω be as above. Then:
(a) the holomorphic action of the group DH,Ω on U(K ) is free and proper,

and the quotient U(K )/DH,Ω has the structure of a compact complex manifold of

complex dimension m− h− ℓ;
(b) there is a diffeomorphism between U(K )/DH,Ω and ZK /H defining a com-

plex structure on the quotient ZK /H in which each element of T = T
m/H acts by

a holomorphic transformation.

The proof is similar to that of Theorem 10.3 and is omitted.

Example 10.7. 1. If H is trivial (h = 0) then we obtain Theorem 10.3.
2. Let H be the diagonal circle in T

m. The condition h ⊂ KerAR implies
that the sum of the vectors a1, . . . ,am is zero; this can always be achieved by
rescaling them (since Σ is a complete fan). As a result, we obtain a complex
structure on the quotient ZK /S1 by the diagonal circle in T

m, provided that
m − n is odd. In the polytopal case K = KP , the quotient ZK /S1 embeds into
C
m \ {0}/C× = CPm−1 as an intersection of homogeneous quadrics (8.2), and the

complex structure on ZK /S1 is that of an LVM-manifold (see § 8).
3. Let h = dimH = m−n. Then h = KerA. Since h is the Lie algebra of a torus,

the (m − n)-dimensional subspace KerA ⊂ R
m is rational. By Gale duality, this

implies that the fan Σ is also rational. We have ℓ = 0, DH,Ω = HC
∼= (C×)m−n,

and U(K )/HC = ZK /H is the toric variety corresponding to Σ.
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As was shown by Ishida [34], any compact complex manifold with a maximal

effective holomorphic action of a torus is biholomorphic to a quotient ZK /H of
a moment-angle manifold with a complex structure described by Theorem 10.6.
(An effective action of T k on an m-dimensional manifold M is said to be maximal

if there exists a point x ∈M whose stabilizer has dimension m−k; the two extreme
cases are the free action of a torus on itself and the half-dimensional torus action
on a toric manifold.) The argument in [36] for recovering a fan Σ from a maximal
holomorphic torus action builds on the papers [37] and [38], where this result was
proved in particular cases. The main result in [38] provides the following purely
complex-analytic description of toric manifolds VΣ.

Theorem 10.8 ([38], Theorem 1). Let M be a compact connected complex manifold

of complex dimension n, equipped with an effective action of Tn by holomorphic

transformations. If the action has fixed points, then there exist a complete regular

fan Σ and a Tn-equivariant biholomorphism between VΣ and M .

11. Holomorphic principal bundles over

toric varieties and Dolbeault cohomology

In the case of rational simplicial normal fans ΣP a construction of Meersse-
man and Verjovsky [44] identifies the corresponding projective toric variety VP
as the base of a holomorphic principal Seifert fibration whose total space is the
moment-angle manifold ZP with the complex structure of an LVM-manifold, and
whose fibre is a compact complex torus of complex dimension ℓ = m−n

2 . (Seifert
fibrations are generalizations of holomorphic fibre bundles to the case when the base
is an orbifold.) If VP is a projective toric manifold, then there is a holomorphic free
action of a complex ℓ-dimensional torus T ℓ

C
on ZP with quotient VP .

Holomorphic (Seifert) fibrations with total space ZK were defined in [54] for
arbitrary complete rational simplicial fans Σ by using the construction of a com-
plex structure on ZK described in the previous section. By an application of the
Borel spectral sequence to the holomorphic fibration ZK → VΣ, the Dolbeault
cohomology of ZK can be described and some Hodge numbers can be calculated
explicitly.

Here we make the additional assumption that the set of integral linear combina-
tions of the vectors a1, . . . ,am is a full-rank lattice (a discrete subgroup isomorphic
to Z

n) in NR
∼= R

n. We denote this lattice by NZ or simply N . This assumption
implies that the complete simplicial fan Σ defined by the data {K ;a1, . . . ,am} is
rational. We also continue assuming that m− n is even and setting ℓ = m−n

2 .
Because of our rationality assumption, the algebraic group G is defined by (6.2).

Furthermore, since we defined N as the lattice generated by a1, . . . ,am, the group
G is isomorphic to (C×)2ℓ (that is, there are no finite factors). We also observe
that CΨ lies in G as an ℓ-dimensional complex subgroup. This follows from the
condition (b′) in Construction 10.1.

The quotient construction (§ 6.4) identifies the toric variety VΣ with U(K )/G,
provided that the vectors a1, . . . ,am are primitive generators of the edges of Σ.
In our data {K ;a1, . . . ,am} the vectors a1, . . . ,am are not necessarily primitive
in the lattice N generated by them. Nevertheless, the quotient U(K )/G is still
isomorphic to VΣ (see [2], Proposition II.3.1.7). Indeed, let a′

i ∈ N be the primitive
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generator along ai, so that ai = ria
′
i for some positive integer ri. Then we have

a finite branched covering

U(K )→ U(K ), (z1, . . . , zm) 7→ (zr11 , . . . , z
rm
m ),

which maps the groupG defined by a1, . . . ,am to the groupG′ defined by a′
1, . . . ,a

′
m

(see (6.2)). We therefore obtain a covering U(K )/G → U(K )/G′ of the toric
variety VΣ

∼= U(K )/G ∼= U(K )/G′ over itself. Having this in mind, we can relate
the quotients VΣ

∼= U(K )/G and ZK
∼= U(K )/CΨ as follows.

Proposition 11.1. Assume that the data {K ;a1, . . . ,am} define a complete sim-

plicial rational fan Σ, and let G and CΨ be the groups defined by (6.2) and (10.2).
(a) The toric variety VΣ is identified, as a topological space, with the quotient of

ZK by the holomorphic action of the complex compact torus G/CΨ .
(b) If the fan Σ is regular, then VΣ is the base of a holomorphic principal bundle

with total space ZK and fibre the complex compact torus G/CΨ .

Proof. To prove (a) we just observe that

VΣ = U(K )/G =
(
U(K )/CΨ

)/
(G/CΨ ) ∼= ZK

/
(G/CΨ ),

where we have used Theorem 10.3. The quotient G/CΨ is a compact complex
ℓ-torus by Example 10.2. To prove (b) we observe that the holomorphic action of
G on U(K ) is free by Proposition 6.7, and the same is true for the action of G/CΨ
on ZK . A holomorphic free action of the torus G/CΨ gives rise to a principal
bundle. �

Remark. As in the projective situation of [44], if the fan Σ is not regular, then the
quotient projection ZK → VΣ in Proposition 11.1 (a) is a holomorphic principal
Seifert fibration for an appropriate orbifold structure on VΣ.

For a complex n-dimensional manifold M the space Ω∗
C
(M) of complex differen-

tial forms onM decomposes into the direct sum
⊕

06p,q6nΩ
p,q(M) of the subspaces

of (p, q)-forms, and the Dolbeault differential ∂̄ : Ωp,q(M)→ Ωp,q+1(M) is defined.
The dimensions hp,q(M) of the Dolbeault cohomology groups Hp,q

∂̄
(M) are known

as the Hodge numbers ofM . They are important invariants of the complex structure
on M .

The Dolbeault cohomology of a compact complex ℓ-torus T ℓ
C

is isomorphic to an
exterior algebra on 2ℓ generators:

H∗,∗

∂̄
(T ℓC) ∼= Λ[ξ1, . . . , ξℓ, η1, . . . , ηℓ], (11.1)

with ξ1, . . . , ξℓ ∈ H1,0

∂̄
(T ℓ

C
) the classes of basis holomorphic 1-forms and η1, . . . , ηℓ ∈

H0,1

∂̄
(T ℓ

C
) the classes of basis antiholomorphic 1-forms. In particular, the Hodge

numbers are given by hp,q(T ℓ
C
) =

(
ℓ
p

) (
ℓ
q

)
.

The de Rham cohomology of a complete non-singular toric variety VΣ admits
a Hodge decomposition with only non-trivial components of bidegree (p, p), 0 6

p 6 n ([20], § 12). This, together with the cohomology calculation of Danilov and
Jurkiewicz ([20], § 10), gives the following description of the Dolbeault cohomology:

H∗,∗

∂̄
(VΣ) ∼= C[v1, . . . , vm]/(IK + JΣ), (11.2)
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where vi ∈ H1,1

∂̄
(VΣ) are the cohomology classes corresponding to torus-invariant

divisors (one for each one-dimensional cone in Σ), the ideal IK is generated
by the monomials vi1 · · · vik for which ai1 , . . . ,aik do not span a cone in Σ (the
Stanley–Reisner ideal of K ), and the ideal JΣ is generated by the linear forms∑m
j=1⟨aj ,u⟩vj with u ∈ N∗. We have hp,p(VΣ) = hp, where (h0, h1, . . . , hn) is the

h-vector of K ([14], § 2.1) and hp,q(VΣ) = 0 for p ̸= q.

Theorem 11.2 [54]. Assume that the data {K ;a1, . . . ,am} define a complete regu-

lar fan Σ in NR
∼= R

n , m−n = 2ℓ, and let ZK be the corresponding moment-angle

manifold with a complex structure defined in Theorem 10.3. Then the Dolbeault

cohomology algebra H∗,∗

∂̄
(ZK ) is isomorphic to the cohomology of the differential

bigraded algebra [
Λ[ξ1, . . . , ξℓ, η1, . . . , ηℓ]⊗H∗,∗

∂̄
(VΣ), d

]
(11.3)

with differential d of bidegree (0, 1) defined on the generators as follows:

dvi = dηj = 0, dξj = c(ξj), 1 6 i 6 m, 1 6 j 6 ℓ,

where c : H1,0

∂̄
(T ℓ

C
) → H2(VΣ,C) = H1,1

∂̄
(VΣ) is the first Chern class map of the

principal T ℓ
C
-bundle ZK → VΣ .

Proof. We use the notion of a minimal Dolbeault model of a complex manifold [27],
§ 4.3. Let [B, dB ] be such a model for VΣ, that is, [B, dB ] is a minimal commu-
tative bigraded differential algebra together with a quasi-isomorphism f : B∗,∗ →
Ω∗,∗(VΣ) (that is, f commutes with the differentials dB and ∂̄, and induces an
isomorphism in cohomology). Consider the differential bigraded algebra

[
Λ[ξ1, . . . , ξℓ, η1, . . . , ηℓ]⊗B, d

]
,

where d
∣∣
B

= dB , d(ξi) = c(ξi) ∈ B1,1 = H1,1

∂̄
(VΣ), d(ηi) = 0.

(11.4)

By [27], Corollary 4.66, this algebra gives a model for the Dolbeault cohomology
algebra of the total space ZK of the principal T ℓ

C
-bundle ZK → VΣ, provided that

VΣ is strictly formal. We recall from [27], Definition 4.58 that a complex manifold
M is strictly formal if there exists a differential bigraded algebra [Z, δ] together
with quasi-isomorphisms

[Ω∗,∗, ∂̄]
≃←−−−− [Z, δ]

≃−−−−→ [Ω∗, dDR]
y≃

[H∗,∗

∂̄
(M), 0]

linking together the de Rham algebra, the Dolbeault algebra, and the Dolbeault
cohomology.

The toric manifold VΣ is formal in the usual (de Rham) sense by [53], Corol-
lary 7.2. The Hodge decomposition in [20], § 12 implies that VΣ satisfies the
∂∂̄-lemma ([27], Lemma 4.24). Therefore, VΣ is strictly formal by the same argu-
ment as used for Theorem 4.59 in [27], and (11.4) is a model for its Dolbeault
cohomology.
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The usual formality of VΣ implies the existence of a quasi-isomorphism φB : B →
H∗,∗

∂̄
(VΣ), which extends to a quasi-isomorphism

id⊗φB :
[
Λ[ξ1, . . . , ξℓ, η1, . . . , ηℓ]⊗B, d

]
→

[
Λ[ξ1, . . . , ξℓ, η1, . . . , ηℓ]⊗H∗,∗

∂̄
(VΣ), d

]

by Lemma 14.2 in [26]. Thus, the differential algebra
[
Λ[ξ1, . . . , ξℓ, η1, . . . , ηℓ] ⊗

H∗,∗

∂̄
(VΣ), d

]
provides a model for the Dolbeault cohomology of ZK , as claimed. �

Remark. If VΣ is projective, then it is Kähler; in this case the model in Theorem 11.2
coincides with the model for the Dolbeault cohomology of the total space of a holo-
morphic torus principal bundle over a Kähler manifold ([27], Theorem 4.65).

The first Chern class map c in Theorem 11.2 can be described explicitly in
terms of the map Ψ defining the complex structure on ZK . We recall the map
AC : C

m → NC with ei 7→ ai and the Gale dual (m − n) × m matrix Γ = (γjk)
whose rows form a basis of linear relations between the vectors a1, . . . ,am. By
Construction 10.1, ℑΨ ⊂ KerAC. Denote by AnnU the annihilator of a linear
subspace U ⊂ C

m, that is, the subspace of linear functions on C
m vanishing on U .

Lemma 11.3. Let k be the number of zero vectors among a1, . . . ,am . The first

Chern class map

c : H1,0

∂̄
(T ℓC)→ H2(VΣ,C) = H1,1

∂̄
(VΣ)

of the principal T ℓ
C
-bundle ZK → VΣ is given by the composition

Ann ImΨ/Ann KerAC

i−→ C
m/Ann KerAC

p−→ C
m−k/Ann KerAC,

where i is the inclusion and p is the projection forgetting the coordinates in C
m

corresponding to zero vectors.
Explicitly, the map c is given on the generators of H1,0

∂̄
(T ℓ

C
) by

c(ξj) = µj1v1 + · · ·+ µjmvm, 1 6 j 6 ℓ,

where M = (µjk) is an ℓ×m matrix satisfying the two conditions:
(a) ΓM t : C

ℓ → C
2ℓ is a monomorphism;

(b) MΨ = 0.

Proof. Let At
C

: N∗
C
→ C

m, u 7→ (⟨a1,u⟩, . . . , ⟨am,u⟩), be the dual map. We have

H1(T ℓC; C) = C
m/ ImAtC = (KerAC)∗, H2(VΣ; C) = C

m−k/ ImAtC.

The first Chern class map c : H1(T ℓ
C
; C) → H2(VΣ; C) (the transgression) is then

given by p : C
m/ ImAt

C
→ C

m−k/ ImAt
C
. To separate out the holomorphic part of c

we need to identify the subspace of holomorphic differentials H1,0

∂̄
(T ℓ

C
) ∼= C

ℓ inside

the space of all 1-forms H1(T ℓ
C
; C) ∼= C

2ℓ. Since

T ℓC = G/CΨ = (Ker expAC)/(exp ImΨ),

holomorphic differentials on T ℓ
C

correspond to C-linear functions on KerAC which
vanish on ImΨ . The space of functions on KerAC is C

m/ ImAt
C

= C
m/Ann KerAC,

and the functions vanishing on ImΨ form the subspace Ann ImΨ/Ann KerAC. The
condition (b) says exactly that the linear functions on C

m corresponding to the rows
of M vanish on ImΨ . The condition (a) says that the rows of M constitute a basis
in the complement of Ann KerAC in Ann ImΨ . �
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It is interesting to compare Theorem 11.2 with the following description of the
de Rham cohomology of ZK .

Theorem 11.4 ([14], Theorem 7.36). Let ZK and VΣ be as in Theorem 11.2. The

de Rham cohomology H∗(ZK ) is isomorphic to the cohomology of the differential

graded algebra [
Λ[u1, . . . , um−n]⊗H∗(VΣ), d

]
,

where deg uj = 1, deg vi = 2, and the differential d is defined on the generators as

dvi = 0, duj = γj1v1 + · · ·+ γjmvm, 1 6 j 6 m− n.

This theorem follows from the more general result ([14], Theorem 7.7) describing
the cohomology of ZK . For more information about H∗(ZK ) see [14], Chap. 8,
and [52], § 4.

There are two classical spectral sequences for the Dolbeault cohomology. First,
the Borel spectral sequence [8] of a holomorphic bundle E → B with a compact
Kähler fibre F , which has E2 = H∂̄(B)⊗H∂̄(F ) and converges to H∂̄(E). Second,
the Frölicher spectral sequence ([32], § 3.5), whose E1-term is the Dolbeault coho-
mology of a complex manifold M and which converges to the de Rham cohomology
of M . Theorem 11.2 implies the following collapses for these spectral sequences.

Corollary 11.5. (a) The Borel spectral sequence of the holomorphic principal bun-

dle ZK → VΣ collapses at the E3-term, that is, E3 = E∞ .
(b) The Frölicher spectral sequence of ZK collapses at the E2-term.

Proof. To prove (a) we just observe that the differential algebra (11.3) is the
E2-term of the Borel spectral sequence, and its cohomology is the E3-term.

By comparing the Dolbeault and de Rham cohomology algebras of ZK given
by Theorems 11.2 and 11.4 we observe that the elements η1, . . . , ηℓ ∈ E0,1

1 can-
not survive in the E∞-term of the Frölicher spectral sequence. The only possible
non-trivial differential on these elements is d1 : E0,1

1 → E1,1
1 . By Theorem 11.4, the

cohomology algebra of [E1, d1] is exactly the de Rham cohomology of ZK , thus
proving (b). �

Theorem 11.4 can also be interpreted as a collapse result for the Leray–Serre
spectral sequence of the principal Tm−n-bundle ZK → VΣ.

In order to proceed with our calculation of Hodge numbers, we need the following
bounds for the dimension of Ker c in Lemma 11.3.

Lemma 11.6. Let k be the number of zero vectors among a1, . . . ,am . Then

k − ℓ 6 dimC Ker
(
c : H1,0

∂̄
(T ℓC)→ H1,1

∂̄
(VΣ)

)
6
k

2
.

In particular, c is a monomorphism if k 6 1.

Proof. Consider the diagram

Ann ImΨ/Ann KerAC

i−−−−→ C
m/Ann KerAC

p−−−−→ C
m−k/Ann KerACy∼=

yRe

yRe

R
m−n

R
m−n p′−−−−→ R

m−n−k
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The left vertical arrow has the form H1,0

∂̄
(T ℓ

C
)→ H1(T ℓ

C
,C)→ H1(T ℓ

C
,R), so is an

(R-linear) isomorphism, and any real-valued function on the lattice Γ defining the
torus T ℓ

C
= C

ℓ/Γ is the real part of the restriction to Γ of some C-linear function
on C

ℓ.
Since the diagram above is commutative, the kernel of c = p◦i has real dimension

at most k, which implies the upper bound on its complex dimension. For the lower
bound, dimC Ker c > dimH1,0

∂̄
(T ℓ

C
)− dimH1,1

∂̄
(VΣ) = ℓ− (2ℓ− k) = k − ℓ. �

Theorem 11.7. Let ZK be as in Theorem 11.2, and let k be the number of zero

vectors among a1, . . . ,am . Then the following hold for the Hodge numbers hp,q =
hp,q(ZK ):

(a)

(
k − ℓ
p

)
6 hp,0 6

(
[k/2]
p

)
for p > 0, and in particular, hp,0 = 0 for p > 0

if k 6 1;

(b) h0,q =

(
ℓ
q

)
for q > 0;

(c) h1,q = (ℓ− k)
(

ℓ
q − 1

)
+ h1,0

(
ℓ+ 1
q

)
for q > 1;

(d) ℓ(3ℓ+1)/2−h2(K )− ℓk+(ℓ+1)h2,0 6 h2,1 6 ℓ(3ℓ+1)/2− ℓk+(ℓ+1)h2,0 .

Proof. Let Ap,q denote the bidegree (p, q) component of the differential algebra
in Theorem 11.2, and let Zp,q ⊂ Ap,q denote the subspace of d-cocycles. Then
d1,0 : A1,0 → Z1,1 coincides with the map c, and the required bounds for h1,0 =
Ker d1,0 were already established in Lemma 11.6. Since hp,0 = dim Ker dp,0 and
Ker dp,0 is the pth exterior power of the space Ker d1,0, the statement (a) follows.

The differential is trivial on A0,q, hence h0,q = dimA0,q, thus proving (b).
The space Z1,1 is spanned by the cocycles vi and ξiηj with ξi ∈ Ker d1,0. Hence

dimZ1,1 = 2ℓ−k+h1,0ℓ. Also, dim d(A1,0) = ℓ−h1,0, hence h1,1 = ℓ−k+h1,0(ℓ+1).

Similarly, dimZ1,q = (2ℓ− k)
(

ℓ
q − 1

)
+ h1,0

(
ℓ
q

)
(with basis of viηj1 · · · ηjq−1

and

ξiηj1 · · · ηjq , where ξi ∈ Ker d1,0, j1 < · · · < jq), and the image of d : A1,q−1 → Z1,q

is a subspace of dimension (ℓ− h1,0)

(
ℓ

q − 1

)
. This proves (c).

We have A2,1 = U ⊕ W , where U has a basis of monomials ξivj and W has
a basis of monomials ξiξjηk. Therefore,

h2,1 = dimU − dim dU + dimW − dim dW − dim dA2,0. (11.5)

Now dimU = ℓ(2ℓ − k), 0 6 dim dU 6 h2(K ) (since dU ⊂ H2,2

∂̄
(VΣ)), dimW −

dim dW = dimKer d|W = ℓh2,0, and dim dA2,0 =

(
ℓ
2

)
− h2,0. Substituting all this

into (11.5), we obtain the inequalities in (d). �

Remark. At most one ghost vertex needs to be added to K to make dimZK =
m + n even. Since hp,0(ZK ) = 0 when k 6 1, the manifold ZK does not have
holomorphic forms of arbitrary degree in this case.

If ZK is a torus (so that K is empty), then m = k = 2ℓ and h1,0(ZK ) =
h0,1(ZK ) = ℓ. Otherwise Theorem 11.7 implies that h1,0(ZK ) < h0,1(ZK ), and
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therefore the moment-angle manifold ZK is not Kähler (in the polytopal case this
was observed in [43], Theorem 3).

Example 11.8. Let ZK
∼= S1×S2n+1 be the Hopf manifold in Example 10.4. Our

rationality assumption is that a1 . . . ,an+2 span an n-dimensional lattice N in NR
∼=

R
n; in particular, the fan Σ defined by the proper subsets of the set of a1, . . . ,an+1

is rational. We assume further that Σ is regular (this is equivalent to the condition
a1 + · · · + an+1 = 0), so that Σ is the normal fan of a Delzant n-dimensional
simplex ∆n. We have VΣ = CPn, and (11.2) describes its cohomology as the
quotient of C[v1, . . . , vn+2] by the sum of two ideals: the ideal I generated by
v1 · · · vn+1 and vn+2, and the ideal J generated by v1 − vn+1, . . . , vn − vn+1. The
differential algebra in Theorem 11.2 is therefore given by

[
Λ[ξ, η] ⊗ C[t]/tn+1, d

]
,

with dt = dη = 0 and dξ = t for a suitable choice of t. The non-trivial cohomology
classes are represented by the cocycles 1, η, ξtn, and ξηtn, and this gives the
following non-zero Hodge numbers of ZK : h0,0 = h0,1 = hn+1,n = hn+1,n+1 = 1.
We note that the Dolbeault cohomology and the Hodge numbers do not depend on
the choice of complex structure (the map Ψ).

Example 11.9 (Calabi–Eckmann manifold). Let {K ;a1, . . . ,an+2} be the data
defining the normal fan of the product P = ∆p×∆q of two Delzant simplices with
p + q = n, 1 6 p 6 q 6 n − 1. That is, a1, . . . ,ap,ap+2, . . . ,an+1 is a basis of the
lattice N and there are two relations a1 + · · ·+ap+1 = 0 and ap+2 + · · ·+an+2 = 0.
The corresponding toric variety VΣ is CP p × CP q, and its cohomology ring is
isomorphic to C[x, y]/(xp+1, yq+1). Consider the map

Ψ : C→ C
n+2, w 7→ (1, . . . , 1, αw, . . . , αw),

where α ∈ C \ R and αw appears q + 1 times. This map satisfies the conditions
of Construction 10.1. The resulting complex structure on ZP

∼= S2p+1 × S2q+1

is that of a Calabi–Eckmann manifold. We denote complex manifolds obtained in
this way by CE(p, q) (the complex structure depends on the choice of Ψ , but we
do not reflect this in the notation). Each manifold CE(p, q) is the total space of
a holomorphic principal bundle over CP p × CP q with fibre the complex 1-torus
C/(Z⊕ αZ).

Theorem 11.2 and Lemma 11.3 provide the following description of the Dolbeault
cohomology of CE(p, q):

H∗,∗

∂̄

(
CE(p, q)

) ∼= H
[
Λ[ξ, η]⊗ C[x, y]/(xp+1, yq+1), d

]
,

where dx = dy = dη = 0 and dξ = x − y for an appropriate choice of the genera-
tors x, y. We therefore get that

H∗,∗

∂̄

(
CE(p, q)

) ∼= Λ[ω, η]⊗ C[x]/(xp+1), (11.6)

where ω ∈ Hq+1,q

∂̄

(
CE(p, q)

)
is the cohomology class of the cocycle ξ(xq+1 −

yq+1)/(x − y). This calculation is originally from [8], § 9. We note that the Dol-
beault cohomology of a Calabi–Eckmann manifold depends only on p, q and not on
the complex parameter α (nor the map Ψ).
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Example 11.10. Let P = ∆1 × ∆1 × ∆2 × ∆2. Then the moment-angle mani-
fold ZP has two different structures of a product of Calabi–Eckmann manifolds,
namely, CE(1, 1) × CE(2, 2) and CE(1, 2) × CE(1, 2). Using the isomorphism
(11.6), we observe that these two complex manifolds have different Hodge num-
bers: h2,1 = 1 in the first case, and h2,1 = 0 in the second. This shows that the
choice of the map Ψ affects not only the complex structure of ZK but also its
Hodge numbers, unlike in the previous examples of complex tori, Hopf manifolds,
and Calabi–Eckmann manifolds. Of course, this is not very surprising from the
complex-analytic point of view.

12. Hamiltonian-minimal Lagrangian submanifolds

In this last section we apply the accumulated knowledge of the topology of
moment-angle manifolds in a somewhat different area: Lagrangian geometry. The
systems of real quadrics which we used in §§ 3 and 4 to define moment-angle man-
ifolds also give rise to a family of Hamiltonian-minimal Lagrangian submanifolds
in a complex space or in more general toric varieties.

Hamiltonian minimality (H-minimality for short) for Lagrangian submanifolds
is a symplectic analogue of minimality in Riemannian geometry. A Lagrangian
immersion is said to be H-minimal if the variations of its volume along all Hamil-
tonian vector fields are zero. This notion was introduced in the paper [51] of Oh
in connection with the celebrated Arnold conjecture on the number of fixed points
of a Hamiltonian symplectomorphism. The simplest example of an H-minimal
Lagrangian submanifold is the coordinate torus [51] S1

r1 × · · · × S1
rm
⊂ C

m, where
S1
rk

denotes the circle of radius rk > 0 in the kth coordinate subspace of C
m.

More examples of H-minimal Lagrangian submanifolds in a complex space were
constructed in the papers [17], [34], [1], among others.

In [46] Mironov proposed a general construction of H-minimal Lagrangian im-
mersions N # C

m arising from intersections of real quadrics. These systems of
quadrics are the same as those we used to define moment-angle manifolds, and
therefore one can apply toric methods for analysing the topological structure of N .
In [47] an effective criterion was obtained for N # C

m to be an embedding: the
polytope corresponding to the intersection of quadrics must be Delzant. As a con-
sequence, any Delzant polytope gives rise to an H-minimal Lagrangian submanifold
N ⊂ C

m. As in the case of moment-angle manifolds, the topology of N is quite
complicated even for low-dimensional polytopes: for example, a Delzant 5-gon gives
rise to a manifold N which is the total space of a bundle over a 3-torus with fibre
a surface of genus 5. Furthermore, by combining Mironov’s construction with sym-
plectic reduction, a new family of H-minimal Lagrangian submanifolds of toric
varieties was defined in [48]. This family includes many previously constructed
explicit examples in C

m and CPm−1.

12.1. Preliminaries. Let (M,ω) be a symplectic manifold of dimension 2n. An
immersion i : N # M of an n-dimensional manifold N is said to be Lagrangian

if i∗(ω) = 0. If i is an embedding, then i(N) is a Lagrangian submanifold of M .
A vector field X on M is Hamiltonian if the 1-form ω(X, · ) is exact.

Assume now that M is Kähler, so that it has a Riemannian metric and a sym-
plectic structure that are compatible. A Lagrangian immersion i : N # M is said
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to be Hamiltonian-minimal (H-minimal) if the variations of the volume of i(N)
along all Hamiltonian vector fields with compact support are zero, that is,

d

dt
vol

(
it(N)

)∣∣∣
t=0

= 0,

where it(N) is a deformation of i(N) along a Hamiltonian vector field, i0(N) =
i(N), and vol(it(N)) is the volume of the deformed part of it(N). An immersion i
is minimal if the variations of the volume of i(N) along all vector fields are zero.

Our basic example is M = C
m with the Hermitian metric 2

∑m
k=1 dzk ⊗ dzk. Its

imaginary part is the symplectic form in Example 5.1. In the end we consider the
more general case when M is a toric manifold.

12.2. Construction. We consider an intersection of quadrics similar to (3.4), but
in the real space:

R =

{
u = (u1, . . . , um) ∈ R

m :

m∑

k=1

γjku
2
k = δj for 1 6 j 6 m− n

}
. (12.1)

We assume the non-degeneracy and rationality conditions on the coefficient vec-
tors γi = (γ1i, . . . , γm−n,i)

t ∈ R
m−n, i = 1, . . . ,m:

(a) δ ∈ R>⟨γ1, . . . , γm⟩;
(b) if δ ∈ R>⟨γi1 , . . . , γik⟩, then k > m− n;
(c) the vectors γ1, . . . , γm generate a lattice L ∼= Z

m−n in R
m−n.

These conditions guarantee that R is a smooth n-dimensional submanifold of R
m

(by the argument for Proposition 3.4) and that

TΓ =
{(
e2πi⟨γ1,ϕ⟩, . . . , e2πi⟨γm,ϕ⟩

)
∈ T

m
}

is an (m − n)-dimensional torus subgroup of T
m. We identify the torus TΓ with

R
m−n/L∗ and represent its elements by vectors ϕ ∈ R

m−n. We also define the
group

DΓ =
1

2
L∗/L∗ ∼= (Z2)

m−n.

Note that DΓ embeds canonically as a subgroup of TΓ .
We view the intersection R as a subset of the intersection Z of Hermitian

quadrics or as a subset of the whole complex space C
m. We ‘spread’ R by the

action of TΓ , that is, we consider the set of TΓ -orbits going through points in R.
More precisely, we consider the map

j : R × TΓ → C
m,

(u, ϕ) 7→ u · ϕ =
(
u1e

2πi⟨γ1,ϕ⟩, . . . , ume
2πi⟨γm,ϕ⟩

)

and observe that j(R × TΓ ) ⊂ Z . We let DΓ act on RΓ × TΓ diagonally; this
action is free since it is free on the second factor. The quotient

N = R ×DΓ
TΓ

is an m-dimensional manifold.
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For any point u = (u1, . . . , um) ∈ R we have the sublattice

Lu = Z⟨γk : uk ̸= 0⟩ ⊂ L = Z⟨γ1, . . . , γm⟩.

The next result says that the set of TΓ -orbits through points in R is an immersion
of N .

Lemma 12.1. (a) The map j : R × TΓ → C
m induces an immersion i : N # C

m .
(b) The immersion i is an embedding if and only if Lu = L for any u ∈ R .

Proof. Take u ∈ R, ϕ ∈ TΓ , and g ∈ DΓ . We have u · g ∈ R and j(u · g, gϕ) =
u · g2ϕ = u ·ϕ = j(u, ϕ). Hence the map j is constant on DΓ -orbits, and therefore
it induces a map of the quotient N = (R × TΓ )/DΓ , which we denote by i.

Assume that j(u, ϕ) = j(u′, ϕ′). Then Lu = Lu′ and

uke
2πi⟨γk,ϕ⟩ = u′ke

2πi⟨γk,ϕ
′⟩ for k = 1, . . . ,m. (12.2)

Since both uk and u′k are real, this implies that e2πi⟨γk,ϕ−ϕ
′⟩ = ±1 whenever uk ̸= 0,

or equivalently, ϕ−ϕ′ ∈ 1
2L

∗
u/L

∗. In other words, (12.2) implies that u′ = u ·g and
ϕ′ = gϕ for some g ∈ 1

2L
∗
u/L

∗. The latter is a finite group by Lemma 5.4, hence
the pre-image of any point of C

m under j consists of a finite number of points. If
Lu = L, then 1

2L
∗
u/L

∗ = 1
2L

∗/L∗ = DΓ . Therefore, (u, ϕ) and (u′, ϕ′) represent
the same point in N . The statement (b) follows. To prove (a), it remains to observe
that Lu = L for generic u (with all coordinates non-zero). �

Theorem 12.2 ([46], Theorem 1). The immersion i : N # C
m is H-minimal

Lagrangian. Moreover, if
∑m
k=1 γk = 0, then i is a minimal Lagrangian immer-

sion.

Proof. Here we only prove that i is a Lagrangian immersion. Let

(x, ϕ) 7→ z(x, ϕ) =
(
u1(x)e2πi⟨γ1,ϕ⟩, . . . , um(x)e2πi⟨γm,ϕ⟩

)

be a local coordinate system on N = R ×DΓ
TΓ , where x = (x1, . . . , xn) ∈ R

n and
ϕ = (ϕ1, . . . , ϕm−n) ∈ R

m−n. Let ⟨ξ, η⟩C =
∑m
i=1 ξiηi = ⟨ξ, η⟩ + iω(ξ, η) be the

Hermitian scalar product of vectors ξ, η ∈ C
m. Then

〈
∂z

∂xk
,
∂z

∂ϕj

〉

C

= 2πi

(
γj1u1

∂u1

∂xk
+ · · ·+ γjmum

∂um
∂xk

)
= 0,

where the last equality follows by differentiating the equations of quadrics in (12.1).

Moreover,

〈
∂z

∂xk
,
∂z

∂xj

〉

C

∈ R and

〈
∂z

∂ϕk
,
∂z

∂ϕj

〉

C

∈ R. It follows that

ω

(
∂z

∂xk
,
∂z

∂ϕj

)
= ω

(
∂z

∂xk
,
∂z

∂xj

)
= ω

(
∂z

∂ϕk
,
∂z

∂ϕj

)
= 0,

that is, the restriction of the symplectic form to the tangent space of N is zero. �

Remark. The equality
∑m
k=1 γk = 0 cannot hold for a compact R (or N).
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Recall from Theorem 3.5 that a non-degenerate intersection of quadrics (3.4) or
(12.1) defines a simple polyhedron (2.1), and Z is identified with the moment-angle
manifold ZP . We can now summarize the results of the previous sections in the
following criterion for i : N → C

m to be an embedding.

Theorem 12.3. Let Z and R be the intersections of Hermitian and real quadrics

defined by (3.4) and (12.1), respectively, and satisfying the conditions (a)–(c) at the

beginning of § 12.2. Let P be the associated simple polyhedron and N = R×DΓ
TΓ .

The following conditions are equivalent:

(a) i : N → C
m is an embedding of an H-minimal Lagrangian submanifold;

(b) Lu = L for any u ∈ R ;
(c) the torus TΓ acts freely on the moment-angle manifold Z = ZP ;
(d) P is a Delzant polyhedron.

Proof. The equivalence (a)⇔ (b) follows from Lemma 12.1 and Theorem 12.2.
The equivalence (b)⇔ (c) is Lemma 5.4, and the equivalence (c)⇔ (d) is Theo-
rem 5.3 (c). �

Toric topology provides large families of explicitly constructed Delzant poly-
topes. Basic examples include simplices and cubes in all dimensions. It is easy to
see that the Delzant condition is preserved under several operations on polytopes,
such as taking products or cutting vertices or faces by specially chosen hyperplanes.
This is sufficient to show that many important families of polytopes such as associ-

ahedra (Stasheff polytopes), permutahedra, and general nestohedra admit Delzant
realizations (see, for example, [55] and [12]).

12.3. Topology of Lagrangian submanifolds N . We start by reviewing three
simple properties linking the topological structure of N to that of the intersections
of quadrics Z and R.

Proposition 12.4. (a) The immersion of N in C
m factors as N # Z →֒ C

m .
(b) N is the total space of a bundle over the torus Tm−n with fibre R .
(c) If N → C

m is an embedding, then N is the total space of a principal

Tm−n-bundle over the n-dimensional manifold R/DΓ .

Proof. The statement (a) is clear. Since DΓ acts freely on TΓ , the projection
N = R ×DΓ

TΓ → TΓ /DΓ onto the second factor is a fibre bundle with fibre R.
Then (b) follows from the fact that TΓ /DΓ

∼= Tm−n.
If N → C

m is an embedding, then TΓ acts freely on Z by Theorem 12.3, and the
action of DΓ on R is also free. Therefore, the projection N = R×DΓ

TΓ → R/DΓ

onto the first factor is a principal TΓ -bundle, which proves (c). �

Remark. The quotient R/DΓ is a real toric variety, or a small cover, over the
corresponding polytope P (see [21] and [14]).

Example 12.5 (one quadric). Suppose that R is given by a single equation

γ1u
2
1 + · · ·+ γmu

2
m = δ (12.3)

in R
m. We assume that R is compact, so that γi and δ are positive real num-

bers, R ∼= Sm−1, and the associated polytope P is an n-simplex ∆n. In this case
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N ∼= Sm−1 ×Z2
S1, where the generator of Z2 acts by the standard free involution

on S1 and by a certain involution τ on Sm−1. The topological type of N depends
on τ . Namely,

N ∼=
{
Sm−1 × S1 if τ preserves the orientation of Sm−1,

K m if τ reverses the orientation of Sm−1,

where K m is the m-dimensional Klein bottle.

Proposition 12.6. Let m − n = 1 (one quadric). An H-minimal Lagrangian

embedding of N ∼= Sm−1 ×Z/2 S
1 in C

m is obtained if and only if γ1 = · · · = γm
in (12.3). In this case the topological type of N = N(m) depends only on the parity

of m and is given by

N(m) ∼= Sm−1 × S1 if m is even,

N(m) ∼= K m if m is odd.

Proof. Since there exists a u ∈ R with only one non-zero coordinate, Theorem 12.3
implies that N embeds in C

m if and only if γi generates the same lattice as the
whole set γ1, . . . , γm for each i. Therefore, γ1 = · · · = γm. In this case DΓ

∼= Z2

acts by the standard antipodal involution on Sm−1, which preserves orientation if
m is even and reverses orientation otherwise. �

Both examples of H-minimal Lagrangian embeddings given by Proposition 12.6
are well known. The Klein bottle K m with even m does not admit Lagrangian
embeddings in C

m (see [50] and [56]).

Example 12.7 (two quadrics). In the case m−n = 2 the topology of R and N can
be completely described by analysing the action of the two commuting involutions
on the intersection of quadrics. We consider only the compact case here.

Using Proposition 2.8, we write R in the form

γ11u
2
1 + · · ·+ γ1mu

2
m = c,

γ21u
2
1 + · · ·+ γ2mu

2
m = 0,

(12.4)

where c > 0 and γ1i > 0 for all i.

Proposition 12.8. There is a number p with 0 < p < m such that γ2i > 0 for

i = 1, . . . , p and γ2i < 0 for i = p + 1, . . . ,m in (12.4), possibly after reordering

the coordinates u1, . . . , um . The corresponding manifold R = R(p, q), where q =
m− p, is diffeomorphic to Sp−1 × Sq−1 . Its associated polytope P either coincides

with ∆m−2 (if one of the inequalities in (2.1) is redundant) or is combinatorially

equivalent to the product ∆p−1 ×∆q−1 (if there are no redundant inequalities).

Proof. We observe that γ2i ̸= 0 for all i in (12.4), since γ2i = 0 implies that the vec-
tor δ = (c 0)t is in the cone generated by γi, which contradicts Proposition 3.4 (b).
By reordering the coordinates, we can make the first p of the numbers γ2i be positive
and the rest negative. Then 1 < p < m, because otherwise (12.4) is empty. Further,
(12.4) is the intersection of the cone over the product of two ellipsoids of dimensions
p− 1 and q− 1 (given by the second quadric) with an (m− 1)-dimensional ellipsoid
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(given by the first quadric). Therefore, R(p, q) ∼= Sp−1 × Sp−1. The statement
about the polytope follows from the combinatorial fact that a simple n-polytope
with at most n + 2 facets is combinatorially equivalent to a product of simplices;
the case of one redundant inequality corresponds to p = 1 or q = 1. �

An element ϕ ∈ DΓ = 1
2L

∗/L∗ ∼= Z2 × Z2 acts on R(p, q) by

(u1, . . . , um) 7→ (ε1(ϕ)u1, . . . , εm(ϕ)um),

where εk(ϕ) = e2πi⟨γk,ϕ⟩ = ±1 for 1 6 k 6 m.

Lemma 12.9. Suppose that DΓ acts on R(p, q) freely and εi(ϕ) = 1 for some i
with 1 6 i 6 p and ϕ ∈ DΓ . Then εl(ϕ) = −1 for all l with p+ 1 6 l 6 m.

Proof. Assume the opposite, that is, that εi(ϕ) = 1 for some 1 6 i 6 p and
εj(ϕ) = 1 for some p+ 1 6 j 6 m. Then γ2i > 0 and γ2j < 0 in (12.4), so we can
choose u ∈ R(p, q) whose only non-zero coordinates are ui and uj . The element
ϕ ∈ DΓ fixes this u, leading to a contradiction. �

Lemma 12.10. Suppose that DΓ acts on R(p, q) freely. Then there exist two gen-

erating involutions ϕ1, ϕ2 ∈ DΓ
∼= Z2 × Z2 whose action on R(p, q) is described by

either (a) or (b) below, possibly after reordering the coordinates:

ϕ1 : (u1, . . . , um) 7→ (u1, . . . , uk,−uk+1, . . . ,−up,−up+1, . . . ,−um),

ϕ2 : (u1, . . . , um) 7→ (−u1, . . . ,−uk, uk+1, . . . , up,−up+1, . . . ,−um);
(a)

ϕ1 : (u1, . . . , um) 7→ (−u1, . . . ,−up, up+1, . . . , up+l,−up+l+1, . . . ,−um),

ϕ2 : (u1, . . . , um) 7→ (−u1, . . . ,−up,−up+1, . . . ,−up+l, up+l+1, . . . , um);
(b)

here 0 6 k 6 p and 0 6 l 6 q .

Proof. By Lemma 12.9 for each of the three non-zero elements ϕ ∈ DΓ , we have
either εi(ϕ) = −1 for 1 6 i 6 p or εi(ϕ) = −1 for p+1 6 i 6 m. Therefore, we can
choose two different non-zero elements ϕ1, ϕ2 ∈ DΓ such that either εi(ϕj) = −1
for j = 1, 2 and p + 1 6 i 6 m, or εi(ϕj) = −1 for j = 1, 2 and 1 6 i 6 p. This
corresponds to the cases (a) and (b) above, respectively. In the first case we may
assume after reordering the coordinates that ϕ1 acts as in (a). Then ϕ2 also acts
as in (a) since otherwise the composition ϕ1 · ϕ2 cannot act freely by Lemma 12.9.
The second case is treated similarly. �

Each of the actions of DΓ described in Lemma 12.10 can be realized by a par-
ticular intersection of quadrics (12.4). For example, the system of quadrics

2u2
1 + · · ·+ 2u2

k + u2
k+1 + · · ·+ u2

p + u2
p+1 + · · ·+ u2

m = 3,

u2
1 + · · ·+ u2

k + 2u2
k+1 + · · ·+ 2u2

p − u2
p+1 − · · · − u2

m = 0
(12.5)

gives the first action of Lemma 12.10; the second action is realized similarly. Note
that the lattice L corresponding to (12.5) is a sublattice of index 3 in Z

2. We can
rewrite (12.5) as

u2
1 + · · ·+ u2

k + u2
k+1 + · · ·+ u2

p = 1,

u2
1 + · · ·+ u2

k + u2
p+1 + · · ·+ u2

m = 2,
(12.6)
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in which case L = Z
2. The action of the two involutions ψ1, ψ2 ∈ DΓ = 1

2Z
2/Z2

corresponding to the standard basis vectors of 1
2Z

2 is given by

ψ1 : (u1, . . . , um) 7→ (−u1, . . . ,−uk,−uk+1, . . . ,−up, up+1, . . . , um),

ψ2 : (u1, . . . , um) 7→ (−u1, . . . ,−uk, uk+1, . . . , up,−up+1, . . . ,−um).
(12.7)

We denote the manifold N corresponding to (12.6) by Nk(p, q). Then

Nk(p, q) ∼= (Sp−1 × Sq−1)×Z/2×Z/2 (S1 × S1), (12.8)

where the action of the two involutions on Sp−1 × Sq−1 is given by (12.7). Note
that ψ1 acts trivially on Sq−1 and antipodally on Sp−1. Therefore,

Nk(p, q) ∼= N(p)×Z/2 (Sq−1 × S1),

where N(p) is the manifold in Proposition 12.6. If k = 0, then the second involution
ψ2 acts trivially on N(p), and N0(p, q) coincides with the product N(p)×N(q) of
the two manifolds in Example 12.5. In general, the projection

Nk(p, q)→ Sq−1 ×Z/2 S
1 = N(q)

describes Nk(p, q) as the total space of a fibration over N(q) with fibre N(p).
We summarize the above facts and observations in the following topological

classification result for compact H-minimal Lagrangian submanifolds N ⊂ C
m

obtained from intersections of two quadrics.

Theorem 12.11. Let N → C
m be the embedding of the H-minimal Lagrangian

submanifold corresponding to a compact intersection of two quadrics. Then N is dif-

feomorphic to some manifold Nk(p, q) given by (12.8), where p+q = m, 0 < p < m,
and 0 6 k 6 p. Moreover, any such triple (k, p, q) can be realized by N .

In the case of at most two quadrics considered above, the topology of R is
relatively simple, and in order to analyse the topology of N , one only needs to
describe the action of involutions on R. When the number of quadrics is more than
two, the topology of R becomes an issue as well.

Example 12.12 (three quadrics). In the case m − n = 3 the topology of the
compact manifolds R and Z was fully described in [40], Theorem 2. Each of these
manifolds is diffeomorphic to a product of three spheres or to a connected sum of
products of spheres with two spheres in each product.

We note that for m− n = 3 the manifold R (or Z ) can be distinguished topo-
logically by looking at the planar Gale diagram of the associated simple polytope P
(see § 2). This agrees with the classification of n-dimensional simple polytopes with
n+ 3 facets which is well-known in combinatorial geometry.

The smallest polytope with m − n = 3 is a pentagon. It has many Delzant
realizations, for instance,

P = {(x1, x2) ∈ R
2 : x1 > 0, x2 > 0, −x1 +2 > 0, −x2 +2 > 0, −x1−x2 +3 > 0}.

In this case, R is an oriented surface of genus 5 (see [14], Example 6.40), and the
moment-angle manifold Z is diffeomorphic to a connected sum of five copies of
S3 × S4.
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We therefore obtain an H-minimal Lagrangian submanifold N ⊂ C
5 which is

the total space of a bundle over T 3 with fibre a surface of genus 5.

Now let the polytope P associated with the intersection of quadrics (12.1) be
a polygon (that is, n = 2). If there are no redundant inequalities, then P is anm-gon
and R is an orientable surface Sg of genus g = 1+2m−3(m−4) by [14], Example 6.40.
If there are k redundant inequalities, then P is an (m − k)-gon. In this case R ∼=
R′×(S0)k, where R′ corresponds to an (m−k)-gon without redundant inequalities.
That is, R is a disjoint union of 2k surfaces of genus 1 + 2m−k−3(m− k − 4).

The corresponding H-minimal Lagrangian submanifold N ⊂ C
m is the total

space of a bundle over Tm−2 with fibre Sg. This is an aspherical manifold for
m > 4.

12.4. Generalization to toric manifolds. Consider two sets of quadrics:

ZΓ =

{
z ∈ C

m :

m∑

k=1

γk|zk|2 = c

}
, γk, c ∈ R

m−n,

Z∆ =

{
z ∈ C

m :
m∑

k=1

δk|zk|2 = d

}
, δk,d ∈ R

m−ℓ,

such that ZΓ , Z∆, and ZΓ ∩Z∆ satisfy the non-degeneracy and rationality con-
ditions (a)–(c) in § 12.2. Assume also that the polyhedra associated with ZΓ , Z∆,
and ZΓ ∩Z∆ are Delzant.

The idea is to use the first set of quadrics to produce a toric manifold V via
symplectic reduction (as described in § 5), and then to use the second set of quadrics
to define an H-minimal Lagrangian submanifold of V .

Construction 12.13. Let the real intersections of quadrics RΓ , R∆, the tori
TΓ ∼= T

m−n, T∆ ∼= T
m−ℓ, and the groups DΓ

∼= Z
m−n
2 , D∆

∼= Z
m−ℓ
2 be as before.

We consider the toric variety V obtained as the symplectic quotient of C
m by

the action of the torus corresponding to the first set of quadrics: V = ZΓ /TΓ .
It is a Kähler manifold of real dimension 2n. The quotient RΓ /DΓ is the set of
real points of V (the fixed point set of the complex conjugation, or the real toric
manifold); it has dimension n. Consider the subset of RΓ /DΓ defined by the second
set of quadrics:

S = (RΓ ∩R∆)/DΓ ,

for which dimS = n+ ℓ−m. Finally, define the following n-dimensional subman-
ifold of V :

N = S ×D∆
T∆.

Theorem 12.14. N is an H-minimal Lagrangian submanifold of the toric mani-

fold V .

Proof. Let V̂ be the symplectic quotient of V by the action of the torus correspond-
ing to the second set of quadrics, that is, V̂ = (V ∩Z∆)/T∆ = (ZΓ∩Z∆)/(TΓ×T∆).
It is a toric manifold of real dimension 2(n+ℓ−m). The submanifold of real points

N̂ = N/T∆ = (RΓ ∩R∆)/(DΓ ×D∆) →֒ (ZΓ ∩Z∆)/(TΓ × T∆) = V̂
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is the fixed point set of the complex conjugation, hence it is a totally geodesic
submanifold. In particular, N̂ is a minimal submanifold of V̂ . According to Corol-
lary 2.7 in [24], N is an H-minimal submanifold of V . �

Example 12.15. 1. If m− ℓ = 0, that is, Z∆ = ∅, then V = C
m, and we obtain

the original construction of H-minimal Lagrangian submanifolds N of C
m.

2. If m − n = 0, that is, ZΓ = ∅, then N is the set of real points of V . It is
minimal (totally geodesic).

3. If m − ℓ = 1, that is, Z∆
∼= S2m−1, then we get H-minimal Lagrangian

submanifolds of V = CPm−1. This includes the families of projective examples in
[45], [42], and [49].
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[40] S. López de Medrano, “Topology of the intersection of quadrics in R
n”, Algebraic

topology (Arcata, CA 1986), Lecture Notes in Math., vol. 1370, Springer, Berlin
1989, pp. 280–292.
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