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In this thesis we use a di�eo-geometric framework based on manifolds that are locally

modeled on �convenient� vector spaces to study the geometry of some in�nite dimen-

sional spaces. Given a �nite dimensional symplectic manifold (M,ω), we construct a

weak symplectic structure on each leaf Iw of a foliation of the space of compact oriented

isotropic submanifolds in M equipped with top degree forms of total measure 1. These

forms are called weightings and such manifolds are said to be weighted. We show that this

symplectic structure on the particular leaves consisting of weighted Lagrangians is equiv-

alent to a heuristic weak symplectic structure of Weinstein [23]. When the weightings

are positive, these symplectic spaces are symplectomorphic to reductions of a weak sym-

plectic structure of Donaldson [3] on the space of embeddings of a �xed compact oriented

manifold into M . When M is compact, by generalizing a moment map of Weinstein we

construct a symplectomorphism of each leaf Iw consisting of positive weighted isotropics

onto a coadjoint orbit of the group of Hamiltonian symplectomorphisms of M equipped

with the Kirillov-Kostant-Souriau symplectic structure. After de�ning notions of Poisson

algebras and Poisson manifolds, we prove that each space Iw can also be identi�ed with

a symplectic leaf of a Poisson structure. Finally, we discuss a kinematic description of

spaces of weighted submanifolds.
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Chapter 1

Introduction

In the same way that �nite dimensional manifolds are locally modeled on Rn, many

collections of geometric objects can be viewed as in�nite dimensional manifolds locally

modeled on interesting geometric spaces. For example, if N andM are smooth manifolds

then the following local models are known:

Collection M Modeling Space at x ∈M

di�eomorphisms of N vector �elds on N

Riemannian metrics on N symmetric 2-tensors on N

smooth maps from N to M sections of x∗TM

Lagrangian submanifolds closed 1-forms on x

These local models represent certain choices, as many geometric structures coincident

in �nite dimensions diverge in in�nite dimensions. For example, there are typically more

derivations than equivalence classes of paths; there are many ways to de�ne the dual of a

tangent space; there may fail to exist holomorphic charts even when the Nijenhuis tensor

vanishes, etc. Accordingly, there are many frameworks available to study di�erential

geometric structures in in�nite dimensions. Depending on the problem, one might choose
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Chapter 1. Introduction 2

to work with Fréchet manifolds [7], Di�eology [15], Di�erential Spaces [13], the Global

Analysis framework of Frölicher, Kriegl and Michor [6, 9], etc., or just choose to work

heuristically.

Once a framework has been chosen, and a local model identi�ed, the geometry of a

collectionM can be explored using the following correspondence: structures inherent to

objects in M induce global structures on M. For example, if N and M are as above

then

� the set of Riemannian metrics on N inherits weak Riemannian structures (Ebin

1970 [5], Smolentzev 1994 [14]).

� if M is symplectic and L→ M is a prequantization line bundle, then the space of

sections Γ (L) inherits a weak symplectic structure (Donaldson 2001 [4]).

� the set of embeddings of N into M is the total space of a principal �ber bun-

dle with structure group Di� (N), the di�eomorphisms of N , and base the set of

submanifolds of M di�eomorphic to N (Binz, Fischer 1981 [1]).

In this thesis we study a particularly interesting example of this phenomenon involving

Lagrangian submanifolds equipped with certain measures. From the very beginning, we

study these objects in the �Convenient Setup� of Frölicher, Kriegl, and Michor (see [9]).

The starting point for this framework is the de�nition of smooth curves in locally

convex spaces called convenient vector spaces. Once the smooth curves have been speci-

�ed, smooth maps between convenient vector spaces can be de�ned as maps which send

smooth curves to smooth curves. Smooth manifolds then are de�ned as sets that can be

modeled on convenient vector spaces via charts, whose transition functions are smooth.

Once the appropriate notions of smoothness are speci�ed, objects in di�erential geometry

are de�ned by choosing how to generalize �nite dimensional constructions to in�nite di-

mensions (e.g. Lie groups, principal G bundles, vector �elds, di�erential forms, etc.) An

important feature of this approach is that the modeling space EU for each chart (ϕ,U)
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can be di�erent for di�erent chart neighbourhoods U . This di�ers from the usual descrip-

tion of �nite dimensional manifolds which are always modeled on the same vector space

Rn. This �exibility is useful in describing the local structure of many in�nite dimensional

manifolds, including the collection of Lagrangian submanifolds in a symplectic manifold.

In 1990 Alan Weinstein [23] introduced a foliation F of the space of Lagrangian

submanifolds in a �xed symplectic manifold (M,ω). A leaf of F consists of Lagrangians

that can be joined by �owing along Hamiltonian vector �elds. F lifts to a foliation Fw

of the space of pairs (L, ρ), where L is a Lagrangian in M equipped with a smooth

density ρ of total measure 1. Weinstein called such pairs weighted Lagrangians and

leaves of F and Fw isodrasts. He showed that each leaf Iw of Fw can be given a weakly

nondegenerate symplectic structure ΩW . He also showed that the leaves consisting of

Lagrangians equipped with positive densities can be identi�ed with coadjoint orbits of

the group of Hamiltonian symplectomorphisms. All of these constructions were done on

a heuristic level.

Instead of starting with the Lagrangian submanifolds directly, we instead begin by

showing that the set of Lagrangian embeddings of a �xed compact oriented manifold L0

into M is the total space of a principal �ber bundle with structure group Di�+ (L0), the

orientation preserving di�eomorphisms of L0. The base Lag (M) is naturally identi�ed

with the space of oriented Lagrangian submanifolds inM di�eomorphic to L0. We de�ne

a foliation E of the total space which descends to the isodrastic foliation F of the space of

Lagrangians. Similarly, the product of the space of Lagrangian embeddings with the space

of top degree forms on L0 that integrate to 1 is the total space of a principal Di�+ (L0)

bundle. The base of this bundle can be identi�ed with the set of pairs (L, ρ), where L

is an oriented Lagrangian in M di�eomorphic to L0 equipped with a top degree form ρ

(not necessarily non-vanishing) satisfying
∫
L
ρ = 1. The foliation E gives a foliation Ew

of the total space that descends to the isodrastic foliation Fw of the base. We de�ne a

basic 2-form Ω on the leaves of Ew which descends to a weakly nondegenerate symplectic
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structure on the leaves of Fw. We then show that the tangent spaces to the space of pairs

(L, ρ) in the �Convenient Setup� can be identi�ed with the tangent spaces in Weinstein's

heuristic construction, and that Ω corresponds to ΩW . In this way we make precise

Weinstein's original construction.

The set of pairs (L, ρ) consisting of Lagrangians equipped with volume forms of total

measure 1 is an open subset of the set of all weighted Lagrangians. The leaves of Fw in

this open subset of positive weighted Lagrangians inherit the symplectic structure Ω and

provide a link between Weinstein's symplectic structure and a symplectic structure de-

�ned by Simon Donaldson on the space of smooth mappings between manifolds described

brie�y as follows.

In 1999 Donaldson [3] heuristically wrote down a symplectic structure ΩD on the

space of smooth mappings C∞ (S0,M) of a compact oriented manifold S0, equipped

with a �xed volume form η0, into a symplectic manifold (M,ω). Under some topological

restrictions on ω and S0, Donaldson described a moment map µ for the Di� (S0, η0)-action

of volume preserving di�eomorphisms on C∞ (S0,M). This Di� (S0, η0)-action restricts

to a Hamiltonian action on the space of embeddings Emb (S0,M) ⊂ C∞ (S0,M), with

respect to the restrictions of ΩD and µ. By a lemma of Moser, symplectic quotients of

Emb (S0,M) by Di� (S0, η0) can be identi�ed with spaces of submanifolds inM equipped

with volume forms of �xed total measure. In fact when S0 is half the dimension of M

the level surface µ−1 {0} consists of Lagrangian embeddings. This suggests that when η0

has total measure 1 the symplectic quotients of
(
Emb (S0,M) ,ΩD

)
should be related to

the leaves of Fw consisting of positive weighted Lagrangians.

The main result of this thesis is that reductions of
(
Emb (S0,M) ,ΩD

)
can be de�ned,

in the �Convenient Setup�, without any topological restrictions on ω or S0 and that

these reductions are symplectomorphic to leaves of Fw consisting of positive weighted

Lagrangians when the dimension of S0 is half the dimension of M . In this way we

obtain not only a rigorous formulation of Donaldson's heuristic constructions, but also a
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precise relationship between Weinstein's symplectic structure and Donaldson's symplectic

structure. Namely, symplectic quotients of Donaldson's symplectic space can be identi�ed

with Weinstein's symplectic spaces in the particular case of leaves consisting of positive

weighted Lagrangians.

For S0 of dimension less than or equal to half the dimension of M , reductions of(
Emb (S0,M) ,ΩD

)
are still well de�ned in the �Convenient Setup� and yield symplectic

spaces consisting of positive weighted isotropic submanifolds inM . This suggests that the

symplectic structure Ω on weighted Lagrangians should have a generalization to weighted

isotropics. We show that indeed such a generalization exists, and that the corresponding

symplectic spaces in the particular case of leaves consisting of positive weighted isotropics

are symplectomorphic to reductions of
(
Emb (S0,M) ,ΩD

)
. In this way we obtain a

generalization of our observed relationship between Weinstein's symplectic structure and

Donaldson's symplectic structure to the case of weighted isotropics.

Our next result takes its cue from this generalization to weighted isotropics. Namely,

we show that the symplectic spaces of positive weighted isotropics are symplectomorphic

to coadjoint orbits of the group Ham (M) of Hamiltonian symplectomorphisms of M

equipped with the Kirillov-Kostant-Souriau symplectic structure. This symplectomor-

phism is given by a generalization of the moment map written down by Weinstein in his

identi�cation of positive weighted Lagrangians with coadjoint orbits of Ham (M).

These positive weighted isotropics have yet another interpretation akin to leaves of

Poisson manifolds in �nite dimensions. Given a �nite dimensional Poisson manifold

(P, {·, ·}), for each smooth function f ∈ C∞ (P,R) on P there exists a unique vector

�eld Xf on P satisfying dg (Xf ) = {f, g} for all g ∈ C∞ (P,R). The leaves swept out

by integral curves to such vector �elds Xf are symplectic manifolds. This picture can

be adapted to in�nite dimensions in the following sense. Given an in�nite dimensional

manifold P , for a subalgebra A ⊂ C∞ (P,R) we de�ne a Poisson bracket {·, ·} on A

and a Poisson algebra (A, {·, ·}) in the usual way. If for every f ∈ A there exists a



Chapter 1. Introduction 6

unique vector �eld Xf on P satisfying dg (Xf ) = {f, g} for all g ∈ A, then the directions

swept out by such vector �elds on each point in P de�ne a distribution on P . We call

maximal integral manifolds of this distribution leaves. By de�ning a Poisson algebra on(
Emb (S0,M) ,ΩD

)
, which restricts to a Poisson algebra on the space of isotropic embed-

dings, which descends to a Poisson algebra on the space of positive weighted isotropic

submanifolds, we show that the reductions of
(
Emb (S0,M) ,ΩD

)
are symplectic leaves

of a Poisson structure.

As a result we arrive at three di�erent interpretations of the symplectic spaces con-

sisting of positive weighted isotropics. Namely, they can be identi�ed with reductions of

the space of embeddings
(
Emb (S0,M) ,ΩD

)
, with coadjoint orbits of the group Ham (M)

of Hamiltonian symplectomorphisms, and with symplectic leaves of Poisson structures.

We then take a kinematic approach to the leaves of the foliation F of the space

of Lagrangian submanifolds to obtain a phase space symplectic structure. That is, by

viewing the leaves of F as possible con�gurations for a submanifold moving inM , on each

Lagrangian we can associate �conjugate momenta� with top degree forms that integrate

to 0. We call such pairs (L, χ) with L in a leaf of F satisfying
∫
L
χ = 0 momentum

weighted Lagrangians. By writing down what should be the canonical 1-form on this set

of momentum weighted Lagrangians and calculating its exterior derivative, we obtain a

weakly symplectic structure.

Finally, we apply this kinematic approach to the set of pseudo Riemannian metrics

of a �xed signature on a �nite dimensional manifold N . This collection can be viewed as

a set of submanifolds by identifying each metric with its graph as a section. Weightings

then can be assigned to each metric by pulling up a structure assigned toN . By equipping

each metric in this way with a compactly supported symmetric 2-tensor on N , we show

that the set of all such weighted metrics has a natural exact symplectic structure.
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1.1 Conventions

Unless stated otherwise, all �nite dimensional manifolds are smooth, connected, and

paracompact. For manifolds M and N and vector bundle E → M , we will use the

following notation:

C∞ (M,R) smooth functions on M

C∞c (M,R) smooth functions of compact support on M

Di� (M) di�eomorphisms of M

Di�+ (M) orientation preserving di�eomorphisms of M

C∞ (M,N) smooth mappings from M to N

Emb (M,N) smooth embeddings from M to N

X (M) vector �elds on M

Ωk (M) k -forms on M

Tkl (M) (k, l)-tensor �elds on M

Γ (E) sections of E →M

ı (X) interior derivative with respect to X

LX Lie derivative with respect to X.

In the absence of summation signs repeated indices are summed over.



Chapter 2

Basic De�nitions

We begin by describing the �Convenient Setup� of Frölicher, Kriegl, and Michor in order

to establish what we will mean by smoothness, tangent vectors, etc. on some in�nite

dimensional manifolds. Many de�nitions will be taken verbatim from [9]. All references

like [9, X.X] in this chapter refer to sections in [9].

2.1 Locally Convex Spaces

A real topological vector space E is a vector space equipped with a topology under which

addition + : E × E → E and scalar multiplication R× E → E are continuous.

A subset C in E is said to be

1. circled if λC ⊂ C whenever |λ| ≤ 1.

2. convex if λ1C + λ2C ⊂ C for all λ1, λ2 ≥ 0 satisfying λ1 + λ2 = 1.

3. absolutely convex if C is circled and convex.

A locally convex space is a Hausdor� topological vector space E, for which every neigh-

bourhood of 0 contains an absolutely convex neighbourhood of 0.

8
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2.2 Bounded Sets

A subset C of a locally convex space E is bounded if for each neighbourhood U of 0 there

exists a ρ > 0 such that C ⊂ ρU . The family of all bounded sets in E is called the

bornology of E. A linear map T : E → F between locally convex spaces is bounded if it

maps bounded sets to bounded sets [9, 1.1].

2.3 Smooth Curves

Let E be a locally convex space. A curve c : R → E is called di�erentiable if the

derivative c′ (t) := lim
h→0

1
h

[c (t+ h)− c (t)] at t exists for all t. A curve c : R→ E is called

smooth if all iterated derivatives exist. The set of all smooth curves in E will be denoted

by C∞ (R, E) [9, 1.2].

One would hope that reasonable de�nitions of smoothness would imply that �di�eo-

morphisms� are homeomorphisms. For this purpose we will make use of another topology

on locally convex spaces.

2.4 The c∞-Topology

The c∞-topology on a locally convex space E is the �nest topology for which all smooth

curves c : R → E are continuous [9, 2.12]. The c∞-topology is �ner than the locally

convex topology on E [9, 4.7]. If E is a Fréchet space, (i.e. a complete and metrizable

locally convex space), then the two topologies coincide [9, 4.1, 4.11].

2.5 Convenient Vector Spaces

A convenient vector space is a locally convex space E with the following property: For

any c1 ∈ C∞ (R, E) there is a c2 ∈ C∞ (R, E) with c′2 = c1. Any c
∞-closed subspace of a
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convenient vector space is convenient. [9, 2.12, 2.13, 2.14].

2.6 Space of Curves

The set of smooth curves C∞ (R, E) in a convenient vector space E has a natural conve-

nient structure. Moreover, a locally convex space E is convenient if and only if C∞ (R, E)

is convenient [9, 3.7].

We would like to study sets that can be locally modeled on convenient vector spaces.

To de�ne �smooth transition functions� we need to de�ne smooth mappings between

convenient vector spaces.

2.7 Convention

For the rest of this chapter E and F will denote convenient vector spaces.

2.8 Mappings Between Convenient Vector Spaces

Let U ⊂ E be a c∞-open subset. A mapping f : U → F is called smooth if it maps

smooth curves in U to smooth curves in F . Let C∞ (U, F ) denote the set of all smooth

mappings f : U → F , equipped with the �nest topology on C∞ (U, F ) for which all maps

c∗ : C∞ (U, F )→ C∞ (R, F ), given by pullback along smooth curves (i.e. c∗ (f) = f ◦ c),

are continuous. Then C∞ (U, F ) is a convenient vector space [9, 3.11].

2.9 Spaces of Linear Mappings

Let L (E,F ) denote the set of all bounded linear mappings from E to F . Then L (E,F )

is contained in C∞ (E,F ) [9, 2.11] and inherits a convenient structure [9, 3.17]. The set

of invertible maps in L(E,F ) with bounded inverse will be denoted by GL(E,F ).
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2.10 The Di�erentiation Operator and Chain Rule

Let U ⊂ E be a c∞-open subset. The di�erentiation operator

d : C∞ (U, F ) → C∞ (U,L (E,F ))

df (x) v := lim
t→0

f (x+ tv)− f (x)

t

exists, is linear and bounded (smooth). Note that the above limit is taken in the locally

convex topology of F . Also the chain rule

d (f ◦ g) (x) v = df (g (x)) dg (x) v

holds [9, 3.18].

2.11 Examples of Convenient Vector Spaces

The following spaces have natural convenient structures:

Lkalt (E,F ) alternating multilinear maps E × . . .× E → F [9, 5.9, 5.13]

C∞ (M,R) smooth functions on a �nite dimensional manifold M [9, 6.1]

C∞c (M,R) smooth functions of compact support on a �nite

dimensional manifold M [9, 6.2]

Γc (Q) compactly supported smooth sections of a vector bundle Q→M

with �nite dimensional total space, base, and �bers [9, 30.4].

2.12 Manifolds

A chart (U,ϕ) on a setM is a bijection ϕ : U → EU from a subset U ⊂M onto a c∞-open

set in a convenient vector space EU . A family of charts (Uα, ϕα)α∈A is called an atlas

for M , if the Uα cover M and all transition functions ϕαβ := ϕα ◦ ϕ−1
β : ϕβ (Uα ∩ Uβ)→
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ϕα (Uα ∩ Uβ) are smooth. Two atlases are equivalent if their union is again an atlas on

M . A smooth manifold M is a set together with an equivalence class of atlases on it [9,

27.1].

2.13 Smooth Mappings Between Manifolds

A mapping f : M → N between manifolds is smooth if for every x ∈M and chart (V, ψ)

on N with f (x) ∈ V there exists a chart (U,ϕ) on M with x ∈ U and f (U) ⊂ V such

that ψ ◦ f ◦ ϕ−1 is smooth. So a mapping f : M → N is smooth if and only if it maps

smooth curves to smooth curves. A smooth mapping f : M → N is a di�eomorphism if

it is a bijection and if its inverse is smooth [9, 27.2]. The set of smooth maps from M to

N will be denoted by C∞(M,N).

2.14 Submanifolds

A subset N of a smooth manifold M is called a submanifold, if for each x ∈ N there is

a chart (U,ϕ) of M such that ϕ (U ∩N) = ϕ (U) ∩ FU , where FU is a c∞-closed linear

subspace of the convenient model space EU [9, 27.11]. A curve in a submanifold N of M

is smooth if and only if it is smooth as a curve in M .

2.15 Tangent Spaces of a Convenient Vector Space

Let a ∈ E. A tangent vector with base point a is a pair (a,X) with X ∈ E. For each

neighbourhood U of a in E, a tangent vector (a,X) de�nes a derivation C∞ (U,R)→ R

by Xaf := df (a) (X) [9, 28.1].
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2.16 Remark

In [9] these tangent vectors are called kinematic tangent vectors since they can be realized

as derivatives c′ (0) at 0 of smooth curves c : R → E. This is to distinguish them from

more general derivations which are called operational tangent vectors.

2.17 The Tangent Bundle

Let M be a smooth manifold with an atlas (Uα, ϕα)α∈A. On the disjoint union

⊔
α∈A

Uα × Eα × {α}

de�ne the following equivalence relation:

(x, v, α) ∼ (y, w, β)⇐⇒ x = y and dϕαβ (ϕβ (y))w = v.

A tangent vector at x ∈ M is an equivalence class [(x, v, α)]. The quotient
⊔
α∈A Uα ×

Eα × {α} / ∼ will be called the tangent bundle of M and will be denoted by TM .

Let π : TM → M denote the projection [(x, v, α)] 7→ x. TM inherits a smooth

manifold structure from M . For x ∈ M the set TxM := π−1 (x) is called the tangent

space at x. Since each transition function ϕαβ is smooth, each di�erential dϕαβ(x) is

bounded linear, which means each tangent space TxM has a well de�ned bornology

independent of the choice of chart (cf. [9, 1.1, 2.11]).

Alternatively, we can describe tangent vectors to a smooth manifold by means of

equivalence classes of smooth curves. We will say that two smooth curves c1 and c2 in M

are equivalent at x ∈M , (and write c1 ∼x c2), if c1 (0) = x = c2 (0) and d
dt

∣∣
t=0

ϕα◦c1 (t) =

d
dt

∣∣
t=0

ϕα ◦ c2 (t) for a chart ϕα in an atlas (Uα, ϕα)α∈A on M . The tangent space at x

then is equal to C∞ (R,M) / ∼x (compare with [9, 28.12]).
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2.18 Tangent Mappings

Let f : M → N be a smooth mapping between manifolds. Then f induces a linear

map df (x) : TxM → Tf(x)N for each x ∈ M by the following formula. If X = [c] ∈

C∞ (R,M) / ∼x then df (x)X := [f ◦ c]. This de�nes a �berwise linear map df : TM →

TN called the di�erential of f (compare with [9, 28.15]).

2.19 Distributions

A distribution on a smooth manifoldM is an assignment to each point x ∈M a c∞-closed

subspace Dx of TxM . If D = {Dx} is a distribution on a manifold M and i : N ↪→ M

is the inclusion map of a connected submanifold N of M , then N is called an integral

manifold of D if di (TxN) = Di(x) for all x ∈ N . An integral manifold of D is called

maximal if it is not properly contained in any other integral manifold.

Let D be a distribution on a manifold M . The set of locally de�ned vector �elds X

on M satisfying X (x) ∈ Dx will be denoted by XD (M).

2.20 Remark

In �nite dimensions such distributions de�ned without any assumptions regarding con-

tinuity or smoothness are sometimes called �generalized distributions�. If a generalized

distribution D is �smooth� in the sense that every v ∈ Dx ⊂ TxM can be realized as X (x)

for a locally de�ned vector �eld X ∈ XD (M), then there exist results on integrability of

such distributions (see e.g. [18], [19], [16], [17].)
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2.21 Foliations

Let M be a smooth manifold. A foliation of M is a distribution F = {Fx} on M , for

which there exists an atlas (Uα, ϕα) of charts ϕα : Uα → Eα on M and a family of c∞-

closed subspaces {Fα ⊂ Eα}, such that the inverse image under ϕα of translations of Fα

are integral manifolds of F , and such that if N ⊂ Uα is an integral manifold of F then

ϕα (N) is contained in a translation of Fα. The charts ϕα will be called distinguished

charts.

Let ϕα : Uα → Eα be a distinguished chart of a foliation F of M and y + Fα a

translation of Fα ⊂ Eα. Then ψα,y := ϕα|ϕ−1(y+Fα) − y de�nes a chart into Fα, and the

set of all such charts ψα,y de�nes an alternative smooth structure on the set M modeled

on the spaces Fα. The set M equipped with this alternative manifold structure will be

denoted by MF . A leaf of the foliation F is a connected component of MF . Since

TxM
F = Fx for all x ∈M , every leaf is a maximal integral manifold of F (compare with

[9, 27.16]).

2.22 Remark

Our de�nition of foliation di�ers from the de�nition in [9, 27.16] because we wish to

describe foliations on manifolds modeled on di�erent convenient spaces in di�erent charts.

2.23 Fiber Bundles

A �ber bundle (Q, p,M) consists of manifolds Q (the total space), M (the base), and a

smooth mapping p : Q → M (the projection) such that for every x ∈ M there exists an

open neighbourhood U of x, a smooth manifold SU , and a di�eomorphism ψ such that
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the following diagram commutes:

p−1 (U)
ψ //

p

&&LLLLLLLLLLL
U × SU

pr1

��
U.

Such a pair (U, ψ) as above is called a �ber bundle chart. A �ber bundle atlas (Uα, ψα)α∈A

is a set of �ber bundle charts such that {Uα}α∈A is an open cover of M . If we �x a �ber

bundle atlas, then ψα ◦ ψ−1
β (x, s) = (x, ψαβ (x, s)) where ψαβ : (Uα ∩ Uβ) × Sβ → Sα

is smooth, and where ψαβ (x, ·) is a di�eomorphism of Sβ onto Sα for each x ∈ Uαβ :=

Uα ∩ Uβ. The mappings ψαβ are called the transition functions of the bundle. When

SUα = S for all charts (Uα, ψα) for some smooth manifold S, then S is called the standard

�ber (compare with [9, 37.1]).

2.24 Remark

Our de�nition of a �ber bundle di�ers from the de�nition in [9, 37.1] in the sense that it

allows for di�erent SU for di�erent neighbourhoods U .

2.25 Vector Bundles

Let (Q, p,M) be a �ber bundle. A �ber bundle chart (U, ψ) is called a vector bundle

chart if SU is a convenient vector space. Two vector bundle charts (Uα, ψα) and (Uβ, ψβ)

are compatible if the transition function ψαβ is bounded and linear in the �bers, i.e.

ψαβ (x, s) = (x, φαβ (x) s) for some mapping φαβ : Uαβ → GL (Sβ, Sα) ⊂ L(Sβ, Sα). A

vector bundle atlas is a �ber bundle atlas (Uα, ψα)α∈A consisting of pairwise compatible

vector bundle charts. Two vector bundle atlases are equivalent if their union is again

a vector bundle atlas. A vector bundle (Q, p,M) is a �ber bundle together with an

equivalence class of vector bundle atlases (compare with [9, 29.1]).
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2.26 Remark

Here again our de�nition di�ers from that in [9, 29.1] in that we allow for di�erent SU

in di�erent neighbourhoods U . However, this more general version of vector bundles is

subsequently used implicitly throughout the text (see e.g. [9, 29.9] and [9, 29.10] where

the tangent bundle TM of any smooth manifold M is taken to be a vector bundle).

2.27 Constructions with Vector Bundles

If Q→M and R→M are vector bundles then we have vector bundles Q∗, L (Q,R), and

Lkalt (Q,R) whose �bers over x ∈ M are (Qx)
∗ (the space of bounded linear functionals

on Qx), L (Qx, Rx) and L
k
alt (Qx, Rx) respectively [9, 29.5].

2.28 Remark

We will always use E∗ to denote the space of bounded linear functionals on a locally

convex space E. In [9] E∗ is reserved for the space of continous (in the locally con-

vex topology) linear functionals while E ′ is used to denote the space of bounded linear

functionals.

2.29 Cotangent Bundles

Since TM is a vector bundle for any manifoldM , the bundle (TM)∗ with �ber over x ∈M

equal to (TxM)∗ is also a vector bundle. This vector bundle is called the cotangent bundle

of M and will be denoted by T ∗M [9, 33.1].
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2.30 Spaces of Sections of Vector Bundles

A section of a vector bundle p : Q→M is a smooth map s : M → Q such that p◦s = IdM .

The set of sections of p : Q→ M will be denoted by Γ (Q), and the set of sections with

compact support by Γc (Q). The space Γ (Q) has a natural convenient structure [9,

30.1]. If M is �nite dimensional and paracompact then Γc (Q) has a natural convenient

structure [9, 30.4], and if W ⊂ Q is an open subset, then {s ∈ Γc (Q) | s (M) ⊂ W} is

c∞-open in Γc (Q) [9, 30.10]. If p : Q → M is a �nite dimensional vector bundle over

a �nite dimensional paracompact base, then the c∞-topology on Γc (Q) is induced from

the Whitney C∞-topology on C∞ (M,Q) (which coincides with the Fréchet topology; see

Sec. 2.4) [9, 41.13].

We will be interested primarily in sets that can be locally modeled on spaces of

sections of vector bundles. To understand notions of smoothness on such sets, it is

enough to identify the smooth curves.

2.31 Curves in Spaces of Sections

Let Q → M be a vector bundle. A curve c : R → Γ (Q) is smooth if and only if the

associated map c∧ : R×M → Q de�ned by c∧ (t, x) := c (t) (x) is smooth [9, 30.8].

2.32 Example: Manifold of Mappings

LetM andN be �nite dimensional manifolds. The space C∞ (M,N) is a smooth manifold

modeled on spaces Γc (f ∗TN) of compactly supported sections of the pullback bundle

along f ∈ C∞ (M,N) [9, 42.1]. The charts can be described as follows. Choose a

Riemannian metric on N and let exp : TN ⊃ U → N be the smooth exponential map of

this metric. If πN : TN → N denotes the projection of the tangent bundle, then we can

assume that (πN , exp) : U → N × N is a di�eomorphism onto an open neighbourhood
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W of the diagonal. For f, g ∈ C∞ (M,N), we will write f ∼ g if f and g di�er only on a

compact set in M . The charts (Vf , ψf ) indexed by f ∈ C∞ (M,N) are given by

Vf := {g ∈ C∞ (M,N) | g ∼ f, (f (x) , g (x)) ∈ W for all x ∈M}

ψf : Vf → Γc (f ∗TN)

ψf (g) (x) :=
(
x, exp−1

f(x) (g (x))
)

=
(
x,
(
(πN , exp)−1 (f (x) , g (x))

))

2.33 Vector Fields

Let M be a smooth manifold. A vector �eld X on M is a smooth section of the tangent

bundle TM [9, 32.1]. The set of all vector �elds on M will be denoted by X (M). Each

vector �eld X speci�es a map

C∞ (M,R) → C∞ (M,R)

f 7→ Xf

Xf (x) := df (x)X (x) .

2.34 The Lie Bracket

Let X and Y be smooth vector �elds on a manifold M . The Lie bracket [X, Y ] of X and

Y is the vector �eld on M given by the expression

[X, Y ] = dY (X)− dX (Y )

The bracket [·, ·] : X (M)×X (M)→ X (M) de�nes a Lie algebra structure on X (M) [9,

32.5, 32.8].

2.35 Di�erential Forms

A di�erential k-form on a manifold M is a section ω ∈ Γ
(
Lkalt (TM,M × R)

)
. The set

of all di�erential k-forms will be denoted by Ωk (M) [9, 33.22].
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2.36 The Pullback of a Di�erential Form

Let f : N → M be a smooth mapping and ω ∈ Ωk (M) be a di�erential k-form on M .

The pullback f ∗ω ∈ Ωk (N) of ω is de�ned by

f ∗ωx (X1, . . . , Xk) := ωf(x) (df (x)X1, . . . , df (x)Xk)

[9, 33.9].

2.37 The Insertion Operator

For a vector �eld X ∈ X (M) on a manifold M , the insertion operator ı (X) is de�ned by

ı (X) : Γ
(
Lkalt (TM,M × R)

)
→ Γ

(
Lk−1
alt (TM,M × R)

)
(ı (X)ω) (Y1, . . . , Yk−1) := ω (X, Y1, . . . , Yk−1)

[9, 33.10].

2.38 The Exterior Derivative

Let U ⊂ E be c∞-open and ω ∈ C∞
(
U,Lkalt (E,R)

)
be a di�erential k−form on U .

The exterior derivative dω ∈ C∞
(
U,Lk+1

alt (E,R)
)
of ω is the skew symmetrization of the

di�erential dω:

(dω) (x) (X0, . . . , Xk) =
k∑
i=0

(−1)i dω (x) (Xi)
(
X0, . . . , X̂i, . . . , Xk

)
.

If ω is a di�erential k-form on a manifoldM , then this local formula de�nes a di�erential

k + 1-form dω on M . The above local expression for the exterior derivative induces the

global formula

(dω) (x) (X0, . . . , Xk) =
k∑
i=0

(−1)iXi

(
ω ◦

(
X0, . . . , X̂i, . . . , Xk

))
+
∑
i<j

(−1)i+j ω ◦
(

[Xi, Xj] , X0, . . . , X̂i, . . . , X̂j, . . . , Xk

)
where X0, . . . Xk ∈ X (M) [9, 33.12].
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2.39 Lie Groups

A Lie group G is a smooth manifold and a group such that multiplication µ : G×G→ G

and inversion ν : G → G are smooth. The Lie algebra of a Lie group G is the tangent

space to G at the identity e, which inherits a Lie bracket from the identi�cation with left

invariant vector �elds. The Lie algebra will be denoted either by g or Lie (G) [9, 36.1,

36.3].

2.40 Basic Di�erential Forms

Let l : G×M →M be a smooth action of a Lie group G on a smooth manifold M . Let

lg : M → M denote the left multiplication mapping x 7→ g · x. For ξ ∈ g the generating

vector �eld ξM is de�ned by ξM (x) := dl(e,x) (ξ, 0). A di�erential k-form ω ∈ Ωk (M) on

M is G-invariant if l∗gω = ω for all g ∈ G and horizontal if ω (ξM , ·) = 0 ∈ Ωk−1 (M)

for all ξ ∈ g. A di�erential k-form ω ∈ Ωk (M) is basic if it is both G-invariant and

horizontal. The set of all basic k-forms on M will be denoted by Ωk
hor (M)G [9, 37.23].

2.41 Principal G Bundles

Let G be a Lie group. A principal G bundle (P, p,M,G) is a �ber bundle with standard

�ber G whose transition functions act on G via left translation: There is a family of

smooth mappings {φαβ : Uαβ → G} that satisfy the cocycle condition φαβ (x)φβγ (x) =

φαγ (x) for x ∈ Uα ∩Uβ ∩Uγ, φαα (x) = e (the identity in G), and ψαβ (x, g) = φαβ (x) · g

[9, 37.7, 37.8]. The pull back through the projection p∗ : Ωk (M) → Ωk
hor (P )G is an

isomorphism [9, 37.30].
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2.42 Di�eomorphism Groups

The following di�eomorphism groups are examples of in�nite dimensional Lie groups:

� the group Di� (M) of di�eomorphisms of a �nite dimensional paracompact manifold

M ; the Lie algebra is the space Xc (M) of compactly supported vector �elds on M .

In fact, Di� (M) is open in C∞ (M,M) so the tangent space at each f ∈ Di� (M)

is equal to Γ (f ∗TM) [9, 43.1].

� the group Symp (M) of symplectomorphisms of a (�nite dimensional) symplectic

manifold (M,σ); the Lie algebra is the space Xsymp
c (M) of compactly supported

symplectic vector �elds [9, 43.12]. (φ ∈ Di� (M) is a symplectomorphism if φ∗σ =

σ; X ∈ X (M) is a symplectic vector �eld if LXσ = 0.)

� the group Ham (M) of Hamiltonian symplectomorphisms of a (�nite dimensional)

symplectic manifold (M,σ); the Lie algebra is the space Xham
c (M) of compactly

supported Hamiltonian vector �elds [9, 43.12, 43.13]. (X ∈ X (M) is a Hamiltonian

vector �eld if ı (X)σ is exact; φ ∈ Symp (M) is a Hamiltonian symplectomorphism

if it is the time 1 �ow of a time dependent Hamiltonian vector �eld.)

2.43 Remark

In heuristic approaches to in�nite dimensional Lie groups, the Lie algebra to the group

Di� (M) of di�eomorphisms of a �nite dimensional manifold M is often taken to be the

space of smooth vector �elds on M . In the convenient setup, the Lie algebra of Di� (M)

is given by the space Xc (M) of compactly supported vector �elds on M because of the

choice of charts.
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2.44 The Adjoint Representation

Let GL (E) denote the set of bounded invertible linear transformations of E. Let G

be a Lie group with Lie algebra g. Every element g ∈ G de�nes an automorphism

ψg : G → G by conjugation: ψg (a) := gag−1. The adjoint representation of G denoted

by Ad : G→ GL (g) ⊂ L (g, g) is given by Ad (g) := deψg : g→ g for g ∈ G. The adjoint

representation of g denoted by ad : g → gl (g) := L (g, g) is given by ad := deAd [9,

36.10].

2.45 Weak Symplectic Manifolds

A 2-form σ ∈ Ω2 (M) on a manifold M is called a weak symplectic structure on M if it

is closed (dσ = 0) and if its associated vector bundle homomorphism σ[ : TM → T ∗M

is injective. This last condition is equivalent to weak nondegeneracy: for every x ∈ M

and v ∈ TxM there exists a w ∈ TxM such that σx (v, w) 6= 0. If σ[ : TM → T ∗M is

invertible with a smooth inverse then σ is called a strong symplectic structure on M [9,

48.2]. A vector �eld X ∈ X (M) will be called Hamiltonian if ı (X)σ = dH for some

H ∈ C∞ (M,R), and the function H will called a Hamiltonian of X.



Chapter 3

Isodrastic Foliations

In this chapter we will describe our approach towards describing Lagrangian submanifolds

as Lagrangian embeddings modulo reparametrizations. We will show that the space of

Lagrangian embeddings into a �xed symplectic manifold (M,ω) is a smooth manifold

which has a natural foliation E . Moreover, the space of Lagrangian embeddings of the

form L0 ↪→ M is the total space of a principal Di�+ (L0) bundle over the space of

Lagrangian submanifolds in M . The leaves of E will turn out to be orbits of the group of

Hamiltonian symplectomorphisms under the natural left composition action. Meanwhile

the foliation E descends to a foliation F of the space of Lagrangian submanifolds inM . In

all of these constructions, the key will be to use Weinstein's Lagrangian Neighbourhood

Theorem which says that any symplectic manifold near a Lagrangian L looks like a

neighbourhood of the zero section in the cotangent bundle T ∗L.

Let (M,ω) be a �nite dimensional symplectic manifold. Let L0 be an oriented, com-

pact manifold of half the dimension of M .

24
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3.1 Notation

By Lag (L0,M) we will denote the set of Lagrangian embeddings of L0 into (M,ω). That

is,

Lag (L0,M) := {i ∈ Emb (L0,M) | i∗ω = 0} .

Let Zk (N) and Bk (N) denote the set of closed and exact k -forms respectively on a

manifold N . That is,

Zk (N) := Ker (d) ∩ Ωk (N)

Bk (N) := Im (d) ∩ Ωk (N) .

We will show that Lag (L0,M) is a smooth manifold by de�ning an atlas of charts

using the following Lagrangian neighbourhood theorem of Weinstein:

3.2 Theorem

(see Th. 6.1 and Cor. 6.2 in [21]) Let L be a Lagrangian submanifold of a symplectic

manifold (M,ω). Then there exists an open neighbourhood U of L and a symplectic

embedding ψ : U → T ∗L such that ψ|L = 1L and ψ∗ωT ∗L = ω.

3.3 Proposition

Lag (L0,M) is a smooth manifold modeled on the space Z1 (L0)⊕ X (L0).

Proof. The idea of the proof is as follows. By Th. 3.2, Lagrangians near a given La-

grangian can be identi�ed with the graphs of closed 1-forms in T ∗L0. It follows that

Lagrangian embeddings near a given one can be identi�ed with closed 1-forms viewed as

maps from L0 to T ∗L0 precomposed with di�eomorphisms of L0.

Given i ∈ Lag(L0,M), by Th. 3.2 the embedding i can be extended on a neighbour-

hood Wi of the zero section in T ∗L0 to a symplectic embedding λi : Wi →M . Let Ve be
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a chart neighbourhood of the identity map e ∈ Di� (L0) and denote by ψe : Ve → X (L0)

the corresponding chart as part of an atlas on Di� (L0). De�ne

Ui :=
{
l ∈ Lag (L0,M) | l = λi ◦ α ◦ a, α ∈ Z1 (L0) ,

α (L0) ⊂ Wi, a ∈ Ve} ,

ϕi : Ui → Z1 (L0)⊕ X (L0) ,

ϕi (l) := (α, ψe (a)) .

The space X (L0) = Γ (TL0) is convenient by Sec. 2.11. The space Z1 (L0) is a c∞-

closed subspace of Γ (T ∗L0) since it is the kernel of the continuous map d : Γ (T ∗L0) →

Γ
(∧2 T ∗L0

)
, and therefore it is convenient. The set {α ∈ Z1 (L0) | α (L0) ⊂ Wi} is

c∞-open in Z1 (L0) (see Sec. 2.30). Thus ϕi is a bijection of Ui onto a c
∞-open subset of

Z1 (L0)⊕ X (L0).

The collection (Ui, ϕi)i∈Lag(L0,M) de�nes a smooth atlas on Lag (L0,M), since the chart

changings ϕik are smooth by smoothness of the exponential map, by smoothness of each

symplectic embedding λi, and by Sec. 2.31.

To explicitly describe the tangent space to Lag (L0,M) at a point i, we will make use

of the following notation.

3.4 Notation

If S0 is a manifold (not necessarily of half the dimension of M), then for every i ∈

Emb (S0,M) we can view the tangent bundle TS0 as a subbundle of the pullback bundle

i∗TM . The symplectic form ω de�nes a vector bundle isomorphism ω[ : TM → T ∗M ,

which induces a vector space isomorphism µ : Γ (i∗TM)→ Γ (i∗T ∗M). There is a natural

surjection from the pullback bundle i∗T ∗M onto the cotangent bundle T ∗S0. This induces

a linear map ν : Γ (i∗T ∗M) → Γ (T ∗S0) = Ω1 (S0). For X ∈ Γ (i∗TM), let αX ∈ Ω1 (S0)

denote the image of X under the composition ν ◦ µ. That is,
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X 7→ αX ∈ Ω1 (S0)

αX (ξ) := ωi(x) (X (x) , di (x) · ξ) ∀ξ ∈ TxS0.

Also, set

Γclosed (i∗TM) :=
{
X ∈ Γ (i∗TM) | αX ∈ Z1 (S0)

}
,

Γexact (i∗TM) :=
{
X ∈ Γ (i∗TM) | αX ∈ B1 (S0)

}
.

3.5 Remark

If Y ∈ X (L0) then αY = 0 for all i ∈ Lag (L0,M) since such embeddings are Lagrangian.

3.6 Proposition

For each i ∈ Lag (L0,M), the sequence

0 −→ X (L0)
f1−→ Γclosed (i∗TM)

f2−→ Z1 (L0) −→ 0 (3.1)

where f1 (Y ) = di (Y ) and f2 (X) = αX , is a Di� (L0)-equivariant exact sequence.

Proof. If i ∈ Lag (L0,M) and X ∈ Γ (i∗TM), then αX = 0 if and only if X is tangent

to i (L0) since i is Lagrangian. Thus Ker (f2) = Im (f1). To check that f2 is onto, let

α ∈ Z1 (L0). By Th. 3.2, it is enough to prove the assertion when M = T ∗L0 and i is

the zero section inclusion. Let π : T ∗L0 → L0 denote the canonical projection. De�ne

Zα ∈ X (T ∗L0) by

ı (Zα)ω := π∗α.

Then αZα◦i = α, which means f2 is surjective and so the sequence is exact.
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3.7 Remark

Each symplectic embedding λi : T ∗L0 ⊃ Wi →M de�nes a splitting map si : Z1 (L0)→

Γclosed (i∗TM) of the exact sequence (3.1) given by

si (α) := dλi ◦ Zα|L0

where ı (Zα)ωT ∗L0 = π∗α. Under this splitting Γclosed(i∗TM) = Z1(L0)⊕ X(L0).

3.8 Proposition

For each i ∈ Lag (L0,M),

TiLag (L0,M) = Γclosed (i∗TM) .

Proof. Let jt be a smooth curve in Lag (L0,M) such that j0 = i. For each x ∈ L0

we have that d
dt

∣∣
t=0

jt (x) ∈ Ti(x)M , which means d
dt

∣∣
t=0

jt ∈ Γ (i∗TM). The fact that

j∗t ω = 0 implies that d
dt

∣∣
t=0

jt ∈ Γclosed (i∗TM). If (Ul, ϕl) is a chart corresponding to a

symplectic embedding λl : T ∗L0 ⊃ Wl →M with i ∈ Ul, then the derivative d
dt

∣∣
t=0

ϕl (jt)

in Z1 (L0)⊕ X (L0) ⊂ T (T ∗L0)|L0
is canonically identifed with d

dt

∣∣
t=0

jt via

d

dt

∣∣∣∣
t=0

ϕl (jt) = α d
dt |t=0

jt
+ dπ ◦ dλ−1

l ◦
d

dt

∣∣∣∣
t=0

jt.

So, TiLag (L0,M) ⊂ Γclosed (i∗TM).

Conversely, suppose that X ∈ Γclosed (i∗TM) and denote by λi : T ∗L0 ⊃ Wi → M

the symplectic embedding associated to the chart (Ui, ϕi). De�ne a smooth curve in

Symp (T ∗L0) by ψt (x, p) := (x, p+ tαX (x)) and a vector �eld on L0 by Y := dπ ◦

dλ−1
i ◦X. If at denotes the �ow generated by Y on L0 and O denotes the zero section,

then dλi ◦ d
dt

∣∣
t=0

(ψt ◦O ◦ at) = X. Thus X ∈ Γclosed (i∗TM) corresponds to the class

[λi ◦ ψt ◦O ◦ at] in TiLag (L0,M).



Chapter 3. Isodrastic Foliations 29

The set Ham (M) of Hamiltonian symplectomorphisms is a subgroup of Symp (M)

(see e.g. [12]). So left composition de�nes an action of Ham (M) on Lag (L0,M) via

φ · i := φ ◦ i.

3.9 Proposition

The spaces Γexact (i∗TM) ⊂ Γclosed (i∗TM) and charts (Ui, ϕi) for i ∈ Lag (L0,M) de�ne

a foliation E of Lag (L0,M), whose leaves consist of Ham (M) orbits.

Proof. Set Ei := Γexact (i∗TM) for i ∈ Lag (L0,M). We will �rst show that Γexact (i∗TM)

is a c∞-closed (i.e. convenient) subspace of Γclosed (i∗TM) for all i ∈ Lag (L0,M). If

Γclosed (i∗TM) is identi�ed with Z1 (L0) ⊕ X (L0) via the splitting map si : Z1 (L0) →

Γclosed (i∗TM), then to show that Γexact (i∗TM) is c∞-closed in Γclosed (i∗TM) it is enough

to show that F := B1 (L0) ⊕ X (L0) is c∞-closed in Z1 (L0) ⊕ X (L0). Let c1 : R → F

be a smooth curve in F . If c1 (t) = (dft, Yt) then p1 : t 7→ ft can be chosen to be a

smooth curve in C∞ (L0,R). Since C∞ (L0,R) is convenient, there exists a smooth curve

p2 : t 7→ gt in C∞ (L0,R) such that p′2 = p1. Similarly for the curve q1 : t 7→ Yt there

exists a smooth curve q2 : t 7→ Zt in X (L0) such that q′2 = q1. Then c2 (t) := (dgt, Zt) is

an antiderivative of c1, i.e. c
′
2 = c1. This means F is a convenient subspace.

We will next show that the Ham (M) orbits in Lag (L0,M) are maximal integral

manifolds of E = {Ei}. The tangent vectors to a Ham (M) orbit at a point i ∈ Lag (L0,M)

are of the form XH ◦ i where XH is a Hamiltonian vector �eld onM . Since αXH◦i = i∗dH

it follows that Ti(Ham(M) ·i) ⊂ Ei. Conversely, if X ∈ Ei then there exists a Hamiltonian

vector �eldXH de�ned on a neighbourhood of i(L0) satisfyingX = XH◦i. By multiplying

H by a cuto� function which is equal to 1 near i(L0) we may assume that XH is de�ned

on all of M . It follows that Ei ⊂ Ti(Ham(M) · i). So Ham (M) orbits are integral

manifolds. To show they are maximal, we �rst consider the case when M = T ∗L0. Let

i : L0 ↪→ T ∗L0 denote the zero section inclusion and (Ui, ϕi) the corresponding chart
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on Lag (L0, T
∗L0). Let jt be a smooth curve in an integral manifold N contained in Ui.

For every t, d
dt
jt ∈ Γexact (j∗t T (T ∗L0)) which means α d

dt
jt

= dht for a family of functions

ht ∈ C∞ (L0,R). This family ht can be chosen to be a smooth curve in C∞ (L0,R). Since

jt is contained in Ui, there exist smooth curves βt in Z
1 (L0) and at in Di� (L0) such that

jt = βt ◦ at. Since d
dt

(βt ◦ at) =
(
d
dt
βt
)
◦ at + dβt

(
d
dt
at
)
, it follows that −a∗t ddtβt = dht for

all t. Thus, βt = ψt ◦ β0 where ψt (x, p) =
(
x, p−

(
d
∫ t

0
hs ◦ a−1

s ds
)
x

)
, which means βt is

contained in the Ham (T ∗L0) orbit through β0. For each t we can write β0 ◦ at = bt ◦ β0

where bt ∈ Di� (Graph (β0)) in such a way that bt is a smooth curve in Di� (Graph (β0)).

De�ne ct := bt ◦ b−1
0 . By means of Th. 3.2 we can identify an open neighbourhood of

Graph (β0) with an open neighbourhood of the zero section in T ∗Graph (β0). Under this

identi�cation, if Ct denotes the cotangent lift of ct, i.e. Ct (y, z) =
(
ct (y) ,

(
c−1
t

)∗
z
)
, then

β0 ◦ at = Ct ◦ b0 ◦ β0. Since ct is a smooth curve in Di� (Graph (β0)) passing through

the identity map, the cotangent lift Ct is a smooth curve in Ham (T ∗Graph (β0)). Thus

jt = βt ◦ at = ψt ◦ Ct ◦ b0 ◦ β0 lies in the Ham (T ∗L0) orbit through b0 ◦ β0, which means

the integral manifold N is contained in a Ham (T ∗L0) orbit. For the general case when

M is any symplectic manifold, the previous discussion implies that the intersection of

any integral manifold with a chart neighbourhood Ui on Lag (L0,M) lies in a Ham (M)

orbit. Thus any integral manifold containing a point i ∈ Lag (L0,M) is contained in

Ham (M) · i, which means that such orbits are maximal integral manifolds.

Finally, we will show that the atlas (Ui, ϕi)i∈Lag(L0,M) consists of distinguished charts.

The a�ne translations of F in Z1 (L0) ⊕ X (L0) consist of elements (α, Y ) which are

pairwise cohomologous in the �rst factor, i.e (α, Y ) ∈ (α0, Y0) +F if and only if α−α0 ∈

B1 (L0). Let (Ui, ϕi) be a chart on Lag (L0,M) with corresponding symplectic embedding

λi : T ∗L0 ⊃ Wi → M . The zero section in T ∗L0 can be deformed to the graph of any

1-form α ∈ Ω1 (L0) on L0 by taking the time 1 �ow of the transformation (x, p) 7→

(x, p+ tαx) of the cotangent bundle. When α is closed this transformation is symplectic;

when α is exact it is a Hamiltonian symplectomorphism. So the graph of any exact form
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can be obtained by deforming the zero section in T ∗L0 along a Hamiltonian vector �eld.

Conversely, suppose that φ ∈ Ham (T ∗L0) is a Hamiltonian symplectomorphism and {ψt}

is a collection of symplectomorphisms satisfying ψ0 = Id, ψ1 = φ, and ψ̇t = XHt ◦ ψt for

some family of Hamiltonian vector �elds XHt on T
∗L0. IfO denotes the zero section, then

jt := ϕi (λi ◦ ψt ◦O) is a smooth curve in Z1 (L0)⊕X (L0) with time derivative equal to(
αdλi◦ψ̇t◦O, dπ ◦ ψ̇t ◦O

)
for all t. Since αdλi◦ψ̇t◦O = (ψt ◦O)∗ dHt, the curve jt must be

contained in B1 (L0)⊕X (L0), which means φ◦O = ψ1◦O is the graph of an exact 1-form

precomposed with a di�eomorphism of L0. It follows that two 1-forms are cohomologous

if and only if their graphs in T ∗L0 can be joined by �owing along a Hamiltonian vector

�eld. So a curve in Ui lies in a Ham (M) orbit if and only if it is mapped into a translation

of F under ϕi. Thus inverse images of translations of F are integral manifolds of E and

intersections of integral manifolds with each chart neighbourhood Ui get mapped into

translations of F under ϕi.

3.10 De�nition

In the spirit of Weinstein's terminology in [23], we will call the foliation E the isodrastic

foliation of Lag (L0,M). An individual leaf of E will be called an isodrast in Lag (L0,M).

The group of orientation preserving di�eomorphisms Di�+ (L0) acts freely on Lag (L0,M)

via

a · i := i ◦ a−1.

The quotient Lag (L0,M) /Di�+ (L0) is naturally identi�ed with the set of oriented, com-

pact Lagrangian submanifolds in M di�eomorphic to L0.
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3.11 Notation

Set

Lag (M) := Lag (L0,M) /Di�+ (L0) .

3.12 Proposition

The set Lag (M) of oriented Lagrangians in M di�eomorphic to L0 is a smooth manifold

modeled on spaces Z1 (L) for L ∈ Lag (M). The tangent spaces to Lag (M) are given by

TLLag (M) = Z1 (L)

and for each representative i ∈ Lag (L0,M) in the class L ∈ Lag (M),

T[i]Lag (M) = Γclosed (i∗TM) /X (L0) .

Proof. We will �rst describe the manifold structure on Lag (M). For each Lagrangian

L ∈ Lag (M), by Th. (3.2) there exists a symplectic embedding λL : WL → T ∗L of an

open neighbourhood of L onto an open neighbourhood of the zero section in the cotangent

bundle. De�ne

UL : =
{
N ∈ Lag (M) | N ⊂ WL, λL (N) = Graph (α) , α ∈ Z1 (L)

}
,

ϕL : UL → Z1 (L) ,

ϕL (N) := α.

The mapping ϕL maps UL onto the set {α ∈ Z1 (L) | α (L) ⊂ λL (WL)} which is c∞-open

in Z1 (L). Thus the collection (UL, ϕL)L∈Lag(M) de�nes a smooth atlas on Lag (M) as the

transition functions ϕLN are smooth by smoothness of the symplectic embeddings λL.

As for the tangent spaces, suppose that Kt is a smooth curve in Lag (M) such that

K0 = L. If (UL′ , ϕL′) is a chart with L ∈ UL′ , and ϕL′ (Kt) = Graph (αt) for a smooth
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curve αt in Z1 (N), then the derivative d
dt

∣∣
t=0

ϕN (Kt) ∈ Z1 (L′) canonically de�nes an

element β ∈ Z1 (L) via

α∗0β :=
d

dt

∣∣∣∣
t=0

ϕL′ (Kt) .

Thus, TLLag (M) ⊂ Z1 (L). Conversely, each β ∈ Z1 (L) de�nes a smooth curve in

Symp (T ∗L) via ψt (x, p) := (x, p+ tβ (x)). If O denotes the zero section of T ∗L, then

Graph (ψt ◦O) is a smooth curve in Lag (T ∗L). If λL : M ⊃ WL → T ∗L is the symplec-

tic embedding associated to the chart (UL, ϕL), then c (t) := λ−1
L (Graph (ψt ◦O)) is a

smooth curve in Lag (M) such that d
dt

∣∣
t=0

ϕL ◦ c (t) = β. So Z1 (L) ⊂ TLLag (M).

We will now describe the identi�cation of tangent spaces of Lag (M) with spaces

Γclosed (i∗TM) /X (L0). Let i ∈ Lag (L0,M) be a representative in the class L ∈ Lag (M).

Let λi : T ∗L0 ⊃ Wi → M be the symplectic embedding chosen in the de�nition of

the chart (Ui, ϕi) on Lag (L0,M), and si : Z1 (L0) → Γclosed (i∗TM) the corresponding

splitting map (see Remark 3.7). Then the linear map

Z1 (L) → Γclosed (i∗TM) /X (L0)

α 7→ [si (i
∗α)]

is a vector space isomorphism.

3.13 Proposition

The manifold Lag (L0,M) is the total space of a principal Di�+ (L0) bundle over Lag (M).

Proof. We begin by describing a �ber bundle atlas. Let p : Lag (L0,M) → Lag (M)

denote the projection to the quotient. For i ∈ Lag (L0,M) let λi : T ∗L0 ⊃ Wi → M be

the symplectic embedding chosen in de�ning the chart (Ui, ϕi) on Lag (L0,M). De�ne

U[i] :=
{
N ∈ Lag (M) | N = λi (Graph (α)) , α ∈ Z1 (L0) , α (L0) ⊂ Wi

}
.
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Then p−1
(
U[i]

)
consists of all l ∈ Lag (L0,M) such that l = λi ◦α ◦ a where α ∈ Z1 (L0),

α (L0) ⊂ Wi , and a ∈ Di�+ (L0). De�ne ψ[i] : p−1
(
U[i]

)
→ U[i] ×Di�+ (L0) by

ψ[i] (λi ◦ α ◦ a) := (λi (Graph (α)) , a)

so that the collection
(
U[i], ψ[i]

)
i∈Lag(L0,M)

de�nes a �ber bundle atlas.

If N ∈ U[i][j] := U[i] ∩ U[j], and ψ
−1
[j] (N, a) = λj ◦ α ◦ a then

ψ[i][j] (N, a) =
(
N, π ◦ λ−1

i ◦ λj ◦ α ◦ a
)
.

So if N ∈ U[i][j] and N = λj (Graph (α)) then de�ne u[i][j] : U[i][j] → Di�+ (L0) by

u[i][j] (N) := π ◦ λ−1
i ◦ λj ◦ α.

It follows that if N ∈ U[i] ∩ U[j] ∩ U[k] and N = λj (Graph (α)) = λk (Graph (β)) then

u[i][j] (N)u[j][k] (N) = π ◦ λ−1
i ◦ λj ◦ α ◦ π ◦ λ−1

j ◦ λk ◦ β

= π ◦ λ−1
i ◦ λk ◦ β

= u[i][k] (N) ,

u[i][i] (N) = IdL0 ,

ψ[i][j] (N, a) = u[i][j] ◦ a.

So the �ber bundle atlas
(
U[i], ψ[i]

)
i∈Lag(L0,M)

and the collection of maps u[i][j] : U[i][j] →

Di�+ (L0) de�ne a principal Di�+ (L0) structure.

The group of Hamiltonian symplectomorphisms Ham (M) acts on Lag (M) via

Ham (M) � Lag (M) : φ · L := φ (L) .

As in the proof of Prop. 3.9, the family of subspaces B1 (L) ⊂ TLLag (M) and charts

(UL, ϕL) for L ∈ Lag (M) de�ne a foliation F on Lag (M). This foliation has �nite

codimension since the transverse space at each Lagrangian L is modeled on H1 (L).
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3.14 De�nition

The foliation F will be called the isodrastic foliation of Lag (M), and each leaf of F will

be called an isodrast in Lag (M).

The foliation E gives the set Lag (L0,M) the structure of a smooth manifold Lag (L0,M)E

modeled on spaces Γexact (i∗TM) for i ∈ Lag (L0,M). Similarly, the foliation F gives

Lag (M) the structure of a smooth manifold Lag (M)F modeled on spaces B1 (L) for

L ∈ Lag (M). As in Prop. 3.13, �ber bundle charts can be chosen to de�ne a principal

Di�+ (L0) bundle p : Lag (L0,M)E → Lag (M)F . This bundle restricts to a principal

Di�+ (L0) bundle over each connected component of Lag (M)F , i.e. over each isodrast in

Lag (M).



Chapter 4

Weighted Lagrangians

In this chapter we introduce the notion of weightings and weighted submanifolds. The

set Lagw (L0,M) of pairs (i, η) consisting of Lagrangian embeddings i : L0 ↪→ M and

top degree forms η that satisfy
∫
L0
η = 1 has the smooth structure of the Cartesian

product Lag (L0,M)×
{
η ∈ Ωn (L0) |

∫
L0
η = 1

}
. The foliation E of Lag (L0,M) canon-

ically induces a foliation Ew of Lagw (L0,M). The space Lagw (L0,M) is the total space

of a principal Di�+ (L0) bundle, whose base can be identi�ed with the set Lagw (M) of

Lagrangians in M equipped with a top degree form of total measure 1. The foliation Ew

descends to a foliation Fw of the base, so that Lagw (L0,M)Ew (cf. Sec. 2.21) is the total

space of a principal Di�+ (L0) bundle over Lagw (M)Fw . On each leaf of Ew we de�ne a

2-form Ω, basic with respect to this principal group action, which descends to a weak sym-

plectic structure on Lagw (M)Fw . Finally, we show that the tangent spaces of Lagw (M)

and of leaves of Fw can be identi�ed with the tangent space descriptions in Weinstein's

original construction, and that Weinstein's symplectic structure ΩW corresponds to our

symplectic structure Ω.

36
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4.1 De�nition

A weighting of a compact oriented manifold L is a top degree form ρ on L satisfying∫
L
ρ = 1. A pair (L, ρ) will be called a weighted manifold.

4.2 Notation

Let Ωn
1 (S0) denote the set of n-forms on a manifold S0 that integrate to 1 (where n =

dimS0), Ωn
0 (S0) the set of n-forms on S0 that integrate to 0, and Lagw (L0,M) the product

Lag (L0,M)× Ωn
1 (L0). That is,

Ωn
1 (S0) :=

{
η ∈ Ωn (S0) |

∫
S0

η = 1

}
,

Ωn
0 (S0) :=

{
ϑ ∈ Ωn (S0) |

∫
S0

ϑ = 0

}
,

Lagw (L0,M) := Lag (L0,M)× Ωn
1 (L0) .

Integration along L0 de�nes a continuous linear functional
∫
L0

: Ωn (L0)→ R on the

convenient vector space Ωn (L0) = Γ (
∧n T ∗L0). So the kernel Ωn

0 (L0) is a c∞-closed (con-

venient) subspace. The space Ωn
1 (L0) is an a�ne translation of Ωn

0 (L0), which means it is

a smooth manifold modeled on Ωn
0 (L0). So Lagw (L0,M) is a smooth manifold modeled

on the space Z1 (L0)⊕X (L0)⊕Ωn
0 (L0) with the product atlas

(
U(i,η), ϕ(i,η)

)
(i,η)∈Lagw(L0,M)

.

That is, if (Ui, ϕi)i∈Lag(L0,M) is the atlas on Lag (L0,M) de�ned in Prop. 3.3 then the

charts
(
U(i,η), ϕ(i,η)

)
are de�ned by

U(i,η) := Ui × (η + Ωn
0 (L0)) , (4.1)

ϕ(i,η) : U(i,η) → Z1 (L0)⊕ X (L0)⊕ Ωn
0 (L0) ,

ϕ(i,η) (l, η + ϑ) := (ϕi (l) , ϑ) = (α, Y, ϑ) .

This atlas and the subspaceB1 (L0)⊕X (L0)⊕Ωn
0 (L0) de�ne a foliation Ew on Lagw (L0,M).
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4.3 De�nition

The foliation Ew will be called the isodrastic foliation of Lagw (L0,M) and a leaf of Ew

will be called an isodrast in Lagw (L0,M).

For each (i, η) ∈ Lagw (L0,M), the tangent space T(i,η)Lagw (L0,M) equals the space

Γclosed (i∗TM)⊕Ωn
0 (L0). Meanwhile, the tangent space to an isodrastHw in Lagw (L0,M)

at (i, η) is given by T(i,η)Hw = Γexact (i∗TM)⊕ Ωn
0 (L0). To each point (i, η) ∈ Hw in an

isodrast we assign a skew-symmetric bilinear form on T(i,η)Hw via the expression

Ω(i,η) ((X1, ϑ1) , (X2, ϑ2)) :=

∫
L0

[ω (X1, X2) η + h1ϑ2 − h2ϑ1] (4.2)

where αXk = dhk for some hk ∈ C∞ (L0,R). This assignment does not depend on the

choice of primitives hk since the top degree forms ϑk integrate to 0. Equivalently, the

pointwise assignment in (4.2) can be viewed as an assignment on the smooth manifold

Lagw (L0,M)Ew .

4.4 Proposition

The pointwise assignment in (4.2) on Lagw (L0,M)Ew de�nes a basic di�erential 2-

form Ω with respect to the group action Di�+ (L0) � Lagw (L0,M)Ew : a · (i, η) :=(
i ◦ a−1, (a−1)

∗
η
)
.

Proof. We will �rst show that the assignment Ω de�nes a di�erential 2-form on each leaf

Hw of Ew. The assignment in 4.2 de�nes a map Ω : Hw → L2
alt(THw,Hw × R). To

check that this map is smooth, it is enough to check it in each chart. If
(
U(i,η), ϕ(i,η)

)
is a chart on Hw then Ω de�nes a map from U(i,η) to L2

alt(Γexact (i∗TM) ⊕ Ωn
0 (L0) ,R)

(after B1 (L0) ⊕ X (L0) ⊕ Ωn
0 (L0) has been identi�ed with Γexact (i∗TM) × Ωn

0 (L0) via

the splitting map si : Z1 (L0) → Γclosed (i∗TM) (see Remark 3.7)). This map is smooth

if it maps smooth curves in U(i,η) to smooth curves in L2
alt(Γexact (i∗TM) ⊕ Ωn

0 (L0) ,R).

A curve in L2
alt(Γexact (i∗TM) ⊕ Ωn

0 (L0) ,R) is smooth if and only if the associated map
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R × (Γexact (i∗TM)⊕ Ωn
0 (L0))2 → R is smooth. Thus to verify that Ω is smooth, it is

enough to check the following statement: If (M,ω) = (T ∗L0, ωT ∗L0), i : L0 ↪→ T ∗L0

denotes the zero section inclusion, (αt ◦ at, ηt) is a smooth curve in Hw, (X1 (t) , ϑ1 (t))

and (X2 (t) , ϑ2 (t)) are smooth curves in Γexact(i
∗T (T ∗L0))⊕ Ωn

0 (L0) satisfying αXk(t) =

dhk (t) for smooth curves hk (t) in C∞ (L0,R), Z1 (t) and Z2 (t) are the unique time

dependent vector �elds on T ∗L0 satisfying ı (Zk (t))ω = π∗αXk(t) for all t, Yk (t) :=

Xk (t)− Zk (t)|L0
∈ X (L0), and s ∈ C∞ (R,R) is a smooth map, then the map

R → R

t 7→
∫
L0

[
ω
(
Z1 (t) ◦ αs(t) ◦ as(t) + dαs(t) · Y1 (t)as(t) ,

Z2 (t) ◦ αs(t) ◦ as(t) + dαs(t) · Y2 (t)as(t)

)
ηs(t)

+h1 (t)ϑ2 (t)− h2 (t)ϑ1 (t)]

is smooth. Since this statement follows from the smoothness of all quantities in the

integral, Ω is indeed a section of L2
alt (THw,Hw × R)→ Hw.

We will now show that Ω is basic with respect to the action of Di�+ (L0) on Lagw (L0,M)Ew .

If (it, ηt) is a smooth curve in Lagw (L0,M)Ew with time derivative (X,ϑ) ∈ Γexact (i∗TM)⊕

Ωn
0 (L0) at t = 0, then the tangent vector to the curve la (it, ηt) =

(
it ◦ a−1, (a−1)

∗
ηt
)
at

t = 0 is given by
(
X ◦ a−1, (a−1)

∗
ϑ
)
. Thus,

l∗aΩ(i,η) ((X1, ϑ1) , (X2, ϑ2)) =

[∫
L0

ω
(
X1 ◦ a−1, X2 ◦ a−1

) (
a−1
)∗
η

+h1 ◦ a−1
(
a−1
)
ϑ2 − h2 ◦ a−1

(
a−1
)∗
ϑ1

]
= Ω(i,η) ((X1, ϑ1) , (X2, ϑ2)) ,

which means Ω is Di�+ (L0)-invariant. To check that Ω is horizontal, let Y ∈ X (L0)

be in the Lie algebra of Di�+ (L0). If at is a smooth curve in Di�+ (L0) through the

identity map with time derivative Y at t = 0, then the generating vector �eld at a point

(i, η) ∈ Lagw (L0,M) is given by

YLagw(L0,M) (i, η) =
d

dt

∣∣∣∣
t=0

(
i ◦ a−1

t ,
(
a−1
t

)∗
η
)

= (−Y,−LY η)
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Since

Ω(i,η) ((Y,LY η) , (X2, ϑ2)) =

∫
L0

[ω (Y,X2) η − h2LY η] = 0

(after integrating by parts,
∫
L0
LY h2η = −

∫
L0
h2LY η), we conclude that Ω is also hori-

zontal and thus basic.

The quotient Lagw (L0,M) /Di�+ (L0) is naturally identi�ed with the set of weighted

Lagrangians. Explicitly, the identi�cation between Lagw (L0,M) /Di�+ (L0) and the set

of pairs (L, ρ) is via the correspondence [(i, η)]↔ (L, ρ) where L = i (L0) and i∗ρ = η.

4.5 Notation

Set

Lagw (M) := Lagw (L0,M) /Di�+ (L0) .

4.6 Proposition

Lagw (M) is a smooth manifold modeled on spaces Z1 (L)⊕Ωn
0 (L) for L ∈ Lag (M). For

each representative (i, η) in the class (L, ρ) ∈ Lagw (M),

T(L,ρ)Lagw (M) = Γclosed (i∗TM)⊕ Ωn
0 (L0) /{(Y,LY η) | Y ∈ X (L0)}.

Proof. For each (L, ρ) ∈ Lagw (M), by Th. 3.2 there exists a symplectic embedding

λ(L,ρ) : M ⊃ W(L,ρ) → T ∗L of a neighbourhood of L onto a neighbourhood of the zero

section in the cotangent bundle. If πT ∗L : T ∗L → L denotes the cotangent bundle

projection, then the restriction of πT ∗L to the graph of any 1-form α ∈ Ω1 (L) in T ∗L
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de�nes a di�eomorphism of that graph onto L. De�ne

U(L,ρ) : =
{

(N, σ) ∈ Lagw (M) | N ⊂ W(L,ρ), λ(L,ρ) (N) = Graph (α) ,

α ∈ Z1 (L) , σ = λ∗(L,ρ)(πT ∗L|Graph(α))
∗ (ρ+ θ) , θ ∈ Ωn

0 (L)
}
,

ϕ(L,ρ) : U(L,ρ) → Z1 (L)⊕ Ωn
0 (L) ,

ϕ(L,ρ) (N, σ) := (α, θ) .

All chart changings are smooth again by the smoothness of the symplectic embeddings

λL, so the collection
(
U(L,ρ), ϕ(L,ρ)

)
(L,ρ)∈Lagw(M)

de�nes a smooth atlas on Lagw (M).

We will now describe the identi�cation of tangent spaces of Lagw (M) with spaces

Γclosed (i∗TM) ⊕ Ωn
0 (L0) /{(Y,LY η) | Y ∈ X (L0)}. Let (i, η) ∈ Lagw (L0,M) be a

representative in the class (L, ρ) ∈ Lag (M). Let λi : T ∗L0 ⊃ Wi → M denote the

symplectic embedding chosen in the de�nition of the chart (Ui, ϕi) on Lagw (L0,M), and

si : Z1 (L0)→ Γclosed (i∗TM) the corresponding splitting map. Then the linear map

T[(i,η)]Lagw (M) → Γclosed (i∗TM)× Ωn
0 (L0) /{(Y,LY η) | Y ∈ X (L0)}

(α, θ) 7→ [(si (i
∗α) , θ)]

is a vector space isomorphism.

The canonical projection Lagw (M) → Lag (M), which forgets the weightings, pulls

back F to a foliation Fw on Lagw (M). That is, the collection of subspaces {B1 (L)⊕ Ωn
0 (L)}

indexed by (L, ρ) ∈ Lagw (M) and the atlas
(
U(L,ρ), ϕ(L,ρ)

)
(L,ρ)∈Lagw(M)

on Lagw (M) de-

�ne a foliation Fw on Lagw (M).

4.7 De�nition

The foliation Fw will be called the isodrastic foliation of Lagw (M) and a leaf Iw of Fw

will be called an isodrast in Lagw (M).
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4.8 Proposition

The smooth manifold Lagw (L0,M)Ew is the total space of a principal Di�+ (L0) bundle

over Lagw (M)Fw . The basic 2-form Ω on Lagw (L0,M)Ew descends to a weak symplec-

tic structure on Lagw (M)Fw . Thus each isodrast in Lagw (M) is a weakly symplectic

manifold.

Proof. We begin by describing a �ber bundle atlas. For (i, η) ∈ Lagw (L0,M)Ew , let

λ(i,η) : T ∗L0 ⊃ Wi → M denote the symplectic embedding chosen in de�ning the chart(
U(i,η), ϕ(i,η)

)
. De�ne

U[(i,η)] : =
{

(N, σ) ∈ Lagw (M) | N = λ(i,η) (Graph (α)) ,

α ∈ B1 (L0) , σ = λ−1
(i,η)

∣∣∣∗
N
π∗ (i∗ρ+ ϑ) ,

ϑ ∈ Ωn
0 (L0)} .

If p : Lagw (L0,M)Ew → Lagw (M)Fw denotes the projection to the quotient, then

p−1
(
U[(i,η)]

)
=

{
(l, κ) ∈ Lagw (L0,M)Ew | l = λ(i,η) ◦ α ◦ a, α ∈ B1 (L0) ,

α (L0) ⊂ Wi, a ∈ Di�+ (L0)} .

De�ne ψ[(i,η)] : p−1
(
U[(i,η)]

)
→ U[(i,η)] ×Di�+ (L0) by

ψ[(i,η)]

((
λ(i,η) ◦ α ◦ a, κ

))
:=
((
λ(i,η) (Graph (α)) , λ−1

(i,η)

∣∣∣∗
N
π∗
(
a−1
)∗
κ
)
, a
)

so that the collection
(
U[(i,η)], ψ[(i,η)]

)
(i,η)∈Lagw(L0,M)

de�nes a �ber bundle atlas.

If (N, σ) ∈ U[(i,η)][(j,ν)], and ψ
−1
[(j,ν)] ((N, σ) , a) = (λj ◦ α ◦ a, κ) then

ψ[(i,η)][(j,ν)] ((N, σ) , a) =
(

(N, σ) , π ◦ λ−1
(i,η) ◦ λ(j,ν) ◦ α ◦ a

)
.

So if (N, σ) ∈ U[(i,η)][(j,ν)] and N = λj (Graph (α)) then de�ne u[i][j] : U[(i,η)][(j,ν)] →

Di�+ (L0) by

u[i][j] ((N, σ)) := π ◦ λ−1
(i,η) ◦ λ(j,ν) ◦ α.
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It follows that if (N, σ) ∈ U[(i,η)] ∩ U[(j,ν)] ∩ U[(k,µ)], N = λ(j,ν) (Graph (α)), and N =

λ(k,µ) (Graph (β)) then

u[i][j] ((N, σ))u[j][k] ((N, σ)) = π ◦ λ−1
i ◦ λj ◦ α ◦ π ◦ λ−1

j ◦ λk ◦ β

= π ◦ λ−1
i ◦ λk ◦ β

= u[i][k] ((N, σ)) ,

u[i][i] ((N, σ)) = IdL0 ,

ψ[(i,η)][(j,ν)] ((N, σ) , a) = u[(i,η)][(j,ν)] ◦ a.

Hence, the �ber bundle atlas
(
U[(i,η)], ψ[(i,η)]

)
(i,η)∈Lagw(L0,M)

and the collection of maps

u[(i,η)][(j,ν)] : U[(i,η)][(j,ν)] → Di�+ (L0) de�ne a principal Di�+ (L0) structure.

Since Ω de�nes a basic 2-form on the total space Lagw (L0,M)Ew , it descends to a

di�erential 2-form (also denoted Ω) on Lagw (M)Fw (see Sec. 2.41).

We will now check closedness of Ω locally in a chart
(
U(L,ρ), ϕ(L,ρ)

)
. On U(L,ρ) tangent

vectors can be identi�ed with pairs (Z, ϑ) where Z ∈ X (T ∗L0) is a vector �eld on the

cotangent bundle satisfying ı (Z)ω = π∗dh for h ∈ C∞ (L0,R), and ϑ ∈ Ωn
0 (L0). Under

such an identi�cation, if (i, η) is a representative in the class (L, ρ) ∈ Lagw (M), and if

we identify M with T ∗L0 using the symplectic embedding λi : T ∗L0 ⊃ Wi → M , then

terms like ω (X1, X2) η = i∗ [ω (Z1, Z2)] η in the expression for Ω vanish since the Zk's are

tangent to the cotangent �bers. So on U(L,ρ),

Ω(N,σ) ((X1, ϑ1) , (X2, ϑ2)) =

∫
L0

(h1ϑ2 − h2ϑ1) . (4.3)

It follows that dΩ = 0 since locally Ω does not depend on (N, σ).

Finally, weak nondegeneracy follows from the local expression for Ω in (4.3) and the

fact that the hk's and ϑk's can be chosen independently. Indeed, if h1 is nonzero on

some open subset V ⊂ L0, then we can take h2 to be zero and choose ϑ2 such that it

is supported on V and
∫
L0
h1ϑ2 is nonzero. If ϑ1 is nonzero on an open subset V ⊂ L0,

then we can choose ϑ2 to be zero and choose h2 to be supported on V so that
∫
L0
h2ϑ1 is

nonzero.
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Lagw (M) can also be described as the set of equivalence classes (L, [ρ̃]) where ρ̃ is an

n-form on a neighbourhood of L satisfying
∫
L
ρ̃ = 1, and ρ̃1 ∼ ρ̃2 if and only if ρ̃1 and

ρ̃2 have the same pullback to L. In [23] Weinstein used this approach and heuristically

viewed Lagw (M) and each leaf Iw of Fw as in�nite dimensional manifolds. He viewed

tangent vectors as equivalence classes of paths in Lagw(M) and Iw to give the following

description of their tangent spaces and wrote down a closed, weakly nondegenerate, skew-

symmetric bilinear form ΩW on each isodrast Iw:

4.9 Theorem

(See Th. 3.2 & Lemma 3.3 in [23]). The tangent space to Lagw (M) at (L, ρ) can be iden-

ti�ed with the set of quadruples
(
L, ρ̃,X, θ̃

)
, where ρ̃ is an n-form on a neighbourhood

of L satisfying
∫
L
ρ̃ = 1, X is a symplectic vector �eld on a neighbourhood of L, and θ̃

is an n-form on a neighbourhood of L satisfying
∫
L
LX ρ̃+ θ̃ = 0, subject to the following

equivalence relation.
(
L, ρ̃1, X1, θ̃1

)
∼
(
L, ρ̃2, X2, θ̃2

)
if and only if the following condi-

tions hold: (1) ρ̃1 and ρ̃2 have the same pullback to L; (2) X1 −X2 is tangent to L; (3)

the pullbacks to L of LX1 ρ̃1 + θ̃1 and LX1 ρ̃2 + θ̃2 are equal.

The tangent vectors to an isodrast Iw are represented by equivalence classes
[(
L, ρ̃,Xf , θ̃

)]
where Xf is a Hamiltonian vector �eld on a neighbourhood of L. Iw admits a closed,

weakly nondegenerate, skew-symmetric bilinear form ΩW de�ned by

ΩW
(L,ρ) (ξ1, ξ2) :=

∫
L

[
{f1, f2} ρ+ f1

(
LXf2 ρ̃2 + θ̃2

)
− f2

(
LXf1 ρ̃1 + θ̃1

)]
. (4.4)

We will show that this heuristic description of the tangent spaces and bilinear struc-

ture ΩW due to Weinstein can be derived from the smooth structures on Lagw (M) and

Iw de�ned in Prop. 4.6 and from the weak symplectic structure Ω on Iw (see (4.2)).
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4.10 Notation

For (L, ρ) ∈ Lagw (M) let Qsymp

(L,ρ) denote the space of equivalence classes
[(
L, ρ̃,X, θ̃

)]
where X is a symplectic vector �eld de�ned on a neighbourhood of L. Let Qham

(L,ρ) denote

the space of equivalence classes
[(
L, ρ̃,Xf , θ̃

)]
where Xf is a Hamiltonian vector �eld

de�ned on a neighbourhood of L.

4.11 Proposition

For every representative (i, η) ∈ Lagw (L0,M) in the class (L, ρ) ∈ Lagw (M) there exists

a vector space isomorphism

τ symp

(i,η) : T(L,ρ)Lagw (M) = Γclosed (i∗TM)× Ωn
0 (L0) /

{(Y,LY η) | Y ∈ X (L0)} → Qsymp

(L,ρ)

For every representative (i, η) ∈ Lagw (L0,M) in the class (L, ρ) in an isodrast Iw, this

restricts to a vector space isomorphism

τham(i,η) : T(L,ρ)Iw = Γexact (i∗TM)× Ωn
0 (L0) /

{(Y,LY η) | Y ∈ X (L0)} → Qham
(L,ρ).

Under the induced vector space identi�cation T(L,ρ)Iw ' Qham
(L,ρ), if ζ1, ζ2 ∈ T(L,ρ)Iw corre-

spond to ξ1, ξ2 ∈ Qham
(L,ρ) then Ω(L,ρ) (ζ1, ζ2) = ΩW

(L,ρ) (ξ1, ξ2).

Proof. For (L, ρ) = [(i, η)] ∈ Lagw (M) let λ(i,η) : T ∗L0 ⊃ W(i,η) → M denote the

symplectic embedding chosen for the chart
(
U(i,η), ϕ(i,η)

)
on Lagw (L0,M). Let [(X,ϑ)] ∈

T(L,ρ)Lagw (M) be a tangent vector, with representative (X,ϑ) such that dλ−1
(i,η) ◦ X is

tangent to the cotangent �bers in T ∗L0. Let ZαX be the unique vector �eld on T ∗L0

satisfying ı (ZαX )ωT ∗L0 = π∗αX . Set ρ̃ :=
(
λ−1

(i,η)

)∗
π∗i∗ρ, Z̃αX := dλ(i,η) (ZαX ) and
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ϑ̃ :=
(
λ−1

(i,η)

)∗
π∗ϑ, and de�ne

τ symp

(L,ρ) : T(L,ρ)Lagw (M) → Qsymp

(L,ρ)

τ symp

(L,ρ) ([(X,ϑ)]) :=
[(
L, ρ̃, Z̃αX , ϑ̃

)]
.

The linear map τ symp

(L,ρ) has an inverse given by

Qsymp

(L,ρ) → T(L,ρ)Lagw(M)[(
L, ρ̃, X̃, ϑ̃

)]
7→

[(
X̃ ◦ i, i∗

(
LX̃ ρ̃+ ϑ̃

))]
.

The isomorphism τham(L,ρ) : T(L,ρ)Iw → Qham
(L,ρ) is described similarly.

Finally if ζ1, ζ2 ∈ T(L,ρ)Iw with ζk = [(Xk, ϑk)], with representatives (Xk, ϑk) such

that dλ−1
(i,η) ◦ Xk is tangent to the cotangent �bers in T ∗L0, then ω(X1, X2) = 0. So if

αXk = dhk, h̃k :=
(
λ−1

(i,η)

)∗
π∗hk, and ϑ̃k :=

(
λ−1

(i,η)

)∗
π∗ϑk then

ΩW
(L,ρ)

(
τham(L,ρ) (ζ1) , τham(L,ρ) (ζ2)

)
=

∫
L

(
h̃1ϑ̃2 − h̃2ϑ̃1

)
=

∫
L0

(h1ϑ2 − h2ϑ1)

= Ω(L,ρ) (ζ1, ζ2) .

4.12 Example

Let M = S2 and L0 = S1. Since S1 is one dimensional, all embeddings are Lagrangian

and all 1-forms on S1 are closed. So Lag (S1, S2) = Emb (S1, S2) and for every embedding

i we have that TiLag (S1, S2) = Γ (i∗TS2).

For any point [(i, η)] = (L, ρ) in a leaf Iw, if j is a compatible almost complex structure

on S2, i.e. g (·, ·) := ωS2 (·, j·) de�nes a Riemannian metric on S2, then for every tangent

vector ξ ∈ T[(i,η)]Iw there exists a unique representative (X,ϑ) ∈ ξ with X (x) ∈ jTi(x)L

for every x ∈ L0. For such choices of representatives the expression for Ω becomes

Ω ([(X1, ϑ1)] , [(X2, ϑ2)]) =

∫
S1

(h1ϑ2 − h2ϑ1)
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where αXk = dhk for hk ∈ C∞ (S1,R) (because the subspaces jTi(x)L ⊂ Ti(x)S
2 are

Lagrangian).

Each ϑk can be written as rk (x) dx for some function rk on S1. Meanwhile, any

function f on S1 has a Fourier series expansion

f (x) =
∞∑

n=−∞

f̂ (n) einπx

which reduces the expression for Ω to

Ω (ξ1, ξ2) =
∞∑

n=−∞

(
ĥ1 (n) ϑ̂2 (n)− ĥ2 (n) ϑ̂1 (n)

)
.

This expression is a countably in�nite version of the standard symplectic vector space

structure.

4.13 Remark

Weinstein's original construction was more general than we have described so far. It

included the case of Lagrangians which are neither compact nor oriented. In this case

Weinstein used compactly supported densities instead of volume forms.

4.14 Example

Let (M,ω) = (R2, dq ∧ dp) and L0 = R. As in Ex. 4.12, R is one dimensional which means

Lag (R,R2) = Emb (R,R2) and for every embedding i we have that TiLag (L0,M) =

Γ (i∗TM). Moreover, since H1 (L0) = 0 the leaves of E consist of path connected compo-

nents in Emb (R,R2). Thus the leaves of F consist of oriented one dimensional subman-

ifolds in R2 di�eomorphic to R.

Though L0 is not compact, we can still use compactly supported 1-forms as weightings.

A leaf Iw then of Fw consists of isotopic one dimensional submanifolds in R2 di�eomorphic

to R, equipped with compactly supported 1-forms. Any tangent vectorX ∈ TiLag (R,R2)
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can be written in components as X = q̃ ∂
∂q

+ p̃ ∂
∂p
. Since any 1-form η on R can be written

as η̃ (x) dx for some function η̃, the expression for Ω on such a leaf Iw becomes

Ω (ξ1, ξ2) =

∫ ∞
−∞

(
q̃1 (x) p̃2 (x) η̃ − q̃2 (x) p̃1 (x) η̃ + h̃1ϑ̃2 − h̃2ϑ̃1

)
dx.



Chapter 5

Positive Weighted Lagrangians

In this chapter we will consider an open subset Lagpw (M) of Lagw(M) consisting of

Lagrangians weighted with volume forms. All constructions involving not necessarily

positive weightings from before carry over to this case. In particular there is a foliation

Fpw of Lagpw (M) whose leaves have a weak symplectic structure. The space Lagpw (M)

also has a di�erent description. By �xing a positive weighting η0, the space of positive

weighted Lagrangians can be identi�ed with the quotient of Lag (L0,M) by the group of

di�eomorphisms that preserve η0. This identi�cation is Ham (M) equivariant and makes

use of Moser's Lemma [10].

Fix L0 to be a compact oriented manifold and (M,ω) a symplectic manifold with

dimL0 = 1
2

dimM as before.

5.1 Notation

Let Vol1 (S0) denote the set of volume forms on a compact oriented manifold S0 that

integrate to 1 and Lagpw (L0,M) the product Lag (L0,M)× Vol1 (L0). That is,

Vol1 (S0) :=

{
η ∈ Ωn (S0) | η nowhere vanishing,

∫
S0

η = 1

}
,

Lagpw (L0,M) := Lag (L0,M)× Vol1 (L0) .

49
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For every η ∈ Vol1 (L0), there exists a c∞-open neighbourhood Uη of 0 ∈ Ωn
0 (L0)

such that η + Uη ⊂ Vol1 (L0). Thus Vol1 (L0) is a c∞-open subset of the a�ne space

Ωn
1 (L0). It follows that Lag (L0,M) × Vol1 (L0) is a smooth manifold with an atlas(
U(i,η), ϕ(i,η)

)
(i,η)∈Lagpw(L0,M)

given by (4.1) except that now

U(i,η) = Ui × (η + Uη) .

The atlas
(
U(i,η), ϕ(i,η)

)
(i,η)∈Lagpw(L0,M)

and the subspace B1 (L0)⊕X (L0)⊕Ωn
0 (L0) de�ne

a foliation Epw on Lagpw (L0,M).

5.2 De�nition

The foliation Epw will be called the isodrastic foliation of Lagpw (L0,M) and a leaf of Epw

will be called an isodrast in Lagpw (L0,M).

The quotient of Lagpw (L0,M) by the Di�+ (L0) action

a · (i, η) :=
(
i ◦ a−1,

(
a−1
)∗
η
)

can be identi�ed with the set of oriented Lagrangians inM equipped with positive weight-

ings.

5.3 Notation

Set

Lagpw (M) := Lagpw (L0,M) /Di�+ (L0) .

As in Prop. 4.6, the set Lagpw (M) admits an atlas of charts
(
U(L,ρ), ϕ(L,ρ)

)
indexed

by (L, ρ) ∈ Lagpw (M) modeled on spaces Z1 (L) ⊕ Ωn
0 (L) for L ∈ Lag (M). For each

representative (i, η) in the class (L, ρ) ∈ Lagpw (M) the tangent space to Lagpw (M)

at (L, ρ) is equal to Γclosed (i∗TM) ⊕ Ωn
0 (L0) /{(Y,LY η) | Y ∈ X (L0)}. The canonical

projection Lagpw (M)→ Lag (M) : (L, ρ) 7→ L pulls back the foliation F on Lag (M) to

a foliation Fpw on Lagpw (M).
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5.4 De�nition

The foliation Fpw will be called the isodrastic foliation of Lagpw (M) and a leaf of Fpw

will be called an isodrast in Lagpw (M).

Using a result of Moser [10], we can describe isodrasts in Lagpw (M) more explicitly.

Moser's Lemma states that if Λ0 and Λ1 are two volume forms on a compact manifold

N , such that
∫
N

Λ0 =
∫
N

Λ1, then there exists an isotopy ψt ∈ Di�+ (N) satisfying

ψ∗1Λ0 = Λ1. Thus a positive weighting on a Lagrangian L can be moved to any other

positive weighting via an isotopy of L. Any such isotopy ψt can be lifted to a Hamiltonian

isotopy of M in the following way. Choose a symplectic embedding λ : M ⊃ U → T ∗L of

a neighbourhood U of L onto a neighbourhood of the zero section in T ∗L. If ψ]t denotes

the cotangent lift of ψt, i.e. ψ
]
t (x, p) :=

(
ψt (x) ,

(
ψ−1
t

)∗
p
)
, then τt := λ−1 ◦ψ]t ◦λ extends

ψt to a Hamiltonian isotopy of a neighbourhood of L. Let Ht be a time dependent family

of Hamiltonians corresponding to τt. If χ is a cuto� function supported near L, and equal

to 1 near L, then the family χHt generates a Hamiltonian isotopy of M which restricts

to ψt on L. It follows that the isodrasts in Lagpw (M) are equal to the Ham (M) orbits

in Lagpw (M) under the action

φ · [(i, η)] := [(φ ◦ i, η)]↔ φ · (L, ρ) :=
(
φ (L) ,

(
φ−1
)∗
ρ
)
.

We can also describe Lagpw (M) and each leaf Iw ⊂ Lagpw (M) in a di�erent way.

Suppose that L0 is equipped with a �xed volume form η0 that integrates to 1.

5.5 Notation

Let Di� (S0, η0) denote the group of di�eomorphisms of a manifold S0 that preserve a

�xed volume form η0, and X (S0, η0) the set of divergence free vector �elds on S0. That
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is,

Di� (S0, η0) := {a ∈ Di� (S0) | a∗η0 = η0} ,

X (S0, η0) := {ξ ∈ X (S0) | Lξη0 = 0} .

The space X (S0, η0) is the Lie algebra of Di� (S0, η0) (see Th. 43.7 in [9]). Meanwhile,

Di� (L0, η0) acts freely on Lag (L0,M) via

a · i := i ◦ a−1.

5.6 Proposition

The quotient space Lag (L0,M) /Di� (L0, η0) is a smooth manifold modeled on spaces

Γclosed (i∗TM) /X (L0, η0) for i ∈ Lag (L0,M). Moreover, there exists a natural Ham (M)

equivariant di�eomorphism υ : Lag (L0,M) /Di� (L0, η0)→ Lagpw (M).

Proof. De�ne

υ : Lag (L0,M) /Di� (L0, η0) → Lagpw (M)

[i] 7→ [(i, η0)] .

Then υ is injective since

[(i1, η0)] = [(i2, η0)]⇒ i2 = i1 ◦ a−1,
(
a−1
)∗
η0 = η0

for some a ∈ Di�+ (L0). To check surjectivity suppose that (L, ρ) = [(i, η)] ∈ Lagpw (M)

is a positive weighted Lagrangian. By Moser's Lemma, since η and η0 are volume forms

on L0 that both induce the orientation of L0 and integrate to 1, there exists an isotopy

ψt ∈ Di�+ (L0) such that ψ∗1η0 = η. Thus

υ
([
i ◦ ψ−1

1

])
=
[(
i ◦ ψ−1

1 , η0

)]
= [(i, η)] .

We will now describe charts into spaces Γclosed (i∗TM) /X (L0, η0). Let i ∈ Lag(L0,M)

and let λi : T ∗L0 ⊃ Wi → M be the symplectic embedding chosen in de�ning the chart
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(Ui, ϕi) on Lag (L0,M). Given a representativeX of a class [X] ∈ Γclosed (i∗TM) /X (L0, η0),

the section dλ−1
i ◦X ∈ Γ

(
T (T ∗L0)|L0

)
can be decomposed as dλ−1

i ◦X = ZαX |L0
+ Y

where ı (ZαX )ωT ∗L0 = π∗αX and Y ∈ X (L0). For a di�erent choice of representative, this

decomposition changes only in the component Y tangent to L0. Thus this decomposition

de�nes a vector space isomorphism

ζ1 : Γclosed (i∗TM) /X (L0, η0) → Z1 (L0)⊕ (X (L0) /X (L0, η0))

[X] 7→ (αX , [Y ])

where dλ−1
i ◦X = ZαX |L0

+ Y .

Consider the map

ζ2 : X (L0) /X (L0, η0) → Ωn
0 (L0)

[Y ] 7→ LY η0.

We claim that ζ2 is a vector space isomorphism. It is injective since LY1η0 = LY2η0

implies that Y1 − Y2 ∈ X (L0, η0). To check surjectivity, choose a metric g0 on L0 such

that the induced volume form µ (g0) equals η0. Suppose that ϑ = ϑ′ · η0 ∈ Ωn
0 (L0) for

ϑ′ ∈ C∞ (L0,R). By the Hodge Decomposition Theorem (see e.g. [20]), there exists a

function h′ ∈ C∞ (L0,R) (unique up to constants) such that 4h′ = ϑ′. For such an h′, it

follows that L∇h′η0 = 4h′ · η0 = ϑ.

The isomorphisms ζ1 and ζ2 combine to de�ne a vector space isomorphism ζ from

Γclosed (i∗TM) /X (L0, η0) to Z1 (L0)⊕Ωn
0 (L0). Let EU[i]

denote Γclosed (i∗TM) /X (L0, η0)

equipped with the convenient structure induced by this isomorphism. De�ne

U[i] :=
{

[l] ∈ Lag (L0,M) /X (L0, η0) | [(l, η0)] = (N, σ) ∈ U[(i,η0)]

N = λ(i,η) (Graph (α)) , α ∈ Z1 (L0) ,

σ = λ−1
(i,η)

∣∣∣∗
N
π∗ (i∗ρ+ ϑ) , ϑ ∈ Ωn

0 (L0)
}
,

ϕ[i] : U[i] → EU[i]
,

ϕ[i] ([l]) := ζ−1 (α, ϑ) ,
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where
(
U[(i,η0)], ϕ[(i,η0)]

)
is one of the charts on Lagpw (M). The charts

(
U[i], ϕ[i]

)
indexed

by i ∈ Lag (L0,M) de�ne a smooth atlas on Lag (L0,M) /X (L0, η0).

From the de�nition of the smooth structure on Lag (L0,M) /X (L0, η0), it follows

that the map υ is a di�eomorphism. Since the Ham (M) action commutes with the

Di� (L0, η0) action on Lag (L0,M) and with the Di�+ (L0) action on Lagpw (L0,M), we

have well de�ned Ham (M) actions on the quotients. Thus for φ ∈ Ham (M),

υ (φ · [i]) = υ ([φ ◦ i]) = [(φ ◦ i, η0)] = φ · [(i, η0)] = φ · υ ([i])

which veri�es the Ham (M) equivariance of υ.

As in the case of not necessarily positive weighted Lagrangians, the smooth manifold

Lagpw (L0,M)Epw is the total space of a Di�+ (L0) bundle over Lagpw (M)Fpw . We can

de�ne a basic 2-form Ω on Lagpw (L0,M)Epw by the expression

Ω(i,η) ((X1, ϑ1) , (X2, ϑ2)) :=

∫
L0

[ω (X1, X2) η + h1ϑ2 − h2ϑ1] (5.1)

where αXk = dhk for hk ∈ C∞ (L0,R). This then descends to a weak symplectic structure

(also labeled Ω) on Lagpw (M)Fpw . So in particular the isodrasts in Lagpw (M) are weakly

symplectic manifolds.



Chapter 6

Embeddings into a Symplectic

Manifold

In this chapter we will make precise a heuristic construction by Donaldson [3] of a sym-

plectic structure and moment map for a di�eomorphism group action restricted to the

space of embeddings.

Let S0 be a �xed �nite dimensional, compact, and oriented manifold equipped with

a volume form η0, and let (M,ω) be a �nite dimensional symplectic manifold. The set of

embeddings Emb (S0,M) of S0 into M is an open subset of the space C∞ (S0,M) of all

smooth maps. Thus Emb (S0,M) is a smooth manifold modeled on spaces Γ (i∗TM) for

i ∈ Emb (S0,M). Assign to each point i ∈ Emb (S0,M) a skew symmetric bilinear form

on TiEmb (S0,M) via the expression

ΩD
i (X1, X2) :=

∫
S0

ω (X1, X2) η0 (6.1)

for X1, X2 ∈ TiEmb (S0,M).

6.1 Proposition

The pointwise assignment ΩD in (6.1) de�nes a weak symplectic structure on Emb (S0,M).
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Proof. Checking smoothness amounts to checking the following statement: If X1 (t) and

X2 (t) are smooth time dependent vector �elds onM , it is a smooth curve in Emb (S0,M),

and s : R→ R is a smooth function, then the map

R → R

t 7→
∫
S0

ωis(t)
(
X1 (t) ◦ is(t), X2 (t) ◦ is(t)

)
η0

is smooth. This statement follows from the smoothness of all functions in the integrand.

We will now prove closedness by choosing special extensions of tangent vectors to

vector �elds on Emb (S0,M). Let X1, X2, X3 ∈ TiEmb (S0,M) be tangent vectors. Let

Z1 , Z2 and Z3 be vector �elds de�ned on a neighbourhood of i (S0) in M such that

Zk ◦ i = Xk. Let ξ1, ξ2 and ξ3 be vector �elds de�ned on the chart neighbourhood

Ui ⊂ Emb (S0,M) by the expression ξk (j) := Zk ◦ j. For these particular vector �elds,

Lie brackets like [ξ1, ξ2] at a point i ∈ Emb (S0,M) can be written in terms of the Lie

bracket [Z1, Z2]:

[ξ1, ξ2] (i) = dξ2 (i) · ξ1 (i)− dξ1 (i) · ξ2 (i)

= dZ2 · Z1 ◦ i− dZ1 · Z2 ◦ i

= [Z1, Z2] ◦ i.

Thus,

dΩD
i (X1, X2, X3) =

(
dΩD (ξ1, ξ2, ξ3)

)
i

=
(
ξ1ΩD (ξ2, ξ3) + ξ2ΩD (ξ3, ξ1) + ξ3ΩD (ξ1, ξ2)

−ΩD ([ξ1, ξ2] , ξ3)− ΩD ([ξ2, ξ3] , ξ1)− ΩD ([ξ3, ξ2] , ξ1)
)
i

=

∫
S0

dω (Z1, Z2, Z3) η0

= 0

by closedness of ω.
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As for weak nondegeneracy, suppose that X1 ∈ Γ (i∗TM) is nonzero on a neigh-

bourhood W of x ∈ S0. Let j be a compatible almost complex structure on M (i.e.

g (·, ·) := ω (·, j·) is a Riemannian metric on M). Let χ be a positive function supported

on W . De�ne X2 ∈ Γ (i∗TM) by X2 (x) := χ (i (x)) · jX1 (x). It follows that

∫
S0

ω (X1, X2) η0 =

∫
S0

(χ ◦ i) · g (X1, X1) η0 > 0.

6.2 Remark

Donaldson originally de�ned the above weakly symplectic structure ΩD on the space of

smooth mappings C∞(S0,M). When S0 = M , the 2-form ΩD restricts to a symplectic

structure de�ned by Khesin and Lee on the open subset of orientation preserving dif-

feomorphisms of M (relative to the orientation induced by the symplectic volume form,

which is taken to be η0; see Section 3 in [8]).

The Lie group Di� (S0, η0) acts freely on Emb (S0,M) via

a · i := i ◦ a−1.

6.3 De�nition

LetG be a Lie group with Lie algebra g. By g∗ we will mean all bounded linear functionals

on the convenient vector space g. Let 〈·, ·〉 : g∗ × g → R denote the canonical pairing

between g∗ and g. The coadjoint representation of G, Ad∗ : G→ GL(g∗) ⊂ L(g∗, g∗), is

de�ned by 〈
Ad∗gζ, ξ

〉
:= 〈ζ,Adg−1ξ〉 for any ξ ∈ g.
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6.4 De�nition

Let (M,σ) be a weakly symplectic smooth manifold. Let G ×M → M be a smooth

action of a Lie group G on M , such that l∗gσ = σ for all g ∈ G. This G action is called

Hamiltonian if there exists a G equivariant map (called the moment map)

µ ∈ C∞ (M,R)⊗ g∗

such that for all ξ ∈ g, the function 〈µ, ξ〉 ∈ C∞ (M,R) is a Hamiltonian for ξM :

d 〈µ, ξ〉 = ı (ξM)σ.

6.5 Proposition

If i∗ [ω] is the zero class in H2 (S0) for all i ∈ Emb (S0,M) and H1 (S0) = 0, then the

Di� (S0, η0) action on Emb (S0,M) is Hamiltonian.

Proof. We �rst note that the Di� (S0, η0) action on Emb (S0,M) is symplectic:(
l∗aΩ

D
)
i
(X1, X2) =

∫
S0

ωi◦a−1(x)

(
X1 ◦ a−1 (x) , X2 ◦ a−1 (x)

)
η0 (x)

=

∫
S0

ωi(y) (X1 (y) , X2 (y))
(
a−1
)∗
η0 (y)

= ΩD
i (X1, X2) .

If i∗ω = dA, de�ne µ : Emb (S0,M)→ X (S0, η0)∗ by

〈µ, ξ〉 :=

∫
S0

A (ξ) η0.

This de�nition is independent of the choice of A since H1 (S0) = 0. The map µ is smooth

by the usual local arguments. To check that µ is a moment map, let X ∈ Γ (i∗TM) be a

tangent vector at i ∈ Emb (S0,M). Let Z be a vector �eld on a neighbourhood of i (S0)

satisfying Z ◦ i = X, and suppose Z generates a �ow τt on M . Let At be a smooth curve

in Ω1 (S0) satisfying dAt := (τt ◦ i)∗ ω. Then

d

dt

∣∣∣∣
t=0

dAt = i∗
d

dt

∣∣∣∣
t=0

τ ∗t ω = i∗LZω = i∗ (d ◦ ı (Z)ω) .
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This together with H1 (S0) = 0 imply that d
dt

∣∣
t=0

At = i∗ı (Z)ω + dh for some h ∈

C∞ (S0,R). It follows that

〈dµ (X) , ξ〉 =

∫
S0

[ω (X, i∗ξ) + dh (ξ)] η0 = ΩD (X, i∗ξ)

which veri�es the moment map condition.

Finally, µ is Di� (S0, η0) equivariant:

〈µ (la (i)) , ξ〉 =

∫
S0

(
a−1
)∗
A (ξ) η0

=

∫
S0

A
(
da−1 · ξ

)
η0

= 〈µ (i) ,Ada−1ξ〉

= 〈Ad∗aµ (i) , ξ〉 .

Let us now consider the special case when
∫
S0
η0 = 1, the manifold S0 is half the

dimension of M , and assume that the topological conditions H1(S0) = 0 and [i∗ω] = 0 ∈

H2(S0) in Prop. 6.5 hold so that we have a moment map µ on Emb (S0,M). The level

surface µ−1 {0} is given by

µ−1 {0} = {i ∈ Emb (S0,M) | i∗ω = 0} = Lag (S0,M) .

The group Di� (S0, η0) acts freely on µ−1 {0} in the usual way, with the quotient given

by

µ−1 {0} /Di� (S0, η0) = Lag (S0,M) /Di� (S0, η0) .

By Prop. 5.6, the set Lag (S0,M) /Di� (S0, η0) is a smooth manifold modeled on spaces

Γclosed (i∗TM) /X (S0, η0) for i ∈ Lag (S0,M). In fact, the manifold Lag (S0,M) is the

total space of a principal Di�(S0, η0) bundle over Lag (S0,M) /Di� (S0, η0). Since the

2-form ΩD
∣∣
µ−1{0} is basic, it descends to a unique 2-form ΩD

red on µ−1 {0} /Di� (S0, η0).

Under the topological assumption that H1 (S0) = 0, the subspace given by the iso-

drastic foliation Fpw at each point equals the entire tangent space to Lagpw (M) at that
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point. The weak symplectic structure Ω on isodrasts in this case becomes well de�ned

on all of Lagpw (M). In fact, the pull back of Ω under the di�eomorphism υ in Prop. 5.6

is given by

(υ∗Ω) ([X1] , [X2]) =

∫
L0

ω (X1, X2) η0 = ΩD
red ([X1] , [X2]) .

In other words, the �symplectic quotient�
(
µ−1 {0} /Di�+ (S0, η0) ,ΩD

red

)
is symplectomor-

phic to
(
Lagpw (M) ,Ω

)
.

This last result is suggestive, leading one to wonder if the symplectic structure ΩD on

Emb (S0,M) might be related to the symplectic structure Ω on isodrasts in Lagpw (M)

via some sort of reduction procedure. In the next chapter we will make this relationship

clear.



Chapter 7

Reduction of
(
Emb (S0,M) ,ΩD

)
In this chapter we will de�ne a notion of reduction of weakly symplectic spaces with

respect to a group action. We will then show that the image of Ham (M) orbits through

isotropic embeddings in Emb (S0,M) under the projection to Emb (S0,M) /Di� (S0, η0)

are reductions. Moreover, these reductions are naturally symplectomorphic to the spaces

of positive weighted isotropic submanifolds of M . In particular, when dimS0 = 1
2
dimM ,

the particular reductions of Emb (S0,M) consisting of positive weighted Lagrangians are

symplectomorphic to isodrasts in Lagpw (M).

In Prop. 6.5, the topological assumption H1 (S0) = 0 was essential in de�ning a

moment map. Since the transverse spaces to the leaves of an isodrastic foliation become

nontrivial exactly when H1 (L0) is nontrivial, we would like to remove such a topological

condition on S0. This means we must use a notion of reduction that does not depend on

having a moment map.

Let us begin by looking at the standard reduction of a �nite dimensional symplectic

manifold (P, σ) with respect to a Hamiltonian G action using a moment map µ. Suppose

r is a regular value of µ. The tangent space at p to the level surface µ−1 {r} is equal

to the set Dp of all vectors X ∈ TpP satisfying σ (X, ξP (p)) = 0 for all ξ ∈ g. These

subspaces Dp are de�ned for any symplectic action on P , even in the absence of a moment
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map, and de�ne a distribution D on P . If G � P is a free symplectic action, then this

distribution can be taken as the starting point of the �optimal reduction method� of

Juan-Pablo Ortega and Tudor S. Ratiu [11]. We will not describe the details here, but

simply note that for a symplectic G action G � (P, σ)

� the optimal reduction method yields symplectic spaces (Pρ, σρ) where ρ ∈ P/GD

andGD is the pseudogroup of �ows generated by Hamiltonian vector �elds in XD (P )

corresponding to G-invariant Hamiltonian functions;

� the �optimal momentum map� is given by the projection J : P → P/GD;

� each reduced symplectic space (Pρ, σρ) is the quotient of an integral manifold of D

(the level surface J −1 {ρ}) by the stabilizer Gρ at ρ under the action G � P/GD:

g · [p] := [g · p];

� if G � P is a free Hamiltonian action with moment map µ, and the point r ∈ g∗

is a regular value of µ, and µ−1 {r} is connected, then µ−1 {r} is a GD orbit ρ and

the reduced symplectic space Pρ coincides with the symplectic quotient µ−1 {r} /Gr

(here Gr denotes the stabilizer of r ∈ g∗ with respect to the coadjoint action of G).

This suggests a way to de�ne reduction in the in�nite dimensional case, and motivates

the following de�nition:

7.1 De�nition

Let (P, σ) be a weakly symplectic smooth manifold. Let G � P be a smooth free action

of a Lie group G on P , such that l∗gσ = σ for all g ∈ G. The collection of subspaces

Dx := {X ∈ TxM | σx (X, ξM (x)) = 0 ∀ξ ∈ g}

for x ∈ P de�nes a distribution D on P . Let iN : N ↪→ P be a maximal integral manifold

of D and let q : P → P/G denote the projection to the orbit space. Suppose that
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1. q (N) is a smooth manifold,

2. there exists a unique weak symplectic structure σred on q (N) such that (q|N)∗ σred =

i∗Nσ.

Then the weakly symplectic manifold (q (N) , σred) will be called a reduction or symplectic

quotient of (P, σ) with respect to the G action.

7.2 Convention

From now on, we will make no topological assumptions on i∗ω or H1 (S0).

For the Di� (S0, η0) action on the symplectic manifold
(
Emb (S0,M) ,ΩD

)
, the sub-

spaces Di can be described in very familiar terms:

7.3 Proposition

For every i ∈ Emb (S0,M),

Di = Γexact (i∗TM) =
{
X ∈ Γ (i∗TM) | αX ∈ B1 (S0)

}
. (7.1)

Proof. The distribution D on Emb (S0,M) is de�ned by

Di :=
{
X ∈ Γ (i∗TM) | ΩD

i

(
X, ξEmb(S0,M) (i)

)
= 0, ∀ξ ∈ X (S0, η0)

}
for i ∈ Emb(S0,M). Since

∫
S0
dh (ξ) η0 = 0 for any function h on S0 and all ξ ∈ X (S0, η0),

it follows that {X ∈ Γ (i∗TM) | αX ∈ B1 (S0)} ⊂ Di.

Let X ∈ Di, i.e.
∫
S0
αX (ξ) η0 =

∫
S0
αX ∧ ıξη0 = 0 for all divergence free ξ. If U is

a coordinate neighbourhood in S0, η0 = ηdx1 ∧ . . . ∧ dxn on U , and f a function with

supp (f) ⊂ U , then de�ne the divergence free vector �eld Y12 := 1
η

(
∂f
∂x2

∂
∂x1
− ∂f

∂x1

∂
∂x2

)
. If
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αX = aidxi on U , then

∫
S0

αX ∧ ıY12η0 =

∫
U

(
a1
∂f

∂x2

− a2
∂f

∂x1

)
dx1 ∧ . . . ∧ dxn

=

∫
U

(
∂a2

∂x1

− ∂a1

∂x2

)
fdx1 ∧ . . . ∧ dxn

where we have used integration by parts. If this is to vanish for all f then ∂a2

∂x1
= ∂a1

∂x2
.

Similarly, by considering vector �elds like Y13 := 1
η

(
∂f
∂x3

∂
∂x1
− ∂f

∂x1

∂
∂x3

)
it follows that

∂a3

∂x1
= ∂a1

∂x3
, etc., which means αX is closed.

Let g0 be a Riemannian metric on S0 whose volume form equals η0. For every X ∈ Di,

since αX is closed, there exists a function h on S0 such that βX := αX − dh is harmonic.

Moreover,
∫
S0
βX (ξ) η0 = 0 for every ξ ∈ X (S0, η0). De�ne the vector �eld YβX on S0 by

βX = g0 (YβX , ·). Let V be a coordinate neighbourhood in S0, and suppose βX = bidxi

on V . On V ,

LYβX η0 = d ◦ ıYβX
(√

detg0dx1 ∧ . . . ∧ dxn
)

= d
(√

detg0g
ij
0 bj (−1)i dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn

)
= d ∗ βX = ∗δβX = 0

which means YβX ∈ X (S0, η0). So 0 =
∫
S0
βX (YβX ) η0 =

∫
S0
g0 (YβX , YβX ) η0 implies that

βX = 0, which means αX = dh.

The group Ham (M) acts freely on Emb (S0,M) under the action

Ham (M) � Emb (S0,M) : φ · i := φ ◦ i.

In what follows we will show that Ham (M) orbits through isotropic embeddings are

maximal integral manifolds of D. For this purpose, we will need to make use of the

following isotropic embedding theorem of Weinstein:
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7.4 Theorem

(see [22]) Let (M,ω) be a symplectic manifold and i : I ↪→M be an isotropic submanifold,

i.e. i∗ω = 0. The vector bundle T ∗I ⊕ (TIω/TI) admits a symplectic structure on a

neighbourhood of the zero section, which is given by ωT ∗I + ωR2n on the zero section.

Furthermore, there exists a neighbourhood U1 of I in M , a neighbourhood U2 of I in

T ∗I ⊕ (TIω/TI), and a symplectomorphism from U1 to U2 �xing I.

7.5 Proposition

If i ∈ Emb (S0,M) is an isotropic embedding, then the Ham (M) orbit N through i is a

maximal integral manifold of the distribution D (see (7.1)). The restriction of ΩD to N in

Emb (S0,M) descends to a unique weak symplectic structure ΩD
red on the image O := q (N )

in the orbit space under the projection q : Emb (S0,M) → Emb (S0,M) /Di� (S0, η0).

Thus the symplectic spaces
(
O,ΩD

red

)
are reductions of Emb (S0,M) with respect to the

Di� (S0, η0) action.

Proof. We will �rst show that a Ham (M) orbit through an isotropic embedding is an

integral manifold of D. Suppose that i : S0 → M is an isotropic embedding. By

Th. 7.4, if S = i (S0) and N = TSω/TS denotes the symplectic normal bundle, then

by choosing a symplectic embedding λ : M ⊃ U → T ∗S ⊕ N we can assume that

M = T ∗S ⊕ N and that i is the zero section inclusion. Let pr1 : T ∗S ⊕ N → T ∗S

and pr2 : T ∗S ⊕ N → N be the natural maps which forget the points in the symplectic

normal and cotangent �bers respectively. That is, pr1(x, p, v) := (x, p) and pr2(x, p, v) :=

(x, v). Given X ∈ Di with αX = dh for some h ∈ C∞ (S0,R), let X = X�b + Xtan

denote the decomposition of X into components tangent to the �bers and tangent to

S. Extend X�b constantly along the �bers in T ∗S ⊕ N to a vector �eld Z de�ned on

a neighbourhood of the zero section. It follows that Z is a Hamiltonian vector �eld

satisfying ı (Z)ω = d(pr∗1π
∗
T ∗Sf + pr∗2HN) where f ∈ C∞ (S,R) satis�es i∗f = h, and
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HN ∈ C∞(N,R) is de�ned by HN(x, v) := ωR2n(dpr2 ◦X(x), v). Since ω = ωT ∗S + ωR2n

along the zero section, ı(Xtan)ω|TS = 0. Thus for each point x in the zero section, we

have that ı(Xtan)ω de�nes a linear functional (ı(Xtan)ω)x on the �ber T ∗xS ⊕ Nx. The

smooth function Htan : T ∗S ⊕N → R de�ned by Htan(x, p, v) := (ı(Xtan)ω)x(p, v) is the

primitive of a Hamiltonian vector �eld Ztan satisfying Ztan ◦ i = Xtan. It follows that

Di ⊂ Ti(Ham(M) · i). The converse inclusion follows from the fact that αXH◦i = di∗H

for any Hamiltonian vector �eld XH . So Ham (M) orbits must be integral manifolds of

D. The fact that they must be maximal can be shown as in the proof of Prop. 3.9.

Let N be a Ham (M) orbit through an isotropic embedding i. The image O := q (N )

is equal to the Ham (M) orbit in the quotient Emb (S0,M) /Di� (S0, η0) under the action

φ · [i] := [φ ◦ i], it consists of positive weighted isotropic submanifolds ofM di�eomorphic

to S0, and can be given a smooth manifold structure similar to that on the space of

positive weighted Lagrangians. The space Di� (S0, η0) ·N is the total space of a principal

Di� (S0, η0) bundle over O. The pullback of ΩD to Di� (S0, η0) · N de�nes a closed basic

2-form which descends to a closed 2-form ΩD
red on O. To check weak nondegeneracy, we

�rst note that the 2-form ΩD
red is given by the expression

ΩD
red ([X1] , [X2]) =

∫
S0

ω (X1, X2) η0.

Again, by choosing a symplectic embedding λ : M ⊃ U → T ∗S ⊕N we can assume that

M = T ∗S ⊕ N and that i is the zero section inclusion. Given [X2] ∈ Ker
(
ΩD
red

)
, let

X2 = X�b +Xtan be the decomposition of X2 into components tangent to the �bers and

to the zero section respectively. Extend X�b and Xtan to Hamiltonian vector �elds Z�b

and Ztan respectively as before. For [X1] ∈ T[i]O, let Zf1be a Hamiltonian vector �eld on
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T ∗S ⊕N such that X1 = Zf1 ◦ i. It follows that

0 = ΩD
red ([X1] , [X2]) =

∫
S0

ω (Zf1 , X2) η0

=

∫
S0

i∗ [ω (Zf1 , Z�b)] η0 +

∫
S0

i∗ [ω (Zf1 , Ztan)] η0

=

∫
S0

i∗LZ�bf1η0 +

∫
S0

i∗LZtanf1η0

=

∫
S0

i∗LZ�bf1η0 +

∫
S0

LY (i∗f1) η0,

where Y ∈ X (S0) and i∗Y = Ztan ◦ i. If f1 is the pullback through the bundle projection

of a function on the base S, then the �rst term vanishes and the second term vanishes if

and only if Y ∈ X (S0, η0). It follows that Z�b must vanish which means [X2] = 0.

Finally, uniqueness of ΩD
red follows from the fact that the principal Di� (S0, η0) bundle

Emb (S0, η0)→ Emb (S0, η0) /Di� (S0, η0) restricted to O admits local sections.

Thus the image O := q (N ) of a Ham (M) orbit in Emb (S0,M) through an isotropic

embedding is a symplectic quotient of
(
Emb (S0,M) ,ΩD

)
with respect to the Di� (S0,M)

action.

7.6 Convention

From now on we will assume that
∫
S0
η0 = 1.

7.7 Theorem

Suppose dim (S0) = 1
2
dim (M) = n and that N is a Ham (M) orbit through a Lagrangian

embedding, i.e. N is an isodrast in Lag (S0,M). If Iw := p (N × Vol1 (S0)), where

p : Lagpw (S0,M) → Lagpw (M), and O := q (N ), then the reduction
(
O,ΩD

red

)
of(

Emb (S0,M) ,ΩD
)
with respect to the Di� (S0, η0) action is symplectomorphic to the

isodrast (Iw,Ω) in Lagpw (M).
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Proof. By Prop. 5.6, we have a Ham (M) equivariant di�eomorphism

υ : Lag (S0,M) /Di� (S0, η0)→ Lagpw (M)

which induces a di�eomorphism (also labeled by υ)

υ : O → Iw.

The pull back of Ω under this map is given by

(υ∗Ω)[i] ([X1] , [X2]) = Ω[(i,η0)] ([(X1, 0)] , [(X2, 0)])

=

∫
S0

ω (X1, X2) η0

=
(
ΩD
red

)
[i]

([X1] , [X2]) .

So indeed, the symplectic quotient
(
O,ΩD

red

)
is symplectomorphic to the isodrast (Iw,Ω).

7.8 Remark

This last theorem clari�es the relationship between Donaldson's symplectic structure

ΩD on Emb (S0,M) and Weinstein's symplectic structure ΩW on isodrasts in Lagpw (M).

Namely, the isodrasts
(
Iw,Ω

W
)
can be viewed as symplectic quotients of

(
Emb (S0,M) ,ΩD

)
.

And while Donaldson's and Weinstein's constructions were done heuristically, our con-

structions of the symplectic spaces
(
Emb (S0,M) ,ΩD

)
and (Iw,Ω) as well as the descrip-

tion of the relationship between them are rigourous.

7.9 Example

Let (M,ω) = (R2, dq ∧ dp) and S0 = S1. Since S1 is one dimensional Lag (S1,R2) =

Emb (S1,R2). However, since H1 (S1) is nontrivial, we have nontrivial isodrasts in

Emb (S1,R2) that can be described as follows.
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Let β = pdq denote the canonical 1-form on the plane. Given a map i ∈ Emb (S1,R2),

the action integral A (i) of i is de�ned as the integral of β around i (S1):

A (i) :=

∫
S1

i∗β.

An isotopic deformation is Hamiltonian if and only if the action integrals are constant

along the deformation (see Prop. 2.1 in [23])1. The idea is as follows. Given two

nearby loops in a symplectic manifold (M,ω), we can de�ne the di�erence in their action

integrals to be the integral of −ω over a cylindrical surface joining the two loops. This

is well de�ned even when ω is not exact. Lagrangians near a given L ∈ Lag (M) can be

identi�ed with graphs of 1-forms in T ∗L by Th. 3.2. Two such graphs can be joined by a

Hamiltonian deformation if and only if their corresponding 1-forms are cohomologous. If

γ′ is a small deformation of a loop γ in the zero section corresponding to a deformation

of the zero section to a Lagrangian L′ = Graph (α), C denotes a cylinder joining γ and

γ′, and if βT ∗L denotes the canonical 1-form of the T ∗L, then∫
C

−ωT ∗L =

∫
γ′
βT ∗L

=

∫
γ

α.

So a small deformation of the zero section is the graph of an exact 1-form if and only

if the di�erence in action integrals is 0 for all loops γ and γ′ in the zero section and

the deformed image respectively. It follows that two graphs of 1-forms can be joined

by a Hamiltonian deformation if and only if the di�erence in action integrals remains

constant for all loops in these Lagrangians. Returning to our example, this means that

the isodrasts in Emb (S1,R2) consist of circle embeddings that can be joined by an

isotopy that preserves action integrals, i.e. H ⊂ Emb (S1,R2) is an isodrast if and only

if it consists of isotopic circle embeddings and the map A : Emb (S1,R2)→ R sending i

to its action integral A (i) is constant on H.

1In fact, this was Weinstein's original motivation for the terminology �isodrast�.
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On the circle we can take η0 = dt
2π

so that Di�
(
S1, dt

2π

)
consists of rigid rotations

of the circle. Let O := q (H) be the image of an isodrast H in the orbit space. Each

representative X for a tangent vector [X] ∈ T[i]O can be decomposed as X = Z + Y

where Z is a normal to i (S1) and Y is tangent to i (S1). It follows that if αXk = dhk

then the reduced symplectic structure is given by

ΩD
red ([X1] , [X2]) =

1

2π

[∫ 2π

0

ω (Z1, Y2) dt+ ω (Y1, Z2)

]
dt

=
1

2π

∫ 2π

0

[LY2h1dt− LY1h2] dt

= Ω

([(
Z1,−LY1

dt

2π

)]
,

[(
Z2,−LY2

dt

2π

)])
= Ω ([(X1, 0)] , [(X2, 0)]) .



Chapter 8

Weighted Isotropics

The results of the last chapter suggest a way to generalize Weinstein's construction of a

symplectic structure on spaces of weighted Lagrangians to spaces of weighted isotropics.

In this section we will pursue this idea and thereby obtain a generalization of Th. 7.7

suggested by Prop. 7.5.

Let (M,ω) be a symplectic manifold and I0 a �xed compact oriented manifold with

dimI0 ≤ 1
2
dim (M).

8.1 Notation

Let Iso (I0,M) denote the set of isotropic embeddings of I0 into (M,ω). That is,

Iso (I0,M) := {i ∈ Emb (I0,M) | i∗ω = 0} .

Similar to the discussion in Prop. 3.3, Th. 7.4 can be used to equip Iso (I0,M) with

a smooth manifold structure locally modeled on spaces Γclosed (i∗TM) for i ∈ Iso (I0,M).

For each i ∈ Iso (I0,M), if I := i (I0) then the sequence

0 // Γ ((TI)ω)
f1 // TiIso (I0,M)

f2 // Z1 (I0) // 0

where f1 (Z) = Z ◦ i and f2 (X) = αX , is an exact sequence.
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Meanwhile, the atlas on Iso (I0,M) and the spaces Γexact (i∗TM) for i ∈ Iso (I0,M)

de�ne a foliation E of Iso (I0,M), whose leaves consist of Ham (M) orbits under the action

Ham (M) � Iso (I0,M) : φ · i := φ ◦ i.

8.2 De�nition

The foliation E will be called the isodrastic foliation of Iso (I0,M), and each leaf of E will

be called an isodrast in Iso (I0,M).

The group Di�+ (I0) acts freely on Iso (I0,M) via

a · i := i ◦ a−1.

8.3 Notation

Set

Iso (M) := Iso (I0,M) /Di�+ (I0 )

If p : Iso (I0,M)→ Iso (M) denotes the projection to the quotient, then Iso (I0,M) is

the total space of a principal Di�+ (I0) bundle whose base Iso (M) is identi�ed with the

set of oriented isotropic submanifolds in M di�eomorphic to I0.

8.4 Notation

Let Isow (I0,M) denote the product Iso (I0,M)× Ωk
1 (I0) (where k = dimI0).

The group Di�+ (I0) acts freely on Isow (I0,M) by

a · (i, η) :=
(
i ◦ a−1,

(
a−1
)∗
η
)
.
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8.5 Notation

Set

Isow (M) := Isow (I0,M) /Di�+ (I0) .

The space Isow (I0,M) is the total space of a principal Di�+ (I0) bundle, whose base

Isow (M) can be identi�ed with the space of weighted isotropic submanifolds in M . The

foliation E of Iso (I0,M) induces a foliation Ew of Isow (I0,M) which descends to a foliation

Fw of Isow (M).

8.6 De�nition

The foliation Ew will be called the isodrastic foliation of Isow (I0,M), and each leaf of

Ew will be called an isodrast in Isow (I0,M). Similarly, Fw will be called the isodrastic

foliation of Isow (M), and each leaf of Fw will be called an isodrast in Isow (M).

The pointwise assignment

Ω(i,η) ((X1, ϑ1) , (X2, ϑ2)) :=

∫
I0

[ω (X1, X2) η + h1ϑ2 − h2ϑ1]

where αXk = dhk for hk ∈ C∞ (I0,R) de�nes a basic 2-form on Isow (I0,M)Ew . It descends

to a weak symplectic structure (also labeled Ω) on Isow (I0,M)Fw . Here closedness and

nondegeneracy of Ω on Iw follow from using the local model of isotropic submanifolds

a�orded by Th. 7.4, and the fact that in such a model the symplectic form along the

zero section in T ∗I ⊕ Γ (TIω/TI) is given by ωT ∗I + ωR2n where ωR2n is the standard

symplectic vector space structure on the �bers of Γ (TIω/TI).

8.7 Notation

Let Isopw (I0,M) denote the product Iso (I0,M)× Vol1 (I0) and set

Isopw (M) := Isopw (I0,M) /Di�+ (I0) .
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Isopw (M) is an open subset of Isow (M), and so is a smooth manifold locally modeled

on spaces Γclosed (i∗TM)⊕Ωk
0 (I0) / {(Y,LY η) | Y ∈ X (I0)} for (i, η) ∈ Isopw (I0,M). If I0

is equipped with a �xed volume form η0 satisfying
∫
I0
η0 = 1, then as in Prop. 5.6 there is

a natural Ham (M) equivariant di�eomorphism υ : Iso (I0,M) /Di� (I0, η0)→ Isopw (M).

This leads to the following generalization of Th. 7.7:

8.8 Theorem

Suppose that N is a Ham (M) orbit through an isotropic embedding, i.e. N is an isodrast

in Iso (S0,M). If Iw := p (N × Vol1 (S0)) and O := q (N ), where p : Isopw (L0,M) →

Isopw (M) and q : Emb (S0,M) → Emb (S0,M) /Di� (S0, η0) are the projections to the

quotients, then the reduction
(
O,ΩD

red

)
of
(
Emb (S0,M) ,ΩD

)
with respect to the Di� (S0, η0)

action is symplectomorphic to the isodrast (Iw,Ω) in Isopw (M).

The proof is completely analogous to that of Th. 7.7.



Chapter 9

Coadjoint Orbits of Ham (M)

In this chapter we will extend a Ham(M) moment map written down by Weinstein

(see Theorem 5.1 in [23]), which maps each symplectic leaf (Iw,Ω) ⊂ Lagpw (M) onto a

coadjoint orbit of a central extension of Ham (M). The result will be an identi�cation

of isodrasts consisting of positive weighted isotropics with coadjoint orbits of Ham (M)

(when M is compact).

Suppose that (M,ω) is compact. The Lie algebra of G = Ham (M) can be identi�ed

with the space

g =

{
f ∈ C∞ (M,R) |

∫
M

f
ωn

n!
= 0

}
' C∞ (M,R) /R.

Each positive weighted isotropic (I, ρ) ∈ Isopw (M) de�nes a element of the dual g∗ by

integration:

f 7→
∫
I

fρ.

9.1 Theorem

Let Iw be an isodrast in Isopw (M). Then the Ham (M) action on (Iw,Ω) de�ned by

φ · (I, ρ) :=
(
φ (I) , (φ−1)

∗
ρ
)
is Hamiltonian with moment map Φ : Iw → g∗ given by

(I, ρ) 7→
(
f 7→

∫
I

fρ

)
.
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Moreover, the map Φ is a symplectomorphism onto a coadjoint orbit in g∗ equipped with

the usual Kirillov-Kostant-Souriau form.

Proof. We will �rst show that the Ham (M) action is symplectic. If (I, ρ) = [(i, η)], then

the Ham (M) action on Iw can be written as

φ · [(i, η)] := [(φ ◦ i, η)] .

It follows that

(
l∗φΩ
)

[(φ·i,η)]
([(X1, ϑ1)] , [(X2, ϑ2)]) =

∫
I0

[ω (dφ ·X1, dφ ·X2) η + h1ϑ2 − h2ϑ1]

=

∫
I0

[ω (X1, X2) η + h1ϑ2 − h2ϑ1]

= Ω[(i,η)] ([(X1, ϑ1)] , [(X2, ϑ2)]) .

To check the moment map condition, we �rst note that each tangent vector ξ ∈

T[(i,η)]Iw has a unique representative of the form (X, 0). If f ∈ g then the generating vector

�eld fIw assigns to each point [(i, η)] ∈ Iw the tangent vector [(Xf ◦ i, 0)] where Xf is the

Hamiltonian vector �eld onM corresponding to the Hamiltonian f . If [(X, 0)] ∈ T[(i,η)]Iw

is a tangent vector to the isodrast, then choose an extension of X to a Hamiltonian vector

�eld Z de�ned on a neighbourhood of I = i (I0). It follows that

d 〈Φ, f〉[(i,η)] ([(X, 0)]) =

∫
I0

i∗LZfη

=

∫
I0

i∗ω (Xf , Z) η

=

∫
I0

ω (Xf ◦ i,X) η

= Ω[(i,η)] (fIw , [(X, 0)]) .
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To check that the map Φ : Iw → g∗ is Ham (M) equivariant we observe that

〈Φ (φ · [(i, η)]) , f〉 =

∫
I0

i∗φ∗fη

=

∫
I0

i∗ (f ◦ φ) η

= 〈Φ ([(i, η)]) ,Adφ−1f〉

=
〈
Ad∗φΦ ([(i, η)]) , f

〉
.

As for the image of Φ, since the stabilizers at points (I, ρ) ∈ Iw and Φ (I, ρ) ∈ g∗ are

given by

Stab(I,ρ)Ham (M) =
{
φ ∈ Ham (M) | φ (I) = I,

(
φ−1
)∗
ρ = ρ

}
= StabΦ(I,ρ)Ham (M) ,

the map Φ maps the isodrast Iw di�eomorphically onto a coadjoint orbit. Meanwhile,

if [(X1, 0)] and [(X2, 0)] are tangent vectors in T[(i,η)]Iw, and Zf1 and Zf2 are extensions

of X1 and X2 respectively to Hamiltonian vector �elds de�ned on a neighbourhood of

I = i (I0), then the pullback under Φ of the usual Kirillov-Kostant-Souriau form ΩKKS

is given by

(Φ∗ΩKKS)[(i,η)] ([(X1, 0)] , [(X2, 0)]) = −
∫
I0

i∗ {f1, f2} η

=

∫
I0

i∗ω (Zf1 , Zf2) η

= Ω[(i,η)] ([(X1, 0)] , [(X2, 0)]) .

9.2 Remark

This last theorem makes rigourous the heuristic moment map written down by Wein-

stein. Also, it extends it to a map identifying isodrasts in the space of positive weighted

isotropics with coadjoint orbits in the dual of the Lie algebra of the group of Hamiltonian

symplectomorphisms.



Chapter 10

Poisson Structures

In this chapter we will de�ne a Poisson algebra (A, {·, ·}) for a subalgebra A ⊂ C∞ (M) of

smooth functions on a smooth manifold M . Such a manifold will be called an A-Poisson

manifold if there are enough Hamiltonian vector �elds in a sense we will specify. We

de�ne what a leaf of such an A-Poisson manifold is. We then show that reductions of

Emb (S0,M) consisting of positive weighted isotropics are symplectic leaves of a Poisson

structure.

10.1 Notation

Let C∞∫ (Emb (S0,M)) denote the set of functions F : Emb (S0,M)→ R such that for all

i0 ∈ Emb (S0,M) there exists a c∞-open neighbourhood U of i0, a map A ∈ C∞ (Rn,R),

and smooth functions h1, . . . , hn ∈ C∞ (W,R) de�ned on a neighbourhood W of i0 (S0)

so that

F (i) = A

(∫
S0

(i∗h1) η0, . . . ,

∫
S0

(i∗hn) η0

)
(10.1)

for all i ∈ U .

Since functions in C∞∫ (Emb (S0,M)) locally amount to integrating functions against

η0, the set C
∞∫ (Emb (S0,M)) is a subalgebra of smooth functions in C∞(Emb(S0,M),R).
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10.2 Remark

The algebra of functions C∞∫ (Emb (S0,M)) was chosen with the axioms of di�erential

structures in mind (see [13]; also cf. Sec. 3 in [2]). A di�erential structure on a topological

space Q is a set C∞ (Q) of continuous functions on Q with the following properties:

1. The topology of Q is generated by sets of the form F−1 (V ) where F ∈ C∞ (Q) and

V is an open subset of R.

2. If B ∈ C∞ (Rm,R) and F1, . . . , Fm ∈ C∞ (Q) then B (F1, . . . , Fm) ∈ C∞ (Q).

3. If F : Q → R is a function such that, for every x ∈ Q there is an open neigh-

bourhood U of x in Q and a function FU ∈ C∞ (Q) such that F |U = FU , then

F ∈ C∞ (Q).

A topological space Q together with a di�erential structure C∞ (Q) is called a di�erential

space. When Emb (S0,M) is equipped with the topology T generated by sets of the form

F−1 (V ) where F ∈ C∞∫ (Emb (S0,M)) and V is open in R, then the topological space

(Emb (S0,M) , T ) together with C∞∫ (Emb (S0,M)) de�nes a di�erential space.

10.3 Proposition

For every F ∈ C∞∫ (Emb (S0,M)), the local assignments vF (i) :=
∑n

j=1
∂A
∂yj

Xhj

∣∣
i(S0)
◦ i

on each neighbourhood U de�ne a unique vector �eld vF on Emb (S0,M) satisfying dF =

ı (vF ) ΩD.

Proof. We will �rst compute the exterior derivative of a function in C∞∫ (Emb (S0,M))

locally. Suppose that F ∈ C∞∫ (Emb (S0,M)) can be written as in (10.1) on a c∞-open

neighbourhood U of i0 ∈ Emb (S0,M). Let X ∈ Ti0Emb (S0,M) be a tangent vector at

i0. Choose a vector �eld Z de�ned on a neighbourhood of i (S0) such that Z ◦ i = X.



Chapter 10. Poisson Structures 80

Such a Z can be viewed as a vector �eld v on U (or perhaps on a c∞-open subset V ⊂ U),

assigning Z ◦ i to each i ∈ U . If

F (i) = A

(∫
S0

(i∗h1) η0, . . . ,

∫
S0

(i∗hn) η0

)

on U for some A ∈ C∞ (Rn,R) and smooth functions h1, . . . , hn ∈ C∞ (W,R) de�ned on

a neighbourhoodW of i0 (S0), then the pointwise exterior derivative of F in the direction

of v is given by

dFi (vi) =
n∑
j=1

∂A

∂yj

∫
S0

(i∗LZhj) η0.

It follows that the vector �eld vF ∈ X (U), de�ned by vF (i) :=
∑n

j=1
∂A
∂yj
Xhj ◦ i (where

Xhj is the Hamiltonian vector �eld with Hamiltonian hj), satis�es dF = ı (vF ) ΩD on

U . In fact, if U1 and U2 are c∞-open neighbourhoods in Emb (S0,M) with nonempty

intersection, and

F (i) = A

(∫
S0

(i∗h1) η0, . . . ,

∫
S0

(i∗hn) η0

)
on U1,

F (i) = B

(∫
S0

(i∗g1) η0, . . . ,

∫
S0

(i∗gm) η0

)
on U2,

then on U1 ∩ U2

0 = d

(
A

(∫
S0

(i∗h1) η0, . . . ,

∫
S0

(i∗hn) η0

)
= −B

(∫
S0

(i∗g1) η0, . . . ,

∫
S0

(i∗gm) η0

))
(v)

= ΩD

(
n∑
j=1

∂A

∂yj
Xhj ◦ i−

m∑
l=1

∂B

∂zl
Xgl ◦ i, v

)
.

So by the nondegeneracy of ΩD, the local assignments vF (i) :=
∑n

j=1
∂A
∂yj
Xhj ◦ i coincide

on overlapping regions and so de�ne a vector �eld vF on Emb (S0,M) satisfying dF =

ı (vF ) ΩD. Uniqueness of the Hamiltonian vector �eld vF also follows from nondegeneracy

of ΩD.
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10.4 De�nition

LetM be a smooth manifold. A subalgebra A ⊂ C∞ (M,R) of smooth functions together

with a Lie structure [·, ·] will be called a Poisson algebra if

[FG,H] = F [G,H] + [F,H]G.

In this case the bracket [·, ·] will be called a Poisson bracket. If (A, [·, ·]) is a Poisson

algebra, we will say that M is an A-Poisson manifold.

De�ne a skew-symmetric bilinear structure {·, ·}Emb(S0,M) on C
∞∫ (Emb (S0,M)) via

{F,G}Emb(S0,M) := −ΩD (vF , vG) .

10.5 Proposition

The subalgebra C∞∫ (Emb (S0,M)) together with {·, ·}Emb(S0,M) is a Poisson algebra.

Proof. {·, ·}Emb(S0,M) satis�es Jacobi's identity pointwise since the Poisson bracket {·, ·}M

on M does, and is a derivation in the �rst argument for the same reason. (Here {·, ·}M

is de�ned by {f, g}M := −ω (Xf , Xg) for f, g ∈ C∞ (M,R).)

By taking restrictions of functions in C∞∫ (Emb (S0,M)) to Iso (S0,M) we obtain an al-

gebra C∞∫ (Iso (S0,M)) of smooth functions on Iso (S0,M). For each F ∈ C∞∫ (Iso (S0,M))

and i ∈ Iso (S0,M) the vector vF (i) is tangent to Iso (S0,M) at i. Since the functions in

C∞∫ (Iso (S0,M)) are Di� (S0, η0) invariant, the algebra C∞∫ (Iso (S0,M)) descends to an

algebra of functions C∞∫ (Isopw (M)) on Isopw (M).

10.6 Convention

In what follows, we will use the same letter F to denote a function in C∞∫ (Emb (S0,M)),

its restriction to Iso (S0,M), as well as the corresponding map on the quotient Isopw (M)

to avoid introducing more notation.
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For F,G ∈ C∞∫ (Isopw (M)) and [i] ∈ Isopw (M) de�ne

{F,G}Isopw(M) ([i]) : = −ΩD
i (vF (i) , vG (i))

= −
(
ΩD
red

)
[i]

(dr (vF ) , dr (vG)) ,

where r : Iso (S0,M)→ Isopw (M) is the projection to the quotient. Then C∞∫ (Isopw (M))

together with {·, ·}Isopw(M) is a Poisson algebra, which means Isopw (M) is a C∞∫ (Isopw (M))-

Poisson manifold.

10.7 De�nition

Let (M,A, {·, ·}) be an A-Poisson manifold. Suppose that for every F ∈ A there exists

a unique vector �eld XF on M such that dG (XF ) = {F,G} for every G ∈ A. The

collection of vectors

Cx := {XF (x) ∈ TxM | F ∈ A}

at each x ∈M de�nes a distribution C on M . A maximal integral manifoldM of C will

be called a leaf of the A-Poisson manifold M .

10.8 Remark

In �nite dimensions the distribution C is integrable. In in�nite dimensions it might be

possible to prove an analogue of Frobenius' theorem for some spaces of mappings and

apply it to our spaces.

10.9 Remark

The �rst condition in the previous de�nition is satis�ed in C∞∫ (Isopw (M)) but not in

C∞∫ (Emb (S0,M)) because of the directions generated by the Di�(S0, η0) action.
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For each F ∈ C∞∫ (Isopw (M)) we have that dr (vF ) is the unique vector �eld on

Isopw (M) satisfying dF = ı (dr (vF )) ΩD
red (uniqueness follows from the nondegeneracy

of ΩD
red on Isopw (M)Fpw). It follows that if F ∈ C∞∫ (Isopw (M)) then dG (XF ) =

{F,G}Isopw(M) for all G ∈ C∞∫ (Isopw (M)). On the C∞∫ (Isopw (M))-Poisson manifold

Isopw (M), the distribution C is given by the collection of vectors

C[i] :=
{
dr (vF ) ([i]) ∈ T[i]Isopw (M) | F ∈ C∞∫ (Isopw (S0,M))

}
at each [i] ∈ Isopw (M).

10.10 Theorem

Suppose that N is a Ham (M) orbit through an isotropic embedding in Emb (S0, η0),

i.e., N is an isodrast in Iso (S0,M), with O := q (N ) where q : Emb (S0,M) →

Emb (S0,M) /Di� (S0, η0) is the projection to the quotient. Then the reduction
(
O,ΩD

red

)
is a symplectic leaf of the C∞∫ (Isopw (M))-Poisson manifold Isopw (M).

Proof. We will �rst show that any maximal integral manifold of C is a Ham (M) orbit in

Isopw (M) under the action φ · [i] := [φ ◦ i]. The manifold Iso (S0,M) is the total space

of a principal Di� (S0,M) bundle over Isopw (M). Each vector �eld vF on Iso (S0,M)

with Hamiltonian F ∈ C∞∫ (Iso (S0,M)) is locally of the form vF (i) =
∑n

j=1
∂A
∂yj
Xhj ◦ i.

It follows that curves in Isopw (M) are everywhere tangent to the distribution C if and

only if they belong to a Ham (M) orbit. So the symplectic quotient
(
O := q (N ) ,ΩD

red

)
is a leaf of the C∞∫ (Isopw (M))-Poisson manifold Isopw (M).

10.11 Remark

By now we have revealed three di�erent faces of isodrasts in Isopw (M). Namely, isodrasts

consisting of positively weighted isotropics can be identi�ed with symplectic reductions
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of
(
Emb (S0,M) ,ΩD

)
, with coadjoint orbits of Ham (M), and with symplectic leaves of

the C∞∫ (Isopw (M))-Poisson manifold Isopw (M).



Chapter 11

Momentum Weighted Lagrangians

In this chapter we will discuss a kinematic interpretation of isodrasts in Lag (M) to

motivate a di�erent choice of �weightings� to obtain a symplectic structure.

Let us view points in an isodrast I ⊂ Lag (M) as con�gurations of a submanifold

constrained to move in I. What are the possible velocities? By Prop. 3.12 and the

description of the isodrastic foliation F , we know that the tangent bundle of I can be

described by

T I =
{

(L, dh) ∈ I×B1 (L) | L ∈ I
}
.

Thus the velocities at a con�guration L ∈ I correspond to functions on L modulo con-

stants, i.e. to elements of C∞ (L,R) /R. The conjugate momenta to con�gurations in I

(i.e. cotangent vectors) should be linear functionals from C∞ (L,R) /R to R, that are

in 1-1 correspondence with C∞ (L,R) /R. This expectation that the cotangent �bers

should be the "same size" as C∞ (L,R) /R re�ects a physical expectation that all mo-

menta should be accessible by motions of particles in the con�guration space, and that

all such motions can be assigned momenta. In any case, integration against n-forms in

Ωn
0 (L) certainly �ts the above description. This motivates the following de�nition:
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11.1 De�nition

Let I be an isodrast in Lag (M). A momentum weighting of a Lagrangian L ∈ I is a top

degree form χ on L satisfying
∫
L
χ = 0. Pairs (L, χ) will be called momentum weighted

Lagrangians.

11.2 Notation

Let Lagmw (L0,M) denote the product Lag (L0,M)×Ωn
0 (L0) and Lagmw (M) the quotient

of Lagmw (L0,M) by Di�+ (L0) under the action a · (i, χ) :=
(
i ◦ a−1, (a−1)

∗
χ
)
.

As in the the case of weighted Lagrangians, the canonical projection from Lagmw (M)

to Lag (M) pulls back the foliation F to a foliation Fmw on Lagmw (M), whose leaves

Imw are Ham (M) orbits under the action

Ham (M) � Lagmw (M) : φ · [(i, χ)] := [(φ ◦ i, χ)] .

11.3 De�nition

The foliation Fmw will be called the isodrastic foliation of Lagmw (M) and each leaf of

Fmw will be called an isodrast in Lagmw (M).

The tangent space to an isodrast Imw at a point [(i, χ)] is given by

T[(i,ν)]Imw =
{

(X,ϑ) ∈ Γ (i∗TM)× Ωn
0 (L0) | αX ∈ B1 (L0)

}
/ {(Y,LY η) | Y ∈ X (L0)} .

11.4 Theorem

The bilinear map

Ω[(i,χ)] ([(X1, ϑ1)] , [(X2, ϑ2)]) :=

∫
L0

[ω (X1, X2)χ+ h1ϑ2 − h2ϑ1]



Chapter 11. Momentum Weighted Lagrangians 87

where αXk = dhk, de�nes an exact weak symplectic structure on Imw satisfying Ω = −dΘ

where

Θ[(i,χ)] ([(X,ϑ)]) :=

∫
L0

hχ

and αX = dh.

Proof. We will compute the exterior derivative of Θ locally in charts. That is, be means

of a symplectic embedding λ(i,χ) : T ∗L0 ⊃ W(i,χ) → M chosen in de�ning a chart(
U(i,χ), ϕ(i,χ)

)
on Lagmw (M), we can assume that M = T ∗L0 and that each tangent

vector in T[(i,χ)]Imw is represented by a pair (X,ϑ) where αX ∈ B1 (L0) and X is tan-

gent to the cotangent �bers. Given a tangent vector ξ = (X,ϑ) ∈ T[(i,χ)]Imw, we can

extend it to a vector �eld on Imw (also labeled ξ) in the following way. Let Zf denote

the Hamiltonian vector �eld de�ned on T ∗L0 satisfying ı (Zf )ω = π∗αX where αX = dh

and f = π∗h. De�ne ξ to be the vector �eld on Imw that assigns ξ ([i′, ν ′]) = (Zf ◦ i′, ϑ)

to nearby points [(i′, χ′)]. So given tangent vectors ξ1 and ξ2 in T[(i,χ)]Imw, extend them

to vector �elds (also labeled ξ1 and ξ2) as just described. Then

dΘ[(i,ν)] (ξ1, ξ2) = [ξ1Θ (ξ2)− ξ2Θ (ξ1)−Θ ([ξ1, ξ2])][(i,ν)]

=

∫
L0

[(
i∗LXf1f2

)
χ+ (i∗f2)ϑ1 −

(
i∗LXf2f1

)
χ− (i∗f1)ϑ2

+ (i∗ω (Xf1 , Xf2))χ]

= −
∫
L0

(h1ϑ2 − h2ϑ1)

= −Ω[(i,χ)] (ξ1, ξ2) .

Nondegeneracy then follows from the fact that the h's and ϑ's are independent of one

another.



Chapter 12

Momentum Weighted Metrics

In this chapter we apply the kinematic approach of the last section to the space of

pseudo-Riemannian metrics of �xed signature. We obtain a cotangent bundle and iden-

tify a Poisson algebra of functions on this space. These functions are Hamiltonians for

Hamiltonian vector �elds. In the particular case of Lorentzian metrics on a �xed 4-

dimensional manifold, this gives the necessary ingredients for a geometric quantization

of gravity in a vacuum.

12.1 Convention

From now on M will no longer necessarily be symplectic. Instead we will simply assume

that M is a �nite dimensional manifold.

12.2 Notation

Let Metq (M) denote the set of pseudo Riemannian metrics on M of signature q and

Γc (S2T ∗M) the set of compactly supported symmetric two tensors on M .

Then Metq (M) is a smooth manifold modeled on the space Γc (S2T ∗M) (see Th. 45.13

in [9]). By identifying such metrics with their graphs in Γ (L (TM, T ∗M)), we can view
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Metq (M) as a collection of submanifolds. If as in Sec. 11 we view Metq (M) kinematically

as the set of possible con�gurations of a submanifold moving in Γ (L (TM, T ∗M)), then

by analogy we should be able to describe the �conjugate momenta� in terms of some kind

of �weightings� on the submanifolds.

To determine what these weightings should be, we �rst note that since the submani-

folds in Γ (L (TM, T ∗M)) corresponding to pseudo-Riemannian metrics in Metq (M) are

graphs, any sections of bundles over such manifolds can be obtained as pullups of sec-

tions over corresponding bundles on the base M . Second, the weightings should give

linear functionals on each tangent space to Metq (M) and be in 1-1 correspondence with

Γc (S2T ∗M). This motivates the following de�nition:

12.3 De�nition

A momentum weighting of a pseudo Riemannian metric g ∈ Metq (M) of signature q is

a symmetric two tensor h ∈ Γc (S2T ∗M). Pairs (g, h) will be called momentum weighted

metrics.

12.4 Notation

Let Metqmw (M) denote the set of momentum weighted metrics of signature q. That is,

Metqmw (M) := Metq (M)× Γc
(
S2T ∗M

)
.

We will show that Metqmw (M) is the appropriate phase space for Metq (M). De�ne a

1-form Θ on Metqmw (M) via

Θ(g,h) (k, l) :=

∫
M

Tr
(
g−1kg−1h

)
µ (g) ,

where Tr (g−1kg−1h) = gjrkrqg
qphpj, µ (g) =

√
|detg| |dx1 ∧ . . . ∧ dxn|.
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We will now explicitly calculate the exterior derivative of Θ. Given (k1, l1) , (k2, l2) ∈

T(g,h)Metqmw (M), extend each (kp, lp) to a vector �eld ξp on Metqmw (M) satisfying ξp ((g′, h′)) =

(kp, lp) for all (g′, h′) near (g, h). Since as pointwise matrices,

d

dt

∣∣∣∣
t=0

(g + tk)−1 = −g−1kg−1,

d

dt

∣∣∣∣
t=0

√
|det (g + tk)| =

√
|detg|Tr

(
g−1k

)
,

it follows that

dΘ(g,h) ((k1, l1) , (k2, l2)) = [dΘ (ξ1, ξ2)](g,h)

=

∫
M

[
−Tr

(
g−1k1g

−1k2g
−1h
)
− Tr

(
g−1k2g

−1k1g
−1h
)

+Tr
(
g−1k2g

−1h
)
Tr
(
g−1k1

)
+ Tr

(
g−1k2g

−1l1
)]
µ (g)

− (1↔ 2)

=

∫
M

[
Tr
(
g−1k2g

−1h
)
Tr
(
g−1k1

)
−Tr

(
g−1k1g

−1h
)
Tr
(
g−1k2

)
+Tr

(
g−1k2g

−1l1
)
− Tr

(
g−1k1g

−1l2
)]
µ (g)

12.5 Theorem

The 2-form Ω := −dΘ de�ned by

Ω(g,h) (ξ1, ξ2) =

∫
M

[
Tr
(
g−1k1g

−1h
)
Tr
(
g−1k2

)
− Tr

(
g−1k2g

−1h
)
Tr
(
g−1k1

)
+Tr

(
g−1k1g

−1l2
)
− Tr

(
g−1k2g

−1l1
)]
µ (g)

de�nes an exact symplectic structure on Metqmw (M).

Proof. If k1 is nonzero, then by taking k2 = 0 we are left with
∫
M
Tr (g−1k1g

−1l2)µ (g).

Since

Gg (k1, k2) =

∫
M

Tr
(
g−1k1g

−1k2

)
µ (g)
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is weakly nondegenerate (see Lemma 45.3 in [9]), l2 can be chosen so that the integral

does not vanish.

If k1 = 0, then we are left with −
∫
M
Tr (g−1k2g

−1l1)µ (g) which means we can choose

k2 so that the integral does not vanish for the same reason.

12.6 Notation

For every section r ∈ Γc (S2T ∗M), de�ne the function

Fr : Metqmw(M)→ R

Fr (g, h) : =

∫
M

Tr
(
g−1rg−1h

)
µ (g) .

12.7 Proposition

For every r ∈ Γc (S2T ∗M), the vector �eld ξFr de�ned by

ξFr (g, h) :=
(
r, rg−1h+ hg−1r − Tr

(
g−1r

)
· h
)

is a Hamiltonian vector �eld on Metqmw (M) corresponding to the Hamiltonian function

Fr, i.e. ı (ξFr) Ω = dFr.

Proof. Given (k, l) ∈ T(g,h)Metqmw (M), extend (k, l) constantly to a vector �eld ξ on

Metqmw (M) satisfying ξ (g′, h′) = (k, l). Then

(dFr)(g,h) (ξ) =

∫
M

[
−Tr

(
g−1kg−1rg−1h

)
− Tr

(
g−1rg−1kg−1h

)
+Tr

(
g−1rg−1h

)
Tr
(
g−1k

)
+ Tr

(
g−1rg−1l

)]
µ (g)

= Ω(g,h) (ξFr , ξ)



Chapter 12. Momentum Weighted Metrics 92

12.8 Notation

The manifold topology on Metqmw (M) is �ner than the trace of the Whitney C∞-topology

on Γ (L (TM, T ∗M)) (see Sec. 45.1 in [9]). Let C∞∫ (Metqmw (M)) denote the set of func-

tions F : Metqmw (M)→ R such that for every g0 ∈ Metqmw (M) there exists a neighbour-

hood U of g0, a map A : Rn → R, and sections r1, . . . , rn ∈ Γc (S2T ∗M) so that

F (g) = A

(∫
M

Tr
(
g−1r1g

−1h
)
µ (g) , . . . ,

∫
M

Tr
(
g−1rng

−1h
)
µ (g)

)
for all g ∈ U .

12.9 Remark

The algebra C∞∫ (Metqmw (M)) contains the constant functions.

By an argument similar to that in Prop. 10.3, we have the following proposition:

12.10 Proposition

For every F ∈ C∞∫ (Metqmw (M)), the local assignments vF (g) :=
∑n

j=1
∂A
∂yj
· XFrj

(g) on

each neighbourhood U de�ne a unique vector �eld vF on Metqmw (M) satisfying dF =

ı (vF ) Ω.

It follows that {F,G} := −Ω (vF , vG) de�nes a Poisson bracket on Metqmw (M).



Bibliography

[1] Binz, E.; Fischer, H.R., The manifold of embeddings of a closed manifold, Proc.

Di�erential geometric methods in theoretical physics, Clausthal 1978, Lecture Notes

in Physics 139, Springer Verlag, 1981.

[2] Cushman, R.; Sniatycki, J., Di�erential Structure of Orbit Spaces, Canadian J.

Math. Vol. 53, No. 4 (2001), pp. 715-755.

[3] Donaldson, S., Moment Maps and Di�eomorphisms, Asian J. Math.,Vol. 3, No.1,

(1999), pp. 1-16.

[4] Donaldson, S., Scalar Curvature and Projective Embeddings, I, J. Di�erential Ge-

ometry 59 (2001), pp. 479-522.

[5] Ebin, D., The manifold of Riemannian metrics, Proc. Symp. Pure Math. 15, Amer-

ican Mathematical Society, (1970), pp. 11-40.

[6] Frölicher, A.; Kriegl, A., Linear spaces and di�erentiation theory, Pure and Applied

Mathematics, John Wiley & Sons, Chichester, 1988.

[7] Hamilton, R. S., The Inverse Function Theorem of Nash and Moser, Bulletin of the

American Mathematical Society (N.S.) 7 (1982), no. 1, pp. 65-222.

[8] Khesin, B.; Lee, P., Poisson geometry and �rst integrals of geostrophic equations,

Physica D 237, (2008), pp. 2072-2077.

93



Bibliography 94

[9] Kriegl, A.; Michor, P.W., The Convenient Setting of Global Analysis, Mathematical

Surveys and Monographs Vol. 53, American Mathematical Society, 1997.

[10] Moser, J., On the volume elements on a manifold, Trans. American Mathematical

Society 120 (1965), pp. 280-296.

[11] Ortega, J. P.; Ratiu, T. S., The optimal momentum map, Geometry, Mechanics, and

Dynamics, Springer, New York, 2002, pp. 329-362.

[12] Polterovich, L., The geometry of the group of symplectic di�eomorphisms, Lectures

in Mathematics, Birkhäuser, Boston, 2001.

[13] Sikorski, R., Wstep do geometrii rózniczkowej, Biblioteka Matematyczna, Tom. 42,

PWN, Warsaw, 1972.

[14] Smolentsev, N. K., Natural weak Riemannian structures in the space of Riemannian

metrics, (Russian.) Sibirsk. Mat. Zh. 35 (1994), no. 2., pp. 439-445.

[15] Souriau, J. M., Groupes di�érentiels, Lecture Notes in Math. Vol. 836, Springer-

Verlag, New York, 1981.

[16] Stefan, P., Accessibility and foliations with singularities, Bulletin of the American

Mathematical Society, 80 (1974), No. 6, pp. 1142-1145.

[17] Stefan, P., Accessible sets, orbits, and foliations with singularities, Proc. London

Math. Soc., 29 (1974), No. 3, pp. 699-713.

[18] Sussmann, H. J., Orbits of families of vector �elds and integrability of systems with

singularities, Bulletin of the American Mathematical Society, 79 (1973), No. 1, pp.

197-199.

[19] Sussmann, H. J., Orbits of families of vector �elds and integrability of distributions,

Transactions of the American Mathematical Society, 180 (1973), pp. 171-188.



Bibliography 95

[20] Warner, F.W., Foundations of Di�erentiable Manifolds and Lie Groups, Graduate

Texts in Mathematics Vol. 94, Springer, 1983.

[21] Weinstein, A., Symplectic Manifolds and Their Lagrangian Submanifolds, Advances

in Mathematics 6 (1971), pp. 329-346.

[22] Weinstein, A., Neighborhood Classi�cation of Isotropic Embeddings, J. Di�erential

Geometry 16 (1981), pp. 125-128.

[23] Weinstein, A., Connections of Berry and Hannay Type for Moving Lagrangian Sub-

manifolds, Advances in Mathematics 82 (1990), pp. 133-159.


