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Abstract

Let M be an n-dimensional submanifold in the simply connected space form
Fn+p(c) with c + H2 > 0, where H is the mean curvature of M . We verify that
if Mn(n ≥ 3) is an oriented compact submanifold with parallel mean curvature and
its Ricci curvature satisfies RicM ≥ (n−2)(c+H2), then M is either a totally umbilic
sphere, a Clifford hypersurface in an (n+1)-sphere with n = even, or CP 2( 4

3 (c+H2))
in S7( 1√

c+H2 ). In particular, if RicM > (n− 2)(c + H2), then M is a totally umbilic
sphere. We then prove that if Mn(n ≥ 4) is a compact submanifold in Fn+p(c) with
c ≥ 0, and if RicM > (n−2)(c+H2), then M is homeomorphic to a sphere. It should
be emphasized that our pinching conditions above are sharp. Finally, we obtain a
differentiable sphere theorem for submanifolds with positive Ricci curvature.

1 Introduction

The investigation of curvature and topology of Riemannian manifolds and submani-
folds is one of the main stream in global differential geometry. In 1951, Rauch first proved
a topological sphere theorem for positive pinched compact manifolds. During the past
sixty years, there are many progresses on sphere theorems for Riemannian manifolds and
submanifolds [2, 8, 30, 37]. In 1960’s, Berger and Klingenberg proved the famous topolog-
ical sphere theorem for quarter-pinched compact manifolds. In 1966, Calabi and Gromoll
initiated the differentiable pinching problem for positive pinched compact manifolds. In
1977, Grove and Shiohama [14] proved the celebrated diameter sphere theorem which is
optimal for arbitrary n. In 1982, Hamilton [16] established the theory of Ricci flow and
obtained the famous sphere theorem for 3-manifolds with positive Ricci curvature. Later
some differentiable pinching theorems for Riemannian manifolds via Ricci flows were ob-
tained by several authors [5, 8, 9, 17]. In 1988, Micallef and Moore [24] verified the
topological sphere theorem for manifolds with pointwise 1/4-pinched curvatures via the
techniques of minimal surface. In 1990’s, Cheeger, Colding and Petersen [10, 27] obtained
differentiable sphere theorems for manifolds with positive Ricci curvature. Recently Böhm
and Wilking [3] proved that every manifold with 2-positive curvature operator must be
diffeomorphic to a space form. More recently, Brendle and Schoen [6] proved the remark-
able differentiable sphere theorem for manifolds with pointwise 1/4-pinched curvatures.
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Moreover, Brendle and Schoen [7] obtained a differentiable rigidity theorem for compact
manifolds with weakly 1/4-pinched curvatures in the pointwise sense. Using Brendle and
Schoen’s result [7], Petersen and Tao [28] proved a classification theorem for compact and
simply connected manifolds with almost 1/4-pinched sectional curvatures. The following
important convergence result for the Ricci flow in higher dimensions, initiated by Brendle
and Schoen [6] and finally verified by Brendle [4], cut open a new field in curvature and
topology of manifolds [5, 8, 37].

Theorem A. Let (M, g0) be a compact Riemannian manifold of dimension n(≥ 4). As-
sume that

R1313 + λ2R1414 + R2323 + λ2R2424 − 2λR1234 > 0

for all orthonormal four-frames {e1, e2, e3, e4} and all λ ∈ [−1, 1]. Then the normalized
Ricci flow with initial metric g0

∂

∂t
g(t) = −2Ricg(t) +

2
n

rg(t)g(t)

exists for all time and converges to a constant curvature metric as t → ∞. Here rg(t)

denotes the mean value of the scalar curvature of g(t).

Let Mn be an n(≥ 2)-dimensional submanifold in an (n + p)-dimensional Rieman-
nian manifold Nn+p. Denote by H and S the mean curvature and the squared length
of the second fundamental form of M , respectively. After the pioneering rigidity theo-
rem for minimal submanifolds in a sphere due to Simons [32], Lawson [18] and Chern-do
Carmo-Kobayashi [11] obtained a famous rigidity theorem for oriented compact minimal
submanifolds in Sn+p with S ≤ n/(2 − 1/p). It was partially extended to compact sub-
manifolds with parallel mean curvature in a sphere by Okumura [25, 26], Yau [40] and
others. In 1990, the first named author [35] proved the generalized Simons-Lawson-Chern-
do Carmo-Kobayashi theorem for compact submanifolds with parallel mean curvature in
a sphere.

Theorem B. Let M be an n-dimensional oriented compact submanifold with parallel
mean curvature in an (n+ p)-dimensional unit sphere Sn+p. If S ≤ C(n, p, H), then M is
either the totally umbilic sphere Sn( 1√

1+H2
), a Clifford hypersurface in an (n + 1)-sphere,

or the Veronese surface in S4( 1√
1+H2

). Here the constant C(n, p, H) is defined by

C(n, p, H) =





α(n,H), for p = 1, or p = 2 and H 6= 0,
n

2− 1
p

, for p ≥ 2 and H = 0,

min
{

α(n,H), n+nH2

2− 1
p−1

+ nH2
}

, for p ≥ 3 and H 6= 0,

α(n,H) = n +
n3

2(n− 1)
H2 − n(n− 2)

2(n− 1)

√
n2H4 + 4(n− 1)H2.

Later, the above pinching constant C(n, p, H) was improved, by Li-Li [20] for H = 0
and by Xu [36] for H 6= 0, to

C ′(n, p, H) =

{
α(n,H), for p = 1, or p = 2 and H 6= 0,

min
{

α(n,H), 1
3(2n + 5nH2)

}
, otherwise.
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Using nonexistence for stable currents on compact submanifolds of a sphere and the
generalized Poincaré conjecture in dimension n(≥ 5) verified by Smale, Lawson and Simons
[19] proved that if Mn(n ≥ 5) is an oriented compact submanifold in Sn+p, and if S <
2
√

n− 1, then M is homeomorphic to a sphere. Let Fn+p(c) be an (n + p)-dimensional
simply connected space form with constant curvature c. Putting

α(n,H, c) = nc +
n3

2(n− 1)
H2 − n(n− 2)

2(n− 1)

√
n2H4 + 4(n− 1)cH2,

we have minH α(n,H, c) = 2
√

n− 1c. Motivated by the rigidity theorem above, Shiohama
and Xu [31] improved Lawson-Simons’ result and proved the following optimal sphere the-
orem.

Theorem C. Let Mn(n ≥ 4) be an oriented complete submanifold in Fn+p(c) with c ≥ 0.
Suppose that supM (S − α(n,H, c)) < 0. Then M is homeomorphic to a sphere.

Xu and Zhao [39] first investigated the differentiable pinching problem for submani-
folds. Making use of the convergence results of Hamilton and Brendle for Ricci flow and
the Lawson-Simons formula for the nonexistence of stable currents, Gu and Xu [15] proved
the following differentiable sphere theorem for submanifolds in space forms.

Theorem D. Let M be an n(≥ 4)-dimensional oriented complete submanifold in Fn+p(c)
with c ≥ 0. Assume that S ≤ 2c + n2H2

n−1 , where c + H2 > 0. We have
(i) If c = 0, then M is either diffeomorphic to Sn, Rn, or locally isometric to Sn−1(r)×R.
(ii) If M is compact, then M is diffeomorphic to Sn .

Theorem D improves the differentiable pinching theorems due to Andrews-Baker and
the authors [1, 38].

In 1979, Ejiri [12] obtained the following rigidity theorem for n(≥ 4)-dimensional ori-
ented compact simply connected minimal submanifolds with pinched Ricci curvatures in
a sphere.

Theorem E. Let M be an n(≥ 4)-dimensional oriented compact simply connected min-
imal submanifold in Sn+p. If the Ricci curvature of M satisfies RicM ≥ n − 2, then M

is either the totally geodesic submanifold Sn, the Clifford torus Sm
(√

1
2

) × Sm
(√

1
2

)
in

Sn+1 with n = 2m, or CP 2(4
3) in S7. Here CP 2(4

3) denotes the 2-dimensional complex pro-
jective space minimally immersed into S7 with constant holomorphic sectional curvature 4

3 .

The pinching constant above is the best possible in even dimensions. It’s better than
ones given by Simons [32] and Li-Li [20] in the sense of the average of Ricci curvatures.
The following problem seems very attractive, which has been open for thirty years.

Open Problem A. Is it possible to generalize Ejiri’s rigidity theorem for minimal sub-
manifolds to the cases of submanifolds with parallel mean curvature in a sphere?
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In 1987, Sun [33] showed that if M is an n(≥ 4)-dimensional compact oriented sub-
manifold with parallel mean curvature in Sn+p and its Ricci curvature is not less than
n(n−2)

n−1 (1 + H2), then M is a totally umbilic sphere. Afterward, Shen [29] and Li [21]
proved that if M is a 3-dimensional oriented compact minimal submanifolds in S3+p and
RicM ≥ 1, then M is totally geodesic.

The purposes of the present paper is to investigate rigidity of geometric, topological
and differentiable structures of compact submanifolds in space forms. Our paper is orga-
nized as follows. Some notation and lemmas are prepared in Section 2. In Section 3, we
generalize the Ejiri rigidity theorem for compact simply connected minimal submanifolds
in a sphere to compact submanifolds with parallel mean curvature in space forms. More
preciously, we prove that if M is an n(≥ 3)-dimensional oriented compact submanifold
with parallel mean curvature in Fn+p(c) with c + H2 > 0, and if RicM ≥ (n− 2)(c + H2),
then M is either a totally umbilic sphere, a Clifford hypersurface in an (n + 1)-sphere
with n = even, or CP 2(4

3(c + H2)) in S7( 1√
c+H2

). In particular, we provide an affirmative
answer to Open Problems A. In Section 4, we prove that if M is an n(≥ 4)-dimensional
compact submanifold in Fn+p(c) with c ≥ 0, and if RicM > (n − 2)(c + H2), then M
is homeomorphic to a sphere. Moreover, we obtain a differentiable sphere theorem for
compact submanifolds with positive Ricci curvature in a space form.

2 Notation and lemmas

Throughout this paper let Mn be an n-dimensional compact submanifold in an (n+p)-
dimensional Riemannian manifold Nn+p. We shall make use of the following convention
on the range of indices:

1 ≤ A,B, C, · · · ≤ n + p, 1 ≤ i, j, k, · · · ≤ n, n + 1 ≤ α, β, γ, · · · ≤ n + p.

For an arbitrary fixed point x ∈ M ⊂ N , we choose an orthonormal local frame field {eA}
in Nn+p such that ei’s are tangent to M . Denote by {ωA} the dual frame field of {eA}.
Let Rm, h and ξ be the Riemannian curvature tensor, second fundamental form and mean
curvature vector of M respectively, and Rm the Riemannian curvature tensor of N . Then

Rm =
∑

i,j,k,l

Rijklωi ⊗ ωj ⊗ ωk ⊗ ωl,

Rm =
∑

A,B,C,D

RABCDωA ⊗ ωB ⊗ ωC ⊗ ωD,

h =
∑

α,i,j

hα
ijωi ⊗ ωj ⊗ eα, ξ =

1
n

∑

α,i

hα
iieα,

Rijkl = Rijkl +
∑
α

(
hα

ikh
α
jl − hα

ilh
α
jk

)
, (2.1)

Rαβkl = Rαβkl +
∑

i

(hα
ikh

β
il − hα

ilh
β
ik). (2.2)

We define
S = |h|2, H = |ξ|, Hα = (hα

ij)n×n.
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Denote by Ric(u) the Ricci curvature of M in direction of u ∈ UM . From the Gauss
equation, we have

Ric(ei) =
∑

j

Rijij +
∑

α,j

[
hα

iih
α
jj − (hα

ij)
2
]
. (2.3)

Set Ricmin(x) = minu∈UxM Ric(u). Denote by K(π) the sectional curvature of M for tan-
gent 2-plane π(⊂ TxM) at point x ∈ M , K(π) the sectional curvature of N for tangent 2-
plane π(⊂ TxN) at point x ∈ N . Set Kmin := minπ⊂TxN K(π), Kmax := maxπ⊂TxN K(π).
Then by Berger’s inequality, we have

|RABCD| ≤ 2
3
(Kmax −Kmin) (2.4)

for all distinct indices A, B, C, D.
When the ambient manifold Nn+p is the complete and simply connected space form

Fn+p(c) with constant curvature c, we have

RABCD = c(δACδBD − δADδBC). (2.5)

Then the scalar curvature of M is given by

R = n(n− 1)c + n2H2 − S. (2.6)

When M is a submanifold with parallel mean curvature vector ξ, we choose en+1 such
that it is parallel to ξ, and

trHn+1 = nH, trHα = 0, for α 6= n + 1. (2.7)

Set
SH = trH2

n+1, SI =
∑

α 6=n+1

trH2
α.

The following lemma will be used in the proof of our rigidity theorem.

Lemma 2.1([40]). If Mn is a submanifold with parallel mean curvature in Fn+p(c),
then either H ≡ 0, or H is non-zero constant and Hn+1Hα = HαHn+1 for all α.

We denote the first and the second covariant derivatives of hα
ij by hα

ijk and hα
ijkl respec-

tively. The Laplacian of hα
ij is defined by ∆hα

ij =
∑

k hα
ijkk. Following [40], we have

∆hn+1
ij =

∑

k,m

(hn+1
mk Rmijk + hn+1

im Rmkjk). (2.8)

The nonexistence theorem for stable currents in a compact Riemannian manifold M iso-
metrically immersed into Fn+p(c) is employed to eliminate the homology groups Hq(M ;Z)
for 0 < q < n, which was initiated by Lawson-Simons [19] and extended by Xin [34].

Theorem 2.1. Let Mn be a compact submanifold in Fn+p(c) with c ≥ 0. Assume that

n∑

k=q+1

q∑

i=1

[2|h(ei, ek)|2 − 〈h(ei, ei), h(ek, ek)〉] < q(n− q)c
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holds for any orthonormal basis {ei} of TxM at any point x ∈ M , where q is an inte-
ger satisfying 0 < q < n. Then there does not exist any stable q-currents. Moreover,
Hq(M ;Z) = Hn−q(M ;Z) = 0, and π1(M) = 0 when q = 1. Here Hi(M ;Z) is the i-th
homology group of M with integer coefficients.

To prove the rigidity and sphere theorems for submanifolds, we need to eliminate the
fundamental group π1(M) under the Ricci curvature pinching condition, and get the fol-
lowing lemmas.

Lemma 2.2. Let M be an n(≥ 4)-dimensional compact submanifold in Fn+p(c) with
c ≥ 0. If the Ricci curvature of M satisfies

RicM >
n(n− 1)

n + 2
(c + H2),

then H1(M ;Z) = Hn−1(M ;Z) = 0, and π1(M) = 0.

Proof. From (2.6) and the assumption, we have

S − nH2 <
2n(n− 1)

n + 2
(c + H2).

This together with (2.3) implies that

n∑

k=2

[2|h(e1, ek)|2 − 〈h(e1, e1), h(ek, ek)〉]

= 2
∑
α

n∑

k=2

(hα
1k)

2 −
∑
α

n∑

k=2

hα
11h

α
kk

=
∑
α

n∑

k=2

(hα
1k)

2 −Ric(e1) + (n− 1)c

≤ 1
2
(S − nH2)−Ric(e1) + (n− 1)c

<
n(n− 1)

n + 2
(c + H2)− n(n− 1)

n + 2
(c + H2) + (n− 1)c

= (n− 1)c. (2.9)

This together with Theorem 2.1 implies that H1(M ;Z) = Hn−1(M ;Z) = 0, and π1(M) =
0. This proves Lemma 2.2.

Lemma 2.3. Let M be an n(≥ 4)-dimensional compact submanifold in Fn+p(c) with
c ≥ 0. Assume that the Ricci curvature of M satisfies

RicM ≥ (n− 2)(c + H2).

We have the following possibilities:
(i) If n = 4 and c > 0, then π1(M) = 0.
(ii) If n ≥ 5, then π1(M) = 0.
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Proof. (i) If n = 4 and c > 0, then it follows from the assumption and (2.3) that

4∑

k=2

[2|h(e1, ek)|2 − 〈h(e1, e1), h(ek, ek)〉]

= 2
∑
α

4∑

k=2

(hα
1k)

2 −
∑
α

4∑

k=2

hα
11h

α
kk

= −2Ric(e1) + 6c−
∑
α

[(hα
11)

2 − trHαhα
11]

≤ −2Ric(e1) + 6c + 4H2

< 3c. (2.10)

This together with Theorem 2.1 implies that π1(M) = 0.
(ii) If n ≥ 5, then the assertion follows from Lemma 2.2.
This completes the proof of Lemma 2.3.

3 Rigidity of submanifolds with parallel mean curvature

In this section, we generalize the Ejiri rigidity theorem to compact submanifolds with
parallel mean curvature in space forms. To verify our rigidity theorem for submanifolds
with parallel mean curvature in space forms, we need to prove the following theorem.

Theorem 3.1. Let M be an n(≥ 3)-dimensional oriented compact submanifold with
parallel mean curvature (H 6= 0) in Fn+p(c). If

RicM ≥ (n− 2)(c + H2),

where c + H2 > 0, then M is pseudo-umbilical.

Proof. The key ingredient of the proof is to derive a sharp estimate for ∆SH . By
the Gauss equation (2.1), (2.5) and (2.8), we have

1
2
∆SH =

∑

i,j,k

(hn+1
ijk )2 +

∑

i,j

hn+1
ij ∆hn+1

ij

=
∑

i,j,k

(hn+1
ijk )2 +

∑

i,j,k,m

hn+1
ij hn+1

km

[
(δmjδik − δmkδij)c

+
∑
α

(hα
mjh

α
ik − hα

mkh
α
ij)

]

+
∑

i,j,k,m

hn+1
ij hn+1

im

[
(δmjδkk − δmkδjk)c

+
∑
α

(hα
mjh

α
kk − hα

mkh
α
jk)

]
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=
∑

i,j,k

(hn+1
ijk )2 + nc

∑

i,j

(hn+1
ij )2 −

[ ∑

i,j

(hn+1
ij )2

]2

−n2cH2 + nH
∑

i,j,k

hn+1
ij hn+1

jk hn+1
ki

−
∑

α 6=n+1

[ ∑

i,j

(hn+1
ij −Hδij)hα

ij

]2
. (3.1)

Let {ei} be a frame diagonalizing the matrix Hn+1 such that hn+1
ij = λn+1

i δij , for all i, j.
Set

fk =
∑

i

(λn+1
i )k,

µn+1
i = H − λn+1

i , i = 1, 2, ..., n,

Bk =
∑

i

(µn+1
i )k.

Then

B1 = 0, B2 = SH − nH2,

B3 = 3HSH − 2nH3 − f3.

This together with (3.1) implies that

1
2
∆SH =

∑

i,j,k

(hn+1
ijk )2 + ncSH − S2

H − n2cH2

+nHf3 −
∑

α 6=n+1

( ∑

i

µn+1
i hα

ii

)2

=
∑

i,j,k

(hn+1
ijk )2 + ncSH − S2

H − n2cH2

+nH(3HSH − 2nH3 −B3)−
∑

α 6=n+1

( ∑

i

µn+1
i hα

ii

)2

=
∑

i,j,k

(hn+1
ijk )2 + B2[nc + 2nH2 − SH ]

−nHB3 −
∑

α 6=n+1

( ∑

i

µn+1
i hα

ii

)2
. (3.2)

Let d be the infimum of the Ricci curvature of M . Then we have

Ric(ei) = (n− 1)c + nHλn+1
i − (λn+1

i )2 −
∑

α 6=n+1,j

(hα
ij)

2 ≥ d. (3.3)

This implies that
S − nH2 ≤ n[(n− 1)(c + H2)− d], (3.4)
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and

(n− 2)H(λn+1
i −H)− (λn+1

i −H)2

+(n− 1)(c + H2)−
∑

α 6=n+1,j

(hα
ij)

2 − d ≥ 0. (3.5)

It follows from (3.5) that

H(λn+1
i −H) ≥ (λn+1

i −H)2

n− 2
+

∑
α 6=n+1,j(h

α
ij)

2

n− 2
+

d

n− 2
− n− 1

n− 2
(c + H2).

So,

− nHB3 ≥ n

n− 2

∑

i

(µn+1
i )4 +

n

n− 2

∑

α 6=n+1

∑

i,j

(hα
ij)

2(µn+1
i )2

+
n

n− 2
[d− (n− 1)(c + H2)]B2. (3.6)

From (3.2) and (3.6), we get

1
2
∆SH ≥

∑

i,j,k

(hn+1
ijk )2 + B2

{
nc + 2nH2 − SH

+
n

n− 2
[d− (n− 1)(c + H2)]

}
+

n

n− 2

∑

i

(µn+1
i )4

+
∑

α 6=n+1

[ n

n− 2

∑

i

(hα
ii)

2(µn+1
i )2 −

( ∑

i

µn+1
i hα

ii

)2]

≥
∑

i,j,k

(hn+1
ijk )2 + B2

{
nc + 2nH2 − SH

+
n

n− 2
[d− (n− 1)(c + H2)]

}

+
B2

2

n− 2
− n− 3

n− 2

∑

α 6=n+1

( ∑

i

µn+1
i hα

ii

)2

≥
∑

i,j,k

(hn+1
ijk )2 + B2

{
nc + nH2 − n− 3

n− 2
(S − nH2)

+
n

n− 2
[d− (n− 1)(c + H2)]

}
. (3.7)

This together with (3.4) implies that

1
2
∆SH ≥

∑

i,j,k

(hn+1
ijk )2 +

n

n− 2
B2{(n− 2)(c + H2)

−(n− 3)[(n− 1)(c + H2)− d] + [d− (n− 1)(c + H2)]}
=

∑

i,j,k

(hn+1
ijk )2 + nB2[d− (n− 2)(c + H2)]. (3.8)

9



By the assumption, we have d ≥ (n−2)(c+H2). This together with (3.8) and the maximum
principal implies that SH is a constant, and

(SH − nH2)[d− (n− 2)(c + H2)] = 0. (3.9)

Suppose that SH 6= nH2. Then d = (n− 2)(c + H2). We consider the following two cases:
(i) If n = 3, then the inequalities in (3.7) and (3.8) become equalities. Thus, we have

hα
ij = 0, for α 6= n + 1, i 6= j,

|µn+1
i | = |µn+1

j |, µn+1
i = hα

ii, for α 6= n + 1, 1 ≤ i, j ≤ n. (3.10)

This implies µn+1
i = 0, i = 1, 2, · · · , n. It follows from Gauss equation that c + H2 = 0.

This contradicts with assumption.
(ii) If n ≥ 4, then the inequalities in (3.7) and (3.8) become equalities and we have

RicM ≡ (n− 2)(c + H2),

hα
ij = 0, for α 6= n + 1, i 6= j,

|µn+1
i | = |µn+1

j |, µn+1
i = hα

ii, for α 6= n + 1, 1 ≤ i, j ≤ n. (3.11)

It follows from Gauss equation that µn+1
i = 0 and c + H2 = 0. This contradicts with

assumption.
Therefore, SH = nH2, i.e., M is a pseudo-umbilical submanifold. This completes the

proof of Theorem 3.1.

The following lemma due to Yau [40] will be used in the proof of our geometric rigidity
theorem, i.e., Theorem 3.3.

Lemma 3.2. Let Nn+p be a conformally flat manifold. Let N1 be a subbundle of the
normal bundle of Mn with fiber dimension k. Suppose M is umbilical with respect to N1

and N1 is parallel in the normal bundle. Then M lies in an (n + p− k)-dimensional um-
bilical submanifold N ′ of N such that the fiber of N1 is everywhere perpendicular to N ′.

We are now in a position to give an affirmative answer to Open Problems A. More
generally, we prove the following rigidity theorem for compact submanifolds with parallel
mean curvature in space forms.

Theorem 3.3. Let M be an n(≥ 3)-dimensional oriented compact submanifold with
parallel mean curvature in Fn+p(c) with c + H2 > 0. If

RicM ≥ (n− 2)(c + H2),

then M is either the totally umbilic sphere Sn( 1√
c+H2

), the Clifford hypersurface

Sm
(

1√
2(c+H2)

)×Sm
(

1√
2(c+H2)

)
in the totally umbilic sphere Sn+1( 1√

c+H2
) with n = 2m, or

CP 2(4
3(c + H2)) in S7( 1√

c+H2
). Here CP 2(4

3(c + H2)) denotes the 2-dimensional complex

projective space minimally immersed in S7( 1√
c+H2

) with constant holomorphic sectional
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curvature 4
3(c + H2).

Proof. Case I. H = 0. If n = 3, then the assertion follows from Shen and Li’s results
[29, 21].

If n ≥ 4, then it follows from Lemma 2.3 that M is simply connected. Hence the
assertion follows from Theorem E.

Case II. H 6= 0. When p = 1, we get the conclusion from Theorem 3.1.
When p ≥ 2, we know from the assumption and Theorem 3.1 that M is pseudo-

umbilical. It is seen from Lemma 3.2 that M lies in an (n + p − 1)-dimensional totally
umbilic submanifold Fn+p−1(c̃) of Fn+p(c), i.e., the isometric immersion from M into
Fn+p(c) is given by

i ◦ ϕ : M → Fn+p−1(c̃) → Fn+p(c),

where ϕ : Mn → Fn+p−1(c̃) is an isometric immersion with mean curvature vector ξ1, and
i : Fn+p−1(c̃) → Fn+p(c) is a totally umbilic submanifold with mean curvature vector ξ2.
Denote by h2 the second fundamental form of isometric immersion i. Set

H1 = |ξ1|, H2 = |ξ2|. (3.12)

We know that ξ = ξ1 + η, where η = 1
n

∑
i h2(ei, ei) and {ei} is a local orthonormal frame

field in M . Since ξ1 ⊥ ξ, and η ‖ ξ, we obtain ξ1 = 0, and η = ξ. Noting that Fn+p−1(c̃)
is a totally umbilic submanifold in Fn+p(c), we have |η| = H2. Thus,

H2 = H2
1 + |η|2 = H2

2 . (3.13)

This together with the Gauss equation implies that

c̃ = c + H2. (3.14)

Hence, M is an oriented compact minimal submanifold in Sn+p−1( 1√
c+H2

). Now we con-
sider the following two cases:

(i) n = 3. It follows from Shen and Li’s results [29, 21] that M is the totally umbilic
sphere S3( 1√

c+H2
) .

(ii) n ≥ 4. From the assumption and Lemma 2.3, we know that M is simply con-
nected. Therefore, it follows from Theorem E that M is either the totally umbilic sphere
Sn( 1√

c+H2
), the Clifford hypersurface Sm

(
1√

2(c+H2)

) × Sm
(

1√
2(c+H2)

)
in the totally um-

bilic sphere Sn+1( 1√
c+H2

) with n = 2m, or CP 2(4
3(c + H2)) in S7( 1√

c+H2
).

Combing (i) and (ii), we complete the proof of Theorem 3.3.

Remark 3.1. It’s obvious that the pinching condition in Theorem 3.3 is sharp.

As a consequence of Theorem 3.3, we get the following:

Corollary 3.4. Let Mn be an n(≥ 3)-dimensional oriented compact submanifold with
parallel mean curvature in Fn+p(c) with c + H2 > 0. If

RicM > (n− 2)(c + H2),

then M is the totally umbilic sphere Sn( 1√
c+H2

).

11



4 Sphere theorems for submanifolds

In this section, we investigate rigidity of topological and differentiable structures of
compact submanifolds in space forms. Motivated by Theorem 3.3, we first prove the fol-
lowing topological sphere theorem for compact submanifolds in space forms.

Theorem 4.1. Let M be an n(≥ 4)-dimensional compact submanifold in Fn+p(c) with
c ≥ 0. If

RicM > (n− 2)(c + H2),

then M is homeomorphic to a sphere.

Proof. Assume that 2 ≤ q ≤ n
2 . Setting

Tα :=
trHα

n
,

we have
∑

α T 2
α = H2, and

Ric(ei) = (n− 1)c +
∑
α

[
nTαhα

ii − (hα
ii)

2 −
∑

j 6=i

(hα
ij)

2
]
. (4.1)

Then we get

n∑

k=q+1

q∑

i=1

[2|h(ei, ek)|2 − 〈h(ei, ei), h(ek, ek)〉]

= 2
∑
α

n∑

k=q+1

q∑

i=1

(hα
ik)

2 −
∑
α

n∑

k=q+1

q∑

i=1

hα
iih

α
kk

=
∑
α

[
2

n∑

k=q+1

q∑

i=1

(hα
ik)

2 −
( q∑

i=1

hα
ii

)(
trHα −

q∑

i=1

hα
ii

)]

≤
∑
α

[
2

n∑

k=q+1

q∑

i=1

(hα
ik)

2 − nTα

q∑

i=1

hα
ii + q

q∑

i=1

(hα
ii)

2
]

≤ q

q∑

i=1

[(n− 1)c−Ric(ei)] + n(q − 1)
∑
α

q∑

i=1

Tαhα
ii

≤ q2[(n− 1)(c + H2)−Ricmin]

−q(n− q)H2 + n(q − 1)
∑
α

q∑

i=1

Tα(hα
ii − Tα)

≤ q(n− q)[(n− 1)(c + H2)−Ricmin]

−q(n− q)H2 + n(q − 1)
∑
α

q∑

i=1

Tα(hα
ii − Tα). (4.2)

12



On the other hand, we obtain
n∑

k=q+1

q∑

i=1

[2|h(ei, ek)|2 − 〈h(ei, ei), h(ek, ek)〉]

=
∑
α

[
2

n∑

k=q+1

q∑

i=1

(hα
ik)

2 − n− q

n

( q∑

i=1

hα
ii

)(
trHα −

q∑

i=1

hα
ii

)

− q

n

( n∑

k=q+1

hα
kk

)(
trHα −

n∑

k=q+1

hα
kk

)]

≤
∑
α

[
2

n∑

k=q+1

q∑

i=1

(hα
ik)

2 − (n− q)Tα

q∑

i=1

hα
ii +

q(n− q)
n

q∑

i=1

(hα
ii)

2

−qTα

n∑

k=q+1

hα
kk +

q(n− q)
n

n∑

k=q+1

(hα
kk)

2
]

≤ q(n− q)
n

S −
∑
α

[
qnT 2

α + (n− 2q)Tα

q∑

i=1

hα
ii

]

≤ q(n− q)[(n− 1)(c + H2)−Ricmin]

−q(n− q)H2 − (n− 2q)
∑
α

q∑

i=1

Tα(hα
ii − Tα). (4.3)

It follows from (4.2), (4.3) and the assumption that
n∑

k=q+1

q∑

i=1

[2|h(ei, ek)|2 − 〈h(ei, ei), h(ek, ek)〉]

≤ n− 2q

q(n− 2)

{
q(n− q)[(n− 1)(c + H2)−Ricmin]

−q(n− q)H2 + n(q − 1)
∑
α

q∑

i=1

Tα(hα
ii − Tα)

}

+
n(q − 1)
q(n− 2)

{
q(n− q)[(n− 1)(c + H2)−Ricmin]

−q(n− q)H2 − (n− 2q)
∑
α

q∑

i=1

Tα(hα
ii − Tα)

}

= q(n− q)[(n− 1)(c + H2)−Ricmin]− q(n− q)H2

< q(n− q)c. (4.4)

This together with Theorem 2.1 implies that

Hq(M ;Z) = Hn−q(M ;Z) = 0,

for all 2 ≤ q ≤ n
2 .

Since (n− 2)(c + H2) ≥ n(n−1)
n+2 (c + H2), we get from the assumption and Lemma 2.2

that
H1(M ;Z) = Hn−1(M ;Z) = 0,
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and M is simply connected.
From above discussion, we know that M is a homotopy sphere. This together with the

generalized Paincaré conjecture implies that M is a topological sphere. This completes
the proof of Theorem 4.1.

Remark 4.1. It’s seen from Theorem 3.3 that the pinching condition in Theorem 4.1
is sharp.

In the next, we investigate differentiable pinching problem on compact submanifolds
in a Riemannian manifold, and obtain the following theorem.

Theorem 4.2. Let (M, g0) be an n(≥ 4)-dimensional compact submanifold in an (n+ p)-
dimensional Riemannian manifold Nn+p. If the Ricci curvature of M satisfies

RicM >
[3n2 − 9n + 8

3(n− 2)
Kmax − 8

3(n− 2)
Kmin

]
+

n(n− 3)
n− 2

H2,

then the normalized Ricci flow with initial metric g0

∂

∂t
g(t) = −2Ricg(t) +

2
n

rg(t)g(t),

exists for all time and converges to a constant curvature metric as t →∞. Moreover, M
is diffeomorphic to a spherical space form. In particular, if M is simply connected, then
M is diffeomorphic to Sn.

Proof. Set Tα = 1
n trHα. Then

∑
α T 2

α = H2, and

hα
iih

α
jj =

1
2
[(hα

ii + hα
jj − 2Tα)2 − (hα

ii − Tα)2 − (hα
jj − Tα)2]

+Tα(hα
ii − Tα) + Tα(hα

jj − Tα) + T 2
α. (4.5)

We rewrite (2.3) as

Ric(ei) =
∑

j

Rijij + (n− 1)H2 + (n− 2)
∑
α

Tα(hα
ii − Tα)

−
∑
α

(hα
ii − Tα)2 −

∑

α,j 6=i

(hα
ij)

2. (4.6)

This implies that

−
∑
α

(hα
ii − Tα)2 ≥ Ricmin − (n− 1)(Kmax + H2)

−(n− 2)
∑
α

Tα(hα
ii − Tα) +

∑

α,j 6=i

(hα
ij)

2, (4.7)

and ∑
α

Tα(hα
ii − Tα) ≥ 1

n− 2
[Ricmin − (n− 1)(Kmax + H2)]. (4.8)
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Suppose {e1, e2, e3, e4} is an orthonormal four-frame and λ ∈ R.
From (2.1), (2.4), (4.5), (4.7) and (4.8), we have

R1313 + R2323 − |R1234|
= R1313 + R2323 +

∑
α

[
hα

11h
α
33 − (hα

13)
2 + hα

22h
α
33 − (hα

23)
2
]

−|R1234 +
∑
α

(hα
13h

α
24 − hα

14h
α
23)|

≥ 2Kmin − 2
3
(Kmax −Kmin)

−1
2

∑
α

[
3(hα

13)
2 + 3(hα

23)
2 + (hα

14)
2 + (hα

24)
2
]

+
∑
α

[
− (hα

11 − Tα)2

2
− (hα

33 − Tα)2

2

+Tα(hα
11 − Tα) + Tα(hα

33 − Tα) + T 2
α

]

+
∑
α

[
− (hα

22 − Tα)2

2
− (hα

33 − Tα)2

2

+Tα(hα
22 − Tα) + Tα(hα

33 − Tα) + T 2
α

]

≥ 8
3

(
Kmin − 1

4
Kmax

)
− 1

2

∑
α

[
3(hα

13)
2 + 3(hα

23)
2 + (hα

14)
2 + (hα

24)
2
]

+2[Ricmin − (n− 1)(Kmax + H2)] + 2H2

+
1
2

∑

α,j 6=1

(hα
1j)

2 +
1
2

∑

α,j 6=2

(hα
2j)

2 +
∑

α,j 6=3

(hα
3j)

2

+
n− 4

2

∑

α,i 6=1,3

Tα(hα
ii − Tα) +

n− 4
2

∑

α,i 6=2,3

Tα(hα
ii − Tα)

≥ 8
3

(
Kmin − 1

4
Kmax

)
+ 2H2

+(n− 2)[Ricmin − (n− 1)(Kmax + H2)]. (4.9)

Same argument implies that

R1414 + R2424 − |R1234|
≥ 8

3

(
Kmin − 1

4
Kmax

)
+ 2H2

+(n− 2)[Ricmin − (n− 1)(Kmax + H2)]. (4.10)

This together with (4.9) and the assumption implies

R1313 + λ2R1414 + R2323 + λ2R2424 − 2λR1234

≥ R1313 + R2323 − |R1234|+ λ2(R1414 + R2424 − |R1234|)
> 0. (4.11)
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It follows from Theorem A that M is diffeomorphic to a spherical space form. In partic-
ular, if M is simply connected, then M is diffeomorphic to Sn. This completes the proof
of Theorem 4.2.

Theorem 4.3. Let M be an n(≥ 4)-dimensional compact submanifold in Fn+p(c) with
c ≥ 0. If

RicM > (n− 2)(1 + εn)(c + H2),

then M is diffeomorphic to Sn. Here

εn =

{
0, for 4 ≤ n ≤ 6,

n−4
(n−2)2

, for n ≥ 7.

Proof. When n = 5, 6, it is well known that there is only one differentiable structure on
Sn. This together with Theorem 4.1 implies M is diffeomorphic to Sn. When n 6= 5, 6,
it follows from Theorem 4.2 that M is diffeomorphic to a spherical space form. On the
other hand, it follows from Lemma 2.2 that M is simply connected. Therefore, M is
diffeomorphic to Sn. This completes the proof of Theorem 4.3.

Remark 4.2. When 4 ≤ n ≤ 6, the pinching condition in Theorem 4.3 is sharp. When
n ≥ 7, we have 0 ≤ εn < 1

n and limn→∞ εn = 0. Therefore, the pinching condition in
Theorem 4.3 is close to the best possible.

Motivated by our rigidity and sphere theorems, we would like to propose the following
conjecture.

Conjecture A. Let M be an n(≥ 3)-dimensional compact oriented submanifold in the
space form Fn+p(c) with c + H2 > 0. If

RicM ≥ (n− 2)(c + H2),

then M is diffeomorphic to either the standard n-sphere Sn, the Clifford hypersurface
Sm

(
1√
2

)×Sm
(

1√
2

)
in Sn+1 with n = 2m, or CP 2. In particular, if RicM > (n−2)(c+H2),

then M is diffeomorphic to Sn.

To verify Conjecture A, we hope to prove the following conjecture on the normalized
Ricci flow.

Conjecture B. Let (M, g0) be an n(≥ 4)-dimensional compact submanifold in an (n+p)-
dimensional space form Fn+p(c) with c + H2 > 0. If the Ricci curvature of M satisfies

RicM > (n− 2)(c + H2),

then the normalized Ricci flow with initial metric g0

∂

∂t
g(t) = −2Ricg(t) +

2
n

rg(t)g(t),
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exists for all time and converges to a constant curvature metric as t →∞. Moreover, M
is diffeomorphic to a spherical space form.

Theorems 4.2 and 4.3 provide partial affirmative answers to Conjectures A and B.
Motivated by our rigidity and sphere theorems, we would like to propose the following
conjecture on the mean curvature flow in higher codimensions.

Conjecture C. Let F0 : M → Fn+p(c) be an n-dimensional compact submanifold in
an (n + p)-dimensional space form Fn+p(c) with c + H2 > 0. If the Ricci curvature of M
satisfies

RicM > (n− 2)(c + H2),

then the mean curvature flow
{

∂
∂tF (x, t) = nξ(x, t), x ∈ M, t ≥ 0,
F (·, 0) = F0(·),

exists smooth solution Ft(·), and Ft(·) converges to a round point in finite time, or c > 0
and Ft(·) converges to a totally geodesic sphere as t →∞. In particular, M is diffeomor-
phic to Sn.

Recently, Andrews and Baker [1], Liu, Xu, Ye and Zhao [22, 23] obtained some conver-
gence theorems for the mean curvature flow of higher codimension under certain pinching
conditions on the second fundamental form of M .
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