
Geometric Understanding for Unsupervised Subspace Learning

Shihui Ying1 , Lipeng Cai1 , Changzhou He2 and Yaxin Peng1∗

1Department of Mathematics, School of Science, Shanghai University, Shanghai, China
2Qualcomm (Shanghai) Co. Ltd., China

{shying, xiaocaibao77}@shu.edu.cn, changzhouhe@163.com, yaxin.peng@shu.edu.cn

Abstract

In this paper, we address the unsupervised subspace
learning from a geometric viewpoint. First, we for-
mulate the subspace learning as an inverse prob-
lem on Grassmannian manifold by considering all
subspaces as points on it. Then, to make the mod-
el computable, we parameterize the Grassmannian
manifold by using an orbit of rotation group action
on all standard subspaces, which are spanned by the
orthonormal basis. Further, to improve the robust-
ness, we introduce a low-rank regularizer which
makes the dimension of subspace as low as possi-
ble. Thus, the subspace learning problem is trans-
ferred to a minimization problem with variables of
rotation and dimension. Then, we adopt the alter-
nately iterative strategy to optimize the variables,
where a structure-preserving method, based on the
geodesic structure of the rotation group, is designed
to update the rotation. Finally, we compare the pro-
posed approach with six state-of-the-art methods
on two different kinds of real datasets. The exper-
imental results validate that our proposed method
outperforms all compared methods.

1 Introduction

Subspace learning is a kind of highly effective approaches to
dimensionality reduction, which is widely applied in multi-
view data analysis [Ding and Fu, 2018], image classification
[Fang et al., 2018], feature representation [Li et al., 2015],
etc. In recent years, it becomes one of the mutual topics in
computer vision, signal processing and statistical learning.

The goal of subspace learning is to map the high-
dimensional data to a low-dimensional space for represent-
ing more robust features while retaining as much information
as possible. The basic idea is directly mining a latent low-
dimensional manifold from the data, such that the local topo-
logical and/or geometric structures are preserved as much as
possible. From the availability of training samples, subspace
learning can be traditionally divided into three categories: su-
pervised, unsupervised, and semi-supervised cases. Due to
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the fundamentality and simplification, in recent years, unsu-
pervised subspace learning attracts more and more attention
[Vaswani et al., 2018].

As a classical unsupervised approach, principal componen-
t analysis (PCA) finds the principal components, which are
some orthogonal basis vectors most of data lies on, and al-
l principal components span a subspace that well represents
the data [Turk and Pentland, 1991]. Although PCA well con-
cerns the globally linear structure of data, it does not catch its
latently geometric structure. On the other hand, it is sensitive
to the noise and outliers.

Considering the local geometric structure of data, Tenen-
baum et al. [2000], Saul and Roweis [2003], and Belkin
and Niyogi [2003] propose Isometric Mapping (ISOMAP),
Locally Linear Embedding (LLE), and Laplacian Eigenmap
(LE), respectively, by introducing the manifold assumption
for data distribution. All these three approaches can effective-
ly discover the locally geometric structure of the data by pre-
serving data similarity before and after mapping, but they on-
ly provide the embedding results of training samples. There-
fore, they cannot be extended to the classification problems.
Moreover, they have high computational cost. For this, He
et al. [2005b] establish the Locality Preserving Projection
(LPP) method by approximating LE method, which well bal-
ances the manifold and the local structure of the data. Also
considering the local structure, they propose a linear method,
named Neighborhood Preserving Embedding (NPE), and ap-
ply it in classification problem [He et al., 2005a]. Later, Qiao
et al. [2013] develop an explicit nonlinear mapping for man-
ifold learning. More recently, Zhu et al. [2018] design an
unsupervised spectral feature selection method by the self-
expressiveness of the features for preserving the local struc-
ture of features, and a low-rank constraint on the weight ma-
trix to preserve the global structure.

On the other hand, to improve the robustness of PCA,
in recent years, sparse representation (SR) [Wright et al.,
2009] and low-rank representation (LRR) [Liu et al., 2013;
Li and Fu, 2016] based methods are established. The SR-
based methods can obtain a good robustness for the noisy data
by seeking a best sparse representation for each group of sam-
ples, but they omit the global property of the data. For exam-
ple, with the assumption of one subspace distribution, Can-
dès et al. [2011] propose the Robust PCA (RPCA) method,
which decomposes the data into low-rank background and s-
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parse noise parts, and hence greatly promotes the robustness
of data recovery. But in amount of real circumstances, data
are not located in one subspace. Therefore, subspace cluster-
ing problem is proposed to describe the multi-subspace case.
Elhamifar and Vidal [2013] discuss this task. Therein, Li-
u et al. [2010] adopt the nuclear norm for the wight matrix,
which makes the acquirement of global representation easi-
er. Further, to fit for data-missing case, Liu and Yan [2011]

develop the Latent LRR (LatLRR) method. Later, Li and
Fu [2016] develop a supervised regularization-based robust
subspace (SRRS) method based on the label information and
low-rank representation. More recently, Ding and Fu [2018]

improve it to multi-view data analysis by collective low-rank
subspace learning.

Although these methods improve more or less the robust-
ness of subspace learning, they do not fully consider the ge-
ometric structure of the set of subspaces, which may fur-
ther improve the performance of subspace learning. For ex-
ample, Hamm and Lee [2008] propose a unifying view on
the subspace learning method by formulating the problem-
s as an optimization problem on the Grassmannian mani-
fold, and performs feature extraction and classification in the
same space. Li et al. [2008] develop an incremental sub-
space learning method by using the Log-Euclidean metric.
Later, by using the non-Euclidean framework, Huang et al.
[2014] consider the classification problem. More recently,
Hauberg et al. [2014; 2016] find that the Karcher average of
all one-dimensional subspaces spanned by normally distribut-
ed data coincides with the first principal component. Further,
Chakraborty et al. [2017] extend the Karcher average com-
putation for all one-dimensional subspaces to K-dimensional
case. All these works validate the efficiency of Grassmanni-
an manifold based methods, but there are still two shortages
as follows. 1) All these methods need to have the dimen-
sion of subspaces as a prior knowledge, or need to enumerate
all possible dimensions for subspace learning. 2) Grassman-
nian manifold is a graded manifold, hence it is difficult to
represent the subspaces of different dimensions in the same
framework.

Therefore, in this paper we will transfer the subspace learn-
ing on the Grassmannian manifold to the minimization prob-
lem on the rotation group, by representing all subspaces with
different dimensions as an orbit of rotation group action on
some standard subspaces. These standard subspaces are s-
panned by the orthonormal basis. Further, to avoid enumer-
ating all possible dimensions for subspace learning, we intro-
duce a low-rank regularizer which makes the dimension of
subspace as low as possible.

The rest of this paper is organized as follows. In Section
2, we develop a new model for subspace learning from the
rotation group action viewpoint. Then, an alternately iterative
strategy and a structure-preserving algorithm are designed in
Section 3. In Section 4, we demonstrate the effectiveness of
our proposed method, and compare it with six state-of-the-art
methods on two different kinds of real datasets (COIL-100,
and MNIST). Finally, this paper is concluded in Section 5.

2 Geometric Model for Subspace Learning

We first consider the geometric structure of the rotation
group SO(d). By the definition,

SO(d) = {R ∈ R
d×d|RRT = RTR = Id, det(R) = 1},

where Id is the identity matrix of the order d, and SO(d) is

an m := d(d−1)
2 dimensional matrix Lie group with its Lie

algebra so(d) defined by

so(d) = {Ω ∈ R
d×d|ΩT = −Ω},

which is the set of all skew-symmetric matrices. The Lie al-
gebra so(d) is the linearization of Lie group SO(d) at the
identity.

The goal of subspace learning is to find a latent low-
dimensional manifold from the data for representing more
robust features, while retaining as much information as possi-
ble. Therefore, it is natural to reduce the subspace learning to
an optimization problem on the set of all subspaces. On the
other hand, from the geometric viewpoint, all subspaces with
dimension r of Euclidean spaces Rd form the Grassmannian
manifold

Gr(d, r) = {S ⊂ R
d| dim(S) = r},

where S is a subspace with the dimension r of Rd, and r is
ergodic from 0 to d. Note that the trivial subspaces (r = 0 or
r = d) should be eliminated in subspace learning, and hence
we always assume that 1 ≤ r ≤ d− 1.

As mentioned above, the Grassmannian manifold Gr(d, r)
is a graded manifold with respect to the dimension r, there-
fore, the first issue is how to uniformly parameterize this man-
ifold for different r. After that, then, we can address the sub-
space learning on such manifold. Below, we will give a uni-
form representation for all subspaces first from the viewpoint
of the rotation group action, and then we model the subspace
learning as an optimization model on SO(d)⋉N.

2.1 Representation of Subspaces

Figure 1 gives an illustration for subspace learning. Given
the set of centered samples {xi}

n
i=1, we wish to find the best

subspace (the hyperplane crossing the origin) such that it best
describes the distribution of all samples.

To uniformly represent the subspaces, we adopt the ap-
proach of the rotation group SO(d) action. It is from the fact
that there exists a rotation R ∈ SO(d), by which any sub-
space S with dimension r can be rotated from the standard
subspace S0 spanned by r orthonormal basis. In detail, it is
described as follows.

Let ei = (0, · · · , 1, · · · , 0)T be the ith orthonormal basis,
Br = span{e1, e2, · · · , er} be the standard r-dimensional
subspace, and Pr = [e1, · · · , er]

T be the projection from R
d

to Br. Then, for any r-dimensional subspace S ∈ Gr(d, r),
we can find a rotation R ∈ SO(d), such that

S = RBr.

That is,
Gr(d, r) = {RBr|R ∈ SO(d)}.

Then, the unit normal vector Nr of the subspace S is the
rotated unit normal vector of the standard subspace S0 by R.
That is,

Nr = RN0r,

where N0r = 1√
d−r

(0, · · · , 0
︸ ︷︷ ︸

r

, 1, · · · , 1
︸ ︷︷ ︸

d−r

)T .
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Figure 1: Illustration for subspace learning.

2.2 Model for Subspace Learning

By the representation of rotation group action, we reformulate
the subspace learning as follows. As mentioned above, the
goal of subspace learning is finding the best subspace such
that it best describes the distribution of all samples. There-
fore, first we should make the subspace best fitting the sam-
ples. That is, we should assume that the total distance of all
samples from the subspace is as small as possible, where the
distance between samples and the subspace can be formulated
by

d(xi, RBr) = ‖xT
i RN0r‖,

where R is the best rotation, Br is the standard subspace and
N0r is the unit normal vector of Br.

Then, when the dimension of subspace is given by r, one
part of model is to minimize the totally squared distance of
all samples from the subspace with respect to the rotation R.
That is,

R∗ = argmin
R∈SO(d)

n∑

i=1

‖xT
i RN0r‖

2. (1)

On the other hand, due to the dimensional reduction, we
want the dimension of the subspace is sufficiently small.
Therefore, we introduce the regularization term to (1), and
the model is reformulated by

(R∗, r∗) = argmin
R∈SO(d),1≤r≤d−1

n∑

i=1

‖xT
i RN0r‖

2 + λr. (2)

where λ is a balanced parameter. Therefore, the subspace
learning problem is transferred to the optimization problem
on the SO(d) ⋉ N. It is remarkable that the regularity ter-
m is a low-rank constraint in previous literature because of
rank(Pr) = r. On the other hand, from the Eq. (2), the first
term ensures that the samples are as close as possible to the
subspace. We know that this error decreases with the incre-
ment of r. Therefore, the model is well balanced the error
and the dimension.

3 Algorithm

In this section, we will provide the solver for the model (2).

3.1 Iterative Strategy

It is seen that model (2) is an optimization problem with two
kinds of independent variables. Therefore, we use an alter-
nately iterative strategy. That is, we decompose the model (2)
into two following subproblems.

(S1) For current rk, we update the next rotation Rk+1 by

Rk+1 = argmin
R∈SO(d)

n∑

i=1

‖xT
i RN0rk‖

2. (3)

(S2) For updated rotation Rk+1, we update the next dimen-
sion rk+1 by

rk+1 = argmin
1≤r≤d−1

n∑

i=1

‖xT
i R

k+1N0r‖
2 + λr. (4)

Then, by alternately updating Eqs. (3) and (4), we obtain
the best rotation R∗ and the best dimension r∗ of the sub-
space, and moreover the best subspace S

∗ = R∗Pr∗ .

Eq. (4) can be solved by traditional methods, since it is
a finite and discrete minimization problem. Then, we will
focus on the solution of the subproblem (S1) by the geometric
structure of the rotation group SO(d).

3.2 Structure-Preserving Algorithm

To solve the subproblem (S1), we first consider the exponen-
tial map exp from so(d) to SO(d), by which we define the
intrinsically iterative format as

Rk+1 = Rk exp





m∑

j=1

akjEj



 , (5)

where {Ej}1≤j≤m is the basis of Lie algebra so(d), and akj
is the coefficient at step k. By this format, we insure that R
at each step is an exact rotation, and hence it is a structure-
preserving iterative method.

Then, we apply this method to solve the subspace (S1).
Substituting the iterative format to Eq. (3), we have

ak = argmin
a∈Rm

n∑

i=1

∥
∥
∥
∥
∥
∥

xT
i R

k exp





m∑

j=1

ajEj



N0rk

∥
∥
∥
∥
∥
∥

2

. (6)

Therefore, the subproblem (S1) is transferred to the conven-
tional optimization problem. Then, to further simplify the
route of solution, we adopt the quadratic approximation for
the objective function by using the linearization for the expo-
nential map [Helgason, 1978; Warner, 2013].

exp





m∑

j=1

ajEj



 ≈ Id+
m∑

j=1

ajEj ,

when aj is sufficiently small.
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Let G(a) be this approximated function, then we have

G(a) =
n∑

i=1

∥
∥xT

i R
k (Id+ U(a))N0rk

∥
∥
2

= tr
(

RkY kRkTXXT
)

+tr
(

RkY kU(a)TRkTXXT
)

+tr
(

RkU(a)Y kRkTXXT
)

+tr
(

RkU(a)Y kU(a)TRkTXXT
)

, (7)

where U(a) =
m∑

j=1

ajEj , Y k = N0rkN
T
0rk , and X is the data

matrix [x1, x2, · · · , xn].

Further, let Zk = RkTXXTRk, then

G(a) = tr
(
Y kZk

)
+ tr

(
Y kU(a)TZk

)

+tr
(
U(a)Y kZk

)
+ tr

(
U(a)Y kU(a)TZk

)

= tr
(
Y kZk

)
+ 2tr

(
U(a)Y kZk

)

+tr
(
U(a)Y kU(a)TZk

)
, (8)

where the last equation holds because

tr
(
Y kU(a)TZk

)
= tr

(

ZkTU(a)Y kT
)

= tr
(
U(a)Y kZk

)
.

Let Mk
ij = tr(EiY

kET
j Z

k) and bki = tr(Y kET
i Z

k), then

G(a) = aTMka+ 2bk
T
a+ tr

(
Y kZk

)
, (9)

where Mk is the matrix with element Mk
ij , and bk is the vec-

tor with element bki .

By the KKT condition, the optimal coefficients ak should
have the equation ∇G(a) = 0 held. That is,

Mka = −bk, (10)

Therefore, we have

ak = −[Mk]†bk. (11)

where [Mk]† is the Moore-Penrose pseudo inverse of Mk. By
this approximation, we deduce a closed form for the almost
optimal coefficients. It highly improves the computational
efficiency.

Therefore, we obtain the algorithm for subspace learning
and summarize it as follows.

4 Experiment Results

To demonstrate the effectiveness of the proposed subspace
learning algorithm, in this section, experiments of classifi-
cation by using the k-NN classifier on learned subspace (re-
duced feature space) are conducted on two real datasets, i.e.,
COIL-100 object dataset [Nene et al., 1996], and MNIST
digit dataset [Lecun et al., 1998]. Here, we more focus
on the learned subspace, and hence classification results are

Algorithm 1 Intrinsic algorithm for subspace learning

Require: Centered dataset X = {xi}
n
i=1.

Ensure: The best subspace for data representation.
1: Initialize: The orthonormal basis {ei}, the basis of Lie

algebra so(d), maximal iteration T , the balanced param-
eter λ, r0 = d and R0 = Id.

2: for each k ∈ [1, T ] do
3: For current rk, update the next rotation Rk+1 by (5),

where the coefficient vector ak is updated by (11).
4: For updated rotation Rk+1, update the next dimension

rk+1 by solving the finite discrete minimization prob-
lem (4).

5: end for
6: Output: The best subspace S

∗ = R∗Br∗ .

used to estimate the effects of the selected features. There-
fore, for the classification task, we select the k-NN classifier
which is more dependent with features. Further, we compare
our proposed method with six state-of-the-art subspace learn-
ing methods, which include PCA (as a baseline experiment)
[Turk and Pentland, 1991], LDA [Belhumeur et al., 1997],
LPP [He et al., 2005b], NPE [He et al., 2005a], LSDA [Cai
et al., 2007], and SRRS [Li and Fu, 2016]. All program-
s are written in Matlab 2013a and run by PC with Intel(R)
Core(TM) i7-7500U CPU and 32 GB RAM.

4.1 COIL-100 Object Dataset

This dataset contains 100 objects. All images of one object
are taken 5 degrees apart because the object is imaged on a
rotated turntable, and hence each object has 72 images. The
size of each image is 32× 32 pixels with 256 grey levels per
pixel. Thus, the original dimension of each image is 1024.

Then, we first randomly select 10 images of each object as
the set of training samples, and the rest as the set of testing
samples. Further, to make the results more repeatable, we do
this operator 20 times randomly. Therefore, the results are
obtained in the average sense. By executing six state-of-the-
art subspace learning methods and our proposed method, the
numerical results are shown in Table 1, and Figures 2 and 3.

In Table 1, the first column is the data description, where
the first letter P and B before the % sign represent pixel cor-
ruption and block corruption, respectively. The number in the
parentheses means the dimension of the learned subspace. It
is seen that the error rate of our proposed method is lower than
other six state-of-the-art methods, while the dimension of the
learned subspace is low. Specially, the performance is signifi-
cantly improved in two cases of corruption, and the incremen-
t of performance increases with the growth of percentage of
corruption. Therefore, our proposed method can obtain better
feature representation as well as robustness. This is also re-
flected in Figure 2. Also, we provide the visualization results
with all methods by t-SNE [Maaten and Hinton, 2008] in Fig-
ure 3, by which justifies that our proposed method obtains the
best result.

4.2 MNIST Digit Dataset

The MNIST dataset of handwritten digits has a training set
of 60,000 examples, and a test set of 10,000 examples. The
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Method PCA LDA LPP NPE LSDA SRRS Ours

0% 8.94±0.93(39) 11.75±1.37(16) 10.82±1.28(37) 10.04±1.59(29) 11.04±1.23(16) 8.82±0.92(66) 8.27±1.86(36)

P10% 15.38±1.57(14) 22.96±1.21(17) 21.53±1.42(28) 19.30±1.79(25) 22.28±1.16(20) 13.81±1.53(28) 10.31±1.21(27)
P20% 25.65±2.07(8) 34.05±1.91(17) 32.96±1.99(16) 30.91±1.48(17) 33.26±1.67(17) 20.61±1.08(33) 16.84±1.18(15)
P30% 41.89±1.60(7) 47.10±1.66(10) 46.03±1.47(12) 45.05±2.23(12) 45.97±1.24(10) 33.89±1.42(33) 27.42±1.66(9)
P40% 60.92±2.87(5) 58.80±2.40(9) 59.04±1.86(10) 59.44±2.01(9) 57.93±2.01(9) 51.17±1.50(37) 41.74±1.64(8)
P50% 76.51±2.18(7) 70.28±1.53(9) 70.39±1.32(11) 72.08±1.38(12) 69.44±1.29(9) 67.84±1.66(38) 58.35±1.31(6)

Average 44.07 46.64 45.99 45.36 45.78 37.46 30.93

B10% 24.13±1.45(70) 27.87±1.80(19) 26.27±1.70(29) 24.74±1.59(33) 27.21±1.71(19) 22.79±1.61(31) 20.08±1.28(41)
B20% 40.20±1.98(23) 41.98±1.22(19) 41.14±1.38(23) 40.59±1.41(26) 41.35±1.04(19) 35.09±1.60(39) 34.23±1.63(26)
B30% 56.01±1.35(29) 58.63±1.85(17) 57.81±1.70(20) 57.36±1.72(15) 57.78±1.71(17) 49.02±1.35(46) 46.07±1.45(14)
B40% 64.67±1.17(13) 66.33±1.79(18) 66.00±1.47(12) 65.85±1.93(12) 65.24±1.57(18) 58.48±1.48(49) 54.67±1.78(14)
B50% 75.27±1.78(5) 76.44±1.49(15) 76.18±1.44(8) 76.30±1.35(7) 75.29±1.09(15) 70.83±1.42(46) 67.59±1.24(8)

Average 52.06 54.25 53.48 52.97 53.37 47.24 44.53

Table 1: The error rates on COIL-100 dataset with different percentages of corruption.

(a) P10% (b) P30% (c) P50%

(d) B10% (e) B30% (f) B50%

Figure 2: Averaged error rates of classification on COIL-100 dataset with different percentages of corruption and dimensions of feature space.

(a) 10 (b) 20 (c) 30

Figure 4: Averaged error rates of classification on MNIST dataset with different training samples.
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(a) Original (b) PCA

(c) LDA (d) LPP

(e) NPE (f) LSDA

(g) SRRS (h) Ours

Figure 3: Dataset visualization on two dimensional feature spaces
form COIL-100 dataset with 10% pixel corruption. Different colors
represent different classes.

digits have been size-normalized and centered in a fixed-size
image. The size of each image is 28 × 28 pixels. Thus,
the original dimension of each image is 784. We add 10%
pixel corruption, which is the same as the case of COIL-100
dataset.

Then, we first randomly select 1000 images with 10 num-
bers as our dataset, such that there are 100 images in each
group. Then, to test the error rate of classification in the d-
ifferent number of training samples, we randomly select 10,
20, and 30 images of each class as the set of training samples,
respectively. Further, to make the results more repeatable, we
do this operator 20 times randomly. Therefore, the results
are obtained in the average sense. By executing six state-of-
the-art subspace learning methods and our proposed method,
the statistical results are shown in Figure 4. From Figure 4,
we see that the error rate of classification by our proposed
method are almost lowest in the different number of training

Method COIL-100 MNIST

SRRS 1.76 0.63
Ours 0.65 0.58

Table 2: The training time (s) on COIL-100 object dataset and M-
NIST digit dataset without corruption.

samples.

4.3 Discussion

For the computational time, we compare our proposed
method with SRRS on COIL-100 object dataset and MNIST
digit dataset without corruption. Further, to make the results
more repeatable, we conduct this operator 20 times random-
ly. Therefore, the training time results in the average sense
are shown in Table 2, which shows that our proposed method
obtains the best classification result with less training time
than SRRS.

5 Conclusion

In this paper, we propose an unsupervised subspace learning
from a geometric viewpoint. First, we represent the set of all
subspaces by the orbit of the rotation group action on the s-
tandard subspace. Then, the subspace learning is transferred
to a minimization problem on the rotation group. It provides a
well geometric explanation of subspace learning. Further, we
construct an intrinsic algorithm by applying such geometric
structure. Finally, we compare the proposed approach with
six state-of-the-art methods on two different kinds of real
datasets. The experimental results validate that our proposed
method outperforms all compared methods.

Acknowledgments

The research is supported by the National Natural Science
Foundation of China under Grant Nos. 11771276, 61573274,
61731009, and the capacity construction project of local uni-
versities in Shanghai (18010500600).

References

[Belhumeur et al., 1997] Peter N. Belhumeur, Joao P. Hes-
panha, and David J. Kriegman. Eigenfaces vs. fisherfaces:
recognition using class specific linear projection. IEEE
Trans. Pattern Anal. Mach. Intell., 19(7):711–720, 1997.

[Belkin and Niyogi, 2003] Mikhail Belkin and Partha Niyo-
gi. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Computation, 15(6):1373–
1396, 2003.

[Cai et al., 2007] Deng Cai, Xiaofei He, Kun Zhou, Jiawei
Han, and Hujun Bao. Locality sensitive discriminant anal-
ysis. In IJCAI, pages 708–713, 2007.

[Candès et al., 2011] Emmanuel J. Candès, Xiaodong Li, Y-
i Ma, and John Wright. Robust principal component anal-
ysis? Journal of the ACM, 58(3):1–37, 2011.

[Chakraborty et al., 2017] Rudrasis Chakraborty, Søren
Hauberg, and Baba C. Vemuri. Intrinsic Grassmann

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4176



averages for online linear and robust subspace learning.
In CVPR, pages 6196–6204, 2017.

[Ding and Fu, 2018] Zhengming Ding and Yun Fu. Robust
multiview data analysis through collective low-rank sub-
space. IEEE Trans. Neural Netw. Lear. Syst., 29(5):1986–
1997, 2018.

[Elhamifar and Vidal, 2013] Ehsan Elhamifar and René Vi-
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