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Geometric unmixing of large hyperspectral images:

a barycentric coordinate approach

Paul Honeine, Member, IEEE, and Cédric Richard, Senior Member, IEEE

Abstract—In hyperspectral imaging, spectral unmixing

is one of the most challenging and fundamental problems.

It consists of breaking down the spectrum of a mixed

pixel into a set of pure spectra, called endmembers, and

their contributions, called abundances. Many endmember

extraction techniques have been proposed in the literature,

based on either a statistical or a geometrical formulation.

However, most if not all these techniques for estimating

abundances use a least squares solution. In this paper, we

show that abundances can be estimated using a geometric

formulation. To this end, we express abundances with

the barycentric coordinates in the simplex defined by

endmembers. We propose to write them in terms of a ratio

of volumes or a ratio of distances, which are quantities

that are often computed to identify endmembers. This

property allows us to easily incorporate abundance estima-

tion within conventional endmember extraction techniques,

without incurring additional computational complexity.

We use this key property with various endmember extrac-

tion techniques, such as N-Findr, vertex component anal-

ysis, simplex growing algorithm, and iterated constrained

endmembers. The relevance of the method is illustrated

with experimental results on real hyperspectral images.

I. INTRODUCTION

The emergence of hyperspectral imaging sensors

in recent years has brought new opportunities and

challenges in image analysis. Hyperspectral images

are cubes of data, measuring spectral composition

within a spatial view. As opposed to conventional

three-channel color systems, the spectral informa-

tion provides in-depth analysis of the composition

of objects in the image scene. Since the early

90’s, hyperspectral imaging has been adopted as an

airborne technique for military and environmental

P. Honeine is with Institut Charles Delaunay (UMR CNRS
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remote sensing, and more recently to identify chem-

ical species on the surface and the atmosphere of

Mars [1]. Hyperspectral imaging provides abundant

information about ground composition, thanks to

an improved resolution in the spatial dimensions,

with a high sensitivity in the spectral range, up-to

hundreds of contiguous bands covering visible and

short-wavelength infrared spectral range.

Even with high spatial resolution, a single pixel

may consist of different materials. Spectra in an hy-

perspectral image can be seen as a mixing of some

spectral signatures of pure physical components

over the ground [2]. Despite the potential of non-

linear unmixing techniques [3], the linear mixing

model has a suitable physical interpretation widely

accepted within the remote sensing community. In

this case, pure spectral signatures, called endmem-

bers, are linearly combined with some abundance

fractions. The key challenges for spectral unmixing

are twofold: find the collection of endmembers;

and estimate their abundances for each pixel in the

hyperspectral image.

To identify the endmembers, early techniques

were based on a pre-defined library of laboratory

minerals, unrelated to the image under investigation

[4]. Because these spectra are rarely acquired under

the same conditions, this brings several difficulties

in atmospheric correction and variations in the sen-

sor intrinsic parameters. Current approaches avoid

such problems by inducing the endmembers from

the scene, which falls into the class of blind source

separation problems (see [5] for an early study, and

[6] for a more recent one). Therefore, a natural tool

to blindly unmixing is the independent component

analysis (ICA). Concerning hyperspectral data, the

assumption that sources are statistically independent

is violated since, due to physical constraints in the

data acquisition process, the sum of the abundance

fractions is constant, implying dependence among

abundances [7]. Such limitations have contributed

to the development of new unmixing techniques,
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roughly divided into two classes, geometric ap-

proaches and statistical ones (see [8] for a re-

cent survey). While the latter requires probabilistic

foundations with some prior knowledge, geometric

approach exploits the theory of convex set. In this

paper, we give particular attention to the geometric

formulation. Prior to the endmember extraction,

most of these techniques are never used on the

original spectra. To correct the redundancy in the

spectral dimension as opposed to the low number

of endmembers, a dimensionality reduction trans-

formation is often applied, such as the principal

component analysis (PCA) or the minimum noise

fraction (MNF).

From the linear mixing model, mixed pixel spec-

tra are linear mixtures of endmembers. As a con-

sequence, they can be viewed as the vertices of

a simplex enclosing all mixed spectra. Geometric

techniques exploit this insight, by seeking the ver-

tices of a simplex englobing all the image data.

One of the most widely used automatic endmember

extraction method is Winter’s N-Findr algorithm [9].

It starts with a random set of candidate endmembers

(see [10], [11] for several implementations of N-

Findr). Iteratively, one at a time, each pixel spec-

trum is considered as a candidate to replace each

endmember. It is accepted as a new endmember if

the volume of the simplex of endmembers increases.

The N-Findr is a fast endmember extraction algo-

rithm, successfully applied to many hyperspectral

images. Sequential algorithms can provide further

reduction in computational complexity, by grow-

ing the simplex gradually, vertex by vertex. The

Simplex Growing Algorithm (SGA) is a sequential

version of the N-Findr [12]. Starting with one

vertex, it finds a simplex with maximum volume

by sequentially adding a new (optimal) vertex at

a time. The Vertex Component Analysis (VCA)

algorithm is another sequential algorithm [13]. It

exploits that orthogonal subspace projection of a

simplex is also a simplex, and thus vertices of

the latter are vertices of the initial one. The VCA

gradually selects vertices by performing orthogonal

subspace projections, sequentially starting from a

one-dimensional subspace. The Iterated Constrained

Endmembers (ICE) algorithm fits an enclosing sim-

plex to the data cloud while penalizing its volume

[14]. To this end, an alternating optimization scheme

is used by minimizing, on the one hand a quadratic

cost function for fitness, and on the other hand the

distance between endmembers for penalization. A

sparsity-promoting version of ICE is presented in

[15].

Two physical constraints are generally imposed

on the linear mixing model, enforcing constraints

on the fractional abundances for each pixel: (1) the

sum-to-one (or equality) constraint, indicating that

the endmembers contribution must add up to 100%,

and (2) the non-negativity constraint, since negative

contributions are physically unrealistic. The most

straightforward approach to estimate abundances

is by an unconstrained least-squares minimization,

with the abundances of a given pixel determined

by a matrix inversion [16]. For each pixel, the

computational complexity is cubic in the number

of endmembers. The sum-to-one constraint can be

imposed to the least-squares solution, using for

instance Lagrangian multipliers. The non-negativity

constraint is more difficult to address, since it does

not have a closed-form solution. Many iterative ap-

proaches have been proposed to this end, including

non-negative matrix factorization techniques [17],

[18], as well as general iterative techniques [19],

[20]. A fully constrained solution requires more

advanced optimization methods [21], [22]. Solutions

to these problems involve computational extensive

algorithms, not appropriate for large number of

hyperspectral pixels (for implementation issues, see

for instance [23], [24]. It is worth noting that, if

the endmembers were properly identified, i.e., the

vertices of a simplex englobing all the data, both

sum-to-one and non-negativity constraints would

be naturally fulfilled. For this reason, extraction

techniques often apply directly the unconstrained

least-squares method [25], [9], [13].

In this paper, we give a geometric formulation

to solve the abundance estimation problem. To

this end, we redefine the fractional abundances as

barycentric coordinates (or areal coordinates) in the

reduced dimensional space. We derive two expres-

sions of these coordinates, either as a volume-ratio

of simplexes, or as a ratio of distances. It is amazing

to observe that these volumes and distances are of-

ten computed by well-known endmember extraction

methods in order to identify the endmembers. This

is the case of N-Findr and SGA algorithms which

compute volumes, while VCA and ICE estimate

distances. By taking advantage of this situation, we

show that one can easily incorporate abundance es-

timation within conventional endmember extraction
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techniques, without essentially incurring additional

computational cost.

The remainder of this paper is organized as

follows. In Section II, we present barycentric coor-

dinates for the estimation of fractional abundances.

In Section III, we demonstrate that our approach is

natural to many endmember extraction techniques,

and we outline its application to N-Findr, SGA,

VCA, and ICE. The effectiveness of the method

is illustrated in Section IV, by comparing it to

the fully constrained least-squares solution. Finally,

Section V summarizes this work, and describes on-

going efforts. But before, we give a mathematical

formulation of the linear mixing/unmixing model.

THE LINEAR (UN-)MIXING MODEL

Given a hyperspectral image, let xℓ be the spec-

trum of the ℓ-th pixel, each pixel being indexed

using a single index. The linear mixing model takes

the form

xℓ =

n∑

i=1

αi xωi
, (1)

where {xω1
,xω2

, . . . ,xωn
} denotes the collection of

the n endmembers. In matrix form, the linear mixing

model is given by

xℓ = Xα, (2)

where X = [xω1
xω2

· · · xωn
], and α =

[α1 α2 · · · αn]
⊤ the vector of abundances to be

determined. We suppose for now that the endmem-

bers have been identified, using any off-the-shelf

endmember extraction technique.

The fractional abundance αi represents the con-

tribution in xℓ of the pure material defined by xωi
.

In order to adopt a physical interpretation of this

mixing model, the abundances must satisfy two

constraints:

• the sum-to-one constraint (also called the

equality constraint), with

n∑

i=1

αi = 1;

• the non-negativity constraint, with

α1, α2, . . . , αn ≥ 0.

These constraints can be written in matrix form,

as 1
⊤
α = 1 and α ≥ 0, where 1 is the unit

column-vector of n entries and the inequality is

taken component-wise.

Ignoring these constraints, the optimal solution of

the problem (2), with optimality in the least-squares

sense, is given by the normal equation

αLS = (X⊤
X)

−1

X
⊤
xℓ. (3)

The equality constraint is the simplest constraint

to enforce, and can be incorporated by using La-

grangian multipliers, resulting into the optimal so-

lution

αeqLS=αLS−
1

1
⊤(X⊤

X)−1

1
(X⊤

X)
−1

1(1⊤
αLS−1).

(4)

Enforcing the non-negativity constraint is not as

easy to address as the equality constraint, since

no closed-form solution exists. In the least-squares

sense, the problem consists of minimizing f(α) =
1
2
‖xℓ − Xα‖2, while maintaining α ≥ 0. Let

∇f(α) = X
⊤(Xα − xℓ) denotes the gradient

of f(α). Then, the Karush-Kuhn-Tucker optimal-

ity conditions [26] for this problem are α ≥ 0,

∇f(α) ≥ 0, and ∇f(α)⊤α = 0. This can be solved

using iterative techniques, such as an alternating

strategy applied to both expressions

α
⊤
X

⊤(Xα− xℓ) = 0, and α ≥ 0. (5)

The most commonly used algorithm to compute the

solution is the Lawson and Hanson’s algorithm [19],

which uses the active set scheme. Other iterative

algorithms include multiplicative iterative strategies

[20]. The problem of estimating the abundances

using the linear model subject to both equality

and non-negativity constraints, the so-called fully

constrained solution, requires advanced iterative op-

timization methods [21]. All these solutions are

optimal, in the least-squares sense, and can be con-

sidered even when the number of bands (dimension)

is greater than the number of endmembers.

In practice, the spectral dimension is reduced

to n − 1 in order to have the mixing model (1)

satisfied. Such representations allow to extract the

endmembers. We shall now give a direct geometric

formalism to estimate the abundances in the same

low-dimensional representation. To this end, we

solve the equality-constrained optimization problem

geometrically, and give a straighforward interpreta-

tion to the violation of the non-negativity constraint.
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II. BARYCENTRIC COORDINATES FOR

ABUNDANCE ESTIMATION

Suppose for now that the endmembers have been

extracted, using for instance any of the above

mentioned techniques, such as N-Findr or SGA

algorithms. We seek to estimate the abundances,

α1, α2, . . . , αn for each spectrum in the image.

Given any xℓ, we consider the linear mixing model

with the equality constraint, namely

xℓ =

n∑

i=1

αi xωi
, (6)

subject to

n∑

i=1

αi = 1. (7)

Since both are equality expressions, we combine

them into a single matrix expression, with the

augmented linear system

[
1 1 · · · 1
xω1

xω2
· · · xωn

] [
α
]
=

[
1
xℓ

]
. (8)

It is worth noting that this is a linear system with

as many equations as unknowns, i.e., n. Linear

algebra provides many elegant methods to solve

such systems [16].

We propose to solve this problem using the

Cramer’s rule [16, page 259]. The consequences

of this choice will be clear throughout this paper.

Cramer’s rule states that the solution of a linear sys-

tem can be expressed in terms of the determinants

of the system matrix, and of matrices obtained from

it with one column substituted by the right-hand-

side vector. Applied to the above augmented linear

system (8), the solution can be written as

α1 =

det

[
1 1 · · · 1
xℓ xω2

· · · xωn

]

det

[
1 1 · · · 1
xω1

xω2
· · · xωn

] ,

Fig. 1. The volume of a tetrahedron (three-dimensional simplex) is

given by the third of the area of the base times the height from the

base to the apex. Since both (blue and red) tetrahedrons share the

same base (gray color), the ratio of their volumes are proportional to

the ratio of their heights (dashed lines).

α2 =

det

[
1 1 · · · 1

xω1
xℓ · · · xωn

]

det

[
1 1 · · · 1

xω1
xω2

· · · xωn

] ,

...

αn =

det

[
1 1 · · · 1

xω1
xω2

· · · xℓ

]

det

[
1 1 · · · 1

xω1
xω2

· · · xωn

] ,

(9)

where det is the determinant operator. The amazing

thing about Cramer’s rule is that one only needs

to compute determinants in order to solve a linear

system, as opposed to conventional matrix inversion

techniques. In fact, both methods are equivalent.

Moreover, applied to the proposed augmented linear

system, we get an intuitive geometric interpretation,

natural in the context of simplexes with vertices

defined by hyperspectral data.

A geometric formulation

Now, we recall the expression of the volume of

a simplex. Let X = {xω1
,xω2

, . . . ,xωn
} be the

set of linearly independent vectors in a (n − 1)-
dimensional space, thus defining a non-degenerated

simplex in that space. This assumption is true in the

case of endmembers. We define the oriented volume



5

xω1

xω3

xω2

xℓ

xω1

xω3

xω2

xℓ

Fig. 2. Illustration of the simplex (here triangle) in a 2-dimensional Euclidean space, to study the the sign of coefficient α1. In the left

figure, xℓ and xω1
are on the same side of the line defined by xω2

and xω3
, thus α1 is non-negative. In the right figure, α1 is negative

since they lie on opposite sides.

xω1

xω3

xω2

xℓ

δ(xℓ)

δ(xω1
)

xω1

xω3

xω2

xℓδ(xℓ)

δ(xω1
)

Fig. 3. Illustration in 2D of α1 computation using the heights. In this case, α1 = δ(xℓ)/δ(xω1
). In the left figure, xℓ and xω1

are on

the same side of the line defined by xω2
and xω3

, and α1 is non-negative. In the right figure, α1 is negative since xℓ and xω1
lie on both

sides.

of the simplex with vertices X , as follows

VX =
1

(n− 1)!
det

[
1 1 · · · 1

xω1
xω2

· · · xωn

]
.

(10)

This expression gives a signed value, either positive

or negative depending on the order of the simplex

vertices, i.e., the sequence xω1
,xω2

, . . . ,xωn
. The

consequences of the use of the oriented (signed)

volume, rather than the use of the conventional

positive-valued expression |VX |, will be justified.

Let \ denotes the set difference operator, with

X\{xωi
}∪{xℓ} the set defined by the set X where

xωi
has been removed and xℓ added. From Cramer’s

rule (9), each coefficient αi can be written as a

ratio of two oriented volumes of simplexes, on the

one hand the simplex with vertices X given by

the endmembers, and on the other hand the same

simplex with xωi
replaced by xℓ. In a compact form,

we have

αi =
VX\{xωi

}∪{xℓ}

VX

, (11)

for all i = 1, 2, . . . , n. As shown below, these

volumes are often computed by the endmember

extraction techniques, as in the case of the N-Findr

algorithm for instance. Therefore, one can estimate

abundances with essentially no computational cost.

A distance-based formulation

All the abundances can be estimated using (11),

or equivalently from (9). This illustrates the fact

that, for each abundance, the two considered sim-

plexes have n − 1 identical vertices and only one
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xω1

xω3

xω2

xℓ

xω1

xω3

xω2

xℓ

Fig. 4. Illustration of endmember extraction incremental algorithms in a 2-dimensional Euclidean space. From two previously extracted

endmembers, xω1
and xω2

, the third endmember is determined (left) using SGA by comparing simplex volumes, or (right) using VCA by

comparing distances to the subspace spanned by previous endmembers. The abundance α3 is given by (left) the ratio of volumes or (right)

the ratio of distances.

different vertex, xωi
, which has been substituted in

the numerator by xℓ. Since these n − 1 vertices

provide a common base for both simplexes, we can

further simplify the expression (11) (see Figure 1

for an illustration in three-dimensions). In fact,

remember that the volume of a simplex of n vertices

can be given in terms of the content (length, area,

volume, ...) of a base of n − 1 vertices and the

distance of the remaining vertex to the subspace

including the base. Namely, we have

VX = 1
n−1

δ(xωi
)VX\{xωi

},

where δ(xωi
) is the (signed) distance between the

vertex xωi
and the subspace spanned by the other

vertices in X . By using this notation, we get

αi =
δ(xℓ)

δ(xωi
)
, (12)

for all i = 1, 2, . . . , n. This formulation is more

adapted to incremental endmember extraction tech-

niques, as opposed to the volume ratio in (11).

This is mainly due to the fact that this expression

does not require explicit relations between previ-

ously selected endmembers. Only distances to the

subspace spanned by the latter are considered. This

results in low computational complexity algorithms,

as illustrated for instance with the VCA.

On the non-negativity constraint

As defined above, the oriented volume of a sim-

plex can be either positive or negative, depending

on the order of the sequence defined by its vertices.

In order to study the sign of any coefficient αi, we

need to compare the volumes in (11), or equivalently

the corresponding determinants. The only difference

resides in one column, the i-th column, either xωi

or xℓ. Therefore, one only needs to compare the

orientation of these simplexes. If both simplexes

have the same orientation, the coefficient is positive;

otherwise, when they have opposite orientations, it

is negative.

To illustrate this point, we consider a two-

dimensional example in Figure 2. Consider the

first coefficient, given by α1 = VX\{xω1
}∪{xℓ}/VX .

Therefore, we compare the simplexes X =
{xω1

,xω2
,xω3

} and {xℓ,xω2
,xω3

}. Figure 2 (left)

illustrates the case where both simplexes have the

same orientation, counterclockwise in the sequences

xω1
xω2

xω3
and xℓxω2

xω3
. In this case, α1 is non-

negative. Figure 2 (right) illustrates the case of

opposite orientations, with a clockwise orientation

in the sequence xℓxω2
xω3

as opposed to the coun-

terclockwise in xω1
xω2

xω3
. This results in α1 < 0.

Applying the same argument for the other coeffi-

cients, we find that α2 and α3 are non-negative in

both cases (left and right figures).

Consider now signed-distances in equation (12).

As illustrated in Figure 3, xω2
xω3

divides IR2 into

two regions. Coefficient α1 is positive if both xℓ and

xω1
lie on the same side (left figure). Otherwise, it

is negative (right figure).

These results obtained for all the coefficients are

in accordance with the definition of a convex hull,
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saying that xℓ is inside the simplex if and only if all

the αi’s are non-negative. Moreover, we can derive

a simple inclusion test as follows: xℓ is inside the

simplex if and only if all the determinants in (9)

have the same sign (either positive or negative);

otherwise, if it is outside, there exists at least

one determinant with opposite sign. This provides

an elegant inclusion test, where only determinant

evaluation is required, a step carried out by the

endmember extraction stage as derived in the next

section.

It is worth noting that the non-negativity con-

straints are not imposed in the proposed method.

However, the violation of these constraints, i.e., the

existence of at least one negative αi, means that

xℓ is outside the simplex. Such a result implies

that both equality and non-negativity constraints

cannot be satisfied by the resulting linear combina-

tion of endmembers. This illustrates the limitations

of geometric approaches for endmember extraction

(described hereafter) for properly identifying the

endmembers1.

III. ABUNDANCE ESTIMATION USING

STATE-OF-THE-ART ENDMEMBER EXTRACTION

TECHNIQUES

Many endmember extraction techniques deter-

mine endmembers as vertices of a simplex englob-

ing all the spectra. In this section, we show how one

can easily take advantage of some of these tech-

niques, in order to estimate the abundances using

1Such a result is also related to the uniqueness of the unmixing

solution (or the endmember identifiability condition as given in

[27, Theorem 1]). In fact, let xℓ1 ,xℓ2 , . . . ,xℓn be the spectra

corresponding to some arbitrary pixels. Then we have from (8)

[

1 · · · 1
xℓ1 · · · xℓn

]

=

[

1 · · · 1
xω1

· · · xωn

]

[αℓ1 · · · αℓn ],

where the equality also holds for the volumes as defined in (10),

namely

|V{xℓ1
,...,xℓn

}| = |V{xω1
,...,xωn}| |det[αℓ1 · · · αℓn ]|.

The determinant in this expression can be upper-bounded using

Hadamard’s inequality, with

|det[αℓ1 · · · αℓn ]| ≤
n
∏

j=1

‖αℓj‖,

where the inequality becomes equality when the matrix is a permuta-

tion matrix. If the sum-to-one and the non-negativity constraints are

satisfied, then this upper bound equals 1. Therefore, the volume of

the simplex defined by any arbitrary set cannot be greater than the

one defined by the endmembers.

barycentric coordinates. To keep the presentation as

simple as possible, we restrict ourselves to classical,

well-known, techniques.

A. N-Findr algorithm

The N-Findr algorithm seeks the simplex with the

largest volume, in an iterative manner by visiting

each pixel to inflate the simplex. In a pre-processing

stage, a dimensionality reduction method, such

as PCA or MNF, is applied to get data into a

(n − 1)-dimensional space, n being the number of

endmembers. At initialization, an initial set of n
endmember candidates is selected randomly2. Let

X = {xω1
,xω2

, . . . ,xωn
} be the set of correspond-

ing spectra.

The following process is iterated for each pixel,

xℓ being its spectrum. One at a time, each endmem-

ber is replaced by the spectrum under investigation,

and the oriented3 volume of the resulting simplex

is evaluated. We get n new volumes, VX\{xωi
}∪{xℓ},

as well as the initial volume VX . Comparing these

volumes, we get the following decision rule:

• if the tested volumes are less than the

initial one, in absolute values, namely

maxi |VX\{xωi
}∪{xℓ}| < |VX |, then the initial

set of endmembers remains unchanged;

• otherwise, in order to inflate the volume, some

entry of the endmember set is replaced by

xℓ. The outgoing spectrum xωi
is identified as

follows: ωi = argmax |VX\{xωi
}∪{xℓ}|.

It turns out that the volumes already computed

for endmember extraction can be used to estimate

the abundances using expression (11), namely by

defining the contribution of xωi
in xℓ by

αi =
VX\{xωi

}∪{xℓ}

VX

.

As given in this expression, the contribution of any

endmember requires only an arithmetic division for

each pixel. Therefore, estimating all the abundances

for all the pixels can be done with a simple arith-

metic division, applied nN times.

2The initial set influences the resulting endmembers, and therefore

the estimated abundances. More efficient selection techniques may

also be applied to construct the initial set. See, e.g., [28]. We keep

the exposition clear with the original N-Findr algorithm.
3The original algorithm uses a positive-valued volume, here re-

casted into a signed one. While this turns out to be very useful, the

algorithm remains essentially the same.
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B. Simplex growing algorithm

The simplex growing algorithm (SGA) improves

the N-Findr in two main aspects: (1) at initialization,

the starting set is not randomly selected, and (2) the

simplex is growing one endmember at a time, until

all endmembers are extracted.

At initialization, a single dimension is considered,

using for instance PCA, where a simplex is a

nontrivial line segment. The first endmember xω1

is determined by maximizing |V{xω1
,x0}|, where x0

is randomly selected. Iteratively, the endmembers

are extracted one at a time. At step i for 2 ≤ i ≤ n,

the dimensionality being reduced to i − 1, the i-th
endmember is determined by the index ωi as follows

ωi = argmax
ℓ

|VX∪{xℓ}|,

where X corresponds to the set of endmembers

previously extracted. This is illustrated in Figure 4

(right).

In the same spirit as the N-Findr, the volumes

computed by the SGA allow to estimate the abun-

dances, as given by expression (11). The difference

resides in that, at a given step i, the computed

volumes give the contributions of ωi in all xℓ in

the (i − 1)-dimensional space, and not in the final

(n − 1)-dimensional space defined by the n-order

mixing model.

C. Vertex component analysis

The vertex component analysis (VCA) exploits

the fact that an affine transformation of a simplex is

also a simplex, in particular by projection operation.

The incremental scheme projects the data onto a

direction orthogonal to the subspace spanned by

previously selected endmembers. The extreme of

this projection specifies the new endmember. The

algorithm iterates until it reaches the desired number

of endmembers.

Roughly speaking, the VCA considers the dis-

tance of candidate data to the subspace spanned

by the endmembers already determined. The new

endmember corresponds to the farest data, as il-

lustrated in Figure 4 (left). It turns out that these

distances are the same as those introduced in (12),

and consequently allow us to estimate abundances,

as follows

α3 =
δ(xℓ)

δ(xω3
)
.

Once again, only one arithmetic division is required

to estimate the contribution of any endmember for

each pixel. Moreover, the VCA selection criteria,

i.e., xω3
= argmaxxℓ

δ(xℓ), gives a natural frame-

work for both equality and non-negativity con-

straints. If there exists some xℓ such that δ(xω3
) <

δ(xℓ), then from the above expression α3 > 1, and

consequently the constraints are violated.

D. Connections to the ICE method

The iterated constrained endmembers (ICE)

method seeks the simplex englobing the data, by

minimizing the residuals in a least-squares sense.

Essentially, the algorithm minimizes, on the one

hand, the mean squared error

1

N

N∑

ℓ=1

∥∥∥xℓ −

n∑

i=1

αi xωi

∥∥∥
2

,

and on the other, the sum of squared distances

between all endmembers, namely

n∑

i,j=1
i6=j

∥∥xωi
− xωj

∥∥2.

The former enlarges the simplex englobing the

data, while the latter constrains its volume. ICE

uses an alternating minimization scheme to extract

endmembers (from a quadratic objective function)

and estimate their contributions (solving a quadratic

programming problem).

The ICE method considers (squared) distances

between all couples of data, endmembers and non-

endmembers. Using distances between vertices of a

simplex, we can easily compute its volume thanks

to the Cayley-Menger determinants [29]. The square

volume of a simplex in an (n−1)-dimensional space

is given by

V2
X

= cn−1 det




0 1 1 1 · · · 1
1 0 δ21,2 δ21,3 · · · δ21,n
1 δ22,1 0 δ22,3 · · · δ22,n
1 δ23,1 δ23,2 0 · · · δ23,n
...

...
...

...
. . .

...

1 δ2n,1 δ2n,2 δ2n,3 · · · 0



,

where δi,j denotes the distance between two vertices

and cn = (−1)n+1/2n(n!)2.

While the Cayley-Menger expression computes

the determinant of a (n + 1)-by-(n + 1) matrix,
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xω1

xω2

xωn

xωk

xℓ

1
1−αk

∑n
i=1

i6=k
αi xωi

α
k

1
−

α
k

δ(xℓ)

δ(xωk
)

Fig. 5. By applying the intercept theorem for the two dashed lines

(blue color) in the (red) triangle, we get αk = δ(xℓ)/δ(xωk
).

its particular form results into lower computational

cost. To show this, consider the case of n − 1 = 2
dimensions. Then the Cayley-Menger determinant

leads to the Heron’s formula of triangles, with

V2
X

= 1
16
(δ1,2 + δ1,3 + δ2,3)(δ1,2 + δ1,3 − δ2,3)(δ1,2 −

δ1,3 + δ2,3)(−δ1,2 + δ1,3 + δ2,3), where only four

arithmetic multiplications are required.

E. Connection to subspace projection techniques

The Orthogonal Subspace Projection (OSP)

method is a general technique for detection, discrim-

ination and classification in hyperspectral imaging

[30]. Applied for endmember extraction, the abun-

dances are often given using a least-squares estimate

[31]. It is described by writing (1) as

xℓ = αk xωk
+

n∑

i=1

i6=k

αi xωi
,

for any k = 1, 2, . . . , n. To extract xωk
, an operator

(matrix) is designed to annihilate the second term in

the right-hand-side. Let U = X\{xωk
}, then one

can consider the projection operator

I −U(U⊤
U)

−1

U
⊤. (13)

This operator projects the data into the null space

of U , as shown in [32]. In [33], the abundances are

estimated using a geometric point of view, in the

same spirit as the barycentric approach proposed in

this paper. The connection between both techniques

Fig. 6. The AVIRIS Cuprite Nevada hyperspectral subimage, at

wavelength 1.3µm (band 100).

is illustrated in Figure 5 where, by applying the

intercept theorem, one gets relation (12), namely

αk =
δ(xℓ)

δ(xωk
)
.

It is worth noting that our method does not require

any matrix inversion, as opposed to subspace pro-

jection techniques as illustrated in expression (13).

IV. EXPERIMENTATIONS

In this section, we study the relevance of the

proposed abundance estimation scheme. To this

end, we compare it to the results obtained with

the least-squares solutions, with the unconstrained

(3), the equality-constrained (4), the non-negativity

constraint (5), and the fully constrained [21] solu-

tions. We emphasize on the fact that all these least-

squares solutions are computed from the spectral

data, without any dimension reduction, as opposed

to our approach which exploits the PCA (or MNF)

representation, already computed for endmember

extraction. As we work in a lower dimension, one

should expect to have lower performance.

The study of the optimality of the dimensionality

reduction technique and of the endmember extrac-

tion method are beyond the scope of this paper.

A. Real hyperspectral image

The studied hypersepectral image is the scene of

the Cuprite mining district in western Nevada, USA,

captured by the NASA’s Airborne Visible/Infrared



10

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

re
fl

ec
ta

n
ce

wavelength (µm)

endmember 1
endmember 2
endmember 3

Fig. 7. The three extracted endmembers, representing mainly

Alunite, Kaolinite and Sphene.

Imaging Spectrometer (AVIRIS). Over the past

years, this site has been extensively studied by the

remote sensing community [34], providing high-

accuracy ground truth map [35], [36]. The AVIRIS

sensor collects 224 contiguous spectral bands cov-

ering wavelengths ranging from 0.38 to 2.5µm,

with a spectral resolution of approximately 0.01µm.

Atmospheric correction is applied (removing the

bands 1-2, 104-113, 148-167, and 221-224), which

yields a total of 188 bands. Previously studied in

[13], [37] for endmember extraction, the subimage

consists of 250 lines of 191 pixels each, as shown

in Figure 6.

In the experiments, we used N-Findr to extract

the endmembers, set here to n = 3 for illustration

purpose (two-dimensional representation and RGB

map presented below). This is not the optimal

number of endmembers for this image, with an

estimated virtual dimensionality equals to 12 as

studied in [13], or 9 for almost the same scene

in [37]. The identified endmembers are the first

three endmembers obtained from the VCA, namely

Alunite, Kaolinite and Sphene, a result conform to

the ground truth information. The spectra of these

endmembers are given in Figure 7.

We applied barycentric coordinates, i.e., using

(11), to estimate the abundances of these endmem-

bers within the hyperspectral image. These results

are illustrated on the map in Figure 8, using a three-

channel color composite, with red, green and blue

for the first, second and third extracted endmembers.

With both the endmember extraction and the abun-

dance estimation operated in the two-dimensional

 

 

Fig. 8. Three-channel color composite, with red •, green • and blue

• for the first, second and third extracted endmembers. The location

of each endmember, indicated by x, is coherent with ground truth

measurements.

 

 

-0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

Fig. 9. Spatial distribution of the pixels violating the non-negativity

constraint. The value at each pixel corresponds to the smallest αi

when negative; and zero otherwise, i.e., when all αi’s of the pixel

are non-negative.

space given by the PCA, we represented data in

Figure 10. With (30%) of the data outside the sim-

plex defined by these endmembers, 14 586 data (out

of 47 750) violated the non-negativity constraint,

with at least one estimated negative αi. The spatial

distribution of the pixels violating the non-negativity

constraint indicate specific areas where the linear

model does not hold (see for instance [1], [38]).

As illustrated in Figure 9 where the largest negative

αi’s are shown (pixels with zero value correspond

to pixels with all abundances non-negative), the

violation of the linear model clearly exhibits a spa-

tial structure, which could result from regions with

undetected endmembers. These negative abundances

were set to zero for the RGB map in the three-

channel color Figure 8. This can be considered

as a drawback of using a dimensionality reduction
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Fig. 10. The Cuprite hyperspectral data (·) in the two-dimensional

space defined by the PCA, with endmembers (◦) identifying a triangle

enclosing 70% of the data.

TABLE I

NUMBER OF HYPERSPECTRAL DATA FROM THE CUPRITE SCENE

(OUT OF 47 750) WITH ESTIMATED ABUNDANCES VIOLATING THE

NON-NEGATIVITY AND THE SUM-TO-ONE CONSTRAINTS.

∃ i : αi < 0
n∑

i=1

αi 6= 1

Unconstrained least-squares (3) 43 065 (90%) 47 746 (99%)
Sum-to-one least-squares (4) 13 997 (29%) 0
Non-negative least-squares [19] 0 47 746 (99%)
Fully constrained least-squares [21] 0 0
Barycentric coordinates [this paper] 14 586 (30%) 0

technique, here PCA. However, applying the sum-

to-one constrained least-squares (4) on the hyper-

spectral data, without any dimensionality reduction,

yielded up to 29% of the data violating the non-

negativity constraint. Table I presents a quantitative

comparison of the constraints violation for different

abundance estimation techniques.

In order to measure the performance of the

abundance estimation technique, we considered the

spectral angle. For each data, it is defined between

the initial spectrum, xℓ, and the one computed with

the linear mixture using the estimated abundances,

x̂ℓ, with

θ(xℓ, x̂ℓ) = cos−1

(
〈xℓ, x̂ℓ〉

‖xℓ‖‖x̂ℓ‖

)
. (14)

The spectral angle is invariant with respect to the

energy, making it a widely used measure of error

for hyperspectral data [39]. The performance of the

proposed approach was measured using the spectral

angle, and compared with the fully constrained

least squares. For this purpose, we considered the

spectral angle between the initial spectra and, on

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0
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1000

1500
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3500

4000

spectral angle (in radians)

#

Fig. 12. Histogram of the spectral angle of the estimated spectra,

between the ones obtained from the barycentric coordinates and the

fully constrained least-squares techniques.

the one hand, the ones reconstructed using the

fully constrained least squares and, on the other,

the barycentric coordinates. Figure 11 shows the

histograms of both distributions, demonstrating the

small angular error for either techniques, with a

mean angle of 0.0866 and 0.0848, respectively.

The study of the spectral angle between spectra

estimated by each technique showed a very small

difference, as illustrated in Figure 12.

V. CONCLUSION AND ON-GOING WORK

In this paper, we presented a new abundance

estimation method, based on pure geometry as op-

posed to conventional matrix inversion techniques.

We showed that, once a dimensionality reduction

technique such as PCA is applied, it is useless

to perform a least squares estimation. Thanks to

barycentric coordinates, the abundances are ex-

pressed as a ratio of volumes or as a ratio of

distances. Since these quantities are often computed

for endmembers identification, we showed that this

method is inherent to well-known endmember ex-

traction techniques, such as N-Findr, SGA, VCA

and ICE. Experimental results showed the relevance

of the proposed approach.

The goal of our ongoing work is two-fold. On

the one hand, we are working on imposing the

non-negativity constraint to barycentric coordinates.

This can be applied using simple geometry, in the

same spirit of this paper. On the other hand, we

are interested in a parallel implementation, using

graphics hardware (see for instance [40]). It turns
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Fig. 11. Histogram of the spectral angle between the initial spectra and the ones obtained using the abundances estimated with the fully

constrained least-squares (left) and the proposed technique (right).

out that barycentric coordinates have been largely

used in computer graphics applications, such as

defining an inclusion test in rasterization or linear

interpolation for shading. Therefore, a parallel im-

plementation of the proposed method is natural to

graphics hardware.
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